nir: Allow qualifiers on copy_deref and image instructions
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitscan.h"
38 #include "util/bitset.h"
39 #include "util/macros.h"
40 #include "compiler/nir_types.h"
41 #include "compiler/shader_enums.h"
42 #include "compiler/shader_info.h"
43 #include <stdio.h>
44
45 #ifndef NDEBUG
46 #include "util/debug.h"
47 #endif /* NDEBUG */
48
49 #include "nir_opcodes.h"
50
51 #if defined(_WIN32) && !defined(snprintf)
52 #define snprintf _snprintf
53 #endif
54
55 #ifdef __cplusplus
56 extern "C" {
57 #endif
58
59 #define NIR_FALSE 0u
60 #define NIR_TRUE (~0u)
61 #define NIR_MAX_VEC_COMPONENTS 4
62 #define NIR_MAX_MATRIX_COLUMNS 4
63 typedef uint8_t nir_component_mask_t;
64
65 /** Defines a cast function
66 *
67 * This macro defines a cast function from in_type to out_type where
68 * out_type is some structure type that contains a field of type out_type.
69 *
70 * Note that you have to be a bit careful as the generated cast function
71 * destroys constness.
72 */
73 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
74 type_field, type_value) \
75 static inline out_type * \
76 name(const in_type *parent) \
77 { \
78 assert(parent && parent->type_field == type_value); \
79 return exec_node_data(out_type, parent, field); \
80 }
81
82 struct nir_function;
83 struct nir_shader;
84 struct nir_instr;
85 struct nir_builder;
86
87
88 /**
89 * Description of built-in state associated with a uniform
90 *
91 * \sa nir_variable::state_slots
92 */
93 typedef struct {
94 gl_state_index16 tokens[STATE_LENGTH];
95 int swizzle;
96 } nir_state_slot;
97
98 typedef enum {
99 nir_var_shader_in = (1 << 0),
100 nir_var_shader_out = (1 << 1),
101 nir_var_shader_temp = (1 << 2),
102 nir_var_function_temp = (1 << 3),
103 nir_var_uniform = (1 << 4),
104 nir_var_mem_ubo = (1 << 5),
105 nir_var_system_value = (1 << 6),
106 nir_var_mem_ssbo = (1 << 7),
107 nir_var_mem_shared = (1 << 8),
108 nir_var_mem_global = (1 << 9),
109 nir_var_all = ~0,
110 } nir_variable_mode;
111
112 /**
113 * Rounding modes.
114 */
115 typedef enum {
116 nir_rounding_mode_undef = 0,
117 nir_rounding_mode_rtne = 1, /* round to nearest even */
118 nir_rounding_mode_ru = 2, /* round up */
119 nir_rounding_mode_rd = 3, /* round down */
120 nir_rounding_mode_rtz = 4, /* round towards zero */
121 } nir_rounding_mode;
122
123 typedef union {
124 bool b;
125 float f32;
126 double f64;
127 int8_t i8;
128 uint8_t u8;
129 int16_t i16;
130 uint16_t u16;
131 int32_t i32;
132 uint32_t u32;
133 int64_t i64;
134 uint64_t u64;
135 } nir_const_value;
136
137 #define nir_const_value_to_array(arr, c, components, m) \
138 { \
139 for (unsigned i = 0; i < components; ++i) \
140 arr[i] = c[i].m; \
141 } while (false)
142
143 typedef struct nir_constant {
144 /**
145 * Value of the constant.
146 *
147 * The field used to back the values supplied by the constant is determined
148 * by the type associated with the \c nir_variable. Constants may be
149 * scalars, vectors, or matrices.
150 */
151 nir_const_value values[NIR_MAX_MATRIX_COLUMNS][NIR_MAX_VEC_COMPONENTS];
152
153 /* we could get this from the var->type but makes clone *much* easier to
154 * not have to care about the type.
155 */
156 unsigned num_elements;
157
158 /* Array elements / Structure Fields */
159 struct nir_constant **elements;
160 } nir_constant;
161
162 /**
163 * \brief Layout qualifiers for gl_FragDepth.
164 *
165 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
166 * with a layout qualifier.
167 */
168 typedef enum {
169 nir_depth_layout_none, /**< No depth layout is specified. */
170 nir_depth_layout_any,
171 nir_depth_layout_greater,
172 nir_depth_layout_less,
173 nir_depth_layout_unchanged
174 } nir_depth_layout;
175
176 /**
177 * Enum keeping track of how a variable was declared.
178 */
179 typedef enum {
180 /**
181 * Normal declaration.
182 */
183 nir_var_declared_normally = 0,
184
185 /**
186 * Variable is implicitly generated by the compiler and should not be
187 * visible via the API.
188 */
189 nir_var_hidden,
190 } nir_var_declaration_type;
191
192 /**
193 * Either a uniform, global variable, shader input, or shader output. Based on
194 * ir_variable - it should be easy to translate between the two.
195 */
196
197 typedef struct nir_variable {
198 struct exec_node node;
199
200 /**
201 * Declared type of the variable
202 */
203 const struct glsl_type *type;
204
205 /**
206 * Declared name of the variable
207 */
208 char *name;
209
210 struct nir_variable_data {
211 /**
212 * Storage class of the variable.
213 *
214 * \sa nir_variable_mode
215 */
216 nir_variable_mode mode;
217
218 /**
219 * Is the variable read-only?
220 *
221 * This is set for variables declared as \c const, shader inputs,
222 * and uniforms.
223 */
224 unsigned read_only:1;
225 unsigned centroid:1;
226 unsigned sample:1;
227 unsigned patch:1;
228 unsigned invariant:1;
229
230 /**
231 * When separate shader programs are enabled, only input/outputs between
232 * the stages of a multi-stage separate program can be safely removed
233 * from the shader interface. Other input/outputs must remains active.
234 *
235 * This is also used to make sure xfb varyings that are unused by the
236 * fragment shader are not removed.
237 */
238 unsigned always_active_io:1;
239
240 /**
241 * Interpolation mode for shader inputs / outputs
242 *
243 * \sa glsl_interp_mode
244 */
245 unsigned interpolation:2;
246
247 /**
248 * If non-zero, then this variable may be packed along with other variables
249 * into a single varying slot, so this offset should be applied when
250 * accessing components. For example, an offset of 1 means that the x
251 * component of this variable is actually stored in component y of the
252 * location specified by \c location.
253 */
254 unsigned location_frac:2;
255
256 /**
257 * If true, this variable represents an array of scalars that should
258 * be tightly packed. In other words, consecutive array elements
259 * should be stored one component apart, rather than one slot apart.
260 */
261 unsigned compact:1;
262
263 /**
264 * Whether this is a fragment shader output implicitly initialized with
265 * the previous contents of the specified render target at the
266 * framebuffer location corresponding to this shader invocation.
267 */
268 unsigned fb_fetch_output:1;
269
270 /**
271 * Non-zero if this variable is considered bindless as defined by
272 * ARB_bindless_texture.
273 */
274 unsigned bindless:1;
275
276 /**
277 * Was an explicit binding set in the shader?
278 */
279 unsigned explicit_binding:1;
280
281 /**
282 * Was a transfer feedback buffer set in the shader?
283 */
284 unsigned explicit_xfb_buffer:1;
285
286 /**
287 * Was a transfer feedback stride set in the shader?
288 */
289 unsigned explicit_xfb_stride:1;
290
291 /**
292 * Was an explicit offset set in the shader?
293 */
294 unsigned explicit_offset:1;
295
296 /**
297 * \brief Layout qualifier for gl_FragDepth.
