nir: Document some fields of nir_loop_terminator
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitscan.h"
38 #include "util/bitset.h"
39 #include "util/macros.h"
40 #include "compiler/nir_types.h"
41 #include "compiler/shader_enums.h"
42 #include "compiler/shader_info.h"
43 #include <stdio.h>
44
45 #ifndef NDEBUG
46 #include "util/debug.h"
47 #endif /* NDEBUG */
48
49 #include "nir_opcodes.h"
50
51 #if defined(_WIN32) && !defined(snprintf)
52 #define snprintf _snprintf
53 #endif
54
55 #ifdef __cplusplus
56 extern "C" {
57 #endif
58
59 #define NIR_FALSE 0u
60 #define NIR_TRUE (~0u)
61 #define NIR_MAX_VEC_COMPONENTS 4
62 typedef uint8_t nir_component_mask_t;
63
64 /** Defines a cast function
65 *
66 * This macro defines a cast function from in_type to out_type where
67 * out_type is some structure type that contains a field of type out_type.
68 *
69 * Note that you have to be a bit careful as the generated cast function
70 * destroys constness.
71 */
72 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
73 type_field, type_value) \
74 static inline out_type * \
75 name(const in_type *parent) \
76 { \
77 assert(parent && parent->type_field == type_value); \
78 return exec_node_data(out_type, parent, field); \
79 }
80
81 struct nir_function;
82 struct nir_shader;
83 struct nir_instr;
84 struct nir_builder;
85
86
87 /**
88 * Description of built-in state associated with a uniform
89 *
90 * \sa nir_variable::state_slots
91 */
92 typedef struct {
93 gl_state_index16 tokens[STATE_LENGTH];
94 int swizzle;
95 } nir_state_slot;
96
97 typedef enum {
98 nir_var_shader_in = (1 << 0),
99 nir_var_shader_out = (1 << 1),
100 nir_var_shader_temp = (1 << 2),
101 nir_var_function_temp = (1 << 3),
102 nir_var_uniform = (1 << 4),
103 nir_var_mem_ubo = (1 << 5),
104 nir_var_system_value = (1 << 6),
105 nir_var_mem_ssbo = (1 << 7),
106 nir_var_mem_shared = (1 << 8),
107 nir_var_mem_global = (1 << 9),
108 nir_var_all = ~0,
109 } nir_variable_mode;
110
111 /**
112 * Rounding modes.
113 */
114 typedef enum {
115 nir_rounding_mode_undef = 0,
116 nir_rounding_mode_rtne = 1, /* round to nearest even */
117 nir_rounding_mode_ru = 2, /* round up */
118 nir_rounding_mode_rd = 3, /* round down */
119 nir_rounding_mode_rtz = 4, /* round towards zero */
120 } nir_rounding_mode;
121
122 typedef union {
123 bool b[NIR_MAX_VEC_COMPONENTS];
124 float f32[NIR_MAX_VEC_COMPONENTS];
125 double f64[NIR_MAX_VEC_COMPONENTS];
126 int8_t i8[NIR_MAX_VEC_COMPONENTS];
127 uint8_t u8[NIR_MAX_VEC_COMPONENTS];
128 int16_t i16[NIR_MAX_VEC_COMPONENTS];
129 uint16_t u16[NIR_MAX_VEC_COMPONENTS];
130 int32_t i32[NIR_MAX_VEC_COMPONENTS];
131 uint32_t u32[NIR_MAX_VEC_COMPONENTS];
132 int64_t i64[NIR_MAX_VEC_COMPONENTS];
133 uint64_t u64[NIR_MAX_VEC_COMPONENTS];
134 } nir_const_value;
135
136 typedef struct nir_constant {
137 /**
138 * Value of the constant.
139 *
140 * The field used to back the values supplied by the constant is determined
141 * by the type associated with the \c nir_variable. Constants may be
142 * scalars, vectors, or matrices.
143 */
144 nir_const_value values[NIR_MAX_VEC_COMPONENTS];
145
146 /* we could get this from the var->type but makes clone *much* easier to
147 * not have to care about the type.
148 */
149 unsigned num_elements;
150
151 /* Array elements / Structure Fields */
152 struct nir_constant **elements;
153 } nir_constant;
154
155 /**
156 * \brief Layout qualifiers for gl_FragDepth.
157 *
158 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
159 * with a layout qualifier.
160 */
161 typedef enum {
162 nir_depth_layout_none, /**< No depth layout is specified. */
163 nir_depth_layout_any,
164 nir_depth_layout_greater,
165 nir_depth_layout_less,
166 nir_depth_layout_unchanged
167 } nir_depth_layout;
168
169 /**
170 * Enum keeping track of how a variable was declared.
171 */
172 typedef enum {
173 /**
174 * Normal declaration.
175 */
176 nir_var_declared_normally = 0,
177
178 /**
179 * Variable is implicitly generated by the compiler and should not be
180 * visible via the API.
181 */
182 nir_var_hidden,
183 } nir_var_declaration_type;
184
185 /**
186 * Either a uniform, global variable, shader input, or shader output. Based on
187 * ir_variable - it should be easy to translate between the two.
188 */
189
190 typedef struct nir_variable {
191 struct exec_node node;
192
193 /**
194 * Declared type of the variable
195 */
196 const struct glsl_type *type;
197
198 /**
199 * Declared name of the variable
200 */
201 char *name;
202
203 struct nir_variable_data {
204 /**
205 * Storage class of the variable.
206 *
207 * \sa nir_variable_mode
208 */
209 nir_variable_mode mode;
210
211 /**
212 * Is the variable read-only?
213 *
214 * This is set for variables declared as \c const, shader inputs,
215 * and uniforms.
216 */
217 unsigned read_only:1;
218 unsigned centroid:1;
219 unsigned sample:1;
220 unsigned patch:1;
221 unsigned invariant:1;
222
223 /**
224 * When separate shader programs are enabled, only input/outputs between
225 * the stages of a multi-stage separate program can be safely removed
226 * from the shader interface. Other input/outputs must remains active.
227 *
228 * This is also used to make sure xfb varyings that are unused by the
229 * fragment shader are not removed.
230 */
231 unsigned always_active_io:1;
232
233 /**
234 * Interpolation mode for shader inputs / outputs
235 *
236 * \sa glsl_interp_mode
237 */
238 unsigned interpolation:2;
239
240 /**
241 * \name ARB_fragment_coord_conventions
242 * @{
243 */
244 unsigned origin_upper_left:1;
245 unsigned pixel_center_integer:1;
246 /*@}*/
247
248 /**
249 * If non-zero, then this variable may be packed along with other variables
250 * into a single varying slot, so this offset should be applied when
251 * accessing components. For example, an offset of 1 means that the x
252 * component of this variable is actually stored in component y of the
253 * location specified by \c location.
254 */
255 unsigned location_frac:2;
256
257 /**
258 * If true, this variable represents an array of scalars that should
259 * be tightly packed. In other words, consecutive array elements
260 * should be stored one component apart, rather than one slot apart.
261 */
262 unsigned compact:1;
263
264 /**
265 * Whether this is a fragment shader output implicitly initialized with
266 * the previous contents of the specified render target at the
267 * framebuffer location corresponding to this shader invocation.
268 */
269 unsigned fb_fetch_output:1;
270
271 /**
272 * Non-zero if this variable is considered bindless as defined by
273 * ARB_bindless_texture.
274 */
275 unsigned bindless:1;
276
277 /**
278 * Was an explicit binding set in the shader?
279 */
280 unsigned explicit_binding:1;
281
282 /**
283 * Was a transfer feedback buffer set in the shader?
284 */
285 unsigned explicit_xfb_buffer:1;
286
287 /**
288 * Was a transfer feedback stride set in the shader?
289 */
290 unsigned explicit_xfb_stride:1;
291
292 /**
293 * Was an explicit offset set in the shader?
294 */
295 unsigned explicit_offset:1;
296
297 /**
298 * \brief Layout qualifier for gl_FragDepth.
299 *
300 * This is not equal to \c ir_depth_layout_none if and only if this
301 * variable is \c gl_FragDepth and a layout qualifier is specified.
302 */
303 nir_depth_layout depth_layout;
304
305 /**
306 * Storage location of the base of this variable
307 *
308 * The precise meaning of this field depends on the nature of the variable.
309 *
310 * - Vertex shader input: one of the values from \c gl_vert_attrib.
311 * - Vertex shader output: one of the values from \c gl_varying_slot.
312 * - Geometry shader input: one of the values from \c gl_varying_slot.
313 * - Geometry shader output: one of the values from \c gl_varying_slot.
314 * - Fragment shader input: one of the values from \c gl_varying_slot.
315 * - Fragment shader output: one of the values from \c gl_frag_result.
316 * - Uniforms: Per-stage uniform slot number for default uniform block.
317 * - Uniforms: Index within the uniform block definition for UBO members.
318 * - Non-UBO Uniforms: uniform slot number.
319 * - Other: This field is not currently used.
320 *
321 * If the variable is a uniform, shader input, or shader output, and the
322 * slot has not been assigned, the value will be -1.
323 */
324 int location;
325
326 /**
327 * The actual location of the variable in the IR. Only valid for inputs
328 * and outputs.
329 */
330 unsigned int driver_location;
331
332 /**
333 * Vertex stream output identifier.
334 *
335 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
336 * stream of the i-th component.
337 */
338 unsigned stream;
339
340 /**
341 * output index for dual source blending.
342 */
343 int index;
344
345 /**
346 * Descriptor set binding for sampler or UBO.
347 */
348 int descriptor_set;
349
350 /**
351 * Initial binding point for a sampler or UBO.
352 *
353 * For array types, this represents the binding point for the first element.
354 */
355 int binding;
356
357 /**
358 * Location an atomic counter or transform feedback is stored at.
359 */
360 unsigned offset;
361
362 /**
363 * Transform feedback buffer.
364 */
365 unsigned xfb_buffer;
366
367 /**
368 * Transform feedback stride.
369 */
370 unsigned xfb_stride;
371
372 /**
373 * How the variable was declared. See nir_var_declaration_type.
374 *
375 * This is used to detect variables generated by the compiler, so should
376 * not be visible via the API.
377 */
378 unsigned how_declared:2;
379
380 /**
381 * ARB_shader_image_load_store qualifiers.
382 */
383 struct {
384 enum gl_access_qualifier access;
385
386 /** Image internal format if specified explicitly, otherwise GL_NONE. */
387 GLenum format;
388 } image;
389 } data;
390
391 /**
392 * Built-in state that backs this uniform
393 *
394 * Once set at variable creation, \c state_slots must remain invariant.
395 * This is because, ideally, this array would be shared by all clones of
396 * this variable in the IR tree. In other words, we'd really like for it
397 * to be a fly-weight.
398 *
399 * If the variable is not a uniform, \c num_state_slots will be zero and
400 * \c state_slots will be \c NULL.
401 */
402 /*@{*/
403 unsigned num_state_slots; /**< Number of state slots used */
404 nir_state_slot *state_slots; /**< State descriptors. */
405 /*@}*/
406
407 /**
408 * Constant expression assigned in the initializer of the variable
409 *
410 * This field should only be used temporarily by creators of NIR shaders
411 * and then lower_constant_initializers can be used to get rid of them.
412 * Most of the rest of NIR ignores this field or asserts that it's NULL.
413 */
414 nir_constant *constant_initializer;
415
416 /**
417 * For variables that are in an interface block or are an instance of an
418 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
419 *
420 * \sa ir_variable::location
421 */
422 const struct glsl_type *interface_type;
423
424 /**
425 * Description of per-member data for per-member struct variables
426 *
427 * This is used for variables which are actually an amalgamation of
428 * multiple entities such as a struct of built-in values or a struct of
429 * inputs each with their own layout specifier. This is only allowed on
430 * variables with a struct or array of array of struct type.
