nir: Add a local variable-based copy propagation pass
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #pragma once
29
30 #include "util/hash_table.h"
31 #include "compiler/glsl/list.h"
32 #include "GL/gl.h" /* GLenum */
33 #include "util/list.h"
34 #include "util/ralloc.h"
35 #include "util/set.h"
36 #include "util/bitset.h"
37 #include "util/macros.h"
38 #include "compiler/nir_types.h"
39 #include "compiler/shader_enums.h"
40 #include "compiler/shader_info.h"
41 #include <stdio.h>
42
43 #include "nir_opcodes.h"
44
45 #ifdef __cplusplus
46 extern "C" {
47 #endif
48
49 struct gl_program;
50 struct gl_shader_program;
51
52 #define NIR_FALSE 0u
53 #define NIR_TRUE (~0u)
54
55 /** Defines a cast function
56 *
57 * This macro defines a cast function from in_type to out_type where
58 * out_type is some structure type that contains a field of type out_type.
59 *
60 * Note that you have to be a bit careful as the generated cast function
61 * destroys constness.
62 */
63 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
64 type_field, type_value) \
65 static inline out_type * \
66 name(const in_type *parent) \
67 { \
68 assert(parent && parent->type_field == type_value); \
69 return exec_node_data(out_type, parent, field); \
70 }
71
72 struct nir_function;
73 struct nir_shader;
74 struct nir_instr;
75
76
77 /**
78 * Description of built-in state associated with a uniform
79 *
80 * \sa nir_variable::state_slots
81 */
82 typedef struct {
83 int tokens[5];
84 int swizzle;
85 } nir_state_slot;
86
87 typedef enum {
88 nir_var_shader_in = (1 << 0),
89 nir_var_shader_out = (1 << 1),
90 nir_var_global = (1 << 2),
91 nir_var_local = (1 << 3),
92 nir_var_uniform = (1 << 4),
93 nir_var_shader_storage = (1 << 5),
94 nir_var_system_value = (1 << 6),
95 nir_var_param = (1 << 7),
96 nir_var_shared = (1 << 8),
97 nir_var_all = ~0,
98 } nir_variable_mode;
99
100
101 typedef union {
102 float f32[4];
103 double f64[4];
104 int32_t i32[4];
105 uint32_t u32[4];
106 int64_t i64[4];
107 uint64_t u64[4];
108 } nir_const_value;
109
110 typedef struct nir_constant {
111 /**
112 * Value of the constant.
113 *
114 * The field used to back the values supplied by the constant is determined
115 * by the type associated with the \c nir_variable. Constants may be
116 * scalars, vectors, or matrices.
117 */
118 nir_const_value values[4];
119
120 /* we could get this from the var->type but makes clone *much* easier to
121 * not have to care about the type.
122 */
123 unsigned num_elements;
124
125 /* Array elements / Structure Fields */
126 struct nir_constant **elements;
127 } nir_constant;
128
129 /**
130 * \brief Layout qualifiers for gl_FragDepth.
131 *
132 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
133 * with a layout qualifier.
134 */
135 typedef enum {
136 nir_depth_layout_none, /**< No depth layout is specified. */
137 nir_depth_layout_any,
138 nir_depth_layout_greater,
139 nir_depth_layout_less,
140 nir_depth_layout_unchanged
141 } nir_depth_layout;
142
143 /**
144 * Either a uniform, global variable, shader input, or shader output. Based on
145 * ir_variable - it should be easy to translate between the two.
146 */
147
148 typedef struct nir_variable {
149 struct exec_node node;
150
151 /**
152 * Declared type of the variable
153 */
154 const struct glsl_type *type;
155
156 /**
157 * Declared name of the variable
158 */
159 char *name;
160
161 struct nir_variable_data {
162 /**
163 * Storage class of the variable.
164 *
165 * \sa nir_variable_mode
166 */
167 nir_variable_mode mode;
168
169 /**
170 * Is the variable read-only?
171 *
172 * This is set for variables declared as \c const, shader inputs,
173 * and uniforms.
174 */
175 unsigned read_only:1;
176 unsigned centroid:1;
177 unsigned sample:1;
178 unsigned patch:1;
179 unsigned invariant:1;
180
181 /**
182 * Interpolation mode for shader inputs / outputs
183 *
184 * \sa glsl_interp_mode
185 */
186 unsigned interpolation:2;
187
188 /**
189 * \name ARB_fragment_coord_conventions
190 * @{
191 */
192 unsigned origin_upper_left:1;
193 unsigned pixel_center_integer:1;
194 /*@}*/
195
196 /**
197 * If non-zero, then this variable may be packed along with other variables
198 * into a single varying slot, so this offset should be applied when
199 * accessing components. For example, an offset of 1 means that the x
200 * component of this variable is actually stored in component y of the
201 * location specified by \c location.
202 */
203 unsigned location_frac:2;
204
205 /**
206 * If true, this variable represents an array of scalars that should
207 * be tightly packed. In other words, consecutive array elements
208 * should be stored one component apart, rather than one slot apart.
209 */
210 bool compact:1;
211
212 /**
213 * Whether this is a fragment shader output implicitly initialized with
214 * the previous contents of the specified render target at the
215 * framebuffer location corresponding to this shader invocation.
216 */
217 unsigned fb_fetch_output:1;
218
219 /**
220 * \brief Layout qualifier for gl_FragDepth.
221 *
222 * This is not equal to \c ir_depth_layout_none if and only if this
223 * variable is \c gl_FragDepth and a layout qualifier is specified.
224 */
225 nir_depth_layout depth_layout;
226
227 /**
228 * Storage location of the base of this variable
229 *
230 * The precise meaning of this field depends on the nature of the variable.
231 *
232 * - Vertex shader input: one of the values from \c gl_vert_attrib.
233 * - Vertex shader output: one of the values from \c gl_varying_slot.
234 * - Geometry shader input: one of the values from \c gl_varying_slot.
235 * - Geometry shader output: one of the values from \c gl_varying_slot.
236 * - Fragment shader input: one of the values from \c gl_varying_slot.
237 * - Fragment shader output: one of the values from \c gl_frag_result.
238 * - Uniforms: Per-stage uniform slot number for default uniform block.
239 * - Uniforms: Index within the uniform block definition for UBO members.
240 * - Non-UBO Uniforms: uniform slot number.
241 * - Other: This field is not currently used.
242 *
243 * If the variable is a uniform, shader input, or shader output, and the
244 * slot has not been assigned, the value will be -1.
245 */
246 int location;
247
248 /**
249 * The actual location of the variable in the IR. Only valid for inputs
250 * and outputs.
251 */
252 unsigned int driver_location;
253
254 /**
255 * output index for dual source blending.
256 */
257 int index;
258
259 /**
260 * Descriptor set binding for sampler or UBO.
261 */
262 int descriptor_set;
263
264 /**
265 * Initial binding point for a sampler or UBO.
266 *
267 * For array types, this represents the binding point for the first element.
268 */
269 int binding;
270
271 /**
272 * Location an atomic counter is stored at.
273 */
274 unsigned offset;
275
276 /**
277 * ARB_shader_image_load_store qualifiers.
278 */
279 struct {
280 bool read_only; /**< "readonly" qualifier. */
281 bool write_only; /**< "writeonly" qualifier. */
282 bool coherent;
283 bool _volatile;
284 bool restrict_flag;
285
286 /** Image internal format if specified explicitly, otherwise GL_NONE. */
287 GLenum format;
288 } image;
289 } data;
290
291 /**
292 * Built-in state that backs this uniform
293 *
294 * Once set at variable creation, \c state_slots must remain invariant.
295 * This is because, ideally, this array would be shared by all clones of
296 * this variable in the IR tree. In other words, we'd really like for it
297 * to be a fly-weight.
298 *
299 * If the variable is not a uniform, \c num_state_slots will be zero and
300 * \c state_slots will be \c NULL.
301 */
302 /*@{*/
303 unsigned num_state_slots; /**< Number of state slots used */
304 nir_state_slot *state_slots; /**< State descriptors. */
305 /*@}*/
306
307 /**
308 * Constant expression assigned in the initializer of the variable
309 *
310 * This field should only be used temporarily by creators of NIR shaders
311 * and then lower_constant_initializers can be used to get rid of them.
312 * Most of the rest of NIR ignores this field or asserts that it's NULL.
313 */
314 nir_constant *constant_initializer;
315
316 /**
317 * For variables that are in an interface block or are an instance of an
318 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
319 *
320 * \sa ir_variable::location
321 */
322 const struct glsl_type *interface_type;
323 } nir_variable;
324
325 #define nir_foreach_variable(var, var_list) \
326 foreach_list_typed(nir_variable, var, node, var_list)
327
328 #define nir_foreach_variable_safe(var, var_list) \
329 foreach_list_typed_safe(nir_variable, var, node, var_list)
330
331 static inline bool
332 nir_variable_is_global(const nir_variable *var)
333 {
334 return var->data.mode != nir_var_local && var->data.mode != nir_var_param;
335 }
336
337 typedef struct nir_register {
338 struct exec_node node;
339
340 unsigned num_components; /** < number of vector components */
341 unsigned num_array_elems; /** < size of array (0 for no array) */
342
343 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
344 uint8_t bit_size;
345
346 /** generic register index. */
347 unsigned index;
348
349 /** only for debug purposes, can be NULL */
350 const char *name;
351
352 /** whether this register is local (per-function) or global (per-shader) */
353 bool is_global;
354
355 /**
356 * If this flag is set to true, then accessing channels >= num_components
357 * is well-defined, and simply spills over to the next array element. This
358 * is useful for backends that can do per-component accessing, in
359 * particular scalar backends. By setting this flag and making
360 * num_components equal to 1, structures can be packed tightly into
361 * registers and then registers can be accessed per-component to get to
362 * each structure member, even if it crosses vec4 boundaries.
