nir: Add a read_mask helper for ALU instructions
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitset.h"
38 #include "util/macros.h"
39 #include "compiler/nir_types.h"
40 #include "compiler/shader_enums.h"
41 #include "compiler/shader_info.h"
42 #include <stdio.h>
43
44 #ifndef NDEBUG
45 #include "util/debug.h"
46 #endif /* NDEBUG */
47
48 #include "nir_opcodes.h"
49
50 #if defined(_WIN32) && !defined(snprintf)
51 #define snprintf _snprintf
52 #endif
53
54 #ifdef __cplusplus
55 extern "C" {
56 #endif
57
58 #define NIR_FALSE 0u
59 #define NIR_TRUE (~0u)
60 #define NIR_MAX_VEC_COMPONENTS 4
61 typedef uint8_t nir_component_mask_t;
62
63 /** Defines a cast function
64 *
65 * This macro defines a cast function from in_type to out_type where
66 * out_type is some structure type that contains a field of type out_type.
67 *
68 * Note that you have to be a bit careful as the generated cast function
69 * destroys constness.
70 */
71 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
72 type_field, type_value) \
73 static inline out_type * \
74 name(const in_type *parent) \
75 { \
76 assert(parent && parent->type_field == type_value); \
77 return exec_node_data(out_type, parent, field); \
78 }
79
80 struct nir_function;
81 struct nir_shader;
82 struct nir_instr;
83 struct nir_builder;
84
85
86 /**
87 * Description of built-in state associated with a uniform
88 *
89 * \sa nir_variable::state_slots
90 */
91 typedef struct {
92 gl_state_index16 tokens[STATE_LENGTH];
93 int swizzle;
94 } nir_state_slot;
95
96 typedef enum {
97 nir_var_shader_in = (1 << 0),
98 nir_var_shader_out = (1 << 1),
99 nir_var_global = (1 << 2),
100 nir_var_local = (1 << 3),
101 nir_var_uniform = (1 << 4),
102 nir_var_shader_storage = (1 << 5),
103 nir_var_system_value = (1 << 6),
104 nir_var_shared = (1 << 8),
105 nir_var_all = ~0,
106 } nir_variable_mode;
107
108 /**
109 * Rounding modes.
110 */
111 typedef enum {
112 nir_rounding_mode_undef = 0,
113 nir_rounding_mode_rtne = 1, /* round to nearest even */
114 nir_rounding_mode_ru = 2, /* round up */
115 nir_rounding_mode_rd = 3, /* round down */
116 nir_rounding_mode_rtz = 4, /* round towards zero */
117 } nir_rounding_mode;
118
119 typedef union {
120 float f32[NIR_MAX_VEC_COMPONENTS];
121 double f64[NIR_MAX_VEC_COMPONENTS];
122 int8_t i8[NIR_MAX_VEC_COMPONENTS];
123 uint8_t u8[NIR_MAX_VEC_COMPONENTS];
124 int16_t i16[NIR_MAX_VEC_COMPONENTS];
125 uint16_t u16[NIR_MAX_VEC_COMPONENTS];
126 int32_t i32[NIR_MAX_VEC_COMPONENTS];
127 uint32_t u32[NIR_MAX_VEC_COMPONENTS];
128 int64_t i64[NIR_MAX_VEC_COMPONENTS];
129 uint64_t u64[NIR_MAX_VEC_COMPONENTS];
130 } nir_const_value;
131
132 typedef struct nir_constant {
133 /**
134 * Value of the constant.
135 *
136 * The field used to back the values supplied by the constant is determined
137 * by the type associated with the \c nir_variable. Constants may be
138 * scalars, vectors, or matrices.
139 */
140 nir_const_value values[NIR_MAX_VEC_COMPONENTS];
141
142 /* we could get this from the var->type but makes clone *much* easier to
143 * not have to care about the type.
144 */
145 unsigned num_elements;
146
147 /* Array elements / Structure Fields */
148 struct nir_constant **elements;
149 } nir_constant;
150
151 /**
152 * \brief Layout qualifiers for gl_FragDepth.
153 *
154 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
155 * with a layout qualifier.
156 */
157 typedef enum {
158 nir_depth_layout_none, /**< No depth layout is specified. */
159 nir_depth_layout_any,
160 nir_depth_layout_greater,
161 nir_depth_layout_less,
162 nir_depth_layout_unchanged
163 } nir_depth_layout;
164
165 /**
166 * Enum keeping track of how a variable was declared.
167 */
168 typedef enum {
169 /**
170 * Normal declaration.
171 */
172 nir_var_declared_normally = 0,
173
174 /**
175 * Variable is implicitly generated by the compiler and should not be
176 * visible via the API.
177 */
178 nir_var_hidden,
179 } nir_var_declaration_type;
180
181 /**
182 * Either a uniform, global variable, shader input, or shader output. Based on
183 * ir_variable - it should be easy to translate between the two.
184 */
185
186 typedef struct nir_variable {
187 struct exec_node node;
188
189 /**
190 * Declared type of the variable
191 */
192 const struct glsl_type *type;
193
194 /**
195 * Declared name of the variable
196 */
197 char *name;
198
199 struct nir_variable_data {
200 /**
201 * Storage class of the variable.
202 *
203 * \sa nir_variable_mode
204 */
205 nir_variable_mode mode;
206
207 /**
208 * Is the variable read-only?
209 *
210 * This is set for variables declared as \c const, shader inputs,
211 * and uniforms.
212 */
213 unsigned read_only:1;
214 unsigned centroid:1;
215 unsigned sample:1;
216 unsigned patch:1;
217 unsigned invariant:1;
218
219 /**
220 * When separate shader programs are enabled, only input/outputs between
221 * the stages of a multi-stage separate program can be safely removed
222 * from the shader interface. Other input/outputs must remains active.
223 *
224 * This is also used to make sure xfb varyings that are unused by the
225 * fragment shader are not removed.
226 */
227 unsigned always_active_io:1;
228
229 /**
230 * Interpolation mode for shader inputs / outputs
231 *
232 * \sa glsl_interp_mode
233 */
234 unsigned interpolation:2;
235
236 /**
237 * \name ARB_fragment_coord_conventions
238 * @{
239 */
240 unsigned origin_upper_left:1;
241 unsigned pixel_center_integer:1;
242 /*@}*/
243
244 /**
245 * If non-zero, then this variable may be packed along with other variables
246 * into a single varying slot, so this offset should be applied when
247 * accessing components. For example, an offset of 1 means that the x
248 * component of this variable is actually stored in component y of the
249 * location specified by \c location.
250 */
251 unsigned location_frac:2;
252
253 /**
254 * If true, this variable represents an array of scalars that should
255 * be tightly packed. In other words, consecutive array elements
256 * should be stored one component apart, rather than one slot apart.
257 */
258 unsigned compact:1;
259
260 /**
261 * Whether this is a fragment shader output implicitly initialized with
262 * the previous contents of the specified render target at the
263 * framebuffer location corresponding to this shader invocation.
264 */
265 unsigned fb_fetch_output:1;
266
267 /**
268 * Non-zero if this variable is considered bindless as defined by
269 * ARB_bindless_texture.
270 */
271 unsigned bindless:1;
272
273 /**
274 * Was an explicit binding set in the shader?
275 */
276 unsigned explicit_binding:1;
277
278 /**
279 * Was a transfer feedback buffer set in the shader?
280 */
281 unsigned explicit_xfb_buffer:1;
282
283 /**
284 * Was a transfer feedback stride set in the shader?
285 */
286 unsigned explicit_xfb_stride:1;
287
288 /**
289 * Was an explicit offset set in the shader?
290 */
291 unsigned explicit_offset:1;
292
293 /**
294 * \brief Layout qualifier for gl_FragDepth.
295 *
296 * This is not equal to \c ir_depth_layout_none if and only if this
297 * variable is \c gl_FragDepth and a layout qualifier is specified.
298 */
299 nir_depth_layout depth_layout;
300
301 /**
302 * Storage location of the base of this variable
303 *
304 * The precise meaning of this field depends on the nature of the variable.
305 *
306 * - Vertex shader input: one of the values from \c gl_vert_attrib.
307 * - Vertex shader output: one of the values from \c gl_varying_slot.
308 * - Geometry shader input: one of the values from \c gl_varying_slot.
309 * - Geometry shader output: one of the values from \c gl_varying_slot.
310 * - Fragment shader input: one of the values from \c gl_varying_slot.
311 * - Fragment shader output: one of the values from \c gl_frag_result.
312 * - Uniforms: Per-stage uniform slot number for default uniform block.
313 * - Uniforms: Index within the uniform block definition for UBO members.
314 * - Non-UBO Uniforms: uniform slot number.
315 * - Other: This field is not currently used.
316 *
317 * If the variable is a uniform, shader input, or shader output, and the
318 * slot has not been assigned, the value will be -1.
319 */
320 int location;
321
322 /**
323 * The actual location of the variable in the IR. Only valid for inputs
324 * and outputs.
325 */
326 unsigned int driver_location;
327
328 /**
329 * Vertex stream output identifier.
330 *
331 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
332 * stream of the i-th component.
333 */
334 unsigned stream;
335
336 /**
337 * output index for dual source blending.
338 */
339 int index;
340
341 /**
342 * Descriptor set binding for sampler or UBO.
343 */
344 int descriptor_set;
345
346 /**
347 * Initial binding point for a sampler or UBO.
348 *
349 * For array types, this represents the binding point for the first element.
350 */
351 int binding;
352
353 /**
354 * Location an atomic counter or transform feedback is stored at.
355 */
356 unsigned offset;
357
358 /**
359 * Transform feedback buffer.
360 */
361 unsigned xfb_buffer;
362
363 /**
364 * Transform feedback stride.
365 */
366 unsigned xfb_stride;
367
368 /**
369 * How the variable was declared. See nir_var_declaration_type.
370 *
371 * This is used to detect variables generated by the compiler, so should
372 * not be visible via the API.
373 */
374 unsigned how_declared:2;
375
376 /**
377 * ARB_shader_image_load_store qualifiers.
378 */
379 struct {
380 enum gl_access_qualifier access;
381
382 /** Image internal format if specified explicitly, otherwise GL_NONE. */
383 GLenum format;
384 } image;
385 } data;
386
387 /**
388 * Built-in state that backs this uniform
389 *
390 * Once set at variable creation, \c state_slots must remain invariant.
391 * This is because, ideally, this array would be shared by all clones of
392 * this variable in the IR tree. In other words, we'd really like for it
393 * to be a fly-weight.
394 *
395 * If the variable is not a uniform, \c num_state_slots will be zero and
396 * \c state_slots will be \c NULL.
397 */
398 /*@{*/
399 unsigned num_state_slots; /**< Number of state slots used */
400 nir_state_slot *state_slots; /**< State descriptors. */
401 /*@}*/
402
403 /**
404 * Constant expression assigned in the initializer of the variable
405 *
406 * This field should only be used temporarily by creators of NIR shaders
407 * and then lower_constant_initializers can be used to get rid of them.
408 * Most of the rest of NIR ignores this field or asserts that it's NULL.
409 */
410 nir_constant *constant_initializer;
411
412 /**
413 * For variables that are in an interface block or are an instance of an
414 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
415 *
416 * \sa ir_variable::location
417 */
418 const struct glsl_type *interface_type;
419
420 /**
421 * Description of per-member data for per-member struct variables
422 *
423 * This is used for variables which are actually an amalgamation of
424 * multiple entities such as a struct of built-in values or a struct of
425 * inputs each with their own layout specifier. This is only allowed on
426 * variables with a struct or array of array of struct type.