431 */
432 unsigned num_members;
433 struct nir_variable_data *members;
434 } nir_variable;
435
436 #define nir_foreach_variable(var, var_list) \
437 foreach_list_typed(nir_variable, var, node, var_list)
438
439 #define nir_foreach_variable_safe(var, var_list) \
440 foreach_list_typed_safe(nir_variable, var, node, var_list)
441
442 static inline bool
443 nir_variable_is_global(const nir_variable *var)
444 {
445 return var->data.mode != nir_var_function_temp;
446 }
447
448 typedef struct nir_register {
449 struct exec_node node;
450
451 unsigned num_components; /** < number of vector components */
452 unsigned num_array_elems; /** < size of array (0 for no array) */
453
454 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
455 uint8_t bit_size;
456
457 /** generic register index. */
458 unsigned index;
459
460 /** only for debug purposes, can be NULL */
461 const char *name;
462
463 /** whether this register is local (per-function) or global (per-shader) */
464 bool is_global;
465
466 /**
467 * If this flag is set to true, then accessing channels >= num_components
468 * is well-defined, and simply spills over to the next array element. This
469 * is useful for backends that can do per-component accessing, in
470 * particular scalar backends. By setting this flag and making
471 * num_components equal to 1, structures can be packed tightly into
472 * registers and then registers can be accessed per-component to get to
473 * each structure member, even if it crosses vec4 boundaries.
474 */
475 bool is_packed;
476
477 /** set of nir_srcs where this register is used (read from) */
478 struct list_head uses;
479
480 /** set of nir_dests where this register is defined (written to) */
481 struct list_head defs;
482
483 /** set of nir_ifs where this register is used as a condition */
484 struct list_head if_uses;
485 } nir_register;
486
487 #define nir_foreach_register(reg, reg_list) \
488 foreach_list_typed(nir_register, reg, node, reg_list)
489 #define nir_foreach_register_safe(reg, reg_list) \
490 foreach_list_typed_safe(nir_register, reg, node, reg_list)
491
492 typedef enum PACKED {
493 nir_instr_type_alu,
494 nir_instr_type_deref,
495 nir_instr_type_call,
496 nir_instr_type_tex,
497 nir_instr_type_intrinsic,
498 nir_instr_type_load_const,
499 nir_instr_type_jump,
500 nir_instr_type_ssa_undef,
501 nir_instr_type_phi,
502 nir_instr_type_parallel_copy,
503 } nir_instr_type;
504
505 typedef struct nir_instr {
506 struct exec_node node;
507 struct nir_block *block;
508 nir_instr_type type;
509
510 /* A temporary for optimization and analysis passes to use for storing
511 * flags. For instance, DCE uses this to store the "dead/live" info.
512 */
513 uint8_t pass_flags;
514
515 /** generic instruction index. */
516 unsigned index;
517 } nir_instr;
518
519 static inline nir_instr *
520 nir_instr_next(nir_instr *instr)
521 {
522 struct exec_node *next = exec_node_get_next(&instr->node);
523 if (exec_node_is_tail_sentinel(next))
524 return NULL;
525 else
526 return exec_node_data(nir_instr, next, node);
527 }
528
529 static inline nir_instr *
530 nir_instr_prev(nir_instr *instr)
531 {
532 struct exec_node *prev = exec_node_get_prev(&instr->node);
533 if (exec_node_is_head_sentinel(prev))
534 return NULL;
535 else
536 return exec_node_data(nir_instr, prev, node);
537 }
538
539 static inline bool
540 nir_instr_is_first(const nir_instr *instr)
541 {
542 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
543 }
544
545 static inline bool
546 nir_instr_is_last(const nir_instr *instr)
547 {
548 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
549 }
550
551 typedef struct nir_ssa_def {
552 /** for debugging only, can be NULL */
553 const char* name;
554
555 /** generic SSA definition index. */
556 unsigned index;
557
558 /** Index into the live_in and live_out bitfields */
559 unsigned live_index;
560
561 /** Instruction which produces this SSA value. */
562 nir_instr *parent_instr;
563
564 /** set of nir_instrs where this register is used (read from) */
565 struct list_head uses;
566
567 /** set of nir_ifs where this register is used as a condition */
568 struct list_head if_uses;
569
570 uint8_t num_components;
571
572 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
573 uint8_t bit_size;
574 } nir_ssa_def;
575
576 struct nir_src;
577
578 typedef struct {
579 nir_register *reg;
580 struct nir_src *indirect; /** < NULL for no indirect offset */
581 unsigned base_offset;
582
583 /* TODO use-def chain goes here */
584 } nir_reg_src;
585
586 typedef struct {
587 nir_instr *parent_instr;
588 struct list_head def_link;
589
590 nir_register *reg;
591 struct nir_src *indirect; /** < NULL for no indirect offset */
592 unsigned base_offset;
593
594 /* TODO def-use chain goes here */
595 } nir_reg_dest;
596
597 struct nir_if;
598
599 typedef struct nir_src {
600 union {
601 /** Instruction that consumes this value as a source. */
602 nir_instr *parent_instr;
603 struct nir_if *parent_if;
604 };
605
606 struct list_head use_link;
607
608 union {
609 nir_reg_src reg;
610 nir_ssa_def *ssa;
611 };
612
613 bool is_ssa;
614 } nir_src;
615
616 static inline nir_src
617 nir_src_init(void)
618 {
619 nir_src src = { { NULL } };
620 return src;
621 }
622
623 #define NIR_SRC_INIT nir_src_init()
624
625 #define nir_foreach_use(src, reg_or_ssa_def) \
626 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
627
628 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
629 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
630
631 #define nir_foreach_if_use(src, reg_or_ssa_def) \
632 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
633
634 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
635 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
636
637 typedef struct {
638 union {
639 nir_reg_dest reg;
640 nir_ssa_def ssa;
641 };
642
643 bool is_ssa;
644 } nir_dest;
645
646 static inline nir_dest
647 nir_dest_init(void)
648 {
649 nir_dest dest = { { { NULL } } };
650 return dest;
651 }
652
653 #define NIR_DEST_INIT nir_dest_init()
654
655 #define nir_foreach_def(dest, reg) \
656 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
657
658 #define nir_foreach_def_safe(dest, reg) \
659 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
660
661 static inline nir_src
662 nir_src_for_ssa(nir_ssa_def *def)
663 {
664 nir_src src = NIR_SRC_INIT;
665
666 src.is_ssa = true;
667 src.ssa = def;
668
669 return src;
670 }
671
672 static inline nir_src
673 nir_src_for_reg(nir_register *reg)
674 {
675 nir_src src = NIR_SRC_INIT;
676
677 src.is_ssa = false;
678 src.reg.reg = reg;
679 src.reg.indirect = NULL;
680 src.reg.base_offset = 0;
681
682 return src;
683 }
684
685 static inline nir_dest
686 nir_dest_for_reg(nir_register *reg)
687 {
688 nir_dest dest = NIR_DEST_INIT;
689
690 dest.reg.reg = reg;
691
692 return dest;
693 }
694
695 static inline unsigned
696 nir_src_bit_size(nir_src src)
697 {
698 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
699 }
700
701 static inline unsigned
702 nir_src_num_components(nir_src src)
703 {
704 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
705 }
706
707 static inline bool
708 nir_src_is_const(nir_src src)
709 {
710 return src.is_ssa &&
711 src.ssa->parent_instr->type == nir_instr_type_load_const;
712 }
713
714 int64_t nir_src_as_int(nir_src src);
715 uint64_t nir_src_as_uint(nir_src src);
716 bool nir_src_as_bool(nir_src src);
717 double nir_src_as_float(nir_src src);
718 int64_t nir_src_comp_as_int(nir_src src, unsigned component);
719 uint64_t nir_src_comp_as_uint(nir_src src, unsigned component);
720 bool nir_src_comp_as_bool(nir_src src, unsigned component);
721 double nir_src_comp_as_float(nir_src src, unsigned component);
722
723 static inline unsigned
724 nir_dest_bit_size(nir_dest dest)
725 {
726 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
727 }
728
729 static inline unsigned
730 nir_dest_num_components(nir_dest dest)
731 {
732 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
733 }
734
735 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
736 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
737
738 typedef struct {
739 nir_src src;
740
741 /**
742 * \name input modifiers
743 */
744 /*@{*/
745 /**
746 * For inputs interpreted as floating point, flips the sign bit. For
747 * inputs interpreted as integers, performs the two's complement negation.
748 */
749 bool negate;
750
751 /**
752 * Clears the sign bit for floating point values, and computes the integer
753 * absolute value for integers. Note that the negate modifier acts after
754 * the absolute value modifier, therefore if both are set then all inputs
755 * will become negative.
756 */
757 bool abs;
758 /*@}*/
759
760 /**
761 * For each input component, says which component of the register it is
762 * chosen from. Note that which elements of the swizzle are used and which
763 * are ignored are based on the write mask for most opcodes - for example,
764 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
765 * a swizzle of {2, x, 1, 0} where x means "don't care."
766 */
767 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
768 } nir_alu_src;
769
770 typedef struct {
771 nir_dest dest;
772
773 /**
774 * \name saturate output modifier
775 *
776 * Only valid for opcodes that output floating-point numbers. Clamps the
777 * output to between 0.0 and 1.0 inclusive.
778 */
779
780 bool saturate;
781
782 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
783 } nir_alu_dest;
784
785 /** NIR sized and unsized types
786 *
787 * The values in this enum are carefully chosen so that the sized type is
788 * just the unsized type OR the number of bits.
789 */
790 typedef enum {
791 nir_type_invalid = 0, /* Not a valid type */
792 nir_type_int = 2,
793 nir_type_uint = 4,
794 nir_type_bool = 6,
795 nir_type_float = 128,
796 nir_type_bool1 = 1 | nir_type_bool,
797 nir_type_bool32 = 32 | nir_type_bool,
798 nir_type_int1 = 1 | nir_type_int,
799 nir_type_int8 = 8 | nir_type_int,
800 nir_type_int16 = 16 | nir_type_int,
801 nir_type_int32 = 32 | nir_type_int,
802 nir_type_int64 = 64 | nir_type_int,
803 nir_type_uint1 = 1 | nir_type_uint,
804 nir_type_uint8 = 8 | nir_type_uint,
805 nir_type_uint16 = 16 | nir_type_uint,
806 nir_type_uint32 = 32 | nir_type_uint,
807 nir_type_uint64 = 64 | nir_type_uint,
808 nir_type_float16 = 16 | nir_type_float,
809 nir_type_float32 = 32 | nir_type_float,
810 nir_type_float64 = 64 | nir_type_float,
811 } nir_alu_type;
812
813 #define NIR_ALU_TYPE_SIZE_MASK 0x79
814 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
815
816 static inline unsigned
817 nir_alu_type_get_type_size(nir_alu_type type)
818 {
819 return type & NIR_ALU_TYPE_SIZE_MASK;
820 }
821
822 static inline unsigned
823 nir_alu_type_get_base_type(nir_alu_type type)
824 {
825 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
826 }
827
828 static inline nir_alu_type
829 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
830 {
831 switch (base_type) {
832 case GLSL_TYPE_BOOL:
833 return nir_type_bool1;
834 break;
835 case GLSL_TYPE_UINT:
836 return nir_type_uint32;
837 break;
838 case GLSL_TYPE_INT:
839 return nir_type_int32;
840 break;
841 case GLSL_TYPE_UINT16:
842 return nir_type_uint16;
843 break;
844 case GLSL_TYPE_INT16:
845 return nir_type_int16;
846 break;
847 case GLSL_TYPE_UINT8:
848 return nir_type_uint8;
849 case GLSL_TYPE_INT8:
850 return nir_type_int8;
851 case GLSL_TYPE_UINT64:
852 return nir_type_uint64;
853 break;
854 case GLSL_TYPE_INT64:
855 return nir_type_int64;
856 break;
857 case GLSL_TYPE_FLOAT:
858 return nir_type_float32;
859 break;
860 case GLSL_TYPE_FLOAT16:
861 return nir_type_float16;
862 break;
863 case GLSL_TYPE_DOUBLE:
864 return nir_type_float64;
865 break;
866 default:
867 unreachable("unknown type");
868 }
869 }
870
871 static inline nir_alu_type
872 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
873 {
874 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
875 }
876
877 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
878 nir_rounding_mode rnd);
879
880 typedef enum {
881 NIR_OP_IS_COMMUTATIVE = (1 << 0),
882 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
883 } nir_op_algebraic_property;
884
885 typedef struct {
886 const char *name;
887
888 unsigned num_inputs;
889
890 /**
891 * The number of components in the output
892 *
893 * If non-zero, this is the size of the output and input sizes are
894 * explicitly given; swizzle and writemask are still in effect, but if
895 * the output component is masked out, then the input component may
896 * still be in use.
897 *
898 * If zero, the opcode acts in the standard, per-component manner; the
899 * operation is performed on each component (except the ones that are
900 * masked out) with the input being taken from the input swizzle for
901 * that component.