298 *
299 * This is not equal to \c ir_depth_layout_none if and only if this
300 * variable is \c gl_FragDepth and a layout qualifier is specified.
301 */
302 nir_depth_layout depth_layout;
303
304 /**
305 * Storage location of the base of this variable
306 *
307 * The precise meaning of this field depends on the nature of the variable.
308 *
309 * - Vertex shader input: one of the values from \c gl_vert_attrib.
310 * - Vertex shader output: one of the values from \c gl_varying_slot.
311 * - Geometry shader input: one of the values from \c gl_varying_slot.
312 * - Geometry shader output: one of the values from \c gl_varying_slot.
313 * - Fragment shader input: one of the values from \c gl_varying_slot.
314 * - Fragment shader output: one of the values from \c gl_frag_result.
315 * - Uniforms: Per-stage uniform slot number for default uniform block.
316 * - Uniforms: Index within the uniform block definition for UBO members.
317 * - Non-UBO Uniforms: uniform slot number.
318 * - Other: This field is not currently used.
319 *
320 * If the variable is a uniform, shader input, or shader output, and the
321 * slot has not been assigned, the value will be -1.
322 */
323 int location;
324
325 /**
326 * The actual location of the variable in the IR. Only valid for inputs
327 * and outputs.
328 */
329 unsigned int driver_location;
330
331 /**
332 * Vertex stream output identifier.
333 *
334 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
335 * stream of the i-th component.
336 */
337 unsigned stream;
338
339 /**
340 * output index for dual source blending.
341 */
342 int index;
343
344 /**
345 * Descriptor set binding for sampler or UBO.
346 */
347 int descriptor_set;
348
349 /**
350 * Initial binding point for a sampler or UBO.
351 *
352 * For array types, this represents the binding point for the first element.
353 */
354 int binding;
355
356 /**
357 * Location an atomic counter or transform feedback is stored at.
358 */
359 unsigned offset;
360
361 /**
362 * Transform feedback buffer.
363 */
364 unsigned xfb_buffer;
365
366 /**
367 * Transform feedback stride.
368 */
369 unsigned xfb_stride;
370
371 /**
372 * How the variable was declared. See nir_var_declaration_type.
373 *
374 * This is used to detect variables generated by the compiler, so should
375 * not be visible via the API.
376 */
377 unsigned how_declared:2;
378
379 /**
380 * ARB_shader_image_load_store qualifiers.
381 */
382 struct {
383 enum gl_access_qualifier access;
384
385 /** Image internal format if specified explicitly, otherwise GL_NONE. */
386 GLenum format;
387 } image;
388 } data;
389
390 /**
391 * Built-in state that backs this uniform
392 *
393 * Once set at variable creation, \c state_slots must remain invariant.
394 * This is because, ideally, this array would be shared by all clones of
395 * this variable in the IR tree. In other words, we'd really like for it
396 * to be a fly-weight.
397 *
398 * If the variable is not a uniform, \c num_state_slots will be zero and
399 * \c state_slots will be \c NULL.
400 */
401 /*@{*/
402 unsigned num_state_slots; /**< Number of state slots used */
403 nir_state_slot *state_slots; /**< State descriptors. */
404 /*@}*/
405
406 /**
407 * Constant expression assigned in the initializer of the variable
408 *
409 * This field should only be used temporarily by creators of NIR shaders
410 * and then lower_constant_initializers can be used to get rid of them.
411 * Most of the rest of NIR ignores this field or asserts that it's NULL.
412 */
413 nir_constant *constant_initializer;
414
415 /**
416 * For variables that are in an interface block or are an instance of an
417 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
418 *
419 * \sa ir_variable::location
420 */
421 const struct glsl_type *interface_type;
422
423 /**
424 * Description of per-member data for per-member struct variables
425 *
426 * This is used for variables which are actually an amalgamation of
427 * multiple entities such as a struct of built-in values or a struct of
428 * inputs each with their own layout specifier. This is only allowed on
429 * variables with a struct or array of array of struct type.
430 */
431 unsigned num_members;
432 struct nir_variable_data *members;
433 } nir_variable;
434
435 #define nir_foreach_variable(var, var_list) \
436 foreach_list_typed(nir_variable, var, node, var_list)
437
438 #define nir_foreach_variable_safe(var, var_list) \
439 foreach_list_typed_safe(nir_variable, var, node, var_list)
440
441 static inline bool
442 nir_variable_is_global(const nir_variable *var)
443 {
444 return var->data.mode != nir_var_function_temp;
445 }
446
447 typedef struct nir_register {
448 struct exec_node node;
449
450 unsigned num_components; /** < number of vector components */
451 unsigned num_array_elems; /** < size of array (0 for no array) */
452
453 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
454 uint8_t bit_size;
455
456 /** generic register index. */
457 unsigned index;
458
459 /** only for debug purposes, can be NULL */
460 const char *name;
461
462 /** set of nir_srcs where this register is used (read from) */
463 struct list_head uses;
464
465 /** set of nir_dests where this register is defined (written to) */
466 struct list_head defs;
467
468 /** set of nir_ifs where this register is used as a condition */
469 struct list_head if_uses;
470 } nir_register;
471
472 #define nir_foreach_register(reg, reg_list) \
473 foreach_list_typed(nir_register, reg, node, reg_list)
474 #define nir_foreach_register_safe(reg, reg_list) \
475 foreach_list_typed_safe(nir_register, reg, node, reg_list)
476
477 typedef enum PACKED {
478 nir_instr_type_alu,
479 nir_instr_type_deref,
480 nir_instr_type_call,
481 nir_instr_type_tex,
482 nir_instr_type_intrinsic,
483 nir_instr_type_load_const,
484 nir_instr_type_jump,
485 nir_instr_type_ssa_undef,
486 nir_instr_type_phi,
487 nir_instr_type_parallel_copy,
488 } nir_instr_type;
489
490 typedef struct nir_instr {
491 struct exec_node node;
492 struct nir_block *block;
493 nir_instr_type type;
494
495 /* A temporary for optimization and analysis passes to use for storing
496 * flags. For instance, DCE uses this to store the "dead/live" info.