427 */
428 unsigned num_members;
429 struct nir_variable_data *members;
430 } nir_variable;
431
432 #define nir_foreach_variable(var, var_list) \
433 foreach_list_typed(nir_variable, var, node, var_list)
434
435 #define nir_foreach_variable_safe(var, var_list) \
436 foreach_list_typed_safe(nir_variable, var, node, var_list)
437
438 static inline bool
439 nir_variable_is_global(const nir_variable *var)
440 {
441 return var->data.mode != nir_var_local;
442 }
443
444 typedef struct nir_register {
445 struct exec_node node;
446
447 unsigned num_components; /** < number of vector components */
448 unsigned num_array_elems; /** < size of array (0 for no array) */
449
450 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
451 uint8_t bit_size;
452
453 /** generic register index. */
454 unsigned index;
455
456 /** only for debug purposes, can be NULL */
457 const char *name;
458
459 /** whether this register is local (per-function) or global (per-shader) */
460 bool is_global;
461
462 /**
463 * If this flag is set to true, then accessing channels >= num_components
464 * is well-defined, and simply spills over to the next array element. This
465 * is useful for backends that can do per-component accessing, in
466 * particular scalar backends. By setting this flag and making
467 * num_components equal to 1, structures can be packed tightly into
468 * registers and then registers can be accessed per-component to get to
469 * each structure member, even if it crosses vec4 boundaries.
470 */
471 bool is_packed;
472
473 /** set of nir_srcs where this register is used (read from) */
474 struct list_head uses;
475
476 /** set of nir_dests where this register is defined (written to) */
477 struct list_head defs;
478
479 /** set of nir_ifs where this register is used as a condition */
480 struct list_head if_uses;
481 } nir_register;
482
483 #define nir_foreach_register(reg, reg_list) \
484 foreach_list_typed(nir_register, reg, node, reg_list)
485 #define nir_foreach_register_safe(reg, reg_list) \
486 foreach_list_typed_safe(nir_register, reg, node, reg_list)
487
488 typedef enum {
489 nir_instr_type_alu,
490 nir_instr_type_deref,
491 nir_instr_type_call,
492 nir_instr_type_tex,
493 nir_instr_type_intrinsic,
494 nir_instr_type_load_const,
495 nir_instr_type_jump,
496 nir_instr_type_ssa_undef,
497 nir_instr_type_phi,
498 nir_instr_type_parallel_copy,
499 } nir_instr_type;
500
501 typedef struct nir_instr {
502 struct exec_node node;
503 nir_instr_type type;
504 struct nir_block *block;
505
506 /** generic instruction index. */
507 unsigned index;
508
509 /* A temporary for optimization and analysis passes to use for storing
510 * flags. For instance, DCE uses this to store the "dead/live" info.
511 */
512 uint8_t pass_flags;
513 } nir_instr;
514
515 static inline nir_instr *
516 nir_instr_next(nir_instr *instr)
517 {
518 struct exec_node *next = exec_node_get_next(&instr->node);
519 if (exec_node_is_tail_sentinel(next))
520 return NULL;
521 else
522 return exec_node_data(nir_instr, next, node);
523 }
524
525 static inline nir_instr *
526 nir_instr_prev(nir_instr *instr)
527 {
528 struct exec_node *prev = exec_node_get_prev(&instr->node);
529 if (exec_node_is_head_sentinel(prev))
530 return NULL;
531 else
532 return exec_node_data(nir_instr, prev, node);
533 }
534
535 static inline bool
536 nir_instr_is_first(const nir_instr *instr)
537 {
538 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
539 }
540
541 static inline bool
542 nir_instr_is_last(const nir_instr *instr)
543 {
544 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
545 }
546
547 typedef struct nir_ssa_def {
548 /** for debugging only, can be NULL */
549 const char* name;
550
551 /** generic SSA definition index. */
552 unsigned index;
553
554 /** Index into the live_in and live_out bitfields */
555 unsigned live_index;
556
557 /** Instruction which produces this SSA value. */
558 nir_instr *parent_instr;
559
560 /** set of nir_instrs where this register is used (read from) */
561 struct list_head uses;
562
563 /** set of nir_ifs where this register is used as a condition */
564 struct list_head if_uses;
565
566 uint8_t num_components;
567
568 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
569 uint8_t bit_size;
570 } nir_ssa_def;
571
572 struct nir_src;
573
574 typedef struct {
575 nir_register *reg;
576 struct nir_src *indirect; /** < NULL for no indirect offset */
577 unsigned base_offset;
578
579 /* TODO use-def chain goes here */
580 } nir_reg_src;
581
582 typedef struct {
583 nir_instr *parent_instr;
584 struct list_head def_link;
585
586 nir_register *reg;
587 struct nir_src *indirect; /** < NULL for no indirect offset */
588 unsigned base_offset;
589
590 /* TODO def-use chain goes here */
591 } nir_reg_dest;
592
593 struct nir_if;
594
595 typedef struct nir_src {
596 union {
597 /** Instruction that consumes this value as a source. */
598 nir_instr *parent_instr;
599 struct nir_if *parent_if;
600 };
601
602 struct list_head use_link;
603
604 union {
605 nir_reg_src reg;
606 nir_ssa_def *ssa;
607 };
608
609 bool is_ssa;
610 } nir_src;
611
612 static inline nir_src
613 nir_src_init(void)
614 {
615 nir_src src = { { NULL } };
616 return src;
617 }
618
619 #define NIR_SRC_INIT nir_src_init()
620
621 #define nir_foreach_use(src, reg_or_ssa_def) \
622 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
623
624 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
625 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
626
627 #define nir_foreach_if_use(src, reg_or_ssa_def) \
628 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
629
630 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
631 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
632
633 typedef struct {
634 union {
635 nir_reg_dest reg;
636 nir_ssa_def ssa;
637 };
638
639 bool is_ssa;
640 } nir_dest;
641
642 static inline nir_dest
643 nir_dest_init(void)
644 {
645 nir_dest dest = { { { NULL } } };
646 return dest;
647 }
648
649 #define NIR_DEST_INIT nir_dest_init()
650
651 #define nir_foreach_def(dest, reg) \
652 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
653
654 #define nir_foreach_def_safe(dest, reg) \
655 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
656
657 static inline nir_src
658 nir_src_for_ssa(nir_ssa_def *def)
659 {
660 nir_src src = NIR_SRC_INIT;
661
662 src.is_ssa = true;
663 src.ssa = def;
664
665 return src;
666 }
667
668 static inline nir_src
669 nir_src_for_reg(nir_register *reg)
670 {
671 nir_src src = NIR_SRC_INIT;
672
673 src.is_ssa = false;
674 src.reg.reg = reg;
675 src.reg.indirect = NULL;
676 src.reg.base_offset = 0;
677
678 return src;
679 }
680
681 static inline nir_dest
682 nir_dest_for_reg(nir_register *reg)
683 {
684 nir_dest dest = NIR_DEST_INIT;
685
686 dest.reg.reg = reg;
687
688 return dest;
689 }
690
691 static inline unsigned
692 nir_src_bit_size(nir_src src)
693 {
694 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
695 }
696
697 static inline unsigned
698 nir_src_num_components(nir_src src)
699 {
700 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
701 }
702
703 static inline bool
704 nir_src_is_const(nir_src src)
705 {
706 return src.is_ssa &&
707 src.ssa->parent_instr->type == nir_instr_type_load_const;
708 }
709
710 int64_t nir_src_as_int(nir_src src);
711 uint64_t nir_src_as_uint(nir_src src);
712 bool nir_src_as_bool(nir_src src);
713 double nir_src_as_float(nir_src src);
714 int64_t nir_src_comp_as_int(nir_src src, unsigned component);
715 uint64_t nir_src_comp_as_uint(nir_src src, unsigned component);
716 bool nir_src_comp_as_bool(nir_src src, unsigned component);
717 double nir_src_comp_as_float(nir_src src, unsigned component);
718
719 static inline unsigned
720 nir_dest_bit_size(nir_dest dest)
721 {
722 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
723 }
724
725 static inline unsigned
726 nir_dest_num_components(nir_dest dest)
727 {
728 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
729 }
730
731 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
732 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
733
734 typedef struct {
735 nir_src src;
736
737 /**
738 * \name input modifiers
739 */
740 /*@{*/
741 /**
742 * For inputs interpreted as floating point, flips the sign bit. For
743 * inputs interpreted as integers, performs the two's complement negation.
744 */
745 bool negate;
746
747 /**
748 * Clears the sign bit for floating point values, and computes the integer
749 * absolute value for integers. Note that the negate modifier acts after
750 * the absolute value modifier, therefore if both are set then all inputs
751 * will become negative.
752 */
753 bool abs;
754 /*@}*/
755
756 /**
757 * For each input component, says which component of the register it is
758 * chosen from. Note that which elements of the swizzle are used and which
759 * are ignored are based on the write mask for most opcodes - for example,
760 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
761 * a swizzle of {2, x, 1, 0} where x means "don't care."
762 */
763 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
764 } nir_alu_src;
765
766 typedef struct {
767 nir_dest dest;
768
769 /**
770 * \name saturate output modifier
771 *
772 * Only valid for opcodes that output floating-point numbers. Clamps the
773 * output to between 0.0 and 1.0 inclusive.
774 */
775
776 bool saturate;
777
778 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
779 } nir_alu_dest;
780
781 typedef enum {
782 nir_type_invalid = 0, /* Not a valid type */
783 nir_type_float,
784 nir_type_int,
785 nir_type_uint,
786 nir_type_bool,
787 nir_type_bool32 = 32 | nir_type_bool,
788 nir_type_int8 = 8 | nir_type_int,
789 nir_type_int16 = 16 | nir_type_int,
790 nir_type_int32 = 32 | nir_type_int,
791 nir_type_int64 = 64 | nir_type_int,
792 nir_type_uint8 = 8 | nir_type_uint,
793 nir_type_uint16 = 16 | nir_type_uint,
794 nir_type_uint32 = 32 | nir_type_uint,
795 nir_type_uint64 = 64 | nir_type_uint,
796 nir_type_float16 = 16 | nir_type_float,
797 nir_type_float32 = 32 | nir_type_float,
798 nir_type_float64 = 64 | nir_type_float,
799 } nir_alu_type;
800
801 #define NIR_ALU_TYPE_SIZE_MASK 0xfffffff8
802 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x00000007
803
804 static inline unsigned
805 nir_alu_type_get_type_size(nir_alu_type type)
806 {
807 return type & NIR_ALU_TYPE_SIZE_MASK;
808 }
809
810 static inline unsigned
811 nir_alu_type_get_base_type(nir_alu_type type)
812 {
813 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
814 }
815
816 static inline nir_alu_type
817 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
818 {
819 switch (base_type) {
820 case GLSL_TYPE_BOOL:
821 return nir_type_bool32;
822 break;
823 case GLSL_TYPE_UINT:
824 return nir_type_uint32;
825 break;
826 case GLSL_TYPE_INT:
827 return nir_type_int32;
828 break;
829 case GLSL_TYPE_UINT16:
830 return nir_type_uint16;
831 break;
832 case GLSL_TYPE_INT16:
833 return nir_type_int16;
834 break;
835 case GLSL_TYPE_UINT8:
836 return nir_type_uint8;
837 case GLSL_TYPE_INT8:
838 return nir_type_int8;
839 case GLSL_TYPE_UINT64:
840 return nir_type_uint64;
841 break;
842 case GLSL_TYPE_INT64:
843 return nir_type_int64;
844 break;
845 case GLSL_TYPE_FLOAT:
846 return nir_type_float32;
847 break;
848 case GLSL_TYPE_FLOAT16:
849 return nir_type_float16;
850 break;
851 case GLSL_TYPE_DOUBLE:
852 return nir_type_float64;
853 break;
854 default:
855 unreachable("unknown type");
856 }
857 }
858
859 static inline nir_alu_type
860 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
861 {
862 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
863 }
864
865 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
866 nir_rounding_mode rnd);
867
868 typedef enum {
869 NIR_OP_IS_COMMUTATIVE = (1 << 0),
870 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
871 } nir_op_algebraic_property;
872
873 typedef struct {
874 const char *name;
875
876 unsigned num_inputs;
877
878 /**
879 * The number of components in the output
880 *
881 * If non-zero, this is the size of the output and input sizes are
882 * explicitly given; swizzle and writemask are still in effect, but if
883 * the output component is masked out, then the input component may
884 * still be in use.