902 *
903 * The size of some of the inputs may be given (i.e. non-zero) even
904 * though output_size is zero; in that case, the inputs with a zero
905 * size act per-component, while the inputs with non-zero size don't.
906 */
907 unsigned output_size;
908
909 /**
910 * The type of vector that the instruction outputs. Note that the
911 * staurate modifier is only allowed on outputs with the float type.
912 */
913
914 nir_alu_type output_type;
915
916 /**
917 * The number of components in each input
918 */
919 unsigned input_sizes[NIR_MAX_VEC_COMPONENTS];
920
921 /**
922 * The type of vector that each input takes. Note that negate and
923 * absolute value are only allowed on inputs with int or float type and
924 * behave differently on the two.
925 */
926 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
927
928 nir_op_algebraic_property algebraic_properties;
929 } nir_op_info;
930
931 extern const nir_op_info nir_op_infos[nir_num_opcodes];
932
933 typedef struct nir_alu_instr {
934 nir_instr instr;
935 nir_op op;
936
937 /** Indicates that this ALU instruction generates an exact value
938 *
939 * This is kind of a mixture of GLSL "precise" and "invariant" and not
940 * really equivalent to either. This indicates that the value generated by
941 * this operation is high-precision and any code transformations that touch
942 * it must ensure that the resulting value is bit-for-bit identical to the
943 * original.
944 */
945 bool exact;
946
947 nir_alu_dest dest;
948 nir_alu_src src[];
949 } nir_alu_instr;
950
951 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
952 nir_alu_instr *instr);
953 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
954 nir_alu_instr *instr);
955
956 /* is this source channel used? */
957 static inline bool
958 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
959 unsigned channel)
960 {
961 if (nir_op_infos[instr->op].input_sizes[src] > 0)
962 return channel < nir_op_infos[instr->op].input_sizes[src];
963
964 return (instr->dest.write_mask >> channel) & 1;
965 }
966
967 static inline nir_component_mask_t
968 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
969 {
970 nir_component_mask_t read_mask = 0;
971 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
972 if (!nir_alu_instr_channel_used(instr, src, c))
973 continue;
974
975 read_mask |= (1 << instr->src[src].swizzle[c]);
976 }
977 return read_mask;
978 }
979
980 /*
981 * For instructions whose destinations are SSA, get the number of channels
982 * used for a source
983 */
984 static inline unsigned
985 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
986 {
987 assert(instr->dest.dest.is_ssa);
988
989 if (nir_op_infos[instr->op].input_sizes[src] > 0)
990 return nir_op_infos[instr->op].input_sizes[src];
991
992 return instr->dest.dest.ssa.num_components;
993 }
994
995 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
996 unsigned src1, unsigned src2);
997
998 typedef enum {
999 nir_deref_type_var,
1000 nir_deref_type_array,
1001 nir_deref_type_array_wildcard,
1002 nir_deref_type_ptr_as_array,
1003 nir_deref_type_struct,
1004 nir_deref_type_cast,
1005 } nir_deref_type;
1006
1007 typedef struct {
1008 nir_instr instr;
1009
1010 /** The type of this deref instruction */
1011 nir_deref_type deref_type;
1012
1013 /** The mode of the underlying variable */
1014 nir_variable_mode mode;
1015
1016 /** The dereferenced type of the resulting pointer value */
1017 const struct glsl_type *type;
1018
1019 union {
1020 /** Variable being dereferenced if deref_type is a deref_var */
1021 nir_variable *var;
1022
1023 /** Parent deref if deref_type is not deref_var */
1024 nir_src parent;
1025 };
1026
1027 /** Additional deref parameters */
1028 union {
1029 struct {
1030 nir_src index;
1031 } arr;
1032
1033 struct {
1034 unsigned index;
1035 } strct;
1036
1037 struct {
1038 unsigned ptr_stride;
1039 } cast;
1040 };
1041
1042 /** Destination to store the resulting "pointer" */
1043 nir_dest dest;
1044 } nir_deref_instr;
1045
1046 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
1047 type, nir_instr_type_deref)
1048
1049 static inline nir_deref_instr *
1050 nir_src_as_deref(nir_src src)
1051 {
1052 if (!src.is_ssa)
1053 return NULL;
1054
1055 if (src.ssa->parent_instr->type != nir_instr_type_deref)
1056 return NULL;
1057
1058 return nir_instr_as_deref(src.ssa->parent_instr);
1059 }
1060
1061 static inline nir_deref_instr *
1062 nir_deref_instr_parent(const nir_deref_instr *instr)
1063 {
1064 if (instr->deref_type == nir_deref_type_var)
1065 return NULL;
1066 else
1067 return nir_src_as_deref(instr->parent);
1068 }
1069
1070 static inline nir_variable *
1071 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1072 {
1073 while (instr->deref_type != nir_deref_type_var) {
1074 if (instr->deref_type == nir_deref_type_cast)
1075 return NULL;
1076
1077 instr = nir_deref_instr_parent(instr);
1078 }
1079
1080 return instr->var;
1081 }
1082
1083 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1084
1085 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1086
1087 unsigned nir_deref_instr_ptr_as_array_stride(nir_deref_instr *instr);
1088
1089 typedef struct {
1090 nir_instr instr;
1091
1092 struct nir_function *callee;
1093
1094 unsigned num_params;
1095 nir_src params[];
1096 } nir_call_instr;
1097
1098 #include "nir_intrinsics.h"
1099
1100 #define NIR_INTRINSIC_MAX_CONST_INDEX 4
1101
1102 /** Represents an intrinsic
1103 *
1104 * An intrinsic is an instruction type for handling things that are
1105 * more-or-less regular operations but don't just consume and produce SSA
1106 * values like ALU operations do. Intrinsics are not for things that have
1107 * special semantic meaning such as phi nodes and parallel copies.
1108 * Examples of intrinsics include variable load/store operations, system
1109 * value loads, and the like. Even though texturing more-or-less falls
1110 * under this category, texturing is its own instruction type because
1111 * trying to represent texturing with intrinsics would lead to a
1112 * combinatorial explosion of intrinsic opcodes.
1113 *
1114 * By having a single instruction type for handling a lot of different
1115 * cases, optimization passes can look for intrinsics and, for the most
1116 * part, completely ignore them. Each intrinsic type also has a few
1117 * possible flags that govern whether or not they can be reordered or
1118 * eliminated. That way passes like dead code elimination can still work
1119 * on intrisics without understanding the meaning of each.
1120 *
1121 * Each intrinsic has some number of constant indices, some number of
1122 * variables, and some number of sources. What these sources, variables,
1123 * and indices mean depends on the intrinsic and is documented with the
1124 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1125 * instructions are the only types of instruction that can operate on
1126 * variables.
1127 */
1128 typedef struct {
1129 nir_instr instr;
1130
1131 nir_intrinsic_op intrinsic;
1132
1133 nir_dest dest;
1134
1135 /** number of components if this is a vectorized intrinsic
1136 *
1137 * Similarly to ALU operations, some intrinsics are vectorized.
1138 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1139 * For vectorized intrinsics, the num_components field specifies the
1140 * number of destination components and the number of source components
1141 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1142 */
1143 uint8_t num_components;
1144
1145 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1146
1147 nir_src src[];
1148 } nir_intrinsic_instr;
1149
1150 static inline nir_variable *
1151 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1152 {
1153 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1154 }
1155
1156 /**
1157 * \name NIR intrinsics semantic flags
1158 *
1159 * information about what the compiler can do with the intrinsics.
1160 *
1161 * \sa nir_intrinsic_info::flags
1162 */
1163 typedef enum {
1164 /**
1165 * whether the intrinsic can be safely eliminated if none of its output
1166 * value is not being used.
1167 */
1168 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1169
1170 /**
1171 * Whether the intrinsic can be reordered with respect to any other
1172 * intrinsic, i.e. whether the only reordering dependencies of the
1173 * intrinsic are due to the register reads/writes.
1174 */
1175 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1176 } nir_intrinsic_semantic_flag;
1177
1178 /**
1179 * \name NIR intrinsics const-index flag
1180 *
1181 * Indicates the usage of a const_index slot.
1182 *
1183 * \sa nir_intrinsic_info::index_map
1184 */
1185 typedef enum {
1186 /**
1187 * Generally instructions that take a offset src argument, can encode
1188 * a constant 'base' value which is added to the offset.
1189 */
1190 NIR_INTRINSIC_BASE = 1,
1191
1192 /**
1193 * For store instructions, a writemask for the store.
1194 */
1195 NIR_INTRINSIC_WRMASK = 2,
1196
1197 /**
1198 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1199 */
1200 NIR_INTRINSIC_STREAM_ID = 3,
1201
1202 /**
1203 * The clip-plane id for load_user_clip_plane intrinsic.
1204 */
1205 NIR_INTRINSIC_UCP_ID = 4,
1206
1207 /**
1208 * The amount of data, starting from BASE, that this instruction may
1209 * access. This is used to provide bounds if the offset is not constant.
1210 */
1211 NIR_INTRINSIC_RANGE = 5,
1212
1213 /**
1214 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1215 */
1216 NIR_INTRINSIC_DESC_SET = 6,
1217
1218 /**
1219 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1220 */
1221 NIR_INTRINSIC_BINDING = 7,
1222
1223 /**
1224 * Component offset.
1225 */
1226 NIR_INTRINSIC_COMPONENT = 8,
1227
1228 /**
1229 * Interpolation mode (only meaningful for FS inputs).
1230 */
1231 NIR_INTRINSIC_INTERP_MODE = 9,
1232
1233 /**
1234 * A binary nir_op to use when performing a reduction or scan operation
1235 */
1236 NIR_INTRINSIC_REDUCTION_OP = 10,
1237
1238 /**
1239 * Cluster size for reduction operations
1240 */
1241 NIR_INTRINSIC_CLUSTER_SIZE = 11,
1242
1243 /**
1244 * Parameter index for a load_param intrinsic
1245 */
1246 NIR_INTRINSIC_PARAM_IDX = 12,
1247
1248 /**
1249 * Image dimensionality for image intrinsics
1250 *
1251 * One of GLSL_SAMPLER_DIM_*
1252 */
1253 NIR_INTRINSIC_IMAGE_DIM = 13,
1254
1255 /**
1256 * Non-zero if we are accessing an array image
1257 */
1258 NIR_INTRINSIC_IMAGE_ARRAY = 14,
1259
1260 /**
1261 * Image format for image intrinsics
1262 */
1263 NIR_INTRINSIC_FORMAT = 15,
1264
1265 /**
1266 * Access qualifiers for image and memory access intrinsics
1267 */
1268 NIR_INTRINSIC_ACCESS = 16,
1269
1270 /**
1271 * Alignment for offsets and addresses
1272 *
1273 * These two parameters, specify an alignment in terms of a multiplier and
1274 * an offset. The offset or address parameter X of the intrinsic is
1275 * guaranteed to satisfy the following:
1276 *
1277 * (X - align_offset) % align_mul == 0
1278 */
1279 NIR_INTRINSIC_ALIGN_MUL = 17,
1280 NIR_INTRINSIC_ALIGN_OFFSET = 18,
1281
1282 /**
1283 * The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic.
1284 */
1285 NIR_INTRINSIC_DESC_TYPE = 19,
1286
1287 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1288
1289 } nir_intrinsic_index_flag;
1290
1291 #define NIR_INTRINSIC_MAX_INPUTS 5
1292
1293 typedef struct {
1294 const char *name;
1295
1296 unsigned num_srcs; /** < number of register/SSA inputs */
1297
1298 /** number of components of each input register
1299 *
1300 * If this value is 0, the number of components is given by the
1301 * num_components field of nir_intrinsic_instr. If this value is -1, the
1302 * intrinsic consumes however many components are provided and it is not
1303 * validated at all.
1304 */
1305 int src_components[NIR_INTRINSIC_MAX_INPUTS];
1306
1307 bool has_dest;
1308
1309 /** number of components of the output register
1310 *
1311 * If this value is 0, the number of components is given by the
1312 * num_components field of nir_intrinsic_instr.