497 */
498 uint8_t pass_flags;
499
500 /** generic instruction index. */
501 unsigned index;
502 } nir_instr;
503
504 static inline nir_instr *
505 nir_instr_next(nir_instr *instr)
506 {
507 struct exec_node *next = exec_node_get_next(&instr->node);
508 if (exec_node_is_tail_sentinel(next))
509 return NULL;
510 else
511 return exec_node_data(nir_instr, next, node);
512 }
513
514 static inline nir_instr *
515 nir_instr_prev(nir_instr *instr)
516 {
517 struct exec_node *prev = exec_node_get_prev(&instr->node);
518 if (exec_node_is_head_sentinel(prev))
519 return NULL;
520 else
521 return exec_node_data(nir_instr, prev, node);
522 }
523
524 static inline bool
525 nir_instr_is_first(const nir_instr *instr)
526 {
527 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
528 }
529
530 static inline bool
531 nir_instr_is_last(const nir_instr *instr)
532 {
533 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
534 }
535
536 typedef struct nir_ssa_def {
537 /** for debugging only, can be NULL */
538 const char* name;
539
540 /** generic SSA definition index. */
541 unsigned index;
542
543 /** Index into the live_in and live_out bitfields */
544 unsigned live_index;
545
546 /** Instruction which produces this SSA value. */
547 nir_instr *parent_instr;
548
549 /** set of nir_instrs where this register is used (read from) */
550 struct list_head uses;
551
552 /** set of nir_ifs where this register is used as a condition */
553 struct list_head if_uses;
554
555 uint8_t num_components;
556
557 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
558 uint8_t bit_size;
559 } nir_ssa_def;
560
561 struct nir_src;
562
563 typedef struct {
564 nir_register *reg;
565 struct nir_src *indirect; /** < NULL for no indirect offset */
566 unsigned base_offset;
567
568 /* TODO use-def chain goes here */
569 } nir_reg_src;
570
571 typedef struct {
572 nir_instr *parent_instr;
573 struct list_head def_link;
574
575 nir_register *reg;
576 struct nir_src *indirect; /** < NULL for no indirect offset */
577 unsigned base_offset;
578
579 /* TODO def-use chain goes here */
580 } nir_reg_dest;
581
582 struct nir_if;
583
584 typedef struct nir_src {
585 union {
586 /** Instruction that consumes this value as a source. */
587 nir_instr *parent_instr;
588 struct nir_if *parent_if;
589 };
590
591 struct list_head use_link;
592
593 union {
594 nir_reg_src reg;
595 nir_ssa_def *ssa;
596 };
597
598 bool is_ssa;
599 } nir_src;
600
601 static inline nir_src
602 nir_src_init(void)
603 {
604 nir_src src = { { NULL } };
605 return src;
606 }
607
608 #define NIR_SRC_INIT nir_src_init()
609
610 #define nir_foreach_use(src, reg_or_ssa_def) \
611 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
612
613 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
614 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
615
616 #define nir_foreach_if_use(src, reg_or_ssa_def) \
617 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
618
619 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
620 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
621
622 typedef struct {
623 union {
624 nir_reg_dest reg;
625 nir_ssa_def ssa;
626 };
627
628 bool is_ssa;
629 } nir_dest;
630
631 static inline nir_dest
632 nir_dest_init(void)
633 {
634 nir_dest dest = { { { NULL } } };
635 return dest;
636 }
637
638 #define NIR_DEST_INIT nir_dest_init()
639
640 #define nir_foreach_def(dest, reg) \
641 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
642
643 #define nir_foreach_def_safe(dest, reg) \
644 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
645
646 static inline nir_src
647 nir_src_for_ssa(nir_ssa_def *def)
648 {
649 nir_src src = NIR_SRC_INIT;
650
651 src.is_ssa = true;
652 src.ssa = def;
653
654 return src;
655 }
656
657 static inline nir_src
658 nir_src_for_reg(nir_register *reg)
659 {
660 nir_src src = NIR_SRC_INIT;
661
662 src.is_ssa = false;
663 src.reg.reg = reg;
664 src.reg.indirect = NULL;
665 src.reg.base_offset = 0;
666
667 return src;
668 }
669
670 static inline nir_dest
671 nir_dest_for_reg(nir_register *reg)
672 {
673 nir_dest dest = NIR_DEST_INIT;
674
675 dest.reg.reg = reg;
676
677 return dest;
678 }
679
680 static inline unsigned
681 nir_src_bit_size(nir_src src)
682 {
683 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
684 }
685
686 static inline unsigned
687 nir_src_num_components(nir_src src)
688 {
689 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
690 }
691
692 static inline bool
693 nir_src_is_const(nir_src src)
694 {
695 return src.is_ssa &&
696 src.ssa->parent_instr->type == nir_instr_type_load_const;
697 }
698
699 int64_t nir_src_as_int(nir_src src);
700 uint64_t nir_src_as_uint(nir_src src);
701 bool nir_src_as_bool(nir_src src);
702 double nir_src_as_float(nir_src src);
703 int64_t nir_src_comp_as_int(nir_src src, unsigned component);
704 uint64_t nir_src_comp_as_uint(nir_src src, unsigned component);
705 bool nir_src_comp_as_bool(nir_src src, unsigned component);
706 double nir_src_comp_as_float(nir_src src, unsigned component);
707
708 static inline unsigned
709 nir_dest_bit_size(nir_dest dest)
710 {
711 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
712 }
713
714 static inline unsigned
715 nir_dest_num_components(nir_dest dest)
716 {
717 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
718 }
719
720 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
721 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
722
723 typedef struct {
724 nir_src src;
725
726 /**
727 * \name input modifiers
728 */
729 /*@{*/
730 /**
731 * For inputs interpreted as floating point, flips the sign bit. For
732 * inputs interpreted as integers, performs the two's complement negation.
733 */
734 bool negate;
735
736 /**
737 * Clears the sign bit for floating point values, and computes the integer
738 * absolute value for integers. Note that the negate modifier acts after
739 * the absolute value modifier, therefore if both are set then all inputs
740 * will become negative.
741 */
742 bool abs;
743 /*@}*/
744
745 /**
746 * For each input component, says which component of the register it is
747 * chosen from. Note that which elements of the swizzle are used and which
748 * are ignored are based on the write mask for most opcodes - for example,
749 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
750 * a swizzle of {2, x, 1, 0} where x means "don't care."
751 */
752 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
753 } nir_alu_src;
754
755 typedef struct {
756 nir_dest dest;
757
758 /**
759 * \name saturate output modifier
760 *
761 * Only valid for opcodes that output floating-point numbers. Clamps the
762 * output to between 0.0 and 1.0 inclusive.
763 */
764
765 bool saturate;
766
767 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
768 } nir_alu_dest;
769
770 /** NIR sized and unsized types
771 *
772 * The values in this enum are carefully chosen so that the sized type is
773 * just the unsized type OR the number of bits.
774 */
775 typedef enum {
776 nir_type_invalid = 0, /* Not a valid type */
777 nir_type_int = 2,
778 nir_type_uint = 4,
779 nir_type_bool = 6,
780 nir_type_float = 128,
781 nir_type_bool1 = 1 | nir_type_bool,
782 nir_type_bool32 = 32 | nir_type_bool,
783 nir_type_int1 = 1 | nir_type_int,
784 nir_type_int8 = 8 | nir_type_int,
785 nir_type_int16 = 16 | nir_type_int,
786 nir_type_int32 = 32 | nir_type_int,
787 nir_type_int64 = 64 | nir_type_int,
788 nir_type_uint1 = 1 | nir_type_uint,
789 nir_type_uint8 = 8 | nir_type_uint,
790 nir_type_uint16 = 16 | nir_type_uint,
791 nir_type_uint32 = 32 | nir_type_uint,
792 nir_type_uint64 = 64 | nir_type_uint,
793 nir_type_float16 = 16 | nir_type_float,
794 nir_type_float32 = 32 | nir_type_float,
795 nir_type_float64 = 64 | nir_type_float,
796 } nir_alu_type;
797
798 #define NIR_ALU_TYPE_SIZE_MASK 0x79
799 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
800
801 static inline unsigned
802 nir_alu_type_get_type_size(nir_alu_type type)
803 {
804 return type & NIR_ALU_TYPE_SIZE_MASK;
805 }
806
807 static inline unsigned
808 nir_alu_type_get_base_type(nir_alu_type type)
809 {
810 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
811 }
812
813 static inline nir_alu_type
814 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
815 {
816 switch (base_type) {
817 case GLSL_TYPE_BOOL:
818 return nir_type_bool1;
819 break;
820 case GLSL_TYPE_UINT:
821 return nir_type_uint32;
822 break;
823 case GLSL_TYPE_INT:
824 return nir_type_int32;
825 break;
826 case GLSL_TYPE_UINT16:
827 return nir_type_uint16;
828 break;
829 case GLSL_TYPE_INT16:
830 return nir_type_int16;
831 break;
832 case GLSL_TYPE_UINT8:
833 return nir_type_uint8;
834 case GLSL_TYPE_INT8:
835 return nir_type_int8;
836 case GLSL_TYPE_UINT64:
837 return nir_type_uint64;
838 break;
839 case GLSL_TYPE_INT64:
840 return nir_type_int64;
841 break;
842 case GLSL_TYPE_FLOAT:
843 return nir_type_float32;
844 break;
845 case GLSL_TYPE_FLOAT16:
846 return nir_type_float16;
847 break;
848 case GLSL_TYPE_DOUBLE:
849 return nir_type_float64;
850 break;
851
852 case GLSL_TYPE_SAMPLER:
853 case GLSL_TYPE_IMAGE:
854 case GLSL_TYPE_ATOMIC_UINT:
855 case GLSL_TYPE_STRUCT:
856 case GLSL_TYPE_INTERFACE:
857 case GLSL_TYPE_ARRAY:
858 case GLSL_TYPE_VOID:
859 case GLSL_TYPE_SUBROUTINE:
860 case GLSL_TYPE_FUNCTION:
861 case GLSL_TYPE_ERROR:
862 return nir_type_invalid;
863 }
864
865 unreachable("unknown type");
866 }
867
868 static inline nir_alu_type
869 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
870 {
871 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
872 }
873
874 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
875 nir_rounding_mode rnd);
876
877 static inline nir_op
878 nir_op_vec(unsigned components)
879 {
880 switch (components) {
881 case 1: return nir_op_mov;
882 case 2: return nir_op_vec2;
883 case 3: return nir_op_vec3;
884 case 4: return nir_op_vec4;
885 default: unreachable("bad component count");
886 }
887 }
888
889 typedef enum {
890 /**
891 * Operation where the first two sources are commutative.