363 */
364 bool is_packed;
365
366 /** set of nir_src's where this register is used (read from) */
367 struct list_head uses;
368
369 /** set of nir_dest's where this register is defined (written to) */
370 struct list_head defs;
371
372 /** set of nir_if's where this register is used as a condition */
373 struct list_head if_uses;
374 } nir_register;
375
376 #define nir_foreach_register(reg, reg_list) \
377 foreach_list_typed(nir_register, reg, node, reg_list)
378 #define nir_foreach_register_safe(reg, reg_list) \
379 foreach_list_typed_safe(nir_register, reg, node, reg_list)
380
381 typedef enum {
382 nir_instr_type_alu,
383 nir_instr_type_call,
384 nir_instr_type_tex,
385 nir_instr_type_intrinsic,
386 nir_instr_type_load_const,
387 nir_instr_type_jump,
388 nir_instr_type_ssa_undef,
389 nir_instr_type_phi,
390 nir_instr_type_parallel_copy,
391 } nir_instr_type;
392
393 typedef struct nir_instr {
394 struct exec_node node;
395 nir_instr_type type;
396 struct nir_block *block;
397
398 /** generic instruction index. */
399 unsigned index;
400
401 /* A temporary for optimization and analysis passes to use for storing
402 * flags. For instance, DCE uses this to store the "dead/live" info.
403 */
404 uint8_t pass_flags;
405 } nir_instr;
406
407 static inline nir_instr *
408 nir_instr_next(nir_instr *instr)
409 {
410 struct exec_node *next = exec_node_get_next(&instr->node);
411 if (exec_node_is_tail_sentinel(next))
412 return NULL;
413 else
414 return exec_node_data(nir_instr, next, node);
415 }
416
417 static inline nir_instr *
418 nir_instr_prev(nir_instr *instr)
419 {
420 struct exec_node *prev = exec_node_get_prev(&instr->node);
421 if (exec_node_is_head_sentinel(prev))
422 return NULL;
423 else
424 return exec_node_data(nir_instr, prev, node);
425 }
426
427 static inline bool
428 nir_instr_is_first(nir_instr *instr)
429 {
430 return exec_node_is_head_sentinel(exec_node_get_prev(&instr->node));
431 }
432
433 static inline bool
434 nir_instr_is_last(nir_instr *instr)
435 {
436 return exec_node_is_tail_sentinel(exec_node_get_next(&instr->node));
437 }
438
439 typedef struct nir_ssa_def {
440 /** for debugging only, can be NULL */
441 const char* name;
442
443 /** generic SSA definition index. */
444 unsigned index;
445
446 /** Index into the live_in and live_out bitfields */
447 unsigned live_index;
448
449 nir_instr *parent_instr;
450
451 /** set of nir_instr's where this register is used (read from) */
452 struct list_head uses;
453
454 /** set of nir_if's where this register is used as a condition */
455 struct list_head if_uses;
456
457 uint8_t num_components;
458
459 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
460 uint8_t bit_size;
461 } nir_ssa_def;
462
463 struct nir_src;
464
465 typedef struct {
466 nir_register *reg;
467 struct nir_src *indirect; /** < NULL for no indirect offset */
468 unsigned base_offset;
469
470 /* TODO use-def chain goes here */
471 } nir_reg_src;
472
473 typedef struct {
474 nir_instr *parent_instr;
475 struct list_head def_link;
476
477 nir_register *reg;
478 struct nir_src *indirect; /** < NULL for no indirect offset */
479 unsigned base_offset;
480
481 /* TODO def-use chain goes here */
482 } nir_reg_dest;
483
484 struct nir_if;
485
486 typedef struct nir_src {
487 union {
488 nir_instr *parent_instr;
489 struct nir_if *parent_if;
490 };
491
492 struct list_head use_link;
493
494 union {
495 nir_reg_src reg;
496 nir_ssa_def *ssa;
497 };
498
499 bool is_ssa;
500 } nir_src;
501
502 static inline nir_src
503 nir_src_init(void)
504 {
505 nir_src src = { { NULL } };
506 return src;
507 }
508
509 #define NIR_SRC_INIT nir_src_init()
510
511 #define nir_foreach_use(src, reg_or_ssa_def) \
512 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
513
514 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
515 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
516
517 #define nir_foreach_if_use(src, reg_or_ssa_def) \
518 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
519
520 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
521 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
522
523 typedef struct {
524 union {
525 nir_reg_dest reg;
526 nir_ssa_def ssa;
527 };
528
529 bool is_ssa;
530 } nir_dest;
531
532 static inline nir_dest
533 nir_dest_init(void)
534 {
535 nir_dest dest = { { { NULL } } };
536 return dest;
537 }
538
539 #define NIR_DEST_INIT nir_dest_init()
540
541 #define nir_foreach_def(dest, reg) \
542 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
543
544 #define nir_foreach_def_safe(dest, reg) \
545 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
546
547 static inline nir_src
548 nir_src_for_ssa(nir_ssa_def *def)
549 {
550 nir_src src = NIR_SRC_INIT;
551
552 src.is_ssa = true;
553 src.ssa = def;
554
555 return src;
556 }
557
558 static inline nir_src
559 nir_src_for_reg(nir_register *reg)
560 {
561 nir_src src = NIR_SRC_INIT;
562
563 src.is_ssa = false;
564 src.reg.reg = reg;
565 src.reg.indirect = NULL;
566 src.reg.base_offset = 0;
567
568 return src;
569 }
570
571 static inline nir_dest
572 nir_dest_for_reg(nir_register *reg)
573 {
574 nir_dest dest = NIR_DEST_INIT;
575
576 dest.reg.reg = reg;
577
578 return dest;
579 }
580
581 static inline unsigned
582 nir_src_bit_size(nir_src src)
583 {
584 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
585 }
586
587 static inline unsigned
588 nir_dest_bit_size(nir_dest dest)
589 {
590 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
591 }
592
593 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
594 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
595
596 typedef struct {
597 nir_src src;
598
599 /**
600 * \name input modifiers
601 */
602 /*@{*/
603 /**
604 * For inputs interpreted as floating point, flips the sign bit. For
605 * inputs interpreted as integers, performs the two's complement negation.
606 */
607 bool negate;
608
609 /**
610 * Clears the sign bit for floating point values, and computes the integer
611 * absolute value for integers. Note that the negate modifier acts after
612 * the absolute value modifier, therefore if both are set then all inputs
613 * will become negative.
614 */
615 bool abs;
616 /*@}*/
617
618 /**
619 * For each input component, says which component of the register it is
620 * chosen from. Note that which elements of the swizzle are used and which
621 * are ignored are based on the write mask for most opcodes - for example,
622 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
623 * a swizzle of {2, x, 1, 0} where x means "don't care."
624 */
625 uint8_t swizzle[4];
626 } nir_alu_src;
627
628 typedef struct {
629 nir_dest dest;
630
631 /**
632 * \name saturate output modifier
633 *
634 * Only valid for opcodes that output floating-point numbers. Clamps the
635 * output to between 0.0 and 1.0 inclusive.
636 */
637
638 bool saturate;
639
640 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
641 } nir_alu_dest;
642
643 typedef enum {
644 nir_type_invalid = 0, /* Not a valid type */
645 nir_type_float,
646 nir_type_int,
647 nir_type_uint,
648 nir_type_bool,
649 nir_type_bool32 = 32 | nir_type_bool,
650 nir_type_int8 = 8 | nir_type_int,
651 nir_type_int16 = 16 | nir_type_int,
652 nir_type_int32 = 32 | nir_type_int,
653 nir_type_int64 = 64 | nir_type_int,
654 nir_type_uint8 = 8 | nir_type_uint,
655 nir_type_uint16 = 16 | nir_type_uint,
656 nir_type_uint32 = 32 | nir_type_uint,
657 nir_type_uint64 = 64 | nir_type_uint,
658 nir_type_float16 = 16 | nir_type_float,
659 nir_type_float32 = 32 | nir_type_float,
660 nir_type_float64 = 64 | nir_type_float,
661 } nir_alu_type;
662
663 #define NIR_ALU_TYPE_SIZE_MASK 0xfffffff8
664 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x00000007
665
666 static inline unsigned
667 nir_alu_type_get_type_size(nir_alu_type type)
668 {
669 return type & NIR_ALU_TYPE_SIZE_MASK;
670 }
671
672 static inline unsigned
673 nir_alu_type_get_base_type(nir_alu_type type)
674 {
675 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
676 }
677
678 typedef enum {
679 NIR_OP_IS_COMMUTATIVE = (1 << 0),
680 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
681 } nir_op_algebraic_property;
682
683 typedef struct {
684 const char *name;
685
686 unsigned num_inputs;
687
688 /**
689 * The number of components in the output
690 *
691 * If non-zero, this is the size of the output and input sizes are
692 * explicitly given; swizzle and writemask are still in effect, but if
693 * the output component is masked out, then the input component may
694 * still be in use.
695 *
696 * If zero, the opcode acts in the standard, per-component manner; the
697 * operation is performed on each component (except the ones that are
698 * masked out) with the input being taken from the input swizzle for
699 * that component.
700 *
701 * The size of some of the inputs may be given (i.e. non-zero) even
702 * though output_size is zero; in that case, the inputs with a zero
703 * size act per-component, while the inputs with non-zero size don't.