885 *
886 * If zero, the opcode acts in the standard, per-component manner; the
887 * operation is performed on each component (except the ones that are
888 * masked out) with the input being taken from the input swizzle for
889 * that component.
890 *
891 * The size of some of the inputs may be given (i.e. non-zero) even
892 * though output_size is zero; in that case, the inputs with a zero
893 * size act per-component, while the inputs with non-zero size don't.
894 */
895 unsigned output_size;
896
897 /**
898 * The type of vector that the instruction outputs. Note that the
899 * staurate modifier is only allowed on outputs with the float type.
900 */
901
902 nir_alu_type output_type;
903
904 /**
905 * The number of components in each input
906 */
907 unsigned input_sizes[NIR_MAX_VEC_COMPONENTS];
908
909 /**
910 * The type of vector that each input takes. Note that negate and
911 * absolute value are only allowed on inputs with int or float type and
912 * behave differently on the two.
913 */
914 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
915
916 nir_op_algebraic_property algebraic_properties;
917 } nir_op_info;
918
919 extern const nir_op_info nir_op_infos[nir_num_opcodes];
920
921 typedef struct nir_alu_instr {
922 nir_instr instr;
923 nir_op op;
924
925 /** Indicates that this ALU instruction generates an exact value
926 *
927 * This is kind of a mixture of GLSL "precise" and "invariant" and not
928 * really equivalent to either. This indicates that the value generated by
929 * this operation is high-precision and any code transformations that touch
930 * it must ensure that the resulting value is bit-for-bit identical to the
931 * original.
932 */
933 bool exact;
934
935 nir_alu_dest dest;
936 nir_alu_src src[];
937 } nir_alu_instr;
938
939 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
940 nir_alu_instr *instr);
941 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
942 nir_alu_instr *instr);
943
944 /* is this source channel used? */
945 static inline bool
946 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
947 unsigned channel)
948 {
949 if (nir_op_infos[instr->op].input_sizes[src] > 0)
950 return channel < nir_op_infos[instr->op].input_sizes[src];
951
952 return (instr->dest.write_mask >> channel) & 1;
953 }
954
955 static inline nir_component_mask_t
956 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
957 {
958 nir_component_mask_t read_mask = 0;
959 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
960 if (!nir_alu_instr_channel_used(instr, src, c))
961 continue;
962
963 read_mask |= (1 << instr->src[src].swizzle[c]);
964 }
965 return read_mask;
966 }
967
968 /*
969 * For instructions whose destinations are SSA, get the number of channels
970 * used for a source
971 */
972 static inline unsigned
973 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
974 {
975 assert(instr->dest.dest.is_ssa);
976
977 if (nir_op_infos[instr->op].input_sizes[src] > 0)
978 return nir_op_infos[instr->op].input_sizes[src];
979
980 return instr->dest.dest.ssa.num_components;
981 }
982
983 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
984 unsigned src1, unsigned src2);
985
986 typedef enum {
987 nir_deref_type_var,
988 nir_deref_type_array,
989 nir_deref_type_array_wildcard,
990 nir_deref_type_struct,
991 nir_deref_type_cast,
992 } nir_deref_type;
993
994 typedef struct {
995 nir_instr instr;
996
997 /** The type of this deref instruction */
998 nir_deref_type deref_type;
999
1000 /** The mode of the underlying variable */
1001 nir_variable_mode mode;
1002
1003 /** The dereferenced type of the resulting pointer value */
1004 const struct glsl_type *type;
1005
1006 union {
1007 /** Variable being dereferenced if deref_type is a deref_var */
1008 nir_variable *var;
1009
1010 /** Parent deref if deref_type is not deref_var */
1011 nir_src parent;
1012 };
1013
1014 /** Additional deref parameters */
1015 union {
1016 struct {
1017 nir_src index;
1018 } arr;
1019
1020 struct {
1021 unsigned index;
1022 } strct;
1023 };
1024
1025 /** Destination to store the resulting "pointer" */
1026 nir_dest dest;
1027 } nir_deref_instr;
1028
1029 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
1030 type, nir_instr_type_deref)
1031
1032 static inline nir_deref_instr *
1033 nir_src_as_deref(nir_src src)
1034 {
1035 if (!src.is_ssa)
1036 return NULL;
1037
1038 if (src.ssa->parent_instr->type != nir_instr_type_deref)
1039 return NULL;
1040
1041 return nir_instr_as_deref(src.ssa->parent_instr);
1042 }
1043
1044 static inline nir_deref_instr *
1045 nir_deref_instr_parent(const nir_deref_instr *instr)
1046 {
1047 if (instr->deref_type == nir_deref_type_var)
1048 return NULL;
1049 else
1050 return nir_src_as_deref(instr->parent);
1051 }
1052
1053 static inline nir_variable *
1054 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1055 {
1056 while (instr->deref_type != nir_deref_type_var) {
1057 if (instr->deref_type == nir_deref_type_cast)
1058 return NULL;
1059
1060 instr = nir_deref_instr_parent(instr);
1061 }
1062
1063 return instr->var;
1064 }
1065
1066 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1067
1068 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1069
1070 typedef struct {
1071 nir_instr instr;
1072
1073 struct nir_function *callee;
1074
1075 unsigned num_params;
1076 nir_src params[];
1077 } nir_call_instr;
1078
1079 #include "nir_intrinsics.h"
1080
1081 #define NIR_INTRINSIC_MAX_CONST_INDEX 4
1082
1083 /** Represents an intrinsic
1084 *
1085 * An intrinsic is an instruction type for handling things that are
1086 * more-or-less regular operations but don't just consume and produce SSA
1087 * values like ALU operations do. Intrinsics are not for things that have
1088 * special semantic meaning such as phi nodes and parallel copies.
1089 * Examples of intrinsics include variable load/store operations, system
1090 * value loads, and the like. Even though texturing more-or-less falls
1091 * under this category, texturing is its own instruction type because
1092 * trying to represent texturing with intrinsics would lead to a
1093 * combinatorial explosion of intrinsic opcodes.
1094 *
1095 * By having a single instruction type for handling a lot of different
1096 * cases, optimization passes can look for intrinsics and, for the most
1097 * part, completely ignore them. Each intrinsic type also has a few
1098 * possible flags that govern whether or not they can be reordered or
1099 * eliminated. That way passes like dead code elimination can still work
1100 * on intrisics without understanding the meaning of each.
1101 *
1102 * Each intrinsic has some number of constant indices, some number of
1103 * variables, and some number of sources. What these sources, variables,
1104 * and indices mean depends on the intrinsic and is documented with the
1105 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1106 * instructions are the only types of instruction that can operate on
1107 * variables.
1108 */
1109 typedef struct {
1110 nir_instr instr;
1111
1112 nir_intrinsic_op intrinsic;
1113
1114 nir_dest dest;
1115
1116 /** number of components if this is a vectorized intrinsic
1117 *
1118 * Similarly to ALU operations, some intrinsics are vectorized.
1119 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1120 * For vectorized intrinsics, the num_components field specifies the
1121 * number of destination components and the number of source components
1122 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1123 */
1124 uint8_t num_components;
1125
1126 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1127
1128 nir_src src[];
1129 } nir_intrinsic_instr;
1130
1131 static inline nir_variable *
1132 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1133 {
1134 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1135 }
1136
1137 /**
1138 * \name NIR intrinsics semantic flags
1139 *
1140 * information about what the compiler can do with the intrinsics.
1141 *
1142 * \sa nir_intrinsic_info::flags
1143 */
1144 typedef enum {
1145 /**
1146 * whether the intrinsic can be safely eliminated if none of its output
1147 * value is not being used.
1148 */
1149 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1150
1151 /**
1152 * Whether the intrinsic can be reordered with respect to any other
1153 * intrinsic, i.e. whether the only reordering dependencies of the
1154 * intrinsic are due to the register reads/writes.
1155 */
1156 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1157 } nir_intrinsic_semantic_flag;
1158
1159 /**
1160 * \name NIR intrinsics const-index flag
1161 *
1162 * Indicates the usage of a const_index slot.
1163 *
1164 * \sa nir_intrinsic_info::index_map
1165 */
1166 typedef enum {
1167 /**
1168 * Generally instructions that take a offset src argument, can encode
1169 * a constant 'base' value which is added to the offset.
1170 */
1171 NIR_INTRINSIC_BASE = 1,
1172
1173 /**
1174 * For store instructions, a writemask for the store.
1175 */
1176 NIR_INTRINSIC_WRMASK = 2,
1177
1178 /**
1179 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1180 */
1181 NIR_INTRINSIC_STREAM_ID = 3,
1182
1183 /**
1184 * The clip-plane id for load_user_clip_plane intrinsic.
1185 */
1186 NIR_INTRINSIC_UCP_ID = 4,
1187
1188 /**
1189 * The amount of data, starting from BASE, that this instruction may
1190 * access. This is used to provide bounds if the offset is not constant.
1191 */
1192 NIR_INTRINSIC_RANGE = 5,
1193
1194 /**
1195 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1196 */
1197 NIR_INTRINSIC_DESC_SET = 6,
1198
1199 /**
1200 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1201 */
1202 NIR_INTRINSIC_BINDING = 7,
1203
1204 /**
1205 * Component offset.
1206 */
1207 NIR_INTRINSIC_COMPONENT = 8,
1208
1209 /**
1210 * Interpolation mode (only meaningful for FS inputs).
1211 */
1212 NIR_INTRINSIC_INTERP_MODE = 9,
1213
1214 /**
1215 * A binary nir_op to use when performing a reduction or scan operation
1216 */
1217 NIR_INTRINSIC_REDUCTION_OP = 10,
1218
1219 /**
1220 * Cluster size for reduction operations
1221 */
1222 NIR_INTRINSIC_CLUSTER_SIZE = 11,
1223
1224 /**
1225 * Parameter index for a load_param intrinsic
1226 */
1227 NIR_INTRINSIC_PARAM_IDX = 12,
1228
1229 /**
1230 * Image dimensionality for image intrinsics
1231 *
1232 * One of GLSL_SAMPLER_DIM_*
1233 */
1234 NIR_INTRINSIC_IMAGE_DIM = 13,
1235
1236 /**
1237 * Non-zero if we are accessing an array image
1238 */
1239 NIR_INTRINSIC_IMAGE_ARRAY = 14,
1240
1241 /**
1242 * Image format for image intrinsics
1243 */
1244 NIR_INTRINSIC_FORMAT = 15,
1245
1246 /**
1247 * Access qualifiers for image intrinsics
1248 */
1249 NIR_INTRINSIC_ACCESS = 16,
1250
1251 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1252
1253 } nir_intrinsic_index_flag;
1254
1255 #define NIR_INTRINSIC_MAX_INPUTS 5
1256
1257 typedef struct {
1258 const char *name;
1259
1260 unsigned num_srcs; /** < number of register/SSA inputs */
1261
1262 /** number of components of each input register
1263 *
1264 * If this value is 0, the number of components is given by the
1265 * num_components field of nir_intrinsic_instr.