892 *
893 * For 2-source operations, this just mathematical commutativity. Some
894 * 3-source operations, like ffma, are only commutative in the first two
895 * sources.
896 */
897 NIR_OP_IS_2SRC_COMMUTATIVE = (1 << 0),
898 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
899 } nir_op_algebraic_property;
900
901 typedef struct {
902 const char *name;
903
904 unsigned num_inputs;
905
906 /**
907 * The number of components in the output
908 *
909 * If non-zero, this is the size of the output and input sizes are
910 * explicitly given; swizzle and writemask are still in effect, but if
911 * the output component is masked out, then the input component may
912 * still be in use.
913 *
914 * If zero, the opcode acts in the standard, per-component manner; the
915 * operation is performed on each component (except the ones that are
916 * masked out) with the input being taken from the input swizzle for
917 * that component.
918 *
919 * The size of some of the inputs may be given (i.e. non-zero) even
920 * though output_size is zero; in that case, the inputs with a zero
921 * size act per-component, while the inputs with non-zero size don't.
922 */
923 unsigned output_size;
924
925 /**
926 * The type of vector that the instruction outputs. Note that the
927 * staurate modifier is only allowed on outputs with the float type.
928 */
929
930 nir_alu_type output_type;
931
932 /**
933 * The number of components in each input
934 */
935 unsigned input_sizes[NIR_MAX_VEC_COMPONENTS];
936
937 /**
938 * The type of vector that each input takes. Note that negate and
939 * absolute value are only allowed on inputs with int or float type and
940 * behave differently on the two.
941 */
942 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
943
944 nir_op_algebraic_property algebraic_properties;
945
946 /* Whether this represents a numeric conversion opcode */
947 bool is_conversion;
948 } nir_op_info;
949
950 extern const nir_op_info nir_op_infos[nir_num_opcodes];
951
952 typedef struct nir_alu_instr {
953 nir_instr instr;
954 nir_op op;
955
956 /** Indicates that this ALU instruction generates an exact value
957 *
958 * This is kind of a mixture of GLSL "precise" and "invariant" and not
959 * really equivalent to either. This indicates that the value generated by
960 * this operation is high-precision and any code transformations that touch
961 * it must ensure that the resulting value is bit-for-bit identical to the
962 * original.
963 */
964 bool exact;
965
966 nir_alu_dest dest;
967 nir_alu_src src[];
968 } nir_alu_instr;
969
970 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
971 nir_alu_instr *instr);
972 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
973 nir_alu_instr *instr);
974
975 /* is this source channel used? */
976 static inline bool
977 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
978 unsigned channel)
979 {
980 if (nir_op_infos[instr->op].input_sizes[src] > 0)
981 return channel < nir_op_infos[instr->op].input_sizes[src];
982
983 return (instr->dest.write_mask >> channel) & 1;
984 }
985
986 static inline nir_component_mask_t
987 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
988 {
989 nir_component_mask_t read_mask = 0;
990 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
991 if (!nir_alu_instr_channel_used(instr, src, c))
992 continue;
993
994 read_mask |= (1 << instr->src[src].swizzle[c]);
995 }
996 return read_mask;
997 }
998
999 /*
1000 * For instructions whose destinations are SSA, get the number of channels
1001 * used for a source
1002 */
1003 static inline unsigned
1004 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
1005 {
1006 assert(instr->dest.dest.is_ssa);
1007
1008 if (nir_op_infos[instr->op].input_sizes[src] > 0)
1009 return nir_op_infos[instr->op].input_sizes[src];
1010
1011 return instr->dest.dest.ssa.num_components;
1012 }
1013
1014 bool nir_const_value_negative_equal(const nir_const_value *c1,
1015 const nir_const_value *c2,
1016 unsigned components,
1017 nir_alu_type base_type,
1018 unsigned bits);
1019
1020 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
1021 unsigned src1, unsigned src2);
1022
1023 bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
1024 const nir_alu_instr *alu2,
1025 unsigned src1, unsigned src2);
1026
1027 typedef enum {
1028 nir_deref_type_var,
1029 nir_deref_type_array,
1030 nir_deref_type_array_wildcard,
1031 nir_deref_type_ptr_as_array,
1032 nir_deref_type_struct,
1033 nir_deref_type_cast,
1034 } nir_deref_type;
1035
1036 typedef struct {
1037 nir_instr instr;
1038
1039 /** The type of this deref instruction */
1040 nir_deref_type deref_type;
1041
1042 /** The mode of the underlying variable */
1043 nir_variable_mode mode;
1044
1045 /** The dereferenced type of the resulting pointer value */
1046 const struct glsl_type *type;
1047
1048 union {
1049 /** Variable being dereferenced if deref_type is a deref_var */
1050 nir_variable *var;
1051
1052 /** Parent deref if deref_type is not deref_var */
1053 nir_src parent;
1054 };
1055
1056 /** Additional deref parameters */
1057 union {
1058 struct {
1059 nir_src index;
1060 } arr;
1061
1062 struct {
1063 unsigned index;
1064 } strct;
1065
1066 struct {
1067 unsigned ptr_stride;
1068 } cast;
1069 };
1070
1071 /** Destination to store the resulting "pointer" */
1072 nir_dest dest;
1073 } nir_deref_instr;
1074
1075 static inline nir_deref_instr *nir_src_as_deref(nir_src src);
1076
1077 static inline nir_deref_instr *
1078 nir_deref_instr_parent(const nir_deref_instr *instr)
1079 {
1080 if (instr->deref_type == nir_deref_type_var)
1081 return NULL;
1082 else
1083 return nir_src_as_deref(instr->parent);
1084 }
1085
1086 static inline nir_variable *
1087 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1088 {
1089 while (instr->deref_type != nir_deref_type_var) {
1090 if (instr->deref_type == nir_deref_type_cast)
1091 return NULL;
1092
1093 instr = nir_deref_instr_parent(instr);
1094 }
1095
1096 return instr->var;
1097 }
1098
1099 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1100 bool nir_deref_instr_has_complex_use(nir_deref_instr *instr);
1101
1102 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1103
1104 unsigned nir_deref_instr_ptr_as_array_stride(nir_deref_instr *instr);
1105
1106 typedef struct {
1107 nir_instr instr;
1108
1109 struct nir_function *callee;
1110
1111 unsigned num_params;
1112 nir_src params[];
1113 } nir_call_instr;
1114
1115 #include "nir_intrinsics.h"
1116
1117 #define NIR_INTRINSIC_MAX_CONST_INDEX 4
1118
1119 /** Represents an intrinsic
1120 *
1121 * An intrinsic is an instruction type for handling things that are
1122 * more-or-less regular operations but don't just consume and produce SSA
1123 * values like ALU operations do. Intrinsics are not for things that have
1124 * special semantic meaning such as phi nodes and parallel copies.