704 */
705 unsigned output_size;
706
707 /**
708 * The type of vector that the instruction outputs. Note that the
709 * staurate modifier is only allowed on outputs with the float type.
710 */
711
712 nir_alu_type output_type;
713
714 /**
715 * The number of components in each input
716 */
717 unsigned input_sizes[4];
718
719 /**
720 * The type of vector that each input takes. Note that negate and
721 * absolute value are only allowed on inputs with int or float type and
722 * behave differently on the two.
723 */
724 nir_alu_type input_types[4];
725
726 nir_op_algebraic_property algebraic_properties;
727 } nir_op_info;
728
729 extern const nir_op_info nir_op_infos[nir_num_opcodes];
730
731 typedef struct nir_alu_instr {
732 nir_instr instr;
733 nir_op op;
734
735 /** Indicates that this ALU instruction generates an exact value
736 *
737 * This is kind of a mixture of GLSL "precise" and "invariant" and not
738 * really equivalent to either. This indicates that the value generated by
739 * this operation is high-precision and any code transformations that touch
740 * it must ensure that the resulting value is bit-for-bit identical to the
741 * original.
742 */
743 bool exact;
744
745 nir_alu_dest dest;
746 nir_alu_src src[];
747 } nir_alu_instr;
748
749 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
750 nir_alu_instr *instr);
751 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
752 nir_alu_instr *instr);
753
754 /* is this source channel used? */
755 static inline bool
756 nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel)
757 {
758 if (nir_op_infos[instr->op].input_sizes[src] > 0)
759 return channel < nir_op_infos[instr->op].input_sizes[src];
760
761 return (instr->dest.write_mask >> channel) & 1;
762 }
763
764 /*
765 * For instructions whose destinations are SSA, get the number of channels
766 * used for a source
767 */
768 static inline unsigned
769 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
770 {
771 assert(instr->dest.dest.is_ssa);
772
773 if (nir_op_infos[instr->op].input_sizes[src] > 0)
774 return nir_op_infos[instr->op].input_sizes[src];
775
776 return instr->dest.dest.ssa.num_components;
777 }
778
779 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
780 unsigned src1, unsigned src2);
781
782 typedef enum {
783 nir_deref_type_var,
784 nir_deref_type_array,
785 nir_deref_type_struct
786 } nir_deref_type;
787
788 typedef struct nir_deref {
789 nir_deref_type deref_type;
790 struct nir_deref *child;
791 const struct glsl_type *type;
792 } nir_deref;
793
794 typedef struct {
795 nir_deref deref;
796
797 nir_variable *var;
798 } nir_deref_var;
799
800 /* This enum describes how the array is referenced. If the deref is
801 * direct then the base_offset is used. If the deref is indirect then
802 * offset is given by base_offset + indirect. If the deref is a wildcard
803 * then the deref refers to all of the elements of the array at the same
804 * time. Wildcard dereferences are only ever allowed in copy_var
805 * intrinsics and the source and destination derefs must have matching
806 * wildcards.
807 */
808 typedef enum {
809 nir_deref_array_type_direct,
810 nir_deref_array_type_indirect,
811 nir_deref_array_type_wildcard,
812 } nir_deref_array_type;
813
814 typedef struct {
815 nir_deref deref;
816
817 nir_deref_array_type deref_array_type;
818 unsigned base_offset;
819 nir_src indirect;
820 } nir_deref_array;
821
822 typedef struct {
823 nir_deref deref;
824
825 unsigned index;
826 } nir_deref_struct;
827
828 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref,
829 deref_type, nir_deref_type_var)
830 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref,
831 deref_type, nir_deref_type_array)
832 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref,
833 deref_type, nir_deref_type_struct)
834
835 /* Returns the last deref in the chain. */
836 static inline nir_deref *
837 nir_deref_tail(nir_deref *deref)
838 {
839 while (deref->child)
840 deref = deref->child;
841 return deref;
842 }
843
844 typedef struct {
845 nir_instr instr;
846
847 unsigned num_params;
848 nir_deref_var **params;
849 nir_deref_var *return_deref;
850
851 struct nir_function *callee;
852 } nir_call_instr;
853
854 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
855 num_variables, num_indices, idx0, idx1, idx2, flags) \
856 nir_intrinsic_##name,
857
858 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
859
860 typedef enum {
861 #include "nir_intrinsics.h"
862 nir_num_intrinsics = nir_last_intrinsic + 1
863 } nir_intrinsic_op;
864
865 #define NIR_INTRINSIC_MAX_CONST_INDEX 3
866
867 /** Represents an intrinsic
868 *
869 * An intrinsic is an instruction type for handling things that are
870 * more-or-less regular operations but don't just consume and produce SSA
871 * values like ALU operations do. Intrinsics are not for things that have
872 * special semantic meaning such as phi nodes and parallel copies.
873 * Examples of intrinsics include variable load/store operations, system
874 * value loads, and the like. Even though texturing more-or-less falls
875 * under this category, texturing is its own instruction type because
876 * trying to represent texturing with intrinsics would lead to a
877 * combinatorial explosion of intrinsic opcodes.
878 *
879 * By having a single instruction type for handling a lot of different
880 * cases, optimization passes can look for intrinsics and, for the most
881 * part, completely ignore them. Each intrinsic type also has a few
882 * possible flags that govern whether or not they can be reordered or
883 * eliminated. That way passes like dead code elimination can still work
884 * on intrisics without understanding the meaning of each.
885 *
886 * Each intrinsic has some number of constant indices, some number of
887 * variables, and some number of sources. What these sources, variables,
888 * and indices mean depends on the intrinsic and is documented with the
889 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
890 * instructions are the only types of instruction that can operate on
891 * variables.
892 */
893 typedef struct {
894 nir_instr instr;
895
896 nir_intrinsic_op intrinsic;
897
898 nir_dest dest;
899
900 /** number of components if this is a vectorized intrinsic
901 *
902 * Similarly to ALU operations, some intrinsics are vectorized.
903 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
904 * For vectorized intrinsics, the num_components field specifies the
905 * number of destination components and the number of source components
906 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
907 */
908 uint8_t num_components;
909
910 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
911
912 nir_deref_var *variables[2];
913
914 nir_src src[];
915 } nir_intrinsic_instr;
916
917 /**
918 * \name NIR intrinsics semantic flags
919 *
920 * information about what the compiler can do with the intrinsics.
921 *
922 * \sa nir_intrinsic_info::flags
923 */
924 typedef enum {
925 /**
926 * whether the intrinsic can be safely eliminated if none of its output
927 * value is not being used.
928 */
929 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
930
931 /**
932 * Whether the intrinsic can be reordered with respect to any other
933 * intrinsic, i.e. whether the only reordering dependencies of the
934 * intrinsic are due to the register reads/writes.
935 */
936 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
937 } nir_intrinsic_semantic_flag;
938
939 /**
940 * \name NIR intrinsics const-index flag
941 *
942 * Indicates the usage of a const_index slot.
943 *
944 * \sa nir_intrinsic_info::index_map
945 */
946 typedef enum {
947 /**
948 * Generally instructions that take a offset src argument, can encode
949 * a constant 'base' value which is added to the offset.
950 */
951 NIR_INTRINSIC_BASE = 1,
952
953 /**
954 * For store instructions, a writemask for the store.
955 */
956 NIR_INTRINSIC_WRMASK = 2,
957
958 /**
959 * The stream-id for GS emit_vertex/end_primitive intrinsics.
960 */
961 NIR_INTRINSIC_STREAM_ID = 3,
962
963 /**
964 * The clip-plane id for load_user_clip_plane intrinsic.
965 */
966 NIR_INTRINSIC_UCP_ID = 4,
967
968 /**
969 * The amount of data, starting from BASE, that this instruction may
970 * access. This is used to provide bounds if the offset is not constant.
971 */
972 NIR_INTRINSIC_RANGE = 5,
973
974 /**
975 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
976 */
977 NIR_INTRINSIC_DESC_SET = 6,
978
979 /**
980 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
981 */
982 NIR_INTRINSIC_BINDING = 7,
983
984 /**
985 * Component offset.
986 */
987 NIR_INTRINSIC_COMPONENT = 8,
988
989 /**
990 * Interpolation mode (only meaningful for FS inputs).
991 */
992 NIR_INTRINSIC_INTERP_MODE = 9,
993
994 NIR_INTRINSIC_NUM_INDEX_FLAGS,
995
996 } nir_intrinsic_index_flag;
997
998 #define NIR_INTRINSIC_MAX_INPUTS 4
999
1000 typedef struct {
1001 const char *name;
1002
1003 unsigned num_srcs; /** < number of register/SSA inputs */
1004
1005 /** number of components of each input register
1006 *
1007 * If this value is 0, the number of components is given by the
1008 * num_components field of nir_intrinsic_instr.
1009 */
1010 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
1011
1012 bool has_dest;
1013
1014 /** number of components of the output register
1015 *
1016 * If this value is 0, the number of components is given by the
1017 * num_components field of nir_intrinsic_instr.
1018 */
1019 unsigned dest_components;
1020
1021 /** the number of inputs/outputs that are variables */
1022 unsigned num_variables;
1023
1024 /** the number of constant indices used by the intrinsic */
1025 unsigned num_indices;
1026
1027 /** indicates the usage of intr->const_index[n] */
1028 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1029
1030 /** semantic flags for calls to this intrinsic */
1031 nir_intrinsic_semantic_flag flags;
1032 } nir_intrinsic_info;
1033
1034 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1035
1036
1037 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1038 static inline type \
1039 nir_intrinsic_##name(nir_intrinsic_instr *instr) \
1040 { \
1041 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1042 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1043 return instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1044 } \
1045 static inline void \
1046 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1047 { \
1048 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1049 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1050 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1051 }
1052
1053 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1054 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1055 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1056 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1057 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1058 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1059 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1060 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1061 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1062
1063 /**
1064 * \group texture information
1065 *
1066 * This gives semantic information about textures which is useful to the
1067 * frontend, the backend, and lowering passes, but not the optimizer.