1313 */
1314 unsigned dest_components;
1315
1316 /** bitfield of legal bit sizes */
1317 unsigned dest_bit_sizes;
1318
1319 /** the number of constant indices used by the intrinsic */
1320 unsigned num_indices;
1321
1322 /** indicates the usage of intr->const_index[n] */
1323 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1324
1325 /** semantic flags for calls to this intrinsic */
1326 nir_intrinsic_semantic_flag flags;
1327 } nir_intrinsic_info;
1328
1329 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1330
1331 static inline unsigned
1332 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1333 {
1334 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1335 assert(srcn < info->num_srcs);
1336 if (info->src_components[srcn] > 0)
1337 return info->src_components[srcn];
1338 else if (info->src_components[srcn] == 0)
1339 return intr->num_components;
1340 else
1341 return nir_src_num_components(intr->src[srcn]);
1342 }
1343
1344 static inline unsigned
1345 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1346 {
1347 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1348 if (!info->has_dest)
1349 return 0;
1350 else if (info->dest_components)
1351 return info->dest_components;
1352 else
1353 return intr->num_components;
1354 }
1355
1356 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1357 static inline type \
1358 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1359 { \
1360 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1361 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1362 return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1363 } \
1364 static inline void \
1365 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1366 { \
1367 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1368 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1369 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1370 }
1371
1372 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1373 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1374 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1375 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1376 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1377 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1378 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1379 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1380 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1381 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1382 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1383 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1384 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1385 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1386 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1387 INTRINSIC_IDX_ACCESSORS(format, FORMAT, unsigned)
1388 INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
1389 INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
1390 INTRINSIC_IDX_ACCESSORS(desc_type, DESC_TYPE, unsigned)
1391
1392 static inline void
1393 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1394 unsigned align_mul, unsigned align_offset)
1395 {
1396 assert(util_is_power_of_two_nonzero(align_mul));
1397 assert(align_offset < align_mul);
1398 nir_intrinsic_set_align_mul(intrin, align_mul);
1399 nir_intrinsic_set_align_offset(intrin, align_offset);
1400 }
1401
1402 /** Returns a simple alignment for a load/store intrinsic offset
1403 *
1404 * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1405 * and ALIGN_OFFSET parameters, this helper takes both into account and
1406 * provides a single simple alignment parameter. The offset X is guaranteed
1407 * to satisfy X % align == 0.
1408 */
1409 static inline unsigned
1410 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
1411 {
1412 const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1413 const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1414 assert(align_offset < align_mul);
1415 return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1416 }
1417
1418 /**
1419 * \group texture information
1420 *
1421 * This gives semantic information about textures which is useful to the
1422 * frontend, the backend, and lowering passes, but not the optimizer.
1423 */
1424
1425 typedef enum {
1426 nir_tex_src_coord,
1427 nir_tex_src_projector,
1428 nir_tex_src_comparator, /* shadow comparator */
1429 nir_tex_src_offset,
1430 nir_tex_src_bias,
1431 nir_tex_src_lod,
1432 nir_tex_src_min_lod,
1433 nir_tex_src_ms_index, /* MSAA sample index */
1434 nir_tex_src_ms_mcs, /* MSAA compression value */
1435 nir_tex_src_ddx,
1436 nir_tex_src_ddy,
1437 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1438 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1439 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1440 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1441 nir_tex_src_plane, /* < selects plane for planar textures */
1442 nir_num_tex_src_types
1443 } nir_tex_src_type;
1444
1445 typedef struct {
1446 nir_src src;
1447 nir_tex_src_type src_type;
1448 } nir_tex_src;
1449
1450 typedef enum {
1451 nir_texop_tex, /**< Regular texture look-up */
1452 nir_texop_txb, /**< Texture look-up with LOD bias */
1453 nir_texop_txl, /**< Texture look-up with explicit LOD */
1454 nir_texop_txd, /**< Texture look-up with partial derivatives */
1455 nir_texop_txf, /**< Texel fetch with explicit LOD */
1456 nir_texop_txf_ms, /**< Multisample texture fetch */
1457 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1458 nir_texop_txs, /**< Texture size */
1459 nir_texop_lod, /**< Texture lod query */
1460 nir_texop_tg4, /**< Texture gather */
1461 nir_texop_query_levels, /**< Texture levels query */
1462 nir_texop_texture_samples, /**< Texture samples query */
1463 nir_texop_samples_identical, /**< Query whether all samples are definitely
1464 * identical.
1465 */
1466 } nir_texop;
1467
1468 typedef struct {
1469 nir_instr instr;
1470
1471 enum glsl_sampler_dim sampler_dim;
1472 nir_alu_type dest_type;
1473
1474 nir_texop op;
1475 nir_dest dest;
1476 nir_tex_src *src;
1477 unsigned num_srcs, coord_components;
1478 bool is_array, is_shadow;
1479
1480 /**
1481 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1482 * components or the new-style shadow that outputs 1 component.
1483 */
1484 bool is_new_style_shadow;
1485
1486 /* gather component selector */
1487 unsigned component : 2;
1488
1489 /** The texture index
1490 *
1491 * If this texture instruction has a nir_tex_src_texture_offset source,
1492 * then the texture index is given by texture_index + texture_offset.
1493 */
1494 unsigned texture_index;
1495
1496 /** The size of the texture array or 0 if it's not an array */
1497 unsigned texture_array_size;
1498
1499 /** The sampler index
1500 *
1501 * The following operations do not require a sampler and, as such, this
1502 * field should be ignored:
1503 * - nir_texop_txf
1504 * - nir_texop_txf_ms
1505 * - nir_texop_txs
1506 * - nir_texop_lod
1507 * - nir_texop_query_levels
1508 * - nir_texop_texture_samples
1509 * - nir_texop_samples_identical
1510 *
1511 * If this texture instruction has a nir_tex_src_sampler_offset source,
1512 * then the sampler index is given by sampler_index + sampler_offset.
1513 */
1514 unsigned sampler_index;
1515 } nir_tex_instr;
1516
1517 static inline unsigned
1518 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1519 {
1520 switch (instr->op) {
1521 case nir_texop_txs: {
1522 unsigned ret;
1523 switch (instr->sampler_dim) {
1524 case GLSL_SAMPLER_DIM_1D:
1525 case GLSL_SAMPLER_DIM_BUF:
1526 ret = 1;
1527 break;
1528 case GLSL_SAMPLER_DIM_2D:
1529 case GLSL_SAMPLER_DIM_CUBE:
1530 case GLSL_SAMPLER_DIM_MS:
1531 case GLSL_SAMPLER_DIM_RECT:
1532 case GLSL_SAMPLER_DIM_EXTERNAL:
1533 case GLSL_SAMPLER_DIM_SUBPASS:
1534 ret = 2;
1535 break;
1536 case GLSL_SAMPLER_DIM_3D:
1537 ret = 3;
1538 break;
1539 default:
1540 unreachable("not reached");
1541 }
1542 if (instr->is_array)
1543 ret++;
1544 return ret;
1545 }
1546
1547 case nir_texop_lod:
1548 return 2;
1549
1550 case nir_texop_texture_samples:
1551 case nir_texop_query_levels:
1552 case nir_texop_samples_identical:
1553 return 1;
1554
1555 default:
1556 if (instr->is_shadow && instr->is_new_style_shadow)
1557 return 1;
1558
1559 return 4;
1560 }
1561 }
1562
1563 /* Returns true if this texture operation queries something about the texture
1564 * rather than actually sampling it.
1565 */
1566 static inline bool
1567 nir_tex_instr_is_query(const nir_tex_instr *instr)
1568 {
1569 switch (instr->op) {
1570 case nir_texop_txs:
1571 case nir_texop_lod:
1572 case nir_texop_texture_samples:
1573 case nir_texop_query_levels:
1574 case nir_texop_txf_ms_mcs:
1575 return true;
1576 case nir_texop_tex:
1577 case nir_texop_txb:
1578 case nir_texop_txl:
1579 case nir_texop_txd:
1580 case nir_texop_txf:
1581 case nir_texop_txf_ms:
1582 case nir_texop_tg4:
1583 return false;
1584 default:
1585 unreachable("Invalid texture opcode");
1586 }
1587 }
1588
1589 static inline bool
1590 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1591 {
1592 switch (instr->op) {
1593 case nir_op_flt:
1594 case nir_op_fge:
1595 case nir_op_feq:
1596 case nir_op_fne:
1597 case nir_op_ilt:
1598 case nir_op_ult:
1599 case nir_op_ige:
1600 case nir_op_uge:
1601 case nir_op_ieq:
1602 case nir_op_ine:
1603 case nir_op_i2b1:
1604 case nir_op_f2b1:
1605 case nir_op_inot:
1606 case nir_op_fnot:
1607 return true;
1608 default:
1609 return false;
1610 }
1611 }
1612
1613 static inline nir_alu_type
1614 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1615 {
1616 switch (instr->src[src].src_type) {
1617 case nir_tex_src_coord:
1618 switch (instr->op) {
1619 case nir_texop_txf:
1620 case nir_texop_txf_ms:
1621 case nir_texop_txf_ms_mcs:
1622 case nir_texop_samples_identical:
1623 return nir_type_int;
1624
1625 default:
1626 return nir_type_float;
1627 }
1628
1629 case nir_tex_src_lod:
1630 switch (instr->op) {
1631 case nir_texop_txs:
1632 case nir_texop_txf:
1633 return nir_type_int;
1634
1635 default:
1636 return nir_type_float;
1637 }
1638
1639 case nir_tex_src_projector:
1640 case nir_tex_src_comparator:
1641 case nir_tex_src_bias:
1642 case nir_tex_src_ddx:
1643 case nir_tex_src_ddy:
1644 return nir_type_float;
1645
1646 case nir_tex_src_offset:
1647 case nir_tex_src_ms_index:
1648 case nir_tex_src_texture_offset:
1649 case nir_tex_src_sampler_offset:
1650 return nir_type_int;
1651
1652 default:
1653 unreachable("Invalid texture source type");
1654 }
1655 }
1656
1657 static inline unsigned
1658 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1659 {
1660 if (instr->src[src].src_type == nir_tex_src_coord)
1661 return instr->coord_components;
1662
1663 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1664 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1665 return 4;
1666
1667 if (instr->src[src].src_type == nir_tex_src_ddx ||
1668 instr->src[src].src_type == nir_tex_src_ddy) {
1669 if (instr->is_array)
1670 return instr->coord_components - 1;
1671 else
1672 return instr->coord_components;
1673 }
1674
1675 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1676 * the offset, since a cube maps to a single face.
1677 */
1678 if (instr->src[src].src_type == nir_tex_src_offset) {
1679 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1680 return 2;
1681 else if (instr->is_array)
1682 return instr->coord_components - 1;
1683 else
1684 return instr->coord_components;
1685 }
1686
1687 return 1;
1688 }
1689
1690 static inline int
1691 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1692 {
1693 for (unsigned i = 0; i < instr->num_srcs; i++)
1694 if (instr->src[i].src_type == type)
1695 return (int) i;
1696
1697 return -1;
1698 }
1699
1700 void nir_tex_instr_add_src(nir_tex_instr *tex,
1701 nir_tex_src_type src_type,
1702 nir_src src);
1703
1704 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1705
1706 typedef struct {
1707 nir_instr instr;
1708
1709 nir_const_value value;
1710
1711 nir_ssa_def def;
1712 } nir_load_const_instr;
1713
1714 typedef enum {
1715 nir_jump_return,
1716 nir_jump_break,
1717 nir_jump_continue,
1718 } nir_jump_type;
1719
1720 typedef struct {
1721 nir_instr instr;
1722 nir_jump_type type;
1723 } nir_jump_instr;
1724
1725 /* creates a new SSA variable in an undefined state */
1726
1727 typedef struct {
1728 nir_instr instr;
1729 nir_ssa_def def;
1730 } nir_ssa_undef_instr;
1731
1732 typedef struct {
1733 struct exec_node node;
1734
1735 /* The predecessor block corresponding to this source */
1736 struct nir_block *pred;
1737
1738 nir_src src;
1739 } nir_phi_src;
1740
1741 #define nir_foreach_phi_src(phi_src, phi) \
1742 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1743 #define nir_foreach_phi_src_safe(phi_src, phi) \
1744 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1745
1746 typedef struct {
1747 nir_instr instr;
1748
1749 struct exec_list srcs; /** < list of nir_phi_src */
1750
1751 nir_dest dest;
1752 } nir_phi_instr;
1753
1754 typedef struct {
1755 struct exec_node node;
1756 nir_src src;
1757 nir_dest dest;
1758 } nir_parallel_copy_entry;
1759
1760 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1761 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1762
1763 typedef struct {
1764 nir_instr instr;
1765
1766 /* A list of nir_parallel_copy_entrys. The sources of all of the
1767 * entries are copied to the corresponding destinations "in parallel".