1266 */
1267 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
1268
1269 bool has_dest;
1270
1271 /** number of components of the output register
1272 *
1273 * If this value is 0, the number of components is given by the
1274 * num_components field of nir_intrinsic_instr.
1275 */
1276 unsigned dest_components;
1277
1278 /** the number of constant indices used by the intrinsic */
1279 unsigned num_indices;
1280
1281 /** indicates the usage of intr->const_index[n] */
1282 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1283
1284 /** semantic flags for calls to this intrinsic */
1285 nir_intrinsic_semantic_flag flags;
1286 } nir_intrinsic_info;
1287
1288 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1289
1290 static inline unsigned
1291 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1292 {
1293 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1294 assert(srcn < info->num_srcs);
1295 if (info->src_components[srcn])
1296 return info->src_components[srcn];
1297 else
1298 return intr->num_components;
1299 }
1300
1301 static inline unsigned
1302 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1303 {
1304 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1305 if (!info->has_dest)
1306 return 0;
1307 else if (info->dest_components)
1308 return info->dest_components;
1309 else
1310 return intr->num_components;
1311 }
1312
1313 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1314 static inline type \
1315 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1316 { \
1317 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1318 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1319 return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1320 } \
1321 static inline void \
1322 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1323 { \
1324 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1325 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1326 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1327 }
1328
1329 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1330 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1331 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1332 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1333 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1334 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1335 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1336 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1337 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1338 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1339 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1340 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1341 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1342 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1343 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1344 INTRINSIC_IDX_ACCESSORS(format, FORMAT, unsigned)
1345
1346 /**
1347 * \group texture information
1348 *
1349 * This gives semantic information about textures which is useful to the
1350 * frontend, the backend, and lowering passes, but not the optimizer.
1351 */
1352
1353 typedef enum {
1354 nir_tex_src_coord,
1355 nir_tex_src_projector,
1356 nir_tex_src_comparator, /* shadow comparator */
1357 nir_tex_src_offset,
1358 nir_tex_src_bias,
1359 nir_tex_src_lod,
1360 nir_tex_src_ms_index, /* MSAA sample index */
1361 nir_tex_src_ms_mcs, /* MSAA compression value */
1362 nir_tex_src_ddx,
1363 nir_tex_src_ddy,
1364 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1365 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1366 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1367 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1368 nir_tex_src_plane, /* < selects plane for planar textures */
1369 nir_num_tex_src_types
1370 } nir_tex_src_type;
1371
1372 typedef struct {
1373 nir_src src;
1374 nir_tex_src_type src_type;
1375 } nir_tex_src;
1376
1377 typedef enum {
1378 nir_texop_tex, /**< Regular texture look-up */
1379 nir_texop_txb, /**< Texture look-up with LOD bias */
1380 nir_texop_txl, /**< Texture look-up with explicit LOD */
1381 nir_texop_txd, /**< Texture look-up with partial derivatives */
1382 nir_texop_txf, /**< Texel fetch with explicit LOD */
1383 nir_texop_txf_ms, /**< Multisample texture fetch */
1384 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1385 nir_texop_txs, /**< Texture size */
1386 nir_texop_lod, /**< Texture lod query */
1387 nir_texop_tg4, /**< Texture gather */
1388 nir_texop_query_levels, /**< Texture levels query */
1389 nir_texop_texture_samples, /**< Texture samples query */
1390 nir_texop_samples_identical, /**< Query whether all samples are definitely
1391 * identical.
1392 */
1393 } nir_texop;
1394
1395 typedef struct {
1396 nir_instr instr;
1397
1398 enum glsl_sampler_dim sampler_dim;
1399 nir_alu_type dest_type;
1400
1401 nir_texop op;
1402 nir_dest dest;
1403 nir_tex_src *src;
1404 unsigned num_srcs, coord_components;
1405 bool is_array, is_shadow;
1406
1407 /**
1408 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1409 * components or the new-style shadow that outputs 1 component.
1410 */
1411 bool is_new_style_shadow;
1412
1413 /* gather component selector */
1414 unsigned component : 2;
1415
1416 /** The texture index
1417 *
1418 * If this texture instruction has a nir_tex_src_texture_offset source,
1419 * then the texture index is given by texture_index + texture_offset.
1420 */
1421 unsigned texture_index;
1422
1423 /** The size of the texture array or 0 if it's not an array */
1424 unsigned texture_array_size;
1425
1426 /** The sampler index
1427 *
1428 * The following operations do not require a sampler and, as such, this
1429 * field should be ignored:
1430 * - nir_texop_txf
1431 * - nir_texop_txf_ms
1432 * - nir_texop_txs
1433 * - nir_texop_lod
1434 * - nir_texop_query_levels
1435 * - nir_texop_texture_samples
1436 * - nir_texop_samples_identical
1437 *
1438 * If this texture instruction has a nir_tex_src_sampler_offset source,
1439 * then the sampler index is given by sampler_index + sampler_offset.
1440 */
1441 unsigned sampler_index;
1442 } nir_tex_instr;
1443
1444 static inline unsigned
1445 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1446 {
1447 switch (instr->op) {
1448 case nir_texop_txs: {
1449 unsigned ret;
1450 switch (instr->sampler_dim) {
1451 case GLSL_SAMPLER_DIM_1D:
1452 case GLSL_SAMPLER_DIM_BUF:
1453 ret = 1;
1454 break;
1455 case GLSL_SAMPLER_DIM_2D:
1456 case GLSL_SAMPLER_DIM_CUBE:
1457 case GLSL_SAMPLER_DIM_MS:
1458 case GLSL_SAMPLER_DIM_RECT:
1459 case GLSL_SAMPLER_DIM_EXTERNAL:
1460 case GLSL_SAMPLER_DIM_SUBPASS:
1461 ret = 2;
1462 break;
1463 case GLSL_SAMPLER_DIM_3D:
1464 ret = 3;
1465 break;
1466 default:
1467 unreachable("not reached");
1468 }
1469 if (instr->is_array)
1470 ret++;
1471 return ret;
1472 }
1473
1474 case nir_texop_lod:
1475 return 2;
1476
1477 case nir_texop_texture_samples:
1478 case nir_texop_query_levels:
1479 case nir_texop_samples_identical:
1480 return 1;
1481
1482 default:
1483 if (instr->is_shadow && instr->is_new_style_shadow)
1484 return 1;
1485
1486 return 4;
1487 }
1488 }
1489
1490 /* Returns true if this texture operation queries something about the texture
1491 * rather than actually sampling it.
1492 */
1493 static inline bool
1494 nir_tex_instr_is_query(const nir_tex_instr *instr)
1495 {
1496 switch (instr->op) {
1497 case nir_texop_txs:
1498 case nir_texop_lod:
1499 case nir_texop_texture_samples:
1500 case nir_texop_query_levels:
1501 case nir_texop_txf_ms_mcs:
1502 return true;
1503 case nir_texop_tex:
1504 case nir_texop_txb:
1505 case nir_texop_txl:
1506 case nir_texop_txd:
1507 case nir_texop_txf:
1508 case nir_texop_txf_ms:
1509 case nir_texop_tg4:
1510 return false;
1511 default:
1512 unreachable("Invalid texture opcode");
1513 }
1514 }
1515
1516 static inline bool
1517 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1518 {
1519 switch (instr->op) {
1520 case nir_op_flt:
1521 case nir_op_fge:
1522 case nir_op_feq:
1523 case nir_op_fne:
1524 case nir_op_ilt:
1525 case nir_op_ult:
1526 case nir_op_ige:
1527 case nir_op_uge:
1528 case nir_op_ieq:
1529 case nir_op_ine:
1530 case nir_op_i2b:
1531 case nir_op_f2b:
1532 case nir_op_inot:
1533 case nir_op_fnot:
1534 return true;
1535 default:
1536 return false;
1537 }
1538 }
1539
1540 static inline nir_alu_type
1541 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1542 {
1543 switch (instr->src[src].src_type) {
1544 case nir_tex_src_coord:
1545 switch (instr->op) {
1546 case nir_texop_txf:
1547 case nir_texop_txf_ms:
1548 case nir_texop_txf_ms_mcs:
1549 case nir_texop_samples_identical:
1550 return nir_type_int;
1551
1552 default:
1553 return nir_type_float;
1554 }
1555
1556 case nir_tex_src_lod:
1557 switch (instr->op) {
1558 case nir_texop_txs:
1559 case nir_texop_txf:
1560 return nir_type_int;
1561
1562 default:
1563 return nir_type_float;
1564 }
1565
1566 case nir_tex_src_projector:
1567 case nir_tex_src_comparator:
1568 case nir_tex_src_bias:
1569 case nir_tex_src_ddx:
1570 case nir_tex_src_ddy:
1571 return nir_type_float;
1572
1573 case nir_tex_src_offset:
1574 case nir_tex_src_ms_index:
1575 case nir_tex_src_texture_offset:
1576 case nir_tex_src_sampler_offset:
1577 return nir_type_int;
1578
1579 default:
1580 unreachable("Invalid texture source type");
1581 }
1582 }
1583
1584 static inline unsigned
1585 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1586 {
1587 if (instr->src[src].src_type == nir_tex_src_coord)
1588 return instr->coord_components;
1589
1590 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1591 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1592 return 4;
1593
1594 if (instr->src[src].src_type == nir_tex_src_ddx ||
1595 instr->src[src].src_type == nir_tex_src_ddy) {
1596 if (instr->is_array)
1597 return instr->coord_components - 1;
1598 else
1599 return instr->coord_components;
1600 }
1601
1602 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1603 * the offset, since a cube maps to a single face.
1604 */
1605 if (instr->src[src].src_type == nir_tex_src_offset) {
1606 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1607 return 2;
1608 else if (instr->is_array)
1609 return instr->coord_components - 1;
1610 else
1611 return instr->coord_components;
1612 }
1613
1614 return 1;
1615 }
1616
1617 static inline int
1618 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1619 {
1620 for (unsigned i = 0; i < instr->num_srcs; i++)
1621 if (instr->src[i].src_type == type)
1622 return (int) i;
1623
1624 return -1;
1625 }
1626
1627 void nir_tex_instr_add_src(nir_tex_instr *tex,
1628 nir_tex_src_type src_type,
1629 nir_src src);
1630
1631 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1632
1633 typedef struct {
1634 nir_instr instr;
1635
1636 nir_const_value value;
1637
1638 nir_ssa_def def;
1639 } nir_load_const_instr;
1640
1641 typedef enum {
1642 nir_jump_return,
1643 nir_jump_break,
1644 nir_jump_continue,
1645 } nir_jump_type;
1646
1647 typedef struct {
1648 nir_instr instr;
1649 nir_jump_type type;
1650 } nir_jump_instr;
1651
1652 /* creates a new SSA variable in an undefined state */
1653
1654 typedef struct {
1655 nir_instr instr;
1656 nir_ssa_def def;
1657 } nir_ssa_undef_instr;
1658
1659 typedef struct {
1660 struct exec_node node;
1661
1662 /* The predecessor block corresponding to this source */
1663 struct nir_block *pred;
1664
1665 nir_src src;
1666 } nir_phi_src;
1667
1668 #define nir_foreach_phi_src(phi_src, phi) \
1669 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1670 #define nir_foreach_phi_src_safe(phi_src, phi) \
1671 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1672
1673 typedef struct {
1674 nir_instr instr;
1675
1676 struct exec_list srcs; /** < list of nir_phi_src */
1677
1678 nir_dest dest;
1679 } nir_phi_instr;
1680
1681 typedef struct {
1682 struct exec_node node;
1683 nir_src src;
1684 nir_dest dest;
1685 } nir_parallel_copy_entry;
1686
1687 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1688 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1689
1690 typedef struct {
1691 nir_instr instr;
1692
1693 /* A list of nir_parallel_copy_entrys. The sources of all of the
1694 * entries are copied to the corresponding destinations "in parallel".