1068 */
1069
1070 typedef enum {
1071 nir_tex_src_coord,
1072 nir_tex_src_projector,
1073 nir_tex_src_comparator, /* shadow comparator */
1074 nir_tex_src_offset,
1075 nir_tex_src_bias,
1076 nir_tex_src_lod,
1077 nir_tex_src_ms_index, /* MSAA sample index */
1078 nir_tex_src_ms_mcs, /* MSAA compression value */
1079 nir_tex_src_ddx,
1080 nir_tex_src_ddy,
1081 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1082 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1083 nir_tex_src_plane, /* < selects plane for planar textures */
1084 nir_num_tex_src_types
1085 } nir_tex_src_type;
1086
1087 typedef struct {
1088 nir_src src;
1089 nir_tex_src_type src_type;
1090 } nir_tex_src;
1091
1092 typedef enum {
1093 nir_texop_tex, /**< Regular texture look-up */
1094 nir_texop_txb, /**< Texture look-up with LOD bias */
1095 nir_texop_txl, /**< Texture look-up with explicit LOD */
1096 nir_texop_txd, /**< Texture look-up with partial derivatvies */
1097 nir_texop_txf, /**< Texel fetch with explicit LOD */
1098 nir_texop_txf_ms, /**< Multisample texture fetch */
1099 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1100 nir_texop_txs, /**< Texture size */
1101 nir_texop_lod, /**< Texture lod query */
1102 nir_texop_tg4, /**< Texture gather */
1103 nir_texop_query_levels, /**< Texture levels query */
1104 nir_texop_texture_samples, /**< Texture samples query */
1105 nir_texop_samples_identical, /**< Query whether all samples are definitely
1106 * identical.
1107 */
1108 } nir_texop;
1109
1110 typedef struct {
1111 nir_instr instr;
1112
1113 enum glsl_sampler_dim sampler_dim;
1114 nir_alu_type dest_type;
1115
1116 nir_texop op;
1117 nir_dest dest;
1118 nir_tex_src *src;
1119 unsigned num_srcs, coord_components;
1120 bool is_array, is_shadow;
1121
1122 /**
1123 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1124 * components or the new-style shadow that outputs 1 component.
1125 */
1126 bool is_new_style_shadow;
1127
1128 /* gather component selector */
1129 unsigned component : 2;
1130
1131 /** The texture index
1132 *
1133 * If this texture instruction has a nir_tex_src_texture_offset source,
1134 * then the texture index is given by texture_index + texture_offset.
1135 */
1136 unsigned texture_index;
1137
1138 /** The size of the texture array or 0 if it's not an array */
1139 unsigned texture_array_size;
1140
1141 /** The texture deref
1142 *
1143 * If this is null, use texture_index instead.
1144 */
1145 nir_deref_var *texture;
1146
1147 /** The sampler index
1148 *
1149 * The following operations do not require a sampler and, as such, this
1150 * field should be ignored:
1151 * - nir_texop_txf
1152 * - nir_texop_txf_ms
1153 * - nir_texop_txs
1154 * - nir_texop_lod
1155 * - nir_texop_tg4
1156 * - nir_texop_query_levels
1157 * - nir_texop_texture_samples
1158 * - nir_texop_samples_identical
1159 *
1160 * If this texture instruction has a nir_tex_src_sampler_offset source,
1161 * then the sampler index is given by sampler_index + sampler_offset.
1162 */
1163 unsigned sampler_index;
1164
1165 /** The sampler deref
1166 *
1167 * If this is null, use sampler_index instead.
1168 */
1169 nir_deref_var *sampler;
1170 } nir_tex_instr;
1171
1172 static inline unsigned
1173 nir_tex_instr_dest_size(nir_tex_instr *instr)
1174 {
1175 switch (instr->op) {
1176 case nir_texop_txs: {
1177 unsigned ret;
1178 switch (instr->sampler_dim) {
1179 case GLSL_SAMPLER_DIM_1D:
1180 case GLSL_SAMPLER_DIM_BUF:
1181 ret = 1;
1182 break;
1183 case GLSL_SAMPLER_DIM_2D:
1184 case GLSL_SAMPLER_DIM_CUBE:
1185 case GLSL_SAMPLER_DIM_MS:
1186 case GLSL_SAMPLER_DIM_RECT:
1187 case GLSL_SAMPLER_DIM_EXTERNAL:
1188 case GLSL_SAMPLER_DIM_SUBPASS:
1189 ret = 2;
1190 break;
1191 case GLSL_SAMPLER_DIM_3D:
1192 ret = 3;
1193 break;
1194 default:
1195 unreachable("not reached");
1196 }
1197 if (instr->is_array)
1198 ret++;
1199 return ret;
1200 }
1201
1202 case nir_texop_lod:
1203 return 2;
1204
1205 case nir_texop_texture_samples:
1206 case nir_texop_query_levels:
1207 case nir_texop_samples_identical:
1208 return 1;
1209
1210 default:
1211 if (instr->is_shadow && instr->is_new_style_shadow)
1212 return 1;
1213
1214 return 4;
1215 }
1216 }
1217
1218 /* Returns true if this texture operation queries something about the texture
1219 * rather than actually sampling it.
1220 */
1221 static inline bool
1222 nir_tex_instr_is_query(nir_tex_instr *instr)
1223 {
1224 switch (instr->op) {
1225 case nir_texop_txs:
1226 case nir_texop_lod:
1227 case nir_texop_texture_samples:
1228 case nir_texop_query_levels:
1229 case nir_texop_txf_ms_mcs:
1230 return true;
1231 case nir_texop_tex:
1232 case nir_texop_txb:
1233 case nir_texop_txl:
1234 case nir_texop_txd:
1235 case nir_texop_txf:
1236 case nir_texop_txf_ms:
1237 case nir_texop_tg4:
1238 return false;
1239 default:
1240 unreachable("Invalid texture opcode");
1241 }
1242 }
1243
1244 static inline nir_alu_type
1245 nir_tex_instr_src_type(nir_tex_instr *instr, unsigned src)
1246 {
1247 switch (instr->src[src].src_type) {
1248 case nir_tex_src_coord:
1249 switch (instr->op) {
1250 case nir_texop_txf:
1251 case nir_texop_txf_ms:
1252 case nir_texop_txf_ms_mcs:
1253 case nir_texop_samples_identical:
1254 return nir_type_int;
1255
1256 default:
1257 return nir_type_float;
1258 }
1259
1260 case nir_tex_src_lod:
1261 switch (instr->op) {
1262 case nir_texop_txs:
1263 case nir_texop_txf:
1264 return nir_type_int;
1265
1266 default:
1267 return nir_type_float;
1268 }
1269
1270 case nir_tex_src_projector:
1271 case nir_tex_src_comparator:
1272 case nir_tex_src_bias:
1273 case nir_tex_src_ddx:
1274 case nir_tex_src_ddy:
1275 return nir_type_float;
1276
1277 case nir_tex_src_offset:
1278 case nir_tex_src_ms_index:
1279 case nir_tex_src_texture_offset:
1280 case nir_tex_src_sampler_offset:
1281 return nir_type_int;
1282
1283 default:
1284 unreachable("Invalid texture source type");
1285 }
1286 }
1287
1288 static inline unsigned
1289 nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src)
1290 {
1291 if (instr->src[src].src_type == nir_tex_src_coord)
1292 return instr->coord_components;
1293
1294 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1295 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1296 return 4;
1297
1298 if (instr->src[src].src_type == nir_tex_src_offset ||
1299 instr->src[src].src_type == nir_tex_src_ddx ||
1300 instr->src[src].src_type == nir_tex_src_ddy) {
1301 if (instr->is_array)
1302 return instr->coord_components - 1;
1303 else
1304 return instr->coord_components;
1305 }
1306
1307 return 1;
1308 }
1309
1310 static inline int
1311 nir_tex_instr_src_index(nir_tex_instr *instr, nir_tex_src_type type)
1312 {
1313 for (unsigned i = 0; i < instr->num_srcs; i++)
1314 if (instr->src[i].src_type == type)
1315 return (int) i;
1316
1317 return -1;
1318 }
1319
1320 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1321
1322 typedef struct {
1323 nir_instr instr;
1324
1325 nir_const_value value;
1326
1327 nir_ssa_def def;
1328 } nir_load_const_instr;
1329
1330 typedef enum {
1331 nir_jump_return,
1332 nir_jump_break,
1333 nir_jump_continue,
1334 } nir_jump_type;
1335
1336 typedef struct {
1337 nir_instr instr;
1338 nir_jump_type type;
1339 } nir_jump_instr;
1340
1341 /* creates a new SSA variable in an undefined state */
1342
1343 typedef struct {
1344 nir_instr instr;
1345 nir_ssa_def def;
1346 } nir_ssa_undef_instr;
1347
1348 typedef struct {
1349 struct exec_node node;
1350
1351 /* The predecessor block corresponding to this source */
1352 struct nir_block *pred;
1353
1354 nir_src src;
1355 } nir_phi_src;
1356
1357 #define nir_foreach_phi_src(phi_src, phi) \
1358 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1359 #define nir_foreach_phi_src_safe(phi_src, phi) \
1360 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1361
1362 typedef struct {
1363 nir_instr instr;
1364
1365 struct exec_list srcs; /** < list of nir_phi_src */
1366
1367 nir_dest dest;
1368 } nir_phi_instr;
1369
1370 typedef struct {
1371 struct exec_node node;
1372 nir_src src;
1373 nir_dest dest;
1374 } nir_parallel_copy_entry;
1375
1376 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1377 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1378
1379 typedef struct {
1380 nir_instr instr;
1381
1382 /* A list of nir_parallel_copy_entry's. The sources of all of the
1383 * entries are copied to the corresponding destinations "in parallel".