1768 * In other words, if we have two entries: a -> b and b -> a, the values
1769 * get swapped.
1770 */
1771 struct exec_list entries;
1772 } nir_parallel_copy_instr;
1773
1774 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1775 type, nir_instr_type_alu)
1776 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1777 type, nir_instr_type_call)
1778 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1779 type, nir_instr_type_jump)
1780 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1781 type, nir_instr_type_tex)
1782 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1783 type, nir_instr_type_intrinsic)
1784 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1785 type, nir_instr_type_load_const)
1786 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1787 type, nir_instr_type_ssa_undef)
1788 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1789 type, nir_instr_type_phi)
1790 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1791 nir_parallel_copy_instr, instr,
1792 type, nir_instr_type_parallel_copy)
1793
1794 /*
1795 * Control flow
1796 *
1797 * Control flow consists of a tree of control flow nodes, which include
1798 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1799 * instructions that always run start-to-finish. Each basic block also keeps
1800 * track of its successors (blocks which may run immediately after the current
1801 * block) and predecessors (blocks which could have run immediately before the
1802 * current block). Each function also has a start block and an end block which
1803 * all return statements point to (which is always empty). Together, all the
1804 * blocks with their predecessors and successors make up the control flow
1805 * graph (CFG) of the function. There are helpers that modify the tree of
1806 * control flow nodes while modifying the CFG appropriately; these should be
1807 * used instead of modifying the tree directly.
1808 */
1809
1810 typedef enum {
1811 nir_cf_node_block,
1812 nir_cf_node_if,
1813 nir_cf_node_loop,
1814 nir_cf_node_function
1815 } nir_cf_node_type;
1816
1817 typedef struct nir_cf_node {
1818 struct exec_node node;
1819 nir_cf_node_type type;
1820 struct nir_cf_node *parent;
1821 } nir_cf_node;
1822
1823 typedef struct nir_block {
1824 nir_cf_node cf_node;
1825
1826 struct exec_list instr_list; /** < list of nir_instr */
1827
1828 /** generic block index; generated by nir_index_blocks */
1829 unsigned index;
1830
1831 /*
1832 * Each block can only have up to 2 successors, so we put them in a simple
1833 * array - no need for anything more complicated.
1834 */
1835 struct nir_block *successors[2];
1836
1837 /* Set of nir_block predecessors in the CFG */
1838 struct set *predecessors;
1839
1840 /*
1841 * this node's immediate dominator in the dominance tree - set to NULL for
1842 * the start block.
1843 */
1844 struct nir_block *imm_dom;
1845
1846 /* This node's children in the dominance tree */
1847 unsigned num_dom_children;
1848 struct nir_block **dom_children;
1849
1850 /* Set of nir_blocks on the dominance frontier of this block */
1851 struct set *dom_frontier;
1852
1853 /*
1854 * These two indices have the property that dom_{pre,post}_index for each
1855 * child of this block in the dominance tree will always be between
1856 * dom_pre_index and dom_post_index for this block, which makes testing if
1857 * a given block is dominated by another block an O(1) operation.
1858 */
1859 unsigned dom_pre_index, dom_post_index;
1860
1861 /* live in and out for this block; used for liveness analysis */
1862 BITSET_WORD *live_in;
1863 BITSET_WORD *live_out;
1864 } nir_block;
1865
1866 static inline nir_instr *
1867 nir_block_first_instr(nir_block *block)
1868 {
1869 struct exec_node *head = exec_list_get_head(&block->instr_list);
1870 return exec_node_data(nir_instr, head, node);
1871 }
1872
1873 static inline nir_instr *
1874 nir_block_last_instr(nir_block *block)
1875 {
1876 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1877 return exec_node_data(nir_instr, tail, node);
1878 }
1879
1880 static inline bool
1881 nir_block_ends_in_jump(nir_block *block)
1882 {
1883 return !exec_list_is_empty(&block->instr_list) &&
1884 nir_block_last_instr(block)->type == nir_instr_type_jump;
1885 }
1886
1887 #define nir_foreach_instr(instr, block) \
1888 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1889 #define nir_foreach_instr_reverse(instr, block) \
1890 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1891 #define nir_foreach_instr_safe(instr, block) \
1892 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1893 #define nir_foreach_instr_reverse_safe(instr, block) \
1894 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1895
1896 typedef struct nir_if {
1897 nir_cf_node cf_node;
1898 nir_src condition;
1899
1900 struct exec_list then_list; /** < list of nir_cf_node */
1901 struct exec_list else_list; /** < list of nir_cf_node */
1902 } nir_if;
1903
1904 typedef struct {
1905 nir_if *nif;
1906
1907 /** Instruction that generates nif::condition. */
1908 nir_instr *conditional_instr;
1909
1910 /** Block within ::nif that has the break instruction. */
1911 nir_block *break_block;
1912
1913 /** Last block for the then- or else-path that does not contain the break. */
1914 nir_block *continue_from_block;
1915
1916 /** True when ::break_block is in the else-path of ::nif. */
1917 bool continue_from_then;
1918
1919 struct list_head loop_terminator_link;
1920 } nir_loop_terminator;
1921
1922 typedef struct {
1923 /* Number of instructions in the loop */
1924 unsigned num_instructions;
1925
1926 /* Maximum number of times the loop is run (if known) */
1927 unsigned max_trip_count;
1928
1929 /* Do we know the exact number of times the loop will be run */
1930 bool exact_trip_count_known;
1931
1932 /* Unroll the loop regardless of its size */
1933 bool force_unroll;
1934
1935 /* Does the loop contain complex loop terminators, continues or other
1936 * complex behaviours? If this is true we can't rely on
1937 * loop_terminator_list to be complete or accurate.
1938 */
1939 bool complex_loop;
1940
1941 nir_loop_terminator *limiting_terminator;
1942
1943 /* A list of loop_terminators terminating this loop. */
1944 struct list_head loop_terminator_list;
1945 } nir_loop_info;
1946
1947 typedef struct {
1948 nir_cf_node cf_node;
1949
1950 struct exec_list body; /** < list of nir_cf_node */
1951
1952 nir_loop_info *info;
1953 } nir_loop;
1954
1955 /**
1956 * Various bits of metadata that can may be created or required by
1957 * optimization and analysis passes
1958 */
1959 typedef enum {
1960 nir_metadata_none = 0x0,
1961 nir_metadata_block_index = 0x1,
1962 nir_metadata_dominance = 0x2,
1963 nir_metadata_live_ssa_defs = 0x4,
1964 nir_metadata_not_properly_reset = 0x8,
1965 nir_metadata_loop_analysis = 0x10,
1966 } nir_metadata;
1967
1968 typedef struct {
1969 nir_cf_node cf_node;
1970
1971 /** pointer to the function of which this is an implementation */
1972 struct nir_function *function;
1973
1974 struct exec_list body; /** < list of nir_cf_node */
1975
1976 nir_block *end_block;
1977
1978 /** list for all local variables in the function */
1979 struct exec_list locals;
1980
1981 /** list of local registers in the function */
1982 struct exec_list registers;
1983
1984 /** next available local register index */
1985 unsigned reg_alloc;
1986
1987 /** next available SSA value index */
1988 unsigned ssa_alloc;
1989
1990 /* total number of basic blocks, only valid when block_index_dirty = false */
1991 unsigned num_blocks;
1992
1993 nir_metadata valid_metadata;
1994 } nir_function_impl;
1995
1996 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1997 nir_start_block(nir_function_impl *impl)
1998 {
1999 return (nir_block *) impl->body.head_sentinel.next;
2000 }
2001
2002 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2003 nir_impl_last_block(nir_function_impl *impl)
2004 {
2005 return (nir_block *) impl->body.tail_sentinel.prev;
2006 }
2007
2008 static inline nir_cf_node *
2009 nir_cf_node_next(nir_cf_node *node)
2010 {
2011 struct exec_node *next = exec_node_get_next(&node->node);
2012 if (exec_node_is_tail_sentinel(next))
2013 return NULL;
2014 else
2015 return exec_node_data(nir_cf_node, next, node);
2016 }
2017
2018 static inline nir_cf_node *
2019 nir_cf_node_prev(nir_cf_node *node)
2020 {
2021 struct exec_node *prev = exec_node_get_prev(&node->node);
2022 if (exec_node_is_head_sentinel(prev))
2023 return NULL;
2024 else
2025 return exec_node_data(nir_cf_node, prev, node);
2026 }
2027
2028 static inline bool
2029 nir_cf_node_is_first(const nir_cf_node *node)
2030 {
2031 return exec_node_is_head_sentinel(node->node.prev);
2032 }
2033
2034 static inline bool
2035 nir_cf_node_is_last(const nir_cf_node *node)
2036 {
2037 return exec_node_is_tail_sentinel(node->node.next);
2038 }
2039
2040 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
2041 type, nir_cf_node_block)
2042 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
2043 type, nir_cf_node_if)
2044 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
2045 type, nir_cf_node_loop)
2046 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
2047 nir_function_impl, cf_node, type, nir_cf_node_function)
2048
2049 static inline nir_block *
2050 nir_if_first_then_block(nir_if *if_stmt)
2051 {
2052 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
2053 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2054 }
2055
2056 static inline nir_block *
2057 nir_if_last_then_block(nir_if *if_stmt)
2058 {
2059 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
2060 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2061 }
2062
2063 static inline nir_block *
2064 nir_if_first_else_block(nir_if *if_stmt)
2065 {
2066 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
2067 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2068 }
2069
2070 static inline nir_block *
2071 nir_if_last_else_block(nir_if *if_stmt)
2072 {
2073 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
2074 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2075 }
2076
2077 static inline nir_block *
2078 nir_loop_first_block(nir_loop *loop)
2079 {
2080 struct exec_node *head = exec_list_get_head(&loop->body);
2081 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2082 }
2083
2084 static inline nir_block *
2085 nir_loop_last_block(nir_loop *loop)
2086 {
2087 struct exec_node *tail = exec_list_get_tail(&loop->body);
2088 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2089 }
2090
2091 typedef struct {
2092 uint8_t num_components;
2093 uint8_t bit_size;
2094 } nir_parameter;
2095
2096 typedef struct nir_function {
2097 struct exec_node node;
2098
2099 const char *name;
2100 struct nir_shader *shader;
2101
2102 unsigned num_params;
2103 nir_parameter *params;
2104
2105 /** The implementation of this function.
2106 *
2107 * If the function is only declared and not implemented, this is NULL.
2108 */
2109 nir_function_impl *impl;
2110
2111 bool is_entrypoint;
2112 } nir_function;
2113
2114 typedef struct nir_shader_compiler_options {
2115 bool lower_fdiv;
2116 bool lower_ffma;
2117 bool fuse_ffma;
2118 bool lower_flrp32;
2119 /** Lowers flrp when it does not support doubles */
2120 bool lower_flrp64;
2121 bool lower_fpow;
2122 bool lower_fsat;
2123 bool lower_fsqrt;
2124 bool lower_fmod32;
2125 bool lower_fmod64;
2126 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2127 bool lower_bitfield_extract;
2128 /** Lowers ibitfield_extract/ubitfield_extract to bfm, compares, shifts. */
2129 bool lower_bitfield_extract_to_shifts;
2130 /** Lowers bitfield_insert to bfi/bfm */
2131 bool lower_bitfield_insert;
2132 /** Lowers bitfield_insert to bfm, compares, and shifts. */
2133 bool lower_bitfield_insert_to_shifts;
2134 /** Lowers bitfield_reverse to shifts. */
2135 bool lower_bitfield_reverse;
2136 /** Lowers bit_count to shifts. */
2137 bool lower_bit_count;
2138 /** Lowers bfm to shifts and subtracts. */
2139 bool lower_bfm;
2140 /** Lowers ifind_msb to compare and ufind_msb */
2141 bool lower_ifind_msb;
2142 /** Lowers find_lsb to ufind_msb and logic ops */
2143 bool lower_find_lsb;
2144 bool lower_uadd_carry;
2145 bool lower_usub_borrow;
2146 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2147 bool lower_mul_high;
2148 /** lowers fneg and ineg to fsub and isub. */
2149 bool lower_negate;
2150 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2151 bool lower_sub;
2152
2153 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2154 bool lower_scmp;
2155
2156 /** enables rules to lower idiv by power-of-two: */
2157 bool lower_idiv;
2158
2159 /* Does the native fdot instruction replicate its result for four
2160 * components? If so, then opt_algebraic_late will turn all fdotN
2161 * instructions into fdot_replicatedN instructions.