1695 * In other words, if we have two entries: a -> b and b -> a, the values
1696 * get swapped.
1697 */
1698 struct exec_list entries;
1699 } nir_parallel_copy_instr;
1700
1701 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1702 type, nir_instr_type_alu)
1703 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1704 type, nir_instr_type_call)
1705 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1706 type, nir_instr_type_jump)
1707 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1708 type, nir_instr_type_tex)
1709 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1710 type, nir_instr_type_intrinsic)
1711 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1712 type, nir_instr_type_load_const)
1713 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1714 type, nir_instr_type_ssa_undef)
1715 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1716 type, nir_instr_type_phi)
1717 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1718 nir_parallel_copy_instr, instr,
1719 type, nir_instr_type_parallel_copy)
1720
1721 /*
1722 * Control flow
1723 *
1724 * Control flow consists of a tree of control flow nodes, which include
1725 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1726 * instructions that always run start-to-finish. Each basic block also keeps
1727 * track of its successors (blocks which may run immediately after the current
1728 * block) and predecessors (blocks which could have run immediately before the
1729 * current block). Each function also has a start block and an end block which
1730 * all return statements point to (which is always empty). Together, all the
1731 * blocks with their predecessors and successors make up the control flow
1732 * graph (CFG) of the function. There are helpers that modify the tree of
1733 * control flow nodes while modifying the CFG appropriately; these should be
1734 * used instead of modifying the tree directly.
1735 */
1736
1737 typedef enum {
1738 nir_cf_node_block,
1739 nir_cf_node_if,
1740 nir_cf_node_loop,
1741 nir_cf_node_function
1742 } nir_cf_node_type;
1743
1744 typedef struct nir_cf_node {
1745 struct exec_node node;
1746 nir_cf_node_type type;
1747 struct nir_cf_node *parent;
1748 } nir_cf_node;
1749
1750 typedef struct nir_block {
1751 nir_cf_node cf_node;
1752
1753 struct exec_list instr_list; /** < list of nir_instr */
1754
1755 /** generic block index; generated by nir_index_blocks */
1756 unsigned index;
1757
1758 /*
1759 * Each block can only have up to 2 successors, so we put them in a simple
1760 * array - no need for anything more complicated.
1761 */
1762 struct nir_block *successors[2];
1763
1764 /* Set of nir_block predecessors in the CFG */
1765 struct set *predecessors;
1766
1767 /*
1768 * this node's immediate dominator in the dominance tree - set to NULL for
1769 * the start block.
1770 */
1771 struct nir_block *imm_dom;
1772
1773 /* This node's children in the dominance tree */
1774 unsigned num_dom_children;
1775 struct nir_block **dom_children;
1776
1777 /* Set of nir_blocks on the dominance frontier of this block */
1778 struct set *dom_frontier;
1779
1780 /*
1781 * These two indices have the property that dom_{pre,post}_index for each
1782 * child of this block in the dominance tree will always be between
1783 * dom_pre_index and dom_post_index for this block, which makes testing if
1784 * a given block is dominated by another block an O(1) operation.
1785 */
1786 unsigned dom_pre_index, dom_post_index;
1787
1788 /* live in and out for this block; used for liveness analysis */
1789 BITSET_WORD *live_in;
1790 BITSET_WORD *live_out;
1791 } nir_block;
1792
1793 static inline nir_instr *
1794 nir_block_first_instr(nir_block *block)
1795 {
1796 struct exec_node *head = exec_list_get_head(&block->instr_list);
1797 return exec_node_data(nir_instr, head, node);
1798 }
1799
1800 static inline nir_instr *
1801 nir_block_last_instr(nir_block *block)
1802 {
1803 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1804 return exec_node_data(nir_instr, tail, node);
1805 }
1806
1807 static inline bool
1808 nir_block_ends_in_jump(nir_block *block)
1809 {
1810 return !exec_list_is_empty(&block->instr_list) &&
1811 nir_block_last_instr(block)->type == nir_instr_type_jump;
1812 }
1813
1814 #define nir_foreach_instr(instr, block) \
1815 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1816 #define nir_foreach_instr_reverse(instr, block) \
1817 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1818 #define nir_foreach_instr_safe(instr, block) \
1819 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1820 #define nir_foreach_instr_reverse_safe(instr, block) \
1821 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1822
1823 typedef struct nir_if {
1824 nir_cf_node cf_node;
1825 nir_src condition;
1826
1827 struct exec_list then_list; /** < list of nir_cf_node */
1828 struct exec_list else_list; /** < list of nir_cf_node */
1829 } nir_if;
1830
1831 typedef struct {
1832 nir_if *nif;
1833
1834 nir_instr *conditional_instr;
1835
1836 nir_block *break_block;
1837 nir_block *continue_from_block;
1838
1839 bool continue_from_then;
1840
1841 struct list_head loop_terminator_link;
1842 } nir_loop_terminator;
1843
1844 typedef struct {
1845 /* Number of instructions in the loop */
1846 unsigned num_instructions;
1847
1848 /* How many times the loop is run (if known) */
1849 unsigned trip_count;
1850 bool is_trip_count_known;
1851
1852 /* Unroll the loop regardless of its size */
1853 bool force_unroll;
1854
1855 /* Does the loop contain complex loop terminators, continues or other
1856 * complex behaviours? If this is true we can't rely on
1857 * loop_terminator_list to be complete or accurate.
1858 */
1859 bool complex_loop;
1860
1861 nir_loop_terminator *limiting_terminator;
1862
1863 /* A list of loop_terminators terminating this loop. */
1864 struct list_head loop_terminator_list;
1865 } nir_loop_info;
1866
1867 typedef struct {
1868 nir_cf_node cf_node;
1869
1870 struct exec_list body; /** < list of nir_cf_node */
1871
1872 nir_loop_info *info;
1873 } nir_loop;
1874
1875 /**
1876 * Various bits of metadata that can may be created or required by
1877 * optimization and analysis passes
1878 */
1879 typedef enum {
1880 nir_metadata_none = 0x0,
1881 nir_metadata_block_index = 0x1,
1882 nir_metadata_dominance = 0x2,
1883 nir_metadata_live_ssa_defs = 0x4,
1884 nir_metadata_not_properly_reset = 0x8,
1885 nir_metadata_loop_analysis = 0x10,
1886 } nir_metadata;
1887
1888 typedef struct {
1889 nir_cf_node cf_node;
1890
1891 /** pointer to the function of which this is an implementation */
1892 struct nir_function *function;
1893
1894 struct exec_list body; /** < list of nir_cf_node */
1895
1896 nir_block *end_block;
1897
1898 /** list for all local variables in the function */
1899 struct exec_list locals;
1900
1901 /** list of local registers in the function */
1902 struct exec_list registers;
1903
1904 /** next available local register index */
1905 unsigned reg_alloc;
1906
1907 /** next available SSA value index */
1908 unsigned ssa_alloc;
1909
1910 /* total number of basic blocks, only valid when block_index_dirty = false */
1911 unsigned num_blocks;
1912
1913 nir_metadata valid_metadata;
1914 } nir_function_impl;
1915
1916 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1917 nir_start_block(nir_function_impl *impl)
1918 {
1919 return (nir_block *) impl->body.head_sentinel.next;
1920 }
1921
1922 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1923 nir_impl_last_block(nir_function_impl *impl)
1924 {
1925 return (nir_block *) impl->body.tail_sentinel.prev;
1926 }
1927
1928 static inline nir_cf_node *
1929 nir_cf_node_next(nir_cf_node *node)
1930 {
1931 struct exec_node *next = exec_node_get_next(&node->node);
1932 if (exec_node_is_tail_sentinel(next))
1933 return NULL;
1934 else
1935 return exec_node_data(nir_cf_node, next, node);
1936 }
1937
1938 static inline nir_cf_node *
1939 nir_cf_node_prev(nir_cf_node *node)
1940 {
1941 struct exec_node *prev = exec_node_get_prev(&node->node);
1942 if (exec_node_is_head_sentinel(prev))
1943 return NULL;
1944 else
1945 return exec_node_data(nir_cf_node, prev, node);
1946 }
1947
1948 static inline bool
1949 nir_cf_node_is_first(const nir_cf_node *node)
1950 {
1951 return exec_node_is_head_sentinel(node->node.prev);
1952 }
1953
1954 static inline bool
1955 nir_cf_node_is_last(const nir_cf_node *node)
1956 {
1957 return exec_node_is_tail_sentinel(node->node.next);
1958 }
1959
1960 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
1961 type, nir_cf_node_block)
1962 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
1963 type, nir_cf_node_if)
1964 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
1965 type, nir_cf_node_loop)
1966 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
1967 nir_function_impl, cf_node, type, nir_cf_node_function)
1968
1969 static inline nir_block *
1970 nir_if_first_then_block(nir_if *if_stmt)
1971 {
1972 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1973 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1974 }
1975
1976 static inline nir_block *
1977 nir_if_last_then_block(nir_if *if_stmt)
1978 {
1979 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1980 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1981 }
1982
1983 static inline nir_block *
1984 nir_if_first_else_block(nir_if *if_stmt)
1985 {
1986 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1987 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1988 }
1989
1990 static inline nir_block *
1991 nir_if_last_else_block(nir_if *if_stmt)
1992 {
1993 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1994 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1995 }
1996
1997 static inline nir_block *
1998 nir_loop_first_block(nir_loop *loop)
1999 {
2000 struct exec_node *head = exec_list_get_head(&loop->body);
2001 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2002 }
2003
2004 static inline nir_block *
2005 nir_loop_last_block(nir_loop *loop)
2006 {
2007 struct exec_node *tail = exec_list_get_tail(&loop->body);
2008 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2009 }
2010
2011 typedef struct {
2012 uint8_t num_components;
2013 uint8_t bit_size;
2014 } nir_parameter;
2015
2016 typedef struct nir_function {
2017 struct exec_node node;
2018
2019 const char *name;
2020 struct nir_shader *shader;
2021
2022 unsigned num_params;
2023 nir_parameter *params;
2024
2025 /** The implementation of this function.
2026 *
2027 * If the function is only declared and not implemented, this is NULL.