1384 * In other words, if we have two entries: a -> b and b -> a, the values
1385 * get swapped.
1386 */
1387 struct exec_list entries;
1388 } nir_parallel_copy_instr;
1389
1390 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1391 type, nir_instr_type_alu)
1392 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1393 type, nir_instr_type_call)
1394 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1395 type, nir_instr_type_jump)
1396 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1397 type, nir_instr_type_tex)
1398 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1399 type, nir_instr_type_intrinsic)
1400 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1401 type, nir_instr_type_load_const)
1402 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1403 type, nir_instr_type_ssa_undef)
1404 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1405 type, nir_instr_type_phi)
1406 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1407 nir_parallel_copy_instr, instr,
1408 type, nir_instr_type_parallel_copy)
1409
1410 /*
1411 * Control flow
1412 *
1413 * Control flow consists of a tree of control flow nodes, which include
1414 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1415 * instructions that always run start-to-finish. Each basic block also keeps
1416 * track of its successors (blocks which may run immediately after the current
1417 * block) and predecessors (blocks which could have run immediately before the
1418 * current block). Each function also has a start block and an end block which
1419 * all return statements point to (which is always empty). Together, all the
1420 * blocks with their predecessors and successors make up the control flow
1421 * graph (CFG) of the function. There are helpers that modify the tree of
1422 * control flow nodes while modifying the CFG appropriately; these should be
1423 * used instead of modifying the tree directly.
1424 */
1425
1426 typedef enum {
1427 nir_cf_node_block,
1428 nir_cf_node_if,
1429 nir_cf_node_loop,
1430 nir_cf_node_function
1431 } nir_cf_node_type;
1432
1433 typedef struct nir_cf_node {
1434 struct exec_node node;
1435 nir_cf_node_type type;
1436 struct nir_cf_node *parent;
1437 } nir_cf_node;
1438
1439 typedef struct nir_block {
1440 nir_cf_node cf_node;
1441
1442 struct exec_list instr_list; /** < list of nir_instr */
1443
1444 /** generic block index; generated by nir_index_blocks */
1445 unsigned index;
1446
1447 /*
1448 * Each block can only have up to 2 successors, so we put them in a simple
1449 * array - no need for anything more complicated.
1450 */
1451 struct nir_block *successors[2];
1452
1453 /* Set of nir_block predecessors in the CFG */
1454 struct set *predecessors;
1455
1456 /*
1457 * this node's immediate dominator in the dominance tree - set to NULL for
1458 * the start block.
1459 */
1460 struct nir_block *imm_dom;
1461
1462 /* This node's children in the dominance tree */
1463 unsigned num_dom_children;
1464 struct nir_block **dom_children;
1465
1466 /* Set of nir_block's on the dominance frontier of this block */
1467 struct set *dom_frontier;
1468
1469 /*
1470 * These two indices have the property that dom_{pre,post}_index for each
1471 * child of this block in the dominance tree will always be between
1472 * dom_pre_index and dom_post_index for this block, which makes testing if
1473 * a given block is dominated by another block an O(1) operation.
1474 */
1475 unsigned dom_pre_index, dom_post_index;
1476
1477 /* live in and out for this block; used for liveness analysis */
1478 BITSET_WORD *live_in;
1479 BITSET_WORD *live_out;
1480 } nir_block;
1481
1482 static inline nir_instr *
1483 nir_block_first_instr(nir_block *block)
1484 {
1485 struct exec_node *head = exec_list_get_head(&block->instr_list);
1486 return exec_node_data(nir_instr, head, node);
1487 }
1488
1489 static inline nir_instr *
1490 nir_block_last_instr(nir_block *block)
1491 {
1492 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1493 return exec_node_data(nir_instr, tail, node);
1494 }
1495
1496 #define nir_foreach_instr(instr, block) \
1497 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1498 #define nir_foreach_instr_reverse(instr, block) \
1499 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1500 #define nir_foreach_instr_safe(instr, block) \
1501 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1502 #define nir_foreach_instr_reverse_safe(instr, block) \
1503 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1504
1505 typedef struct nir_if {
1506 nir_cf_node cf_node;
1507 nir_src condition;
1508
1509 struct exec_list then_list; /** < list of nir_cf_node */
1510 struct exec_list else_list; /** < list of nir_cf_node */
1511 } nir_if;
1512
1513 typedef struct {
1514 nir_if *nif;
1515
1516 nir_instr *conditional_instr;
1517
1518 nir_block *break_block;
1519 nir_block *continue_from_block;
1520
1521 bool continue_from_then;
1522
1523 struct list_head loop_terminator_link;
1524 } nir_loop_terminator;
1525
1526 typedef struct {
1527 /* Number of instructions in the loop */
1528 unsigned num_instructions;
1529
1530 /* How many times the loop is run (if known) */
1531 unsigned trip_count;
1532 bool is_trip_count_known;
1533
1534 /* Unroll the loop regardless of its size */
1535 bool force_unroll;
1536
1537 nir_loop_terminator *limiting_terminator;
1538
1539 /* A list of loop_terminators terminating this loop. */
1540 struct list_head loop_terminator_list;
1541 } nir_loop_info;
1542
1543 typedef struct {
1544 nir_cf_node cf_node;
1545
1546 struct exec_list body; /** < list of nir_cf_node */
1547
1548 nir_loop_info *info;
1549 } nir_loop;
1550
1551 /**
1552 * Various bits of metadata that can may be created or required by
1553 * optimization and analysis passes
1554 */
1555 typedef enum {
1556 nir_metadata_none = 0x0,
1557 nir_metadata_block_index = 0x1,
1558 nir_metadata_dominance = 0x2,
1559 nir_metadata_live_ssa_defs = 0x4,
1560 nir_metadata_not_properly_reset = 0x8,
1561 nir_metadata_loop_analysis = 0x10,
1562 } nir_metadata;
1563
1564 typedef struct {
1565 nir_cf_node cf_node;
1566
1567 /** pointer to the function of which this is an implementation */
1568 struct nir_function *function;
1569
1570 struct exec_list body; /** < list of nir_cf_node */
1571
1572 nir_block *end_block;
1573
1574 /** list for all local variables in the function */
1575 struct exec_list locals;
1576
1577 /** array of variables used as parameters */
1578 unsigned num_params;
1579 nir_variable **params;
1580
1581 /** variable used to hold the result of the function */
1582 nir_variable *return_var;
1583
1584 /** list of local registers in the function */
1585 struct exec_list registers;
1586
1587 /** next available local register index */
1588 unsigned reg_alloc;
1589
1590 /** next available SSA value index */
1591 unsigned ssa_alloc;
1592
1593 /* total number of basic blocks, only valid when block_index_dirty = false */
1594 unsigned num_blocks;
1595
1596 nir_metadata valid_metadata;
1597 } nir_function_impl;
1598
1599 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1600 nir_start_block(nir_function_impl *impl)
1601 {
1602 return (nir_block *) impl->body.head_sentinel.next;
1603 }
1604
1605 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1606 nir_impl_last_block(nir_function_impl *impl)
1607 {
1608 return (nir_block *) impl->body.tail_sentinel.prev;
1609 }
1610
1611 static inline nir_cf_node *
1612 nir_cf_node_next(nir_cf_node *node)
1613 {
1614 struct exec_node *next = exec_node_get_next(&node->node);
1615 if (exec_node_is_tail_sentinel(next))
1616 return NULL;
1617 else
1618 return exec_node_data(nir_cf_node, next, node);
1619 }
1620
1621 static inline nir_cf_node *
1622 nir_cf_node_prev(nir_cf_node *node)
1623 {
1624 struct exec_node *prev = exec_node_get_prev(&node->node);
1625 if (exec_node_is_head_sentinel(prev))
1626 return NULL;
1627 else
1628 return exec_node_data(nir_cf_node, prev, node);
1629 }
1630
1631 static inline bool
1632 nir_cf_node_is_first(const nir_cf_node *node)
1633 {
1634 return exec_node_is_head_sentinel(node->node.prev);
1635 }
1636
1637 static inline bool
1638 nir_cf_node_is_last(const nir_cf_node *node)
1639 {
1640 return exec_node_is_tail_sentinel(node->node.next);
1641 }
1642
1643 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
1644 type, nir_cf_node_block)
1645 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
1646 type, nir_cf_node_if)
1647 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
1648 type, nir_cf_node_loop)
1649 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
1650 nir_function_impl, cf_node, type, nir_cf_node_function)
1651
1652 static inline nir_block *
1653 nir_if_first_then_block(nir_if *if_stmt)
1654 {
1655 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1656 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1657 }
1658
1659 static inline nir_block *
1660 nir_if_last_then_block(nir_if *if_stmt)
1661 {
1662 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1663 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1664 }
1665
1666 static inline nir_block *
1667 nir_if_first_else_block(nir_if *if_stmt)
1668 {
1669 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1670 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1671 }
1672
1673 static inline nir_block *
1674 nir_if_last_else_block(nir_if *if_stmt)
1675 {
1676 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1677 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1678 }
1679
1680 static inline nir_block *
1681 nir_loop_first_block(nir_loop *loop)
1682 {
1683 struct exec_node *head = exec_list_get_head(&loop->body);
1684 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1685 }
1686
1687 static inline nir_block *
1688 nir_loop_last_block(nir_loop *loop)
1689 {
1690 struct exec_node *tail = exec_list_get_tail(&loop->body);
1691 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1692 }
1693
1694 typedef enum {
1695 nir_parameter_in,
1696 nir_parameter_out,
1697 nir_parameter_inout,
1698 } nir_parameter_type;
1699
1700 typedef struct {
1701 nir_parameter_type param_type;
1702 const struct glsl_type *type;
1703 } nir_parameter;
1704
1705 typedef struct nir_function {
1706 struct exec_node node;
1707
1708 const char *name;
1709 struct nir_shader *shader;
1710
1711 unsigned num_params;
1712 nir_parameter *params;
1713 const struct glsl_type *return_type;
1714
1715 /** The implementation of this function.