2162 */
2163 bool fdot_replicates;
2164
2165 /** lowers ffloor to fsub+ffract: */
2166 bool lower_ffloor;
2167
2168 /** lowers ffract to fsub+ffloor: */
2169 bool lower_ffract;
2170
2171 /** lowers fceil to fneg+ffloor+fneg: */
2172 bool lower_fceil;
2173
2174 bool lower_ldexp;
2175
2176 bool lower_pack_half_2x16;
2177 bool lower_pack_unorm_2x16;
2178 bool lower_pack_snorm_2x16;
2179 bool lower_pack_unorm_4x8;
2180 bool lower_pack_snorm_4x8;
2181 bool lower_unpack_half_2x16;
2182 bool lower_unpack_unorm_2x16;
2183 bool lower_unpack_snorm_2x16;
2184 bool lower_unpack_unorm_4x8;
2185 bool lower_unpack_snorm_4x8;
2186
2187 bool lower_extract_byte;
2188 bool lower_extract_word;
2189
2190 bool lower_all_io_to_temps;
2191
2192 /**
2193 * Does the driver support real 32-bit integers? (Otherwise, integers
2194 * are simulated by floats.)
2195 */
2196 bool native_integers;
2197
2198 /* Indicates that the driver only has zero-based vertex id */
2199 bool vertex_id_zero_based;
2200
2201 /**
2202 * If enabled, gl_BaseVertex will be lowered as:
2203 * is_indexed_draw (~0/0) & firstvertex
2204 */
2205 bool lower_base_vertex;
2206
2207 /**
2208 * If enabled, gl_HelperInvocation will be lowered as:
2209 *
2210 * !((1 << sample_id) & sample_mask_in))
2211 *
2212 * This depends on some possibly hw implementation details, which may
2213 * not be true for all hw. In particular that the FS is only executed
2214 * for covered samples or for helper invocations. So, do not blindly
2215 * enable this option.
2216 *
2217 * Note: See also issue #22 in ARB_shader_image_load_store
2218 */
2219 bool lower_helper_invocation;
2220
2221 bool lower_cs_local_index_from_id;
2222 bool lower_cs_local_id_from_index;
2223
2224 bool lower_device_index_to_zero;
2225
2226 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
2227 bool lower_wpos_pntc;
2228
2229 /**
2230 * Should nir_lower_io() create load_interpolated_input intrinsics?
2231 *
2232 * If not, it generates regular load_input intrinsics and interpolation
2233 * information must be inferred from the list of input nir_variables.
2234 */
2235 bool use_interpolated_input_intrinsics;
2236
2237 unsigned max_unroll_iterations;
2238 } nir_shader_compiler_options;
2239
2240 typedef struct nir_shader {
2241 /** list of uniforms (nir_variable) */
2242 struct exec_list uniforms;
2243
2244 /** list of inputs (nir_variable) */
2245 struct exec_list inputs;
2246
2247 /** list of outputs (nir_variable) */
2248 struct exec_list outputs;
2249
2250 /** list of shared compute variables (nir_variable) */
2251 struct exec_list shared;
2252
2253 /** Set of driver-specific options for the shader.
2254 *
2255 * The memory for the options is expected to be kept in a single static
2256 * copy by the driver.
2257 */
2258 const struct nir_shader_compiler_options *options;
2259
2260 /** Various bits of compile-time information about a given shader */
2261 struct shader_info info;
2262
2263 /** list of global variables in the shader (nir_variable) */
2264 struct exec_list globals;
2265
2266 /** list of system value variables in the shader (nir_variable) */
2267 struct exec_list system_values;
2268
2269 struct exec_list functions; /** < list of nir_function */
2270
2271 /** list of global register in the shader */
2272 struct exec_list registers;
2273
2274 /** next available global register index */
2275 unsigned reg_alloc;
2276
2277 /**
2278 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2279 * access plus one
2280 */
2281 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2282
2283 /** Constant data associated with this shader.
2284 *
2285 * Constant data is loaded through load_constant intrinsics. See also
2286 * nir_opt_large_constants.
2287 */
2288 void *constant_data;
2289 unsigned constant_data_size;
2290 } nir_shader;
2291
2292 #define nir_foreach_function(func, shader) \
2293 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2294
2295 static inline nir_function_impl *
2296 nir_shader_get_entrypoint(nir_shader *shader)
2297 {
2298 nir_function *func = NULL;
2299
2300 nir_foreach_function(function, shader) {
2301 assert(func == NULL);
2302 if (function->is_entrypoint) {
2303 func = function;
2304 #ifndef NDEBUG
2305 break;
2306 #endif
2307 }
2308 }
2309
2310 if (!func)
2311 return NULL;
2312
2313 assert(func->num_params == 0);
2314 assert(func->impl);
2315 return func->impl;
2316 }
2317
2318 nir_shader *nir_shader_create(void *mem_ctx,
2319 gl_shader_stage stage,
2320 const nir_shader_compiler_options *options,
2321 shader_info *si);
2322
2323 /** creates a register, including assigning it an index and adding it to the list */
2324 nir_register *nir_global_reg_create(nir_shader *shader);
2325
2326 nir_register *nir_local_reg_create(nir_function_impl *impl);
2327
2328 void nir_reg_remove(nir_register *reg);
2329
2330 /** Adds a variable to the appropriate list in nir_shader */
2331 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2332
2333 static inline void
2334 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2335 {
2336 assert(var->data.mode == nir_var_function_temp);
2337 exec_list_push_tail(&impl->locals, &var->node);
2338 }
2339
2340 /** creates a variable, sets a few defaults, and adds it to the list */
2341 nir_variable *nir_variable_create(nir_shader *shader,
2342 nir_variable_mode mode,
2343 const struct glsl_type *type,
2344 const char *name);
2345 /** creates a local variable and adds it to the list */
2346 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2347 const struct glsl_type *type,
2348 const char *name);
2349
2350 /** creates a function and adds it to the shader's list of functions */
2351 nir_function *nir_function_create(nir_shader *shader, const char *name);
2352
2353 nir_function_impl *nir_function_impl_create(nir_function *func);
2354 /** creates a function_impl that isn't tied to any particular function */
2355 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2356
2357 nir_block *nir_block_create(nir_shader *shader);
2358 nir_if *nir_if_create(nir_shader *shader);
2359 nir_loop *nir_loop_create(nir_shader *shader);
2360
2361 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2362
2363 /** requests that the given pieces of metadata be generated */
2364 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2365 /** dirties all but the preserved metadata */
2366 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2367
2368 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2369 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2370
2371 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2372 nir_deref_type deref_type);
2373
2374 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2375
2376 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2377 unsigned num_components,
2378 unsigned bit_size);
2379
2380 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2381 nir_intrinsic_op op);
2382
2383 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2384 nir_function *callee);
2385
2386 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2387
2388 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2389
2390 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2391
2392 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2393 unsigned num_components,
2394 unsigned bit_size);
2395
2396 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2397
2398 /**
2399 * NIR Cursors and Instruction Insertion API
2400 * @{
2401 *
2402 * A tiny struct representing a point to insert/extract instructions or
2403 * control flow nodes. Helps reduce the combinatorial explosion of possible
2404 * points to insert/extract.
2405 *
2406 * \sa nir_control_flow.h
2407 */
2408 typedef enum {
2409 nir_cursor_before_block,
2410 nir_cursor_after_block,
2411 nir_cursor_before_instr,
2412 nir_cursor_after_instr,
2413 } nir_cursor_option;
2414
2415 typedef struct {
2416 nir_cursor_option option;
2417 union {
2418 nir_block *block;
2419 nir_instr *instr;
2420 };
2421 } nir_cursor;
2422
2423 static inline nir_block *
2424 nir_cursor_current_block(nir_cursor cursor)
2425 {
2426 if (cursor.option == nir_cursor_before_instr ||
2427 cursor.option == nir_cursor_after_instr) {
2428 return cursor.instr->block;
2429 } else {
2430 return cursor.block;
2431 }
2432 }
2433
2434 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2435
2436 static inline nir_cursor
2437 nir_before_block(nir_block *block)
2438 {
2439 nir_cursor cursor;
2440 cursor.option = nir_cursor_before_block;
2441 cursor.block = block;
2442 return cursor;
2443 }
2444
2445 static inline nir_cursor
2446 nir_after_block(nir_block *block)
2447 {
2448 nir_cursor cursor;
2449 cursor.option = nir_cursor_after_block;
2450 cursor.block = block;
2451 return cursor;
2452 }
2453
2454 static inline nir_cursor
2455 nir_before_instr(nir_instr *instr)
2456 {
2457 nir_cursor cursor;
2458 cursor.option = nir_cursor_before_instr;
2459 cursor.instr = instr;
2460 return cursor;
2461 }
2462
2463 static inline nir_cursor
2464 nir_after_instr(nir_instr *instr)
2465 {
2466 nir_cursor cursor;
2467 cursor.option = nir_cursor_after_instr;
2468 cursor.instr = instr;
2469 return cursor;
2470 }
2471
2472 static inline nir_cursor
2473 nir_after_block_before_jump(nir_block *block)
2474 {
2475 nir_instr *last_instr = nir_block_last_instr(block);
2476 if (last_instr && last_instr->type == nir_instr_type_jump) {
2477 return nir_before_instr(last_instr);
2478 } else {
2479 return nir_after_block(block);
2480 }
2481 }
2482
2483 static inline nir_cursor
2484 nir_before_src(nir_src *src, bool is_if_condition)
2485 {
2486 if (is_if_condition) {
2487 nir_block *prev_block =
2488 nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
2489 assert(!nir_block_ends_in_jump(prev_block));
2490 return nir_after_block(prev_block);
2491 } else if (src->parent_instr->type == nir_instr_type_phi) {
2492 #ifndef NDEBUG
2493 nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
2494 bool found = false;
2495 nir_foreach_phi_src(phi_src, cond_phi) {
2496 if (phi_src->src.ssa == src->ssa) {
2497 found = true;
2498 break;
2499 }
2500 }
2501 assert(found);
2502 #endif
2503 /* The LIST_ENTRY macro is a generic container-of macro, it just happens
2504 * to have a more specific name.
2505 */
2506 nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
2507 return nir_after_block_before_jump(phi_src->pred);
2508 } else {
2509 return nir_before_instr(src->parent_instr);
2510 }
2511 }
2512
2513 static inline nir_cursor
2514 nir_before_cf_node(nir_cf_node *node)
2515 {
2516 if (node->type == nir_cf_node_block)
2517 return nir_before_block(nir_cf_node_as_block(node));
2518
2519 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2520 }
2521
2522 static inline nir_cursor
2523 nir_after_cf_node(nir_cf_node *node)
2524 {
2525 if (node->type == nir_cf_node_block)
2526 return nir_after_block(nir_cf_node_as_block(node));
2527
2528 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2529 }
2530
2531 static inline nir_cursor
2532 nir_after_phis(nir_block *block)
2533 {
2534 nir_foreach_instr(instr, block) {
2535 if (instr->type != nir_instr_type_phi)
2536 return nir_before_instr(instr);
2537 }
2538 return nir_after_block(block);
2539 }
2540
2541 static inline nir_cursor
2542 nir_after_cf_node_and_phis(nir_cf_node *node)
2543 {
2544 if (node->type == nir_cf_node_block)
2545 return nir_after_block(nir_cf_node_as_block(node));
2546
2547 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2548
2549 return nir_after_phis(block);
2550 }
2551
2552 static inline nir_cursor
2553 nir_before_cf_list(struct exec_list *cf_list)
2554 {
2555 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2556 exec_list_get_head(cf_list), node);
2557 return nir_before_cf_node(first_node);
2558 }
2559
2560 static inline nir_cursor
2561 nir_after_cf_list(struct exec_list *cf_list)
2562 {
2563 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2564 exec_list_get_tail(cf_list), node);
2565 return nir_after_cf_node(last_node);
2566 }
2567
2568 /**
2569 * Insert a NIR instruction at the given cursor.
2570 *
2571 * Note: This does not update the cursor.