2028 */
2029 nir_function_impl *impl;
2030 } nir_function;
2031
2032 typedef struct nir_shader_compiler_options {
2033 bool lower_fdiv;
2034 bool lower_ffma;
2035 bool fuse_ffma;
2036 bool lower_flrp32;
2037 /** Lowers flrp when it does not support doubles */
2038 bool lower_flrp64;
2039 bool lower_fpow;
2040 bool lower_fsat;
2041 bool lower_fsqrt;
2042 bool lower_fmod32;
2043 bool lower_fmod64;
2044 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2045 bool lower_bitfield_extract;
2046 /** Lowers ibitfield_extract/ubitfield_extract to bfm, compares, shifts. */
2047 bool lower_bitfield_extract_to_shifts;
2048 /** Lowers bitfield_insert to bfi/bfm */
2049 bool lower_bitfield_insert;
2050 /** Lowers bitfield_insert to bfm, compares, and shifts. */
2051 bool lower_bitfield_insert_to_shifts;
2052 /** Lowers bitfield_reverse to shifts. */
2053 bool lower_bitfield_reverse;
2054 /** Lowers bit_count to shifts. */
2055 bool lower_bit_count;
2056 /** Lowers bfm to shifts and subtracts. */
2057 bool lower_bfm;
2058 /** Lowers ifind_msb to compare and ufind_msb */
2059 bool lower_ifind_msb;
2060 /** Lowers find_lsb to ufind_msb and logic ops */
2061 bool lower_find_lsb;
2062 bool lower_uadd_carry;
2063 bool lower_usub_borrow;
2064 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2065 bool lower_mul_high;
2066 /** lowers fneg and ineg to fsub and isub. */
2067 bool lower_negate;
2068 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2069 bool lower_sub;
2070
2071 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2072 bool lower_scmp;
2073
2074 /** enables rules to lower idiv by power-of-two: */
2075 bool lower_idiv;
2076
2077 /* lower b2f to iand */
2078 bool lower_b2f;
2079
2080 /* Does the native fdot instruction replicate its result for four
2081 * components? If so, then opt_algebraic_late will turn all fdotN
2082 * instructions into fdot_replicatedN instructions.
2083 */
2084 bool fdot_replicates;
2085
2086 /** lowers ffract to fsub+ffloor: */
2087 bool lower_ffract;
2088
2089 bool lower_ldexp;
2090
2091 bool lower_pack_half_2x16;
2092 bool lower_pack_unorm_2x16;
2093 bool lower_pack_snorm_2x16;
2094 bool lower_pack_unorm_4x8;
2095 bool lower_pack_snorm_4x8;
2096 bool lower_unpack_half_2x16;
2097 bool lower_unpack_unorm_2x16;
2098 bool lower_unpack_snorm_2x16;
2099 bool lower_unpack_unorm_4x8;
2100 bool lower_unpack_snorm_4x8;
2101
2102 bool lower_extract_byte;
2103 bool lower_extract_word;
2104
2105 bool lower_all_io_to_temps;
2106
2107 /**
2108 * Does the driver support real 32-bit integers? (Otherwise, integers
2109 * are simulated by floats.)
2110 */
2111 bool native_integers;
2112
2113 /* Indicates that the driver only has zero-based vertex id */
2114 bool vertex_id_zero_based;
2115
2116 /**
2117 * If enabled, gl_BaseVertex will be lowered as:
2118 * is_indexed_draw (~0/0) & firstvertex
2119 */
2120 bool lower_base_vertex;
2121
2122 /**
2123 * If enabled, gl_HelperInvocation will be lowered as:
2124 *
2125 * !((1 << sample_id) & sample_mask_in))
2126 *
2127 * This depends on some possibly hw implementation details, which may
2128 * not be true for all hw. In particular that the FS is only executed
2129 * for covered samples or for helper invocations. So, do not blindly
2130 * enable this option.
2131 *
2132 * Note: See also issue #22 in ARB_shader_image_load_store
2133 */
2134 bool lower_helper_invocation;
2135
2136 bool lower_cs_local_index_from_id;
2137
2138 bool lower_device_index_to_zero;
2139
2140 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
2141 bool lower_wpos_pntc;
2142
2143 /**
2144 * Should nir_lower_io() create load_interpolated_input intrinsics?
2145 *
2146 * If not, it generates regular load_input intrinsics and interpolation
2147 * information must be inferred from the list of input nir_variables.
2148 */
2149 bool use_interpolated_input_intrinsics;
2150
2151 unsigned max_unroll_iterations;
2152 } nir_shader_compiler_options;
2153
2154 typedef struct nir_shader {
2155 /** list of uniforms (nir_variable) */
2156 struct exec_list uniforms;
2157
2158 /** list of inputs (nir_variable) */
2159 struct exec_list inputs;
2160
2161 /** list of outputs (nir_variable) */
2162 struct exec_list outputs;
2163
2164 /** list of shared compute variables (nir_variable) */
2165 struct exec_list shared;
2166
2167 /** Set of driver-specific options for the shader.
2168 *
2169 * The memory for the options is expected to be kept in a single static
2170 * copy by the driver.
2171 */
2172 const struct nir_shader_compiler_options *options;
2173
2174 /** Various bits of compile-time information about a given shader */
2175 struct shader_info info;
2176
2177 /** list of global variables in the shader (nir_variable) */
2178 struct exec_list globals;
2179
2180 /** list of system value variables in the shader (nir_variable) */
2181 struct exec_list system_values;
2182
2183 struct exec_list functions; /** < list of nir_function */
2184
2185 /** list of global register in the shader */
2186 struct exec_list registers;
2187
2188 /** next available global register index */
2189 unsigned reg_alloc;
2190
2191 /**
2192 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2193 * access plus one
2194 */
2195 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2196
2197 /** Constant data associated with this shader.
2198 *
2199 * Constant data is loaded through load_constant intrinsics. See also
2200 * nir_opt_large_constants.
2201 */
2202 void *constant_data;
2203 unsigned constant_data_size;
2204 } nir_shader;
2205
2206 static inline nir_function_impl *
2207 nir_shader_get_entrypoint(nir_shader *shader)
2208 {
2209 assert(exec_list_length(&shader->functions) == 1);
2210 struct exec_node *func_node = exec_list_get_head(&shader->functions);
2211 nir_function *func = exec_node_data(nir_function, func_node, node);
2212 assert(func->num_params == 0);
2213 assert(func->impl);
2214 return func->impl;
2215 }
2216
2217 #define nir_foreach_function(func, shader) \
2218 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2219
2220 nir_shader *nir_shader_create(void *mem_ctx,
2221 gl_shader_stage stage,
2222 const nir_shader_compiler_options *options,
2223 shader_info *si);
2224
2225 /** creates a register, including assigning it an index and adding it to the list */
2226 nir_register *nir_global_reg_create(nir_shader *shader);
2227
2228 nir_register *nir_local_reg_create(nir_function_impl *impl);
2229
2230 void nir_reg_remove(nir_register *reg);
2231
2232 /** Adds a variable to the appropriate list in nir_shader */
2233 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2234
2235 static inline void
2236 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2237 {
2238 assert(var->data.mode == nir_var_local);
2239 exec_list_push_tail(&impl->locals, &var->node);
2240 }
2241
2242 /** creates a variable, sets a few defaults, and adds it to the list */
2243 nir_variable *nir_variable_create(nir_shader *shader,
2244 nir_variable_mode mode,
2245 const struct glsl_type *type,
2246 const char *name);
2247 /** creates a local variable and adds it to the list */
2248 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2249 const struct glsl_type *type,
2250 const char *name);
2251
2252 /** creates a function and adds it to the shader's list of functions */
2253 nir_function *nir_function_create(nir_shader *shader, const char *name);
2254
2255 nir_function_impl *nir_function_impl_create(nir_function *func);
2256 /** creates a function_impl that isn't tied to any particular function */
2257 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2258
2259 nir_block *nir_block_create(nir_shader *shader);
2260 nir_if *nir_if_create(nir_shader *shader);
2261 nir_loop *nir_loop_create(nir_shader *shader);
2262
2263 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2264
2265 /** requests that the given pieces of metadata be generated */
2266 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2267 /** dirties all but the preserved metadata */
2268 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2269
2270 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2271 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2272
2273 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2274 nir_deref_type deref_type);
2275
2276 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2277
2278 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2279 unsigned num_components,
2280 unsigned bit_size);
2281
2282 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2283 nir_intrinsic_op op);
2284
2285 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2286 nir_function *callee);
2287
2288 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2289
2290 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2291
2292 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2293
2294 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2295 unsigned num_components,
2296 unsigned bit_size);
2297
2298 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2299
2300 /**
2301 * NIR Cursors and Instruction Insertion API
2302 * @{
2303 *
2304 * A tiny struct representing a point to insert/extract instructions or
2305 * control flow nodes. Helps reduce the combinatorial explosion of possible
2306 * points to insert/extract.
2307 *
2308 * \sa nir_control_flow.h
2309 */
2310 typedef enum {
2311 nir_cursor_before_block,
2312 nir_cursor_after_block,
2313 nir_cursor_before_instr,
2314 nir_cursor_after_instr,
2315 } nir_cursor_option;
2316
2317 typedef struct {
2318 nir_cursor_option option;
2319 union {
2320 nir_block *block;
2321 nir_instr *instr;
2322 };
2323 } nir_cursor;
2324
2325 static inline nir_block *
2326 nir_cursor_current_block(nir_cursor cursor)
2327 {
2328 if (cursor.option == nir_cursor_before_instr ||
2329 cursor.option == nir_cursor_after_instr) {
2330 return cursor.instr->block;
2331 } else {
2332 return cursor.block;
2333 }
2334 }
2335
2336 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2337
2338 static inline nir_cursor
2339 nir_before_block(nir_block *block)
2340 {
2341 nir_cursor cursor;
2342 cursor.option = nir_cursor_before_block;
2343 cursor.block = block;
2344 return cursor;
2345 }
2346
2347 static inline nir_cursor
2348 nir_after_block(nir_block *block)
2349 {
2350 nir_cursor cursor;
2351 cursor.option = nir_cursor_after_block;
2352 cursor.block = block;
2353 return cursor;
2354 }
2355
2356 static inline nir_cursor
2357 nir_before_instr(nir_instr *instr)
2358 {
2359 nir_cursor cursor;
2360 cursor.option = nir_cursor_before_instr;
2361 cursor.instr = instr;
2362 return cursor;
2363 }
2364
2365 static inline nir_cursor
2366 nir_after_instr(nir_instr *instr)
2367 {
2368 nir_cursor cursor;
2369 cursor.option = nir_cursor_after_instr;
2370 cursor.instr = instr;
2371 return cursor;
2372 }
2373
2374 static inline nir_cursor
2375 nir_after_block_before_jump(nir_block *block)
2376 {
2377 nir_instr *last_instr = nir_block_last_instr(block);
2378 if (last_instr && last_instr->type == nir_instr_type_jump) {
2379 return nir_before_instr(last_instr);
2380 } else {
2381 return nir_after_block(block);
2382 }
2383 }
2384
2385 static inline nir_cursor
2386 nir_before_src(nir_src *src, bool is_if_condition)
2387 {
2388 if (is_if_condition) {
2389 nir_block *prev_block =
2390 nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
2391 assert(!nir_block_ends_in_jump(prev_block));
2392 return nir_after_block(prev_block);
2393 } else if (src->parent_instr->type == nir_instr_type_phi) {
2394 #ifndef NDEBUG
2395 nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
2396 bool found = false;
2397 nir_foreach_phi_src(phi_src, cond_phi) {
2398 if (phi_src->src.ssa == src->ssa) {
2399 found = true;
2400 break;
2401 }
2402 }
2403 assert(found);
2404 #endif
2405 /* The LIST_ENTRY macro is a generic container-of macro, it just happens
2406 * to have a more specific name.