1125 * Examples of intrinsics include variable load/store operations, system
1126 * value loads, and the like. Even though texturing more-or-less falls
1127 * under this category, texturing is its own instruction type because
1128 * trying to represent texturing with intrinsics would lead to a
1129 * combinatorial explosion of intrinsic opcodes.
1130 *
1131 * By having a single instruction type for handling a lot of different
1132 * cases, optimization passes can look for intrinsics and, for the most
1133 * part, completely ignore them. Each intrinsic type also has a few
1134 * possible flags that govern whether or not they can be reordered or
1135 * eliminated. That way passes like dead code elimination can still work
1136 * on intrisics without understanding the meaning of each.
1137 *
1138 * Each intrinsic has some number of constant indices, some number of
1139 * variables, and some number of sources. What these sources, variables,
1140 * and indices mean depends on the intrinsic and is documented with the
1141 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1142 * instructions are the only types of instruction that can operate on
1143 * variables.
1144 */
1145 typedef struct {
1146 nir_instr instr;
1147
1148 nir_intrinsic_op intrinsic;
1149
1150 nir_dest dest;
1151
1152 /** number of components if this is a vectorized intrinsic
1153 *
1154 * Similarly to ALU operations, some intrinsics are vectorized.
1155 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1156 * For vectorized intrinsics, the num_components field specifies the
1157 * number of destination components and the number of source components
1158 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1159 */
1160 uint8_t num_components;
1161
1162 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1163
1164 nir_src src[];
1165 } nir_intrinsic_instr;
1166
1167 static inline nir_variable *
1168 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1169 {
1170 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1171 }
1172
1173 /**
1174 * \name NIR intrinsics semantic flags
1175 *
1176 * information about what the compiler can do with the intrinsics.
1177 *
1178 * \sa nir_intrinsic_info::flags
1179 */
1180 typedef enum {
1181 /**
1182 * whether the intrinsic can be safely eliminated if none of its output
1183 * value is not being used.
1184 */
1185 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1186
1187 /**
1188 * Whether the intrinsic can be reordered with respect to any other
1189 * intrinsic, i.e. whether the only reordering dependencies of the
1190 * intrinsic are due to the register reads/writes.
1191 */
1192 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1193 } nir_intrinsic_semantic_flag;
1194
1195 /**
1196 * \name NIR intrinsics const-index flag
1197 *
1198 * Indicates the usage of a const_index slot.
1199 *
1200 * \sa nir_intrinsic_info::index_map
1201 */
1202 typedef enum {
1203 /**
1204 * Generally instructions that take a offset src argument, can encode
1205 * a constant 'base' value which is added to the offset.
1206 */
1207 NIR_INTRINSIC_BASE = 1,
1208
1209 /**
1210 * For store instructions, a writemask for the store.
1211 */
1212 NIR_INTRINSIC_WRMASK,
1213
1214 /**
1215 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1216 */
1217 NIR_INTRINSIC_STREAM_ID,
1218
1219 /**
1220 * The clip-plane id for load_user_clip_plane intrinsic.
1221 */
1222 NIR_INTRINSIC_UCP_ID,
1223
1224 /**
1225 * The amount of data, starting from BASE, that this instruction may
1226 * access. This is used to provide bounds if the offset is not constant.
1227 */
1228 NIR_INTRINSIC_RANGE,
1229
1230 /**
1231 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1232 */
1233 NIR_INTRINSIC_DESC_SET,
1234
1235 /**
1236 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1237 */
1238 NIR_INTRINSIC_BINDING,
1239
1240 /**
1241 * Component offset.
1242 */
1243 NIR_INTRINSIC_COMPONENT,
1244
1245 /**
1246 * Interpolation mode (only meaningful for FS inputs).
1247 */
1248 NIR_INTRINSIC_INTERP_MODE,
1249
1250 /**
1251 * A binary nir_op to use when performing a reduction or scan operation
1252 */
1253 NIR_INTRINSIC_REDUCTION_OP,
1254
1255 /**
1256 * Cluster size for reduction operations
1257 */
1258 NIR_INTRINSIC_CLUSTER_SIZE,
1259
1260 /**
1261 * Parameter index for a load_param intrinsic
1262 */
1263 NIR_INTRINSIC_PARAM_IDX,
1264
1265 /**
1266 * Image dimensionality for image intrinsics
1267 *
1268 * One of GLSL_SAMPLER_DIM_*
1269 */
1270 NIR_INTRINSIC_IMAGE_DIM,
1271
1272 /**
1273 * Non-zero if we are accessing an array image
1274 */
1275 NIR_INTRINSIC_IMAGE_ARRAY,
1276
1277 /**
1278 * Image format for image intrinsics
1279 */
1280 NIR_INTRINSIC_FORMAT,
1281
1282 /**
1283 * Access qualifiers for image and memory access intrinsics
1284 */
1285 NIR_INTRINSIC_ACCESS,
1286
1287 /**
1288 * Alignment for offsets and addresses
1289 *
1290 * These two parameters, specify an alignment in terms of a multiplier and
1291 * an offset. The offset or address parameter X of the intrinsic is
1292 * guaranteed to satisfy the following:
1293 *
1294 * (X - align_offset) % align_mul == 0
1295 */
1296 NIR_INTRINSIC_ALIGN_MUL,
1297 NIR_INTRINSIC_ALIGN_OFFSET,
1298
1299 /**
1300 * The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic.
1301 */
1302 NIR_INTRINSIC_DESC_TYPE,
1303
1304 /**
1305 * The nir_alu_type of a uniform/input/output
1306 */
1307 NIR_INTRINSIC_TYPE,
1308
1309 /**
1310 * The swizzle mask for the instructions
1311 * SwizzleInvocationsAMD and SwizzleInvocationsMaskedAMD
1312 */
1313 NIR_INTRINSIC_SWIZZLE_MASK,
1314
1315 /* Separate source/dest access flags for copies */
1316 NIR_INTRINSIC_SRC_ACCESS = 21,
1317 NIR_INTRINSIC_DST_ACCESS = 22,
1318
1319 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1320
1321 } nir_intrinsic_index_flag;
1322
1323 #define NIR_INTRINSIC_MAX_INPUTS 5
1324
1325 typedef struct {
1326 const char *name;
1327
1328 unsigned num_srcs; /** < number of register/SSA inputs */
1329
1330 /** number of components of each input register
1331 *
1332 * If this value is 0, the number of components is given by the
1333 * num_components field of nir_intrinsic_instr. If this value is -1, the
1334 * intrinsic consumes however many components are provided and it is not
1335 * validated at all.
1336 */
1337 int src_components[NIR_INTRINSIC_MAX_INPUTS];
1338
1339 bool has_dest;
1340
1341 /** number of components of the output register
1342 *
1343 * If this value is 0, the number of components is given by the
1344 * num_components field of nir_intrinsic_instr.