2572 */
2573 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2574
2575 static inline void
2576 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2577 {
2578 nir_instr_insert(nir_before_instr(instr), before);
2579 }
2580
2581 static inline void
2582 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2583 {
2584 nir_instr_insert(nir_after_instr(instr), after);
2585 }
2586
2587 static inline void
2588 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2589 {
2590 nir_instr_insert(nir_before_block(block), before);
2591 }
2592
2593 static inline void
2594 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2595 {
2596 nir_instr_insert(nir_after_block(block), after);
2597 }
2598
2599 static inline void
2600 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2601 {
2602 nir_instr_insert(nir_before_cf_node(node), before);
2603 }
2604
2605 static inline void
2606 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2607 {
2608 nir_instr_insert(nir_after_cf_node(node), after);
2609 }
2610
2611 static inline void
2612 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2613 {
2614 nir_instr_insert(nir_before_cf_list(list), before);
2615 }
2616
2617 static inline void
2618 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2619 {
2620 nir_instr_insert(nir_after_cf_list(list), after);
2621 }
2622
2623 void nir_instr_remove_v(nir_instr *instr);
2624
2625 static inline nir_cursor
2626 nir_instr_remove(nir_instr *instr)
2627 {
2628 nir_cursor cursor;
2629 nir_instr *prev = nir_instr_prev(instr);
2630 if (prev) {
2631 cursor = nir_after_instr(prev);
2632 } else {
2633 cursor = nir_before_block(instr->block);
2634 }
2635 nir_instr_remove_v(instr);
2636 return cursor;
2637 }
2638
2639 /** @} */
2640
2641 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2642 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2643 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2644 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2645 void *state);
2646 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2647 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2648
2649 nir_const_value *nir_src_as_const_value(nir_src src);
2650
2651 static inline struct nir_instr *
2652 nir_src_instr(const struct nir_src *src)
2653 {
2654 return src->is_ssa ? src->ssa->parent_instr : NULL;
2655 }
2656
2657 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
2658 static inline c_type * \
2659 nir_src_as_ ## name (struct nir_src *src) \
2660 { \
2661 return src->is_ssa && src->ssa->parent_instr->type == type_enum \
2662 ? cast_macro(src->ssa->parent_instr) : NULL; \
2663 } \
2664 static inline const c_type * \
2665 nir_src_as_ ## name ## _const(const struct nir_src *src) \
2666 { \
2667 return src->is_ssa && src->ssa->parent_instr->type == type_enum \
2668 ? cast_macro(src->ssa->parent_instr) : NULL; \
2669 }
2670
2671 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
2672
2673 bool nir_src_is_dynamically_uniform(nir_src src);
2674 bool nir_srcs_equal(nir_src src1, nir_src src2);
2675 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2676 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2677 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2678 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2679 nir_dest new_dest);
2680
2681 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2682 unsigned num_components, unsigned bit_size,
2683 const char *name);
2684 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2685 unsigned num_components, unsigned bit_size,
2686 const char *name);
2687 static inline void
2688 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
2689 const struct glsl_type *type,
2690 const char *name)
2691 {
2692 assert(glsl_type_is_vector_or_scalar(type));
2693 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
2694 glsl_get_bit_size(type), name);
2695 }
2696 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2697 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2698 nir_instr *after_me);
2699
2700 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
2701
2702 /*
2703 * finds the next basic block in source-code order, returns NULL if there is
2704 * none
2705 */
2706
2707 nir_block *nir_block_cf_tree_next(nir_block *block);
2708
2709 /* Performs the opposite of nir_block_cf_tree_next() */
2710
2711 nir_block *nir_block_cf_tree_prev(nir_block *block);
2712
2713 /* Gets the first block in a CF node in source-code order */
2714
2715 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2716
2717 /* Gets the last block in a CF node in source-code order */
2718
2719 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2720
2721 /* Gets the next block after a CF node in source-code order */
2722
2723 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2724
2725 /* Macros for loops that visit blocks in source-code order */
2726
2727 #define nir_foreach_block(block, impl) \
2728 for (nir_block *block = nir_start_block(impl); block != NULL; \
2729 block = nir_block_cf_tree_next(block))
2730
2731 #define nir_foreach_block_safe(block, impl) \
2732 for (nir_block *block = nir_start_block(impl), \
2733 *next = nir_block_cf_tree_next(block); \
2734 block != NULL; \
2735 block = next, next = nir_block_cf_tree_next(block))
2736
2737 #define nir_foreach_block_reverse(block, impl) \
2738 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2739 block = nir_block_cf_tree_prev(block))
2740
2741 #define nir_foreach_block_reverse_safe(block, impl) \
2742 for (nir_block *block = nir_impl_last_block(impl), \
2743 *prev = nir_block_cf_tree_prev(block); \
2744 block != NULL; \
2745 block = prev, prev = nir_block_cf_tree_prev(block))
2746
2747 #define nir_foreach_block_in_cf_node(block, node) \
2748 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2749 block != nir_cf_node_cf_tree_next(node); \
2750 block = nir_block_cf_tree_next(block))
2751
2752 /* If the following CF node is an if, this function returns that if.
2753 * Otherwise, it returns NULL.
2754 */
2755 nir_if *nir_block_get_following_if(nir_block *block);
2756
2757 nir_loop *nir_block_get_following_loop(nir_block *block);
2758
2759 void nir_index_local_regs(nir_function_impl *impl);
2760 void nir_index_global_regs(nir_shader *shader);
2761 void nir_index_ssa_defs(nir_function_impl *impl);
2762 unsigned nir_index_instrs(nir_function_impl *impl);
2763
2764 void nir_index_blocks(nir_function_impl *impl);
2765
2766 void nir_print_shader(nir_shader *shader, FILE *fp);
2767 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2768 void nir_print_instr(const nir_instr *instr, FILE *fp);
2769 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
2770
2771 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2772 nir_function_impl *nir_function_impl_clone(const nir_function_impl *fi);
2773 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2774 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2775
2776 nir_shader *nir_shader_serialize_deserialize(void *mem_ctx, nir_shader *s);
2777
2778 #ifndef NDEBUG
2779 void nir_validate_shader(nir_shader *shader, const char *when);
2780 void nir_metadata_set_validation_flag(nir_shader *shader);
2781 void nir_metadata_check_validation_flag(nir_shader *shader);
2782
2783 static inline bool
2784 should_skip_nir(const char *name)
2785 {
2786 static const char *list = NULL;
2787 if (!list) {
2788 /* Comma separated list of names to skip. */
2789 list = getenv("NIR_SKIP");
2790 if (!list)
2791 list = "";
2792 }
2793
2794 if (!list[0])
2795 return false;
2796
2797 return comma_separated_list_contains(list, name);
2798 }
2799
2800 static inline bool
2801 should_clone_nir(void)
2802 {
2803 static int should_clone = -1;
2804 if (should_clone < 0)
2805 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2806
2807 return should_clone;
2808 }
2809
2810 static inline bool
2811 should_serialize_deserialize_nir(void)
2812 {
2813 static int test_serialize = -1;
2814 if (test_serialize < 0)
2815 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
2816
2817 return test_serialize;
2818 }
2819
2820 static inline bool
2821 should_print_nir(void)
2822 {
2823 static int should_print = -1;
2824 if (should_print < 0)
2825 should_print = env_var_as_boolean("NIR_PRINT", false);
2826
2827 return should_print;
2828 }
2829 #else
2830 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
2831 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2832 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2833 static inline bool should_skip_nir(UNUSED const char *pass_name) { return false; }
2834 static inline bool should_clone_nir(void) { return false; }
2835 static inline bool should_serialize_deserialize_nir(void) { return false; }
2836 static inline bool should_print_nir(void) { return false; }
2837 #endif /* NDEBUG */
2838
2839 #define _PASS(pass, nir, do_pass) do { \
2840 if (should_skip_nir(#pass)) { \
2841 printf("skipping %s\n", #pass); \
2842 break; \
2843 } \
2844 do_pass \
2845 nir_validate_shader(nir, "after " #pass); \
2846 if (should_clone_nir()) { \
2847 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2848 ralloc_free(nir); \
2849 nir = clone; \
2850 } \
2851 if (should_serialize_deserialize_nir()) { \
2852 void *mem_ctx = ralloc_parent(nir); \
2853 nir = nir_shader_serialize_deserialize(mem_ctx, nir); \
2854 } \
2855 } while (0)
2856
2857 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, \
2858 nir_metadata_set_validation_flag(nir); \
2859 if (should_print_nir()) \
2860 printf("%s\n", #pass); \
2861 if (pass(nir, ##__VA_ARGS__)) { \
2862 progress = true; \
2863 if (should_print_nir()) \
2864 nir_print_shader(nir, stdout); \
2865 nir_metadata_check_validation_flag(nir); \
2866 } \
2867 )
2868
2869 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, \
2870 if (should_print_nir()) \
2871 printf("%s\n", #pass); \
2872 pass(nir, ##__VA_ARGS__); \
2873 if (should_print_nir()) \
2874 nir_print_shader(nir, stdout); \
2875 )
2876
2877 #define NIR_SKIP(name) should_skip_nir(#name)
2878
2879 void nir_calc_dominance_impl(nir_function_impl *impl);
2880 void nir_calc_dominance(nir_shader *shader);
2881
2882 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2883 bool nir_block_dominates(nir_block *parent, nir_block *child);
2884
2885 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2886 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2887
2888 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2889 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2890
2891 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2892 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2893
2894 int nir_gs_count_vertices(const nir_shader *shader);
2895
2896 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
2897 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
2898 bool nir_split_var_copies(nir_shader *shader);
2899 bool nir_split_per_member_structs(nir_shader *shader);
2900 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
2901
2902 bool nir_lower_returns_impl(nir_function_impl *impl);
2903 bool nir_lower_returns(nir_shader *shader);
2904
2905 bool nir_inline_functions(nir_shader *shader);
2906
2907 bool nir_propagate_invariant(nir_shader *shader);
2908
2909 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
2910 void nir_lower_deref_copy_instr(struct nir_builder *b,
2911 nir_intrinsic_instr *copy);
2912 bool nir_lower_var_copies(nir_shader *shader);
2913
2914 void nir_fixup_deref_modes(nir_shader *shader);
2915
2916 bool nir_lower_global_vars_to_local(nir_shader *shader);
2917
2918 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
2919
2920 bool nir_lower_locals_to_regs(nir_shader *shader);
2921
2922 void nir_lower_io_to_temporaries(nir_shader *shader,
2923 nir_function_impl *entrypoint,
2924 bool outputs, bool inputs);
2925
2926 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2927
2928 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
2929 int (*type_size)(const struct glsl_type *));
2930
2931 /* Some helpers to do very simple linking */
2932 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
2933 bool nir_remove_unused_io_vars(nir_shader *shader, struct exec_list *var_list,
2934 uint64_t *used_by_other_stage,
2935 uint64_t *used_by_other_stage_patches);
2936 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
2937 bool default_to_smooth_interp);
2938 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
2939 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
2940
2941 typedef enum {
2942 /* If set, this forces all non-flat fragment shader inputs to be
2943 * interpolated as if with the "sample" qualifier. This requires
2944 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
2945 */
2946 nir_lower_io_force_sample_interpolation = (1 << 1),
2947 } nir_lower_io_options;
2948 bool nir_lower_io(nir_shader *shader,
2949 nir_variable_mode modes,
2950 int (*type_size)(const struct glsl_type *),
2951 nir_lower_io_options);
2952
2953 typedef enum {
2954 /**
2955 * An address format which is a simple 32-bit global GPU address.
2956 */
2957 nir_address_format_32bit_global,
2958
2959 /**
2960 * An address format which is a simple 64-bit global GPU address.
2961 */
2962 nir_address_format_64bit_global,
2963
2964 /**
2965 * An address format which is comprised of a vec2 where the first
2966 * component is a vulkan descriptor index and the second is an offset.