1716 *
1717 * If the function is only declared and not implemented, this is NULL.
1718 */
1719 nir_function_impl *impl;
1720 } nir_function;
1721
1722 typedef struct nir_shader_compiler_options {
1723 bool lower_fdiv;
1724 bool lower_ffma;
1725 bool fuse_ffma;
1726 bool lower_flrp32;
1727 /** Lowers flrp when it does not support doubles */
1728 bool lower_flrp64;
1729 bool lower_fpow;
1730 bool lower_fsat;
1731 bool lower_fsqrt;
1732 bool lower_fmod32;
1733 bool lower_fmod64;
1734 bool lower_bitfield_extract;
1735 bool lower_bitfield_insert;
1736 bool lower_uadd_carry;
1737 bool lower_usub_borrow;
1738 /** lowers fneg and ineg to fsub and isub. */
1739 bool lower_negate;
1740 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1741 bool lower_sub;
1742
1743 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1744 bool lower_scmp;
1745
1746 /** enables rules to lower idiv by power-of-two: */
1747 bool lower_idiv;
1748
1749 /* Does the native fdot instruction replicate its result for four
1750 * components? If so, then opt_algebraic_late will turn all fdotN
1751 * instructions into fdot_replicatedN instructions.
1752 */
1753 bool fdot_replicates;
1754
1755 /** lowers ffract to fsub+ffloor: */
1756 bool lower_ffract;
1757
1758 bool lower_pack_half_2x16;
1759 bool lower_pack_unorm_2x16;
1760 bool lower_pack_snorm_2x16;
1761 bool lower_pack_unorm_4x8;
1762 bool lower_pack_snorm_4x8;
1763 bool lower_unpack_half_2x16;
1764 bool lower_unpack_unorm_2x16;
1765 bool lower_unpack_snorm_2x16;
1766 bool lower_unpack_unorm_4x8;
1767 bool lower_unpack_snorm_4x8;
1768
1769 bool lower_extract_byte;
1770 bool lower_extract_word;
1771
1772 /**
1773 * Does the driver support real 32-bit integers? (Otherwise, integers
1774 * are simulated by floats.)
1775 */
1776 bool native_integers;
1777
1778 /* Indicates that the driver only has zero-based vertex id */
1779 bool vertex_id_zero_based;
1780
1781 bool lower_cs_local_index_from_id;
1782
1783 /**
1784 * Should nir_lower_io() create load_interpolated_input intrinsics?
1785 *
1786 * If not, it generates regular load_input intrinsics and interpolation
1787 * information must be inferred from the list of input nir_variables.
1788 */
1789 bool use_interpolated_input_intrinsics;
1790
1791 unsigned max_unroll_iterations;
1792 } nir_shader_compiler_options;
1793
1794 typedef struct nir_shader {
1795 /** list of uniforms (nir_variable) */
1796 struct exec_list uniforms;
1797
1798 /** list of inputs (nir_variable) */
1799 struct exec_list inputs;
1800
1801 /** list of outputs (nir_variable) */
1802 struct exec_list outputs;
1803
1804 /** list of shared compute variables (nir_variable) */
1805 struct exec_list shared;
1806
1807 /** Set of driver-specific options for the shader.
1808 *
1809 * The memory for the options is expected to be kept in a single static
1810 * copy by the driver.
1811 */
1812 const struct nir_shader_compiler_options *options;
1813
1814 /** Various bits of compile-time information about a given shader */
1815 struct shader_info *info;
1816
1817 /** list of global variables in the shader (nir_variable) */
1818 struct exec_list globals;
1819
1820 /** list of system value variables in the shader (nir_variable) */
1821 struct exec_list system_values;
1822
1823 struct exec_list functions; /** < list of nir_function */
1824
1825 /** list of global register in the shader */
1826 struct exec_list registers;
1827
1828 /** next available global register index */
1829 unsigned reg_alloc;
1830
1831 /**
1832 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1833 * access plus one
1834 */
1835 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
1836
1837 /** The shader stage, such as MESA_SHADER_VERTEX. */
1838 gl_shader_stage stage;
1839 } nir_shader;
1840
1841 static inline nir_function_impl *
1842 nir_shader_get_entrypoint(nir_shader *shader)
1843 {
1844 assert(exec_list_length(&shader->functions) == 1);
1845 struct exec_node *func_node = exec_list_get_head(&shader->functions);
1846 nir_function *func = exec_node_data(nir_function, func_node, node);
1847 assert(func->return_type == glsl_void_type());
1848 assert(func->num_params == 0);
1849 assert(func->impl);
1850 return func->impl;
1851 }
1852
1853 #define nir_foreach_function(func, shader) \
1854 foreach_list_typed(nir_function, func, node, &(shader)->functions)
1855
1856 nir_shader *nir_shader_create(void *mem_ctx,
1857 gl_shader_stage stage,
1858 const nir_shader_compiler_options *options,
1859 shader_info *si);
1860
1861 /** creates a register, including assigning it an index and adding it to the list */
1862 nir_register *nir_global_reg_create(nir_shader *shader);
1863
1864 nir_register *nir_local_reg_create(nir_function_impl *impl);
1865
1866 void nir_reg_remove(nir_register *reg);
1867
1868 /** Adds a variable to the appropreate list in nir_shader */
1869 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
1870
1871 static inline void
1872 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
1873 {
1874 assert(var->data.mode == nir_var_local);
1875 exec_list_push_tail(&impl->locals, &var->node);
1876 }
1877
1878 /** creates a variable, sets a few defaults, and adds it to the list */
1879 nir_variable *nir_variable_create(nir_shader *shader,
1880 nir_variable_mode mode,
1881 const struct glsl_type *type,
1882 const char *name);
1883 /** creates a local variable and adds it to the list */
1884 nir_variable *nir_local_variable_create(nir_function_impl *impl,
1885 const struct glsl_type *type,
1886 const char *name);
1887
1888 /** creates a function and adds it to the shader's list of functions */
1889 nir_function *nir_function_create(nir_shader *shader, const char *name);
1890
1891 nir_function_impl *nir_function_impl_create(nir_function *func);
1892 /** creates a function_impl that isn't tied to any particular function */
1893 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
1894
1895 nir_block *nir_block_create(nir_shader *shader);
1896 nir_if *nir_if_create(nir_shader *shader);
1897 nir_loop *nir_loop_create(nir_shader *shader);
1898
1899 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1900
1901 /** requests that the given pieces of metadata be generated */
1902 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
1903 /** dirties all but the preserved metadata */
1904 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1905
1906 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1907 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
1908
1909 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
1910
1911 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
1912 unsigned num_components,
1913 unsigned bit_size);
1914
1915 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
1916 nir_intrinsic_op op);
1917
1918 nir_call_instr *nir_call_instr_create(nir_shader *shader,
1919 nir_function *callee);
1920
1921 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
1922
1923 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
1924
1925 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
1926
1927 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
1928 unsigned num_components,
1929 unsigned bit_size);
1930
1931 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1932 nir_deref_array *nir_deref_array_create(void *mem_ctx);
1933 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
1934
1935 typedef bool (*nir_deref_foreach_leaf_cb)(nir_deref_var *deref, void *state);
1936 bool nir_deref_foreach_leaf(nir_deref_var *deref,
1937 nir_deref_foreach_leaf_cb cb, void *state);
1938
1939 nir_load_const_instr *
1940 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
1941
1942 /**
1943 * NIR Cursors and Instruction Insertion API
1944 * @{
1945 *
1946 * A tiny struct representing a point to insert/extract instructions or
1947 * control flow nodes. Helps reduce the combinatorial explosion of possible
1948 * points to insert/extract.