1345 */
1346 unsigned dest_components;
1347
1348 /** bitfield of legal bit sizes */
1349 unsigned dest_bit_sizes;
1350
1351 /** the number of constant indices used by the intrinsic */
1352 unsigned num_indices;
1353
1354 /** indicates the usage of intr->const_index[n] */
1355 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1356
1357 /** semantic flags for calls to this intrinsic */
1358 nir_intrinsic_semantic_flag flags;
1359 } nir_intrinsic_info;
1360
1361 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1362
1363 static inline unsigned
1364 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1365 {
1366 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1367 assert(srcn < info->num_srcs);
1368 if (info->src_components[srcn] > 0)
1369 return info->src_components[srcn];
1370 else if (info->src_components[srcn] == 0)
1371 return intr->num_components;
1372 else
1373 return nir_src_num_components(intr->src[srcn]);
1374 }
1375
1376 static inline unsigned
1377 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1378 {
1379 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1380 if (!info->has_dest)
1381 return 0;
1382 else if (info->dest_components)
1383 return info->dest_components;
1384 else
1385 return intr->num_components;
1386 }
1387
1388 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1389 static inline type \
1390 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1391 { \
1392 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1393 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1394 return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1395 } \
1396 static inline void \
1397 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1398 { \
1399 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1400 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1401 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1402 }
1403
1404 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1405 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1406 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1407 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1408 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1409 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1410 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1411 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1412 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1413 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1414 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1415 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1416 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1417 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1418 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1419 INTRINSIC_IDX_ACCESSORS(src_access, SRC_ACCESS, enum gl_access_qualifier)
1420 INTRINSIC_IDX_ACCESSORS(dst_access, DST_ACCESS, enum gl_access_qualifier)
1421 INTRINSIC_IDX_ACCESSORS(format, FORMAT, unsigned)
1422 INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
1423 INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
1424 INTRINSIC_IDX_ACCESSORS(desc_type, DESC_TYPE, unsigned)
1425 INTRINSIC_IDX_ACCESSORS(type, TYPE, nir_alu_type)
1426 INTRINSIC_IDX_ACCESSORS(swizzle_mask, SWIZZLE_MASK, unsigned)
1427
1428 static inline void
1429 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1430 unsigned align_mul, unsigned align_offset)
1431 {
1432 assert(util_is_power_of_two_nonzero(align_mul));
1433 assert(align_offset < align_mul);
1434 nir_intrinsic_set_align_mul(intrin, align_mul);
1435 nir_intrinsic_set_align_offset(intrin, align_offset);
1436 }
1437
1438 /** Returns a simple alignment for a load/store intrinsic offset
1439 *
1440 * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1441 * and ALIGN_OFFSET parameters, this helper takes both into account and
1442 * provides a single simple alignment parameter. The offset X is guaranteed
1443 * to satisfy X % align == 0.
1444 */
1445 static inline unsigned
1446 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
1447 {
1448 const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1449 const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1450 assert(align_offset < align_mul);
1451 return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1452 }
1453
1454 /* Converts a image_deref_* intrinsic into a image_* one */
1455 void nir_rewrite_image_intrinsic(nir_intrinsic_instr *instr,
1456 nir_ssa_def *handle, bool bindless);
1457
1458 /**
1459 * \group texture information
1460 *
1461 * This gives semantic information about textures which is useful to the
1462 * frontend, the backend, and lowering passes, but not the optimizer.
1463 */
1464
1465 typedef enum {
1466 nir_tex_src_coord,
1467 nir_tex_src_projector,
1468 nir_tex_src_comparator, /* shadow comparator */
1469 nir_tex_src_offset,
1470 nir_tex_src_bias,
1471 nir_tex_src_lod,
1472 nir_tex_src_min_lod,
1473 nir_tex_src_ms_index, /* MSAA sample index */
1474 nir_tex_src_ms_mcs, /* MSAA compression value */
1475 nir_tex_src_ddx,
1476 nir_tex_src_ddy,
1477 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1478 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1479 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1480 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1481 nir_tex_src_texture_handle, /* < bindless texture handle */
1482 nir_tex_src_sampler_handle, /* < bindless sampler handle */
1483 nir_tex_src_plane, /* < selects plane for planar textures */
1484 nir_num_tex_src_types
1485 } nir_tex_src_type;
1486
1487 typedef struct {
1488 nir_src src;
1489 nir_tex_src_type src_type;
1490 } nir_tex_src;
1491
1492 typedef enum {
1493 nir_texop_tex, /**< Regular texture look-up */
1494 nir_texop_txb, /**< Texture look-up with LOD bias */
1495 nir_texop_txl, /**< Texture look-up with explicit LOD */
1496 nir_texop_txd, /**< Texture look-up with partial derivatives */
1497 nir_texop_txf, /**< Texel fetch with explicit LOD */
1498 nir_texop_txf_ms, /**< Multisample texture fetch */
1499 nir_texop_txf_ms_fb, /**< Multisample texture fetch from framebuffer */
1500 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1501 nir_texop_txs, /**< Texture size */
1502 nir_texop_lod, /**< Texture lod query */
1503 nir_texop_tg4, /**< Texture gather */
1504 nir_texop_query_levels, /**< Texture levels query */
1505 nir_texop_texture_samples, /**< Texture samples query */
1506 nir_texop_samples_identical, /**< Query whether all samples are definitely
1507 * identical.
1508 */
1509 } nir_texop;
1510
1511 typedef struct {
1512 nir_instr instr;
1513
1514 enum glsl_sampler_dim sampler_dim;
1515 nir_alu_type dest_type;
1516
1517 nir_texop op;
1518 nir_dest dest;
1519 nir_tex_src *src;
1520 unsigned num_srcs, coord_components;
1521 bool is_array, is_shadow;
1522
1523 /**
1524 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1525 * components or the new-style shadow that outputs 1 component.
1526 */
1527 bool is_new_style_shadow;
1528
1529 /* gather component selector */
1530 unsigned component : 2;
1531
1532 /* gather offsets */
1533 int8_t tg4_offsets[4][2];
1534
1535 /* True if the texture index or handle is not dynamically uniform */
1536 bool texture_non_uniform;
1537
1538 /* True if the sampler index or handle is not dynamically uniform */
1539 bool sampler_non_uniform;
1540
1541 /** The texture index
1542 *
1543 * If this texture instruction has a nir_tex_src_texture_offset source,
1544 * then the texture index is given by texture_index + texture_offset.
1545 */
1546 unsigned texture_index;
1547
1548 /** The size of the texture array or 0 if it's not an array */
1549 unsigned texture_array_size;
1550
1551 /** The sampler index
1552 *
1553 * The following operations do not require a sampler and, as such, this
1554 * field should be ignored:
1555 * - nir_texop_txf
1556 * - nir_texop_txf_ms
1557 * - nir_texop_txs
1558 * - nir_texop_lod
1559 * - nir_texop_query_levels
1560 * - nir_texop_texture_samples
1561 * - nir_texop_samples_identical
1562 *
1563 * If this texture instruction has a nir_tex_src_sampler_offset source,
1564 * then the sampler index is given by sampler_index + sampler_offset.