2407 */
2408 nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
2409 return nir_after_block_before_jump(phi_src->pred);
2410 } else {
2411 return nir_before_instr(src->parent_instr);
2412 }
2413 }
2414
2415 static inline nir_cursor
2416 nir_before_cf_node(nir_cf_node *node)
2417 {
2418 if (node->type == nir_cf_node_block)
2419 return nir_before_block(nir_cf_node_as_block(node));
2420
2421 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2422 }
2423
2424 static inline nir_cursor
2425 nir_after_cf_node(nir_cf_node *node)
2426 {
2427 if (node->type == nir_cf_node_block)
2428 return nir_after_block(nir_cf_node_as_block(node));
2429
2430 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2431 }
2432
2433 static inline nir_cursor
2434 nir_after_phis(nir_block *block)
2435 {
2436 nir_foreach_instr(instr, block) {
2437 if (instr->type != nir_instr_type_phi)
2438 return nir_before_instr(instr);
2439 }
2440 return nir_after_block(block);
2441 }
2442
2443 static inline nir_cursor
2444 nir_after_cf_node_and_phis(nir_cf_node *node)
2445 {
2446 if (node->type == nir_cf_node_block)
2447 return nir_after_block(nir_cf_node_as_block(node));
2448
2449 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2450
2451 return nir_after_phis(block);
2452 }
2453
2454 static inline nir_cursor
2455 nir_before_cf_list(struct exec_list *cf_list)
2456 {
2457 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2458 exec_list_get_head(cf_list), node);
2459 return nir_before_cf_node(first_node);
2460 }
2461
2462 static inline nir_cursor
2463 nir_after_cf_list(struct exec_list *cf_list)
2464 {
2465 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2466 exec_list_get_tail(cf_list), node);
2467 return nir_after_cf_node(last_node);
2468 }
2469
2470 /**
2471 * Insert a NIR instruction at the given cursor.
2472 *
2473 * Note: This does not update the cursor.
2474 */
2475 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2476
2477 static inline void
2478 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2479 {
2480 nir_instr_insert(nir_before_instr(instr), before);
2481 }
2482
2483 static inline void
2484 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2485 {
2486 nir_instr_insert(nir_after_instr(instr), after);
2487 }
2488
2489 static inline void
2490 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2491 {
2492 nir_instr_insert(nir_before_block(block), before);
2493 }
2494
2495 static inline void
2496 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2497 {
2498 nir_instr_insert(nir_after_block(block), after);
2499 }
2500
2501 static inline void
2502 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2503 {
2504 nir_instr_insert(nir_before_cf_node(node), before);
2505 }
2506
2507 static inline void
2508 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2509 {
2510 nir_instr_insert(nir_after_cf_node(node), after);
2511 }
2512
2513 static inline void
2514 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2515 {
2516 nir_instr_insert(nir_before_cf_list(list), before);
2517 }
2518
2519 static inline void
2520 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2521 {
2522 nir_instr_insert(nir_after_cf_list(list), after);
2523 }
2524
2525 void nir_instr_remove_v(nir_instr *instr);
2526
2527 static inline nir_cursor
2528 nir_instr_remove(nir_instr *instr)
2529 {
2530 nir_cursor cursor;
2531 nir_instr *prev = nir_instr_prev(instr);
2532 if (prev) {
2533 cursor = nir_after_instr(prev);
2534 } else {
2535 cursor = nir_before_block(instr->block);
2536 }
2537 nir_instr_remove_v(instr);
2538 return cursor;
2539 }
2540
2541 /** @} */
2542
2543 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2544 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2545 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2546 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2547 void *state);
2548 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2549 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2550
2551 nir_const_value *nir_src_as_const_value(nir_src src);
2552
2553 static inline struct nir_instr *
2554 nir_src_instr(const struct nir_src *src)
2555 {
2556 return src->is_ssa ? src->ssa->parent_instr : NULL;
2557 }
2558
2559 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
2560 static inline c_type * \
2561 nir_src_as_ ## name (struct nir_src *src) \
2562 { \
2563 return src->is_ssa && src->ssa->parent_instr->type == type_enum \
2564 ? cast_macro(src->ssa->parent_instr) : NULL; \
2565 } \
2566 static inline const c_type * \
2567 nir_src_as_ ## name ## _const(const struct nir_src *src) \
2568 { \
2569 return src->is_ssa && src->ssa->parent_instr->type == type_enum \
2570 ? cast_macro(src->ssa->parent_instr) : NULL; \
2571 }
2572
2573 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
2574
2575 bool nir_src_is_dynamically_uniform(nir_src src);
2576 bool nir_srcs_equal(nir_src src1, nir_src src2);
2577 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2578 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2579 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2580 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2581 nir_dest new_dest);
2582
2583 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2584 unsigned num_components, unsigned bit_size,
2585 const char *name);
2586 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2587 unsigned num_components, unsigned bit_size,
2588 const char *name);
2589 static inline void
2590 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
2591 const struct glsl_type *type,
2592 const char *name)
2593 {
2594 assert(glsl_type_is_vector_or_scalar(type));
2595 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
2596 glsl_get_bit_size(type), name);
2597 }
2598 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2599 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2600 nir_instr *after_me);
2601
2602 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
2603
2604 /*
2605 * finds the next basic block in source-code order, returns NULL if there is
2606 * none
2607 */
2608
2609 nir_block *nir_block_cf_tree_next(nir_block *block);
2610
2611 /* Performs the opposite of nir_block_cf_tree_next() */
2612
2613 nir_block *nir_block_cf_tree_prev(nir_block *block);
2614
2615 /* Gets the first block in a CF node in source-code order */
2616
2617 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2618
2619 /* Gets the last block in a CF node in source-code order */
2620
2621 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2622
2623 /* Gets the next block after a CF node in source-code order */
2624
2625 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2626
2627 /* Macros for loops that visit blocks in source-code order */
2628
2629 #define nir_foreach_block(block, impl) \
2630 for (nir_block *block = nir_start_block(impl); block != NULL; \
2631 block = nir_block_cf_tree_next(block))
2632
2633 #define nir_foreach_block_safe(block, impl) \
2634 for (nir_block *block = nir_start_block(impl), \
2635 *next = nir_block_cf_tree_next(block); \
2636 block != NULL; \
2637 block = next, next = nir_block_cf_tree_next(block))
2638
2639 #define nir_foreach_block_reverse(block, impl) \
2640 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2641 block = nir_block_cf_tree_prev(block))
2642
2643 #define nir_foreach_block_reverse_safe(block, impl) \
2644 for (nir_block *block = nir_impl_last_block(impl), \
2645 *prev = nir_block_cf_tree_prev(block); \
2646 block != NULL; \
2647 block = prev, prev = nir_block_cf_tree_prev(block))
2648
2649 #define nir_foreach_block_in_cf_node(block, node) \
2650 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2651 block != nir_cf_node_cf_tree_next(node); \
2652 block = nir_block_cf_tree_next(block))
2653
2654 /* If the following CF node is an if, this function returns that if.
2655 * Otherwise, it returns NULL.
2656 */
2657 nir_if *nir_block_get_following_if(nir_block *block);
2658
2659 nir_loop *nir_block_get_following_loop(nir_block *block);
2660
2661 void nir_index_local_regs(nir_function_impl *impl);
2662 void nir_index_global_regs(nir_shader *shader);
2663 void nir_index_ssa_defs(nir_function_impl *impl);
2664 unsigned nir_index_instrs(nir_function_impl *impl);
2665
2666 void nir_index_blocks(nir_function_impl *impl);
2667
2668 void nir_print_shader(nir_shader *shader, FILE *fp);
2669 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2670 void nir_print_instr(const nir_instr *instr, FILE *fp);
2671
2672 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2673 nir_function_impl *nir_function_impl_clone(const nir_function_impl *fi);
2674 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2675 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2676
2677 nir_shader *nir_shader_serialize_deserialize(void *mem_ctx, nir_shader *s);
2678
2679 #ifndef NDEBUG
2680 void nir_validate_shader(nir_shader *shader, const char *when);
2681 void nir_metadata_set_validation_flag(nir_shader *shader);
2682 void nir_metadata_check_validation_flag(nir_shader *shader);
2683
2684 static inline bool
2685 should_clone_nir(void)
2686 {
2687 static int should_clone = -1;
2688 if (should_clone < 0)
2689 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2690
2691 return should_clone;
2692 }
2693
2694 static inline bool
2695 should_serialize_deserialize_nir(void)
2696 {
2697 static int test_serialize = -1;
2698 if (test_serialize < 0)
2699 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
2700
2701 return test_serialize;
2702 }
2703
2704 static inline bool
2705 should_print_nir(void)
2706 {
2707 static int should_print = -1;
2708 if (should_print < 0)
2709 should_print = env_var_as_boolean("NIR_PRINT", false);
2710
2711 return should_print;
2712 }
2713 #else
2714 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
2715 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2716 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2717 static inline bool should_clone_nir(void) { return false; }
2718 static inline bool should_serialize_deserialize_nir(void) { return false; }
2719 static inline bool should_print_nir(void) { return false; }
2720 #endif /* NDEBUG */
2721
2722 #define _PASS(pass, nir, do_pass) do { \
2723 do_pass \
2724 nir_validate_shader(nir, "after " #pass); \
2725 if (should_clone_nir()) { \
2726 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2727 ralloc_free(nir); \
2728 nir = clone; \
2729 } \
2730 if (should_serialize_deserialize_nir()) { \
2731 void *mem_ctx = ralloc_parent(nir); \
2732 nir = nir_shader_serialize_deserialize(mem_ctx, nir); \
2733 } \
2734 } while (0)
2735
2736 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, \
2737 nir_metadata_set_validation_flag(nir); \
2738 if (should_print_nir()) \
2739 printf("%s\n", #pass); \
2740 if (pass(nir, ##__VA_ARGS__)) { \
2741 progress = true; \
2742 if (should_print_nir()) \
2743 nir_print_shader(nir, stdout); \
2744 nir_metadata_check_validation_flag(nir); \
2745 } \
2746 )
2747
2748 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, \
2749 if (should_print_nir()) \
2750 printf("%s\n", #pass); \
2751 pass(nir, ##__VA_ARGS__); \
2752 if (should_print_nir()) \
2753 nir_print_shader(nir, stdout); \
2754 )
2755
2756 void nir_calc_dominance_impl(nir_function_impl *impl);
2757 void nir_calc_dominance(nir_shader *shader);
2758
2759 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2760 bool nir_block_dominates(nir_block *parent, nir_block *child);
2761
2762 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2763 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2764
2765 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2766 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2767
2768 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2769 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2770
2771 int nir_gs_count_vertices(const nir_shader *shader);
2772
2773 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
2774 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
2775 bool nir_split_var_copies(nir_shader *shader);
2776 bool nir_split_per_member_structs(nir_shader *shader);
2777 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
2778
2779 bool nir_lower_returns_impl(nir_function_impl *impl);
2780 bool nir_lower_returns(nir_shader *shader);
2781
2782 bool nir_inline_functions(nir_shader *shader);
2783
2784 bool nir_propagate_invariant(nir_shader *shader);
2785
2786 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
2787 void nir_lower_deref_copy_instr(struct nir_builder *b,
2788 nir_intrinsic_instr *copy);
2789 bool nir_lower_var_copies(nir_shader *shader);
2790
2791 void nir_fixup_deref_modes(nir_shader *shader);
2792
2793 bool nir_lower_global_vars_to_local(nir_shader *shader);
2794
2795 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
2796
2797 bool nir_lower_locals_to_regs(nir_shader *shader);
2798
2799 void nir_lower_io_to_temporaries(nir_shader *shader,
2800 nir_function_impl *entrypoint,
2801 bool outputs, bool inputs);
2802
2803 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2804
2805 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
2806 int (*type_size)(const struct glsl_type *));
2807
2808 /* Some helpers to do very simple linking */
2809 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
2810 bool nir_remove_unused_io_vars(nir_shader *shader, struct exec_list *var_list,
2811 uint64_t *used_by_other_stage,
2812 uint64_t *used_by_other_stage_patches);
2813 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
2814 bool default_to_smooth_interp);
2815 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
2816
2817 typedef enum {
2818 /* If set, this forces all non-flat fragment shader inputs to be
2819 * interpolated as if with the "sample" qualifier. This requires
2820 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
2821 */
2822 nir_lower_io_force_sample_interpolation = (1 << 1),
2823 } nir_lower_io_options;
2824 bool nir_lower_io(nir_shader *shader,
2825 nir_variable_mode modes,
2826 int (*type_size)(const struct glsl_type *),
2827 nir_lower_io_options);
2828 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2829 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2830
2831 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
2832
2833 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
2834 bool nir_lower_regs_to_ssa(nir_shader *shader);
2835 bool nir_lower_vars_to_ssa(nir_shader *shader);
2836
2837 bool nir_remove_dead_derefs(nir_shader *shader);
2838 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
2839 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
2840 bool nir_lower_constant_initializers(nir_shader *shader,
2841 nir_variable_mode modes);
2842
2843 bool nir_move_load_const(nir_shader *shader);
2844 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
2845 bool nir_lower_vec_to_movs(nir_shader *shader);
2846 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
2847 bool alpha_to_one);
2848 bool nir_lower_alu(nir_shader *shader);
2849 bool nir_lower_alu_to_scalar(nir_shader *shader);
2850 bool nir_lower_load_const_to_scalar(nir_shader *shader);
2851 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
2852 bool nir_lower_phis_to_scalar(nir_shader *shader);
2853 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
2854 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
2855 bool outputs_only);
2856 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
2857 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
2858
2859 typedef struct nir_lower_subgroups_options {
2860 uint8_t subgroup_size;
2861 uint8_t ballot_bit_size;
2862 bool lower_to_scalar:1;
2863 bool lower_vote_trivial:1;
2864 bool lower_vote_eq_to_ballot:1;
2865 bool lower_subgroup_masks:1;
2866 bool lower_shuffle:1;
2867 bool lower_shuffle_to_32bit:1;
2868 bool lower_quad:1;
2869 } nir_lower_subgroups_options;
2870
2871 bool nir_lower_subgroups(nir_shader *shader,
2872 const nir_lower_subgroups_options *options);
2873
2874 bool nir_lower_system_values(nir_shader *shader);
2875
2876 typedef struct nir_lower_tex_options {
2877 /**
2878 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2879 * sampler types a texture projector is lowered.