1949 *
1950 * \sa nir_control_flow.h
1951 */
1952 typedef enum {
1953 nir_cursor_before_block,
1954 nir_cursor_after_block,
1955 nir_cursor_before_instr,
1956 nir_cursor_after_instr,
1957 } nir_cursor_option;
1958
1959 typedef struct {
1960 nir_cursor_option option;
1961 union {
1962 nir_block *block;
1963 nir_instr *instr;
1964 };
1965 } nir_cursor;
1966
1967 static inline nir_block *
1968 nir_cursor_current_block(nir_cursor cursor)
1969 {
1970 if (cursor.option == nir_cursor_before_instr ||
1971 cursor.option == nir_cursor_after_instr) {
1972 return cursor.instr->block;
1973 } else {
1974 return cursor.block;
1975 }
1976 }
1977
1978 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
1979
1980 static inline nir_cursor
1981 nir_before_block(nir_block *block)
1982 {
1983 nir_cursor cursor;
1984 cursor.option = nir_cursor_before_block;
1985 cursor.block = block;
1986 return cursor;
1987 }
1988
1989 static inline nir_cursor
1990 nir_after_block(nir_block *block)
1991 {
1992 nir_cursor cursor;
1993 cursor.option = nir_cursor_after_block;
1994 cursor.block = block;
1995 return cursor;
1996 }
1997
1998 static inline nir_cursor
1999 nir_before_instr(nir_instr *instr)
2000 {
2001 nir_cursor cursor;
2002 cursor.option = nir_cursor_before_instr;
2003 cursor.instr = instr;
2004 return cursor;
2005 }
2006
2007 static inline nir_cursor
2008 nir_after_instr(nir_instr *instr)
2009 {
2010 nir_cursor cursor;
2011 cursor.option = nir_cursor_after_instr;
2012 cursor.instr = instr;
2013 return cursor;
2014 }
2015
2016 static inline nir_cursor
2017 nir_after_block_before_jump(nir_block *block)
2018 {
2019 nir_instr *last_instr = nir_block_last_instr(block);
2020 if (last_instr && last_instr->type == nir_instr_type_jump) {
2021 return nir_before_instr(last_instr);
2022 } else {
2023 return nir_after_block(block);
2024 }
2025 }
2026
2027 static inline nir_cursor
2028 nir_before_cf_node(nir_cf_node *node)
2029 {
2030 if (node->type == nir_cf_node_block)
2031 return nir_before_block(nir_cf_node_as_block(node));
2032
2033 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2034 }
2035
2036 static inline nir_cursor
2037 nir_after_cf_node(nir_cf_node *node)
2038 {
2039 if (node->type == nir_cf_node_block)
2040 return nir_after_block(nir_cf_node_as_block(node));
2041
2042 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2043 }
2044
2045 static inline nir_cursor
2046 nir_after_phis(nir_block *block)
2047 {
2048 nir_foreach_instr(instr, block) {
2049 if (instr->type != nir_instr_type_phi)
2050 return nir_before_instr(instr);
2051 }
2052 return nir_after_block(block);
2053 }
2054
2055 static inline nir_cursor
2056 nir_after_cf_node_and_phis(nir_cf_node *node)
2057 {
2058 if (node->type == nir_cf_node_block)
2059 return nir_after_block(nir_cf_node_as_block(node));
2060
2061 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2062
2063 return nir_after_phis(block);
2064 }
2065
2066 static inline nir_cursor
2067 nir_before_cf_list(struct exec_list *cf_list)
2068 {
2069 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2070 exec_list_get_head(cf_list), node);
2071 return nir_before_cf_node(first_node);
2072 }
2073
2074 static inline nir_cursor
2075 nir_after_cf_list(struct exec_list *cf_list)
2076 {
2077 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2078 exec_list_get_tail(cf_list), node);
2079 return nir_after_cf_node(last_node);
2080 }
2081
2082 /**
2083 * Insert a NIR instruction at the given cursor.
2084 *
2085 * Note: This does not update the cursor.
2086 */
2087 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2088
2089 static inline void
2090 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2091 {
2092 nir_instr_insert(nir_before_instr(instr), before);
2093 }
2094
2095 static inline void
2096 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2097 {
2098 nir_instr_insert(nir_after_instr(instr), after);
2099 }
2100
2101 static inline void
2102 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2103 {
2104 nir_instr_insert(nir_before_block(block), before);
2105 }
2106
2107 static inline void
2108 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2109 {
2110 nir_instr_insert(nir_after_block(block), after);
2111 }
2112
2113 static inline void
2114 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2115 {
2116 nir_instr_insert(nir_before_cf_node(node), before);
2117 }
2118
2119 static inline void
2120 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2121 {
2122 nir_instr_insert(nir_after_cf_node(node), after);
2123 }
2124
2125 static inline void
2126 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2127 {
2128 nir_instr_insert(nir_before_cf_list(list), before);
2129 }
2130
2131 static inline void
2132 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2133 {
2134 nir_instr_insert(nir_after_cf_list(list), after);
2135 }
2136
2137 void nir_instr_remove(nir_instr *instr);
2138
2139 /** @} */
2140
2141 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2142 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2143 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2144 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2145 void *state);
2146 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2147 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2148
2149 nir_const_value *nir_src_as_const_value(nir_src src);
2150 bool nir_src_is_dynamically_uniform(nir_src src);
2151 bool nir_srcs_equal(nir_src src1, nir_src src2);
2152 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2153 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2154 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2155 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2156 nir_dest new_dest);
2157
2158 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2159 unsigned num_components, unsigned bit_size,
2160 const char *name);
2161 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2162 unsigned num_components, unsigned bit_size,
2163 const char *name);
2164 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2165 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2166 nir_instr *after_me);
2167
2168 uint8_t nir_ssa_def_components_read(nir_ssa_def *def);
2169
2170 /*
2171 * finds the next basic block in source-code order, returns NULL if there is
2172 * none
2173 */
2174
2175 nir_block *nir_block_cf_tree_next(nir_block *block);
2176
2177 /* Performs the opposite of nir_block_cf_tree_next() */
2178
2179 nir_block *nir_block_cf_tree_prev(nir_block *block);
2180
2181 /* Gets the first block in a CF node in source-code order */
2182
2183 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2184
2185 /* Gets the last block in a CF node in source-code order */
2186
2187 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2188
2189 /* Gets the next block after a CF node in source-code order */
2190
2191 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2192
2193 /* Macros for loops that visit blocks in source-code order */
2194
2195 #define nir_foreach_block(block, impl) \
2196 for (nir_block *block = nir_start_block(impl); block != NULL; \
2197 block = nir_block_cf_tree_next(block))
2198
2199 #define nir_foreach_block_safe(block, impl) \
2200 for (nir_block *block = nir_start_block(impl), \
2201 *next = nir_block_cf_tree_next(block); \
2202 block != NULL; \
2203 block = next, next = nir_block_cf_tree_next(block))
2204
2205 #define nir_foreach_block_reverse(block, impl) \
2206 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2207 block = nir_block_cf_tree_prev(block))
2208
2209 #define nir_foreach_block_reverse_safe(block, impl) \
2210 for (nir_block *block = nir_impl_last_block(impl), \
2211 *prev = nir_block_cf_tree_prev(block); \
2212 block != NULL; \
2213 block = prev, prev = nir_block_cf_tree_prev(block))
2214
2215 #define nir_foreach_block_in_cf_node(block, node) \
2216 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2217 block != nir_cf_node_cf_tree_next(node); \
2218 block = nir_block_cf_tree_next(block))
2219
2220 /* If the following CF node is an if, this function returns that if.
2221 * Otherwise, it returns NULL.
2222 */
2223 nir_if *nir_block_get_following_if(nir_block *block);
2224
2225 nir_loop *nir_block_get_following_loop(nir_block *block);
2226
2227 void nir_index_local_regs(nir_function_impl *impl);
2228 void nir_index_global_regs(nir_shader *shader);
2229 void nir_index_ssa_defs(nir_function_impl *impl);
2230 unsigned nir_index_instrs(nir_function_impl *impl);
2231
2232 void nir_index_blocks(nir_function_impl *impl);
2233
2234 void nir_print_shader(nir_shader *shader, FILE *fp);
2235 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2236 void nir_print_instr(const nir_instr *instr, FILE *fp);
2237
2238 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2239 nir_function_impl *nir_function_impl_clone(const nir_function_impl *fi);
2240 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2241 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2242 nir_deref *nir_deref_clone(const nir_deref *deref, void *mem_ctx);
2243 nir_deref_var *nir_deref_var_clone(const nir_deref_var *deref, void *mem_ctx);
2244
2245 #ifdef DEBUG
2246 void nir_validate_shader(nir_shader *shader);
2247 void nir_metadata_set_validation_flag(nir_shader *shader);
2248 void nir_metadata_check_validation_flag(nir_shader *shader);
2249
2250 #include "util/debug.h"
2251 static inline bool
2252 should_clone_nir(void)
2253 {
2254 static int should_clone = -1;
2255 if (should_clone < 0)
2256 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2257
2258 return should_clone;
2259 }
2260 #else
2261 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
2262 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2263 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2264 static inline bool should_clone_nir(void) { return false; }
2265 #endif /* DEBUG */
2266
2267 #define _PASS(nir, do_pass) do { \
2268 do_pass \
2269 nir_validate_shader(nir); \
2270 if (should_clone_nir()) { \
2271 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2272 ralloc_free(nir); \
2273 nir = clone; \
2274 } \
2275 } while (0)
2276
2277 #define NIR_PASS(progress, nir, pass, ...) _PASS(nir, \
2278 nir_metadata_set_validation_flag(nir); \
2279 if (pass(nir, ##__VA_ARGS__)) { \
2280 progress = true; \
2281 nir_metadata_check_validation_flag(nir); \
2282 } \
2283 )
2284
2285 #define NIR_PASS_V(nir, pass, ...) _PASS(nir, \
2286 pass(nir, ##__VA_ARGS__); \
2287 )
2288
2289 void nir_calc_dominance_impl(nir_function_impl *impl);
2290 void nir_calc_dominance(nir_shader *shader);
2291
2292 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2293 bool nir_block_dominates(nir_block *parent, nir_block *child);
2294
2295 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2296 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2297
2298 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2299 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2300
2301 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2302 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2303
2304 int nir_gs_count_vertices(const nir_shader *shader);
2305
2306 bool nir_split_var_copies(nir_shader *shader);
2307
2308 bool nir_lower_returns_impl(nir_function_impl *impl);
2309 bool nir_lower_returns(nir_shader *shader);
2310
2311 bool nir_inline_functions(nir_shader *shader);
2312
2313 bool nir_propagate_invariant(nir_shader *shader);
2314
2315 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
2316 void nir_lower_var_copies(nir_shader *shader);
2317
2318 bool nir_lower_global_vars_to_local(nir_shader *shader);
2319
2320 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
2321
2322 bool nir_lower_locals_to_regs(nir_shader *shader);
2323
2324 void nir_lower_io_to_temporaries(nir_shader *shader,
2325 nir_function_impl *entrypoint,
2326 bool outputs, bool inputs);
2327
2328 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2329
2330 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
2331 int (*type_size)(const struct glsl_type *));
2332
2333 typedef enum {
2334 /* If set, this forces all non-flat fragment shader inputs to be
2335 * interpolated as if with the "sample" qualifier. This requires
2336 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
2337 */
2338 nir_lower_io_force_sample_interpolation = (1 << 1),
2339 } nir_lower_io_options;
2340 void nir_lower_io(nir_shader *shader,
2341 nir_variable_mode modes,
2342 int (*type_size)(const struct glsl_type *),
2343 nir_lower_io_options);
2344 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2345 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2346
2347 bool nir_is_per_vertex_io(nir_variable *var, gl_shader_stage stage);
2348
2349 void nir_lower_io_types(nir_shader *shader);
2350 void nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
2351 void nir_lower_regs_to_ssa(nir_shader *shader);
2352 void nir_lower_vars_to_ssa(nir_shader *shader);
2353
2354 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
2355 bool nir_lower_constant_initializers(nir_shader *shader,
2356 nir_variable_mode modes);
2357
2358 void nir_move_vec_src_uses_to_dest(nir_shader *shader);
2359 bool nir_lower_vec_to_movs(nir_shader *shader);
2360 bool nir_lower_alu_to_scalar(nir_shader *shader);
2361 void nir_lower_load_const_to_scalar(nir_shader *shader);
2362
2363 bool nir_lower_phis_to_scalar(nir_shader *shader);
2364 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
2365
2366 void nir_lower_samplers(nir_shader *shader,
2367 const struct gl_shader_program *shader_program);
2368
2369 bool nir_lower_system_values(nir_shader *shader);
2370
2371 typedef struct nir_lower_tex_options {
2372 /**
2373 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2374 * sampler types a texture projector is lowered.