1565 */
1566 unsigned sampler_index;
1567 } nir_tex_instr;
1568
1569 static inline unsigned
1570 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1571 {
1572 switch (instr->op) {
1573 case nir_texop_txs: {
1574 unsigned ret;
1575 switch (instr->sampler_dim) {
1576 case GLSL_SAMPLER_DIM_1D:
1577 case GLSL_SAMPLER_DIM_BUF:
1578 ret = 1;
1579 break;
1580 case GLSL_SAMPLER_DIM_2D:
1581 case GLSL_SAMPLER_DIM_CUBE:
1582 case GLSL_SAMPLER_DIM_MS:
1583 case GLSL_SAMPLER_DIM_RECT:
1584 case GLSL_SAMPLER_DIM_EXTERNAL:
1585 case GLSL_SAMPLER_DIM_SUBPASS:
1586 ret = 2;
1587 break;
1588 case GLSL_SAMPLER_DIM_3D:
1589 ret = 3;
1590 break;
1591 default:
1592 unreachable("not reached");
1593 }
1594 if (instr->is_array)
1595 ret++;
1596 return ret;
1597 }
1598
1599 case nir_texop_lod:
1600 return 2;
1601
1602 case nir_texop_texture_samples:
1603 case nir_texop_query_levels:
1604 case nir_texop_samples_identical:
1605 return 1;
1606
1607 default:
1608 if (instr->is_shadow && instr->is_new_style_shadow)
1609 return 1;
1610
1611 return 4;
1612 }
1613 }
1614
1615 /* Returns true if this texture operation queries something about the texture
1616 * rather than actually sampling it.
1617 */
1618 static inline bool
1619 nir_tex_instr_is_query(const nir_tex_instr *instr)
1620 {
1621 switch (instr->op) {
1622 case nir_texop_txs:
1623 case nir_texop_lod:
1624 case nir_texop_texture_samples:
1625 case nir_texop_query_levels:
1626 case nir_texop_txf_ms_mcs:
1627 return true;
1628 case nir_texop_tex:
1629 case nir_texop_txb:
1630 case nir_texop_txl:
1631 case nir_texop_txd:
1632 case nir_texop_txf:
1633 case nir_texop_txf_ms:
1634 case nir_texop_txf_ms_fb:
1635 case nir_texop_tg4:
1636 return false;
1637 default:
1638 unreachable("Invalid texture opcode");
1639 }
1640 }
1641
1642 static inline bool
1643 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1644 {
1645 switch (instr->op) {
1646 case nir_op_flt:
1647 case nir_op_fge:
1648 case nir_op_feq:
1649 case nir_op_fne:
1650 case nir_op_ilt:
1651 case nir_op_ult:
1652 case nir_op_ige:
1653 case nir_op_uge:
1654 case nir_op_ieq:
1655 case nir_op_ine:
1656 case nir_op_i2b1:
1657 case nir_op_f2b1:
1658 case nir_op_inot:
1659 case nir_op_fnot:
1660 return true;
1661 default:
1662 return false;
1663 }
1664 }
1665
1666 static inline nir_alu_type
1667 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1668 {
1669 switch (instr->src[src].src_type) {
1670 case nir_tex_src_coord:
1671 switch (instr->op) {
1672 case nir_texop_txf:
1673 case nir_texop_txf_ms:
1674 case nir_texop_txf_ms_fb:
1675 case nir_texop_txf_ms_mcs:
1676 case nir_texop_samples_identical:
1677 return nir_type_int;
1678
1679 default:
1680 return nir_type_float;
1681 }
1682
1683 case nir_tex_src_lod:
1684 switch (instr->op) {
1685 case nir_texop_txs:
1686 case nir_texop_txf:
1687 return nir_type_int;
1688
1689 default:
1690 return nir_type_float;
1691 }
1692
1693 case nir_tex_src_projector:
1694 case nir_tex_src_comparator:
1695 case nir_tex_src_bias:
1696 case nir_tex_src_ddx:
1697 case nir_tex_src_ddy:
1698 return nir_type_float;
1699
1700 case nir_tex_src_offset:
1701 case nir_tex_src_ms_index:
1702 case nir_tex_src_texture_offset:
1703 case nir_tex_src_sampler_offset:
1704 return nir_type_int;
1705
1706 default:
1707 unreachable("Invalid texture source type");
1708 }
1709 }
1710
1711 static inline unsigned
1712 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1713 {
1714 if (instr->src[src].src_type == nir_tex_src_coord)
1715 return instr->coord_components;
1716
1717 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1718 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1719 return 4;
1720
1721 if (instr->src[src].src_type == nir_tex_src_ddx ||
1722 instr->src[src].src_type == nir_tex_src_ddy) {
1723 if (instr->is_array)
1724 return instr->coord_components - 1;
1725 else
1726 return instr->coord_components;
1727 }
1728
1729 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1730 * the offset, since a cube maps to a single face.
1731 */
1732 if (instr->src[src].src_type == nir_tex_src_offset) {
1733 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1734 return 2;
1735 else if (instr->is_array)
1736 return instr->coord_components - 1;
1737 else
1738 return instr->coord_components;
1739 }
1740
1741 return 1;
1742 }
1743
1744 static inline int
1745 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1746 {
1747 for (unsigned i = 0; i < instr->num_srcs; i++)
1748 if (instr->src[i].src_type == type)
1749 return (int) i;
1750
1751 return -1;
1752 }
1753
1754 void nir_tex_instr_add_src(nir_tex_instr *tex,
1755 nir_tex_src_type src_type,
1756 nir_src src);
1757
1758 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1759
1760 bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
1761
1762 typedef struct {
1763 nir_instr instr;
1764
1765 nir_ssa_def def;
1766
1767 nir_const_value value[];
1768 } nir_load_const_instr;
1769
1770 #define nir_const_load_to_arr(arr, l, m) \
1771 { \
1772 nir_const_value_to_array(arr, l->value, l->def.num_components, m); \
1773 } while (false);
1774
1775 typedef enum {
1776 nir_jump_return,
1777 nir_jump_break,
1778 nir_jump_continue,
1779 } nir_jump_type;
1780
1781 typedef struct {
1782 nir_instr instr;
1783 nir_jump_type type;
1784 } nir_jump_instr;
1785
1786 /* creates a new SSA variable in an undefined state */
1787
1788 typedef struct {
1789 nir_instr instr;
1790 nir_ssa_def def;
1791 } nir_ssa_undef_instr;
1792
1793 typedef struct {
1794 struct exec_node node;
1795
1796 /* The predecessor block corresponding to this source */
1797 struct nir_block *pred;
1798
1799 nir_src src;
1800 } nir_phi_src;
1801
1802 #define nir_foreach_phi_src(phi_src, phi) \
1803 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1804 #define nir_foreach_phi_src_safe(phi_src, phi) \
1805 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1806
1807 typedef struct {
1808 nir_instr instr;
1809
1810 struct exec_list srcs; /** < list of nir_phi_src */
1811
1812 nir_dest dest;
1813 } nir_phi_instr;
1814
1815 typedef struct {
1816 struct exec_node node;
1817 nir_src src;
1818 nir_dest dest;
1819 } nir_parallel_copy_entry;
1820
1821 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1822 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1823
1824 typedef struct {
1825 nir_instr instr;
1826
1827 /* A list of nir_parallel_copy_entrys. The sources of all of the
1828 * entries are copied to the corresponding destinations "in parallel".
1829 * In other words, if we have two entries: a -> b and b -> a, the values
1830 * get swapped.