2880 */
2881 unsigned lower_txp;
2882
2883 /**
2884 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
2885 */
2886 bool lower_txf_offset;
2887
2888 /**
2889 * If true, lower away nir_tex_src_offset for all rect textures.
2890 */
2891 bool lower_rect_offset;
2892
2893 /**
2894 * If true, lower rect textures to 2D, using txs to fetch the
2895 * texture dimensions and dividing the texture coords by the
2896 * texture dims to normalize.
2897 */
2898 bool lower_rect;
2899
2900 /**
2901 * If true, convert yuv to rgb.
2902 */
2903 unsigned lower_y_uv_external;
2904 unsigned lower_y_u_v_external;
2905 unsigned lower_yx_xuxv_external;
2906 unsigned lower_xy_uxvx_external;
2907
2908 /**
2909 * To emulate certain texture wrap modes, this can be used
2910 * to saturate the specified tex coord to [0.0, 1.0]. The
2911 * bits are according to sampler #, ie. if, for example:
2912 *
2913 * (conf->saturate_s & (1 << n))
2914 *
2915 * is true, then the s coord for sampler n is saturated.
2916 *
2917 * Note that clamping must happen *after* projector lowering
2918 * so any projected texture sample instruction with a clamped
2919 * coordinate gets automatically lowered, regardless of the
2920 * 'lower_txp' setting.
2921 */
2922 unsigned saturate_s;
2923 unsigned saturate_t;
2924 unsigned saturate_r;
2925
2926 /* Bitmask of textures that need swizzling.
2927 *
2928 * If (swizzle_result & (1 << texture_index)), then the swizzle in
2929 * swizzles[texture_index] is applied to the result of the texturing
2930 * operation.
2931 */
2932 unsigned swizzle_result;
2933
2934 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
2935 * while 4 and 5 represent 0 and 1 respectively.
2936 */
2937 uint8_t swizzles[32][4];
2938
2939 /**
2940 * Bitmap of textures that need srgb to linear conversion. If
2941 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
2942 * of the texture are lowered to linear.
2943 */
2944 unsigned lower_srgb;
2945
2946 /**
2947 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
2948 */
2949 bool lower_txd_cube_map;
2950
2951 /**
2952 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
2953 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
2954 * with lower_txd_cube_map.
2955 */
2956 bool lower_txd_shadow;
2957
2958 /**
2959 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
2960 * Implies lower_txd_cube_map and lower_txd_shadow.
2961 */
2962 bool lower_txd;
2963 } nir_lower_tex_options;
2964
2965 bool nir_lower_tex(nir_shader *shader,
2966 const nir_lower_tex_options *options);
2967
2968 bool nir_lower_idiv(nir_shader *shader);
2969
2970 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
2971 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
2972 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
2973
2974 void nir_lower_two_sided_color(nir_shader *shader);
2975
2976 bool nir_lower_clamp_color_outputs(nir_shader *shader);
2977
2978 void nir_lower_passthrough_edgeflags(nir_shader *shader);
2979 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
2980 const gl_state_index16 *uniform_state_tokens);
2981
2982 typedef struct nir_lower_wpos_ytransform_options {
2983 gl_state_index16 state_tokens[STATE_LENGTH];
2984 bool fs_coord_origin_upper_left :1;
2985 bool fs_coord_origin_lower_left :1;
2986 bool fs_coord_pixel_center_integer :1;
2987 bool fs_coord_pixel_center_half_integer :1;
2988 } nir_lower_wpos_ytransform_options;
2989
2990 bool nir_lower_wpos_ytransform(nir_shader *shader,
2991 const nir_lower_wpos_ytransform_options *options);
2992 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
2993
2994 typedef struct nir_lower_drawpixels_options {
2995 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
2996 gl_state_index16 scale_state_tokens[STATE_LENGTH];
2997 gl_state_index16 bias_state_tokens[STATE_LENGTH];
2998 unsigned drawpix_sampler;
2999 unsigned pixelmap_sampler;
3000 bool pixel_maps :1;
3001 bool scale_and_bias :1;
3002 } nir_lower_drawpixels_options;
3003
3004 void nir_lower_drawpixels(nir_shader *shader,
3005 const nir_lower_drawpixels_options *options);
3006
3007 typedef struct nir_lower_bitmap_options {
3008 unsigned sampler;
3009 bool swizzle_xxxx;
3010 } nir_lower_bitmap_options;
3011
3012 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
3013
3014 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
3015 bool nir_lower_to_source_mods(nir_shader *shader);
3016
3017 bool nir_lower_gs_intrinsics(nir_shader *shader);
3018
3019 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
3020
3021 bool nir_lower_bit_size(nir_shader *shader,
3022 nir_lower_bit_size_callback callback,
3023 void *callback_data);
3024
3025 typedef enum {
3026 nir_lower_imul64 = (1 << 0),
3027 nir_lower_isign64 = (1 << 1),
3028 /** Lower all int64 modulus and division opcodes */
3029 nir_lower_divmod64 = (1 << 2),
3030 } nir_lower_int64_options;
3031
3032 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
3033
3034 typedef enum {
3035 nir_lower_drcp = (1 << 0),
3036 nir_lower_dsqrt = (1 << 1),
3037 nir_lower_drsq = (1 << 2),
3038 nir_lower_dtrunc = (1 << 3),
3039 nir_lower_dfloor = (1 << 4),
3040 nir_lower_dceil = (1 << 5),
3041 nir_lower_dfract = (1 << 6),
3042 nir_lower_dround_even = (1 << 7),
3043 nir_lower_dmod = (1 << 8)
3044 } nir_lower_doubles_options;
3045
3046 bool nir_lower_doubles(nir_shader *shader, nir_lower_doubles_options options);
3047 bool nir_lower_pack(nir_shader *shader);
3048
3049 bool nir_normalize_cubemap_coords(nir_shader *shader);
3050
3051 void nir_live_ssa_defs_impl(nir_function_impl *impl);
3052
3053 void nir_loop_analyze_impl(nir_function_impl *impl,
3054 nir_variable_mode indirect_mask);
3055
3056 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
3057
3058 bool nir_repair_ssa_impl(nir_function_impl *impl);
3059 bool nir_repair_ssa(nir_shader *shader);
3060
3061 void nir_convert_loop_to_lcssa(nir_loop *loop);
3062
3063 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
3064 * registers. If false, convert all values (even those not involved in a phi
3065 * node) to registers.
3066 */
3067 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
3068
3069 bool nir_lower_phis_to_regs_block(nir_block *block);
3070 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
3071 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
3072
3073 bool nir_opt_algebraic(nir_shader *shader);
3074 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
3075 bool nir_opt_algebraic_late(nir_shader *shader);
3076 bool nir_opt_constant_folding(nir_shader *shader);
3077
3078 bool nir_opt_global_to_local(nir_shader *shader);
3079
3080 bool nir_copy_prop(nir_shader *shader);
3081
3082 bool nir_opt_copy_prop_vars(nir_shader *shader);
3083
3084 bool nir_opt_cse(nir_shader *shader);
3085
3086 bool nir_opt_dce(nir_shader *shader);
3087
3088 bool nir_opt_dead_cf(nir_shader *shader);
3089
3090 bool nir_opt_dead_write_vars(nir_shader *shader);
3091
3092 bool nir_opt_find_array_copies(nir_shader *shader);
3093
3094 bool nir_opt_gcm(nir_shader *shader, bool value_number);
3095
3096 bool nir_opt_if(nir_shader *shader);
3097
3098 bool nir_opt_intrinsics(nir_shader *shader);
3099
3100 bool nir_opt_large_constants(nir_shader *shader,
3101 glsl_type_size_align_func size_align,
3102 unsigned threshold);
3103
3104 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
3105
3106 bool nir_opt_move_comparisons(nir_shader *shader);
3107
3108 bool nir_opt_move_load_ubo(nir_shader *shader);
3109
3110 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit);
3111
3112 bool nir_opt_remove_phis_impl(nir_function_impl *impl);
3113 bool nir_opt_remove_phis(nir_shader *shader);
3114
3115 bool nir_opt_shrink_load(nir_shader *shader);
3116
3117 bool nir_opt_trivial_continues(nir_shader *shader);
3118
3119 bool nir_opt_undef(nir_shader *shader);
3120
3121 bool nir_opt_conditional_discard(nir_shader *shader);
3122
3123 void nir_sweep(nir_shader *shader);
3124
3125 void nir_remap_dual_slot_attributes(nir_shader *shader,
3126 uint64_t *dual_slot_inputs);
3127 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
3128
3129 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
3130 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
3131
3132 #ifdef __cplusplus
3133 } /* extern "C" */
3134 #endif
3135
3136 #endif /* NIR_H */