2967 */
2968 nir_address_format_vk_index_offset,
2969 } nir_address_format;
2970 bool nir_lower_explicit_io(nir_shader *shader,
2971 nir_variable_mode modes,
2972 nir_address_format);
2973
2974 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2975 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2976
2977 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
2978
2979 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
2980 bool nir_lower_regs_to_ssa(nir_shader *shader);
2981 bool nir_lower_vars_to_ssa(nir_shader *shader);
2982
2983 bool nir_remove_dead_derefs(nir_shader *shader);
2984 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
2985 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
2986 bool nir_lower_constant_initializers(nir_shader *shader,
2987 nir_variable_mode modes);
2988
2989 bool nir_move_load_const(nir_shader *shader);
2990 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
2991 bool nir_lower_vec_to_movs(nir_shader *shader);
2992 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
2993 bool alpha_to_one);
2994 bool nir_lower_alu(nir_shader *shader);
2995 bool nir_lower_alu_to_scalar(nir_shader *shader);
2996 bool nir_lower_bool_to_float(nir_shader *shader);
2997 bool nir_lower_bool_to_int32(nir_shader *shader);
2998 bool nir_lower_load_const_to_scalar(nir_shader *shader);
2999 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
3000 bool nir_lower_phis_to_scalar(nir_shader *shader);
3001 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
3002 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
3003 bool outputs_only);
3004 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
3005 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
3006
3007 typedef struct nir_lower_subgroups_options {
3008 uint8_t subgroup_size;
3009 uint8_t ballot_bit_size;
3010 bool lower_to_scalar:1;
3011 bool lower_vote_trivial:1;
3012 bool lower_vote_eq_to_ballot:1;
3013 bool lower_subgroup_masks:1;
3014 bool lower_shuffle:1;
3015 bool lower_shuffle_to_32bit:1;
3016 bool lower_quad:1;
3017 } nir_lower_subgroups_options;
3018
3019 bool nir_lower_subgroups(nir_shader *shader,
3020 const nir_lower_subgroups_options *options);
3021
3022 bool nir_lower_system_values(nir_shader *shader);
3023
3024 enum PACKED nir_lower_tex_packing {
3025 nir_lower_tex_packing_none = 0,
3026 /* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
3027 * or unsigned ints based on the sampler type
3028 */
3029 nir_lower_tex_packing_16,
3030 /* The sampler returns 1 32-bit word of 4x8 unorm */
3031 nir_lower_tex_packing_8,
3032 };
3033
3034 typedef struct nir_lower_tex_options {
3035 /**
3036 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
3037 * sampler types a texture projector is lowered.
3038 */
3039 unsigned lower_txp;
3040
3041 /**
3042 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
3043 */
3044 bool lower_txf_offset;
3045
3046 /**
3047 * If true, lower away nir_tex_src_offset for all rect textures.
3048 */
3049 bool lower_rect_offset;
3050
3051 /**
3052 * If true, lower rect textures to 2D, using txs to fetch the
3053 * texture dimensions and dividing the texture coords by the
3054 * texture dims to normalize.
3055 */
3056 bool lower_rect;
3057
3058 /**
3059 * If true, convert yuv to rgb.
3060 */
3061 unsigned lower_y_uv_external;
3062 unsigned lower_y_u_v_external;
3063 unsigned lower_yx_xuxv_external;
3064 unsigned lower_xy_uxvx_external;
3065 unsigned lower_ayuv_external;
3066
3067 /**
3068 * To emulate certain texture wrap modes, this can be used
3069 * to saturate the specified tex coord to [0.0, 1.0]. The
3070 * bits are according to sampler #, ie. if, for example:
3071 *
3072 * (conf->saturate_s & (1 << n))
3073 *
3074 * is true, then the s coord for sampler n is saturated.
3075 *
3076 * Note that clamping must happen *after* projector lowering
3077 * so any projected texture sample instruction with a clamped
3078 * coordinate gets automatically lowered, regardless of the
3079 * 'lower_txp' setting.
3080 */
3081 unsigned saturate_s;
3082 unsigned saturate_t;
3083 unsigned saturate_r;
3084
3085 /* Bitmask of textures that need swizzling.
3086 *
3087 * If (swizzle_result & (1 << texture_index)), then the swizzle in
3088 * swizzles[texture_index] is applied to the result of the texturing
3089 * operation.
3090 */
3091 unsigned swizzle_result;
3092
3093 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
3094 * while 4 and 5 represent 0 and 1 respectively.
3095 */
3096 uint8_t swizzles[32][4];
3097
3098 /**
3099 * Bitmap of textures that need srgb to linear conversion. If
3100 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
3101 * of the texture are lowered to linear.
3102 */
3103 unsigned lower_srgb;
3104
3105 /**
3106 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
3107 */
3108 bool lower_txd_cube_map;
3109
3110 /**
3111 * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
3112 */
3113 bool lower_txd_3d;
3114
3115 /**
3116 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
3117 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
3118 * with lower_txd_cube_map.
3119 */
3120 bool lower_txd_shadow;
3121
3122 /**
3123 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
3124 * Implies lower_txd_cube_map and lower_txd_shadow.
3125 */
3126 bool lower_txd;
3127
3128 /**
3129 * If true, lower nir_texop_txb that try to use shadow compare and min_lod
3130 * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
3131 */
3132 bool lower_txb_shadow_clamp;
3133
3134 /**
3135 * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
3136 * with nir_texop_txl. This includes cube maps.
3137 */
3138 bool lower_txd_shadow_clamp;
3139
3140 /**
3141 * If true, lower nir_texop_txd on when it uses both offset and min_lod
3142 * with nir_texop_txl. This includes cube maps.
3143 */
3144 bool lower_txd_offset_clamp;
3145
3146 /**
3147 * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
3148 * mixed-up tg4 locations.
3149 */
3150 bool lower_tg4_broadcom_swizzle;
3151
3152 enum nir_lower_tex_packing lower_tex_packing[32];
3153 } nir_lower_tex_options;
3154
3155 bool nir_lower_tex(nir_shader *shader,
3156 const nir_lower_tex_options *options);
3157
3158 bool nir_lower_idiv(nir_shader *shader);
3159
3160 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables, bool use_vars);
3161 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
3162 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
3163
3164 void nir_lower_two_sided_color(nir_shader *shader);
3165
3166 bool nir_lower_clamp_color_outputs(nir_shader *shader);
3167
3168 void nir_lower_passthrough_edgeflags(nir_shader *shader);
3169 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
3170 const gl_state_index16 *uniform_state_tokens);
3171
3172 typedef struct nir_lower_wpos_ytransform_options {
3173 gl_state_index16 state_tokens[STATE_LENGTH];
3174 bool fs_coord_origin_upper_left :1;
3175 bool fs_coord_origin_lower_left :1;
3176 bool fs_coord_pixel_center_integer :1;
3177 bool fs_coord_pixel_center_half_integer :1;
3178 } nir_lower_wpos_ytransform_options;
3179
3180 bool nir_lower_wpos_ytransform(nir_shader *shader,
3181 const nir_lower_wpos_ytransform_options *options);
3182 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
3183
3184 typedef struct nir_lower_drawpixels_options {
3185 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
3186 gl_state_index16 scale_state_tokens[STATE_LENGTH];
3187 gl_state_index16 bias_state_tokens[STATE_LENGTH];
3188 unsigned drawpix_sampler;
3189 unsigned pixelmap_sampler;
3190 bool pixel_maps :1;
3191 bool scale_and_bias :1;
3192 } nir_lower_drawpixels_options;
3193
3194 void nir_lower_drawpixels(nir_shader *shader,
3195 const nir_lower_drawpixels_options *options);
3196
3197 typedef struct nir_lower_bitmap_options {
3198 unsigned sampler;
3199 bool swizzle_xxxx;
3200 } nir_lower_bitmap_options;
3201
3202 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
3203
3204 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
3205
3206 typedef enum {
3207 nir_lower_int_source_mods = 1 << 0,
3208 nir_lower_float_source_mods = 1 << 1,
3209 nir_lower_all_source_mods = (1 << 2) - 1
3210 } nir_lower_to_source_mods_flags;
3211
3212
3213 bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
3214
3215 bool nir_lower_gs_intrinsics(nir_shader *shader);
3216
3217 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
3218
3219 bool nir_lower_bit_size(nir_shader *shader,
3220 nir_lower_bit_size_callback callback,
3221 void *callback_data);
3222
3223 typedef enum {
3224 nir_lower_imul64 = (1 << 0),
3225 nir_lower_isign64 = (1 << 1),
3226 /** Lower all int64 modulus and division opcodes */
3227 nir_lower_divmod64 = (1 << 2),
3228 /** Lower all 64-bit umul_high and imul_high opcodes */
3229 nir_lower_imul_high64 = (1 << 3),
3230 nir_lower_mov64 = (1 << 4),
3231 nir_lower_icmp64 = (1 << 5),
3232 nir_lower_iadd64 = (1 << 6),
3233 nir_lower_iabs64 = (1 << 7),
3234 nir_lower_ineg64 = (1 << 8),
3235 nir_lower_logic64 = (1 << 9),
3236 nir_lower_minmax64 = (1 << 10),
3237 nir_lower_shift64 = (1 << 11),
3238 } nir_lower_int64_options;
3239
3240 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
3241
3242 typedef enum {
3243 nir_lower_drcp = (1 << 0),
3244 nir_lower_dsqrt = (1 << 1),
3245 nir_lower_drsq = (1 << 2),
3246 nir_lower_dtrunc = (1 << 3),
3247 nir_lower_dfloor = (1 << 4),
3248 nir_lower_dceil = (1 << 5),
3249 nir_lower_dfract = (1 << 6),
3250 nir_lower_dround_even = (1 << 7),
3251 nir_lower_dmod = (1 << 8),
3252 nir_lower_fp64_full_software = (1 << 9),
3253 } nir_lower_doubles_options;
3254
3255 bool nir_lower_doubles(nir_shader *shader, nir_lower_doubles_options options);
3256 bool nir_lower_pack(nir_shader *shader);
3257
3258 bool nir_normalize_cubemap_coords(nir_shader *shader);
3259
3260 void nir_live_ssa_defs_impl(nir_function_impl *impl);
3261
3262 void nir_loop_analyze_impl(nir_function_impl *impl,
3263 nir_variable_mode indirect_mask);
3264
3265 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
3266
3267 bool nir_repair_ssa_impl(nir_function_impl *impl);
3268 bool nir_repair_ssa(nir_shader *shader);
3269
3270 void nir_convert_loop_to_lcssa(nir_loop *loop);
3271
3272 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
3273 * registers. If false, convert all values (even those not involved in a phi
3274 * node) to registers.
3275 */
3276 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
3277
3278 bool nir_lower_phis_to_regs_block(nir_block *block);
3279 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
3280 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
3281
3282 bool nir_opt_algebraic(nir_shader *shader);
3283 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
3284 bool nir_opt_algebraic_late(nir_shader *shader);
3285 bool nir_opt_constant_folding(nir_shader *shader);
3286
3287 bool nir_opt_global_to_local(nir_shader *shader);
3288
3289 bool nir_copy_prop(nir_shader *shader);
3290
3291 bool nir_opt_copy_prop_vars(nir_shader *shader);
3292
3293 bool nir_opt_cse(nir_shader *shader);
3294
3295 bool nir_opt_dce(nir_shader *shader);
3296
3297 bool nir_opt_dead_cf(nir_shader *shader);
3298
3299 bool nir_opt_dead_write_vars(nir_shader *shader);
3300
3301 bool nir_opt_deref(nir_shader *shader);
3302
3303 bool nir_opt_find_array_copies(nir_shader *shader);
3304
3305 bool nir_opt_gcm(nir_shader *shader, bool value_number);
3306
3307 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
3308
3309 bool nir_opt_if(nir_shader *shader);
3310
3311 bool nir_opt_intrinsics(nir_shader *shader);
3312
3313 bool nir_opt_large_constants(nir_shader *shader,
3314 glsl_type_size_align_func size_align,
3315 unsigned threshold);
3316
3317 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
3318
3319 bool nir_opt_move_comparisons(nir_shader *shader);
3320
3321 bool nir_opt_move_load_ubo(nir_shader *shader);
3322
3323 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
3324 bool indirect_load_ok, bool expensive_alu_ok);
3325
3326 bool nir_opt_remove_phis(nir_shader *shader);
3327
3328 bool nir_opt_shrink_load(nir_shader *shader);
3329
3330 bool nir_opt_trivial_continues(nir_shader *shader);
3331
3332 bool nir_opt_undef(nir_shader *shader);
3333
3334 bool nir_opt_conditional_discard(nir_shader *shader);
3335
3336 void nir_sweep(nir_shader *shader);
3337
3338 void nir_remap_dual_slot_attributes(nir_shader *shader,
3339 uint64_t *dual_slot_inputs);
3340 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
3341
3342 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
3343 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
3344
3345 #ifdef __cplusplus
3346 } /* extern "C" */
3347 #endif
3348
3349 #endif /* NIR_H */