2375 */
2376 unsigned lower_txp;
2377
2378 /**
2379 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
2380 */
2381 bool lower_txf_offset;
2382
2383 /**
2384 * If true, lower away nir_tex_src_offset for all rect textures.
2385 */
2386 bool lower_rect_offset;
2387
2388 /**
2389 * If true, lower rect textures to 2D, using txs to fetch the
2390 * texture dimensions and dividing the texture coords by the
2391 * texture dims to normalize.
2392 */
2393 bool lower_rect;
2394
2395 /**
2396 * If true, convert yuv to rgb.
2397 */
2398 unsigned lower_y_uv_external;
2399 unsigned lower_y_u_v_external;
2400 unsigned lower_yx_xuxv_external;
2401
2402 /**
2403 * To emulate certain texture wrap modes, this can be used
2404 * to saturate the specified tex coord to [0.0, 1.0]. The
2405 * bits are according to sampler #, ie. if, for example:
2406 *
2407 * (conf->saturate_s & (1 << n))
2408 *
2409 * is true, then the s coord for sampler n is saturated.
2410 *
2411 * Note that clamping must happen *after* projector lowering
2412 * so any projected texture sample instruction with a clamped
2413 * coordinate gets automatically lowered, regardless of the
2414 * 'lower_txp' setting.
2415 */
2416 unsigned saturate_s;
2417 unsigned saturate_t;
2418 unsigned saturate_r;
2419
2420 /* Bitmask of textures that need swizzling.
2421 *
2422 * If (swizzle_result & (1 << texture_index)), then the swizzle in
2423 * swizzles[texture_index] is applied to the result of the texturing
2424 * operation.
2425 */
2426 unsigned swizzle_result;
2427
2428 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
2429 * while 4 and 5 represent 0 and 1 respectively.
2430 */
2431 uint8_t swizzles[32][4];
2432
2433 /**
2434 * Bitmap of textures that need srgb to linear conversion. If
2435 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
2436 * of the texture are lowered to linear.
2437 */
2438 unsigned lower_srgb;
2439
2440 /**
2441 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
2442 */
2443 bool lower_txd_cube_map;
2444
2445 /**
2446 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
2447 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
2448 * with lower_txd_cube_map.
2449 */
2450 bool lower_txd_shadow;
2451 } nir_lower_tex_options;
2452
2453 bool nir_lower_tex(nir_shader *shader,
2454 const nir_lower_tex_options *options);
2455
2456 bool nir_lower_idiv(nir_shader *shader);
2457
2458 void nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
2459 void nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
2460 void nir_lower_clip_cull_distance_arrays(nir_shader *nir);
2461
2462 void nir_lower_two_sided_color(nir_shader *shader);
2463
2464 void nir_lower_clamp_color_outputs(nir_shader *shader);
2465
2466 void nir_lower_passthrough_edgeflags(nir_shader *shader);
2467
2468 typedef struct nir_lower_wpos_ytransform_options {
2469 int state_tokens[5];
2470 bool fs_coord_origin_upper_left :1;
2471 bool fs_coord_origin_lower_left :1;
2472 bool fs_coord_pixel_center_integer :1;
2473 bool fs_coord_pixel_center_half_integer :1;
2474 } nir_lower_wpos_ytransform_options;
2475
2476 bool nir_lower_wpos_ytransform(nir_shader *shader,
2477 const nir_lower_wpos_ytransform_options *options);
2478 bool nir_lower_wpos_center(nir_shader *shader);
2479
2480 typedef struct nir_lower_drawpixels_options {
2481 int texcoord_state_tokens[5];
2482 int scale_state_tokens[5];
2483 int bias_state_tokens[5];
2484 unsigned drawpix_sampler;
2485 unsigned pixelmap_sampler;
2486 bool pixel_maps :1;
2487 bool scale_and_bias :1;
2488 } nir_lower_drawpixels_options;
2489
2490 void nir_lower_drawpixels(nir_shader *shader,
2491 const nir_lower_drawpixels_options *options);
2492
2493 typedef struct nir_lower_bitmap_options {
2494 unsigned sampler;
2495 bool swizzle_xxxx;
2496 } nir_lower_bitmap_options;
2497
2498 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
2499
2500 void nir_lower_atomics(nir_shader *shader,
2501 const struct gl_shader_program *shader_program);
2502 void nir_lower_to_source_mods(nir_shader *shader);
2503
2504 bool nir_lower_gs_intrinsics(nir_shader *shader);
2505
2506 typedef enum {
2507 nir_lower_drcp = (1 << 0),
2508 nir_lower_dsqrt = (1 << 1),
2509 nir_lower_drsq = (1 << 2),
2510 nir_lower_dtrunc = (1 << 3),
2511 nir_lower_dfloor = (1 << 4),
2512 nir_lower_dceil = (1 << 5),
2513 nir_lower_dfract = (1 << 6),
2514 nir_lower_dround_even = (1 << 7),
2515 nir_lower_dmod = (1 << 8)
2516 } nir_lower_doubles_options;
2517
2518 void nir_lower_doubles(nir_shader *shader, nir_lower_doubles_options options);
2519 void nir_lower_double_pack(nir_shader *shader);
2520
2521 bool nir_normalize_cubemap_coords(nir_shader *shader);
2522
2523 void nir_live_ssa_defs_impl(nir_function_impl *impl);
2524
2525 void nir_loop_analyze_impl(nir_function_impl *impl,
2526 nir_variable_mode indirect_mask);
2527
2528 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
2529
2530 bool nir_repair_ssa_impl(nir_function_impl *impl);
2531 bool nir_repair_ssa(nir_shader *shader);
2532
2533 void nir_convert_loop_to_lcssa(nir_loop *loop);
2534
2535 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
2536 * registers. If false, convert all values (even those not involved in a phi
2537 * node) to registers.
2538 */
2539 void nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
2540
2541 bool nir_lower_phis_to_regs_block(nir_block *block);
2542 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
2543
2544 bool nir_opt_algebraic(nir_shader *shader);
2545 bool nir_opt_algebraic_late(nir_shader *shader);
2546 bool nir_opt_constant_folding(nir_shader *shader);
2547
2548 bool nir_opt_global_to_local(nir_shader *shader);
2549
2550 bool nir_copy_prop(nir_shader *shader);
2551
2552 bool nir_opt_copy_prop_vars(nir_shader *shader);
2553
2554 bool nir_opt_cse(nir_shader *shader);
2555
2556 bool nir_opt_dce(nir_shader *shader);
2557
2558 bool nir_opt_dead_cf(nir_shader *shader);
2559
2560 bool nir_opt_gcm(nir_shader *shader, bool value_number);
2561
2562 bool nir_opt_if(nir_shader *shader);
2563
2564 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
2565
2566 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit);
2567
2568 bool nir_opt_remove_phis(nir_shader *shader);
2569
2570 bool nir_opt_trivial_continues(nir_shader *shader);
2571
2572 bool nir_opt_undef(nir_shader *shader);
2573
2574 bool nir_opt_conditional_discard(nir_shader *shader);
2575
2576 void nir_sweep(nir_shader *shader);
2577
2578 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
2579 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
2580
2581 #ifdef __cplusplus
2582 } /* extern "C" */
2583 #endif