1831 */
1832 struct exec_list entries;
1833 } nir_parallel_copy_instr;
1834
1835 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1836 type, nir_instr_type_alu)
1837 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
1838 type, nir_instr_type_deref)
1839 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1840 type, nir_instr_type_call)
1841 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1842 type, nir_instr_type_jump)
1843 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1844 type, nir_instr_type_tex)
1845 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1846 type, nir_instr_type_intrinsic)
1847 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1848 type, nir_instr_type_load_const)
1849 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1850 type, nir_instr_type_ssa_undef)
1851 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1852 type, nir_instr_type_phi)
1853 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1854 nir_parallel_copy_instr, instr,
1855 type, nir_instr_type_parallel_copy)
1856
1857 /*
1858 * Control flow
1859 *
1860 * Control flow consists of a tree of control flow nodes, which include
1861 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1862 * instructions that always run start-to-finish. Each basic block also keeps
1863 * track of its successors (blocks which may run immediately after the current
1864 * block) and predecessors (blocks which could have run immediately before the
1865 * current block). Each function also has a start block and an end block which
1866 * all return statements point to (which is always empty). Together, all the
1867 * blocks with their predecessors and successors make up the control flow
1868 * graph (CFG) of the function. There are helpers that modify the tree of
1869 * control flow nodes while modifying the CFG appropriately; these should be
1870 * used instead of modifying the tree directly.
1871 */
1872
1873 typedef enum {
1874 nir_cf_node_block,
1875 nir_cf_node_if,
1876 nir_cf_node_loop,
1877 nir_cf_node_function
1878 } nir_cf_node_type;
1879
1880 typedef struct nir_cf_node {
1881 struct exec_node node;
1882 nir_cf_node_type type;
1883 struct nir_cf_node *parent;
1884 } nir_cf_node;
1885
1886 typedef struct nir_block {
1887 nir_cf_node cf_node;
1888
1889 struct exec_list instr_list; /** < list of nir_instr */
1890
1891 /** generic block index; generated by nir_index_blocks */
1892 unsigned index;
1893
1894 /*
1895 * Each block can only have up to 2 successors, so we put them in a simple
1896 * array - no need for anything more complicated.
1897 */
1898 struct nir_block *successors[2];
1899
1900 /* Set of nir_block predecessors in the CFG */
1901 struct set *predecessors;
1902
1903 /*
1904 * this node's immediate dominator in the dominance tree - set to NULL for
1905 * the start block.
1906 */
1907 struct nir_block *imm_dom;
1908
1909 /* This node's children in the dominance tree */
1910 unsigned num_dom_children;
1911 struct nir_block **dom_children;
1912
1913 /* Set of nir_blocks on the dominance frontier of this block */
1914 struct set *dom_frontier;
1915
1916 /*
1917 * These two indices have the property that dom_{pre,post}_index for each
1918 * child of this block in the dominance tree will always be between
1919 * dom_pre_index and dom_post_index for this block, which makes testing if
1920 * a given block is dominated by another block an O(1) operation.
1921 */
1922 unsigned dom_pre_index, dom_post_index;
1923
1924 /* live in and out for this block; used for liveness analysis */
1925 BITSET_WORD *live_in;
1926 BITSET_WORD *live_out;
1927 } nir_block;
1928
1929 static inline nir_instr *
1930 nir_block_first_instr(nir_block *block)
1931 {
1932 struct exec_node *head = exec_list_get_head(&block->instr_list);
1933 return exec_node_data(nir_instr, head, node);
1934 }
1935
1936 static inline nir_instr *
1937 nir_block_last_instr(nir_block *block)
1938 {
1939 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1940 return exec_node_data(nir_instr, tail, node);
1941 }
1942
1943 static inline bool
1944 nir_block_ends_in_jump(nir_block *block)
1945 {
1946 return !exec_list_is_empty(&block->instr_list) &&
1947 nir_block_last_instr(block)->type == nir_instr_type_jump;
1948 }
1949
1950 #define nir_foreach_instr(instr, block) \
1951 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1952 #define nir_foreach_instr_reverse(instr, block) \
1953 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1954 #define nir_foreach_instr_safe(instr, block) \
1955 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1956 #define nir_foreach_instr_reverse_safe(instr, block) \
1957 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1958
1959 typedef enum {
1960 nir_selection_control_none = 0x0,
1961 nir_selection_control_flatten = 0x1,
1962 nir_selection_control_dont_flatten = 0x2,
1963 } nir_selection_control;
1964
1965 typedef struct nir_if {
1966 nir_cf_node cf_node;
1967 nir_src condition;
1968 nir_selection_control control;
1969
1970 struct exec_list then_list; /** < list of nir_cf_node */
1971 struct exec_list else_list; /** < list of nir_cf_node */
1972 } nir_if;
1973
1974 typedef struct {
1975 nir_if *nif;
1976
1977 /** Instruction that generates nif::condition. */
1978 nir_instr *conditional_instr;
1979
1980 /** Block within ::nif that has the break instruction. */
1981 nir_block *break_block;
1982
1983 /** Last block for the then- or else-path that does not contain the break. */
1984 nir_block *continue_from_block;
1985
1986 /** True when ::break_block is in the else-path of ::nif. */
1987 bool continue_from_then;
1988 bool induction_rhs;
1989
1990 /* This is true if the terminators exact trip count is unknown. For
1991 * example:
1992 *
1993 * for (int i = 0; i < imin(x, 4); i++)
1994 * ...
1995 *
1996 * Here loop analysis would have set a max_trip_count of 4 however we dont
1997 * know for sure that this is the exact trip count.
1998 */
1999 bool exact_trip_count_unknown;
2000
2001 struct list_head loop_terminator_link;
2002 } nir_loop_terminator;
2003
2004 typedef struct {
2005 /* Estimated cost (in number of instructions) of the loop */
2006 unsigned instr_cost;
2007
2008 /* Guessed trip count based on array indexing */
2009 unsigned guessed_trip_count;
2010
2011 /* Maximum number of times the loop is run (if known) */
2012 unsigned max_trip_count;
2013
2014 /* Do we know the exact number of times the loop will be run */
2015 bool exact_trip_count_known;
2016
2017 /* Unroll the loop regardless of its size */
2018 bool force_unroll;
2019
2020 /* Does the loop contain complex loop terminators, continues or other
2021 * complex behaviours? If this is true we can't rely on
2022 * loop_terminator_list to be complete or accurate.
2023 */
2024 bool complex_loop;
2025
2026 nir_loop_terminator *limiting_terminator;
2027
2028 /* A list of loop_terminators terminating this loop. */
2029 struct list_head loop_terminator_list;
2030 } nir_loop_info;
2031
2032 typedef enum {
2033 nir_loop_control_none = 0x0,
2034 nir_loop_control_unroll = 0x1,
2035 nir_loop_control_dont_unroll = 0x2,
2036 } nir_loop_control;
2037
2038 typedef struct {
2039 nir_cf_node cf_node;
2040
2041 struct exec_list body; /** < list of nir_cf_node */
2042
2043 nir_loop_info *info;
2044 nir_loop_control control;
2045 bool partially_unrolled;
2046 } nir_loop;
2047
2048 /**
2049 * Various bits of metadata that can may be created or required by
2050 * optimization and analysis passes
2051 */
2052 typedef enum {
2053 nir_metadata_none = 0x0,
2054 nir_metadata_block_index = 0x1,
2055 nir_metadata_dominance = 0x2,
2056 nir_metadata_live_ssa_defs = 0x4,
2057 nir_metadata_not_properly_reset = 0x8,
2058 nir_metadata_loop_analysis = 0x10,
2059 } nir_metadata;
2060
2061 typedef struct {
2062 nir_cf_node cf_node;
2063
2064 /** pointer to the function of which this is an implementation */
2065 struct nir_function *function;
2066
2067 struct exec_list body; /** < list of nir_cf_node */
2068
2069 nir_block *end_block;
2070
2071 /** list for all local variables in the function */
2072 struct exec_list locals;
2073
2074 /** list of local registers in the function */
2075 struct exec_list registers;
2076
2077 /** next available local register index */
2078 unsigned reg_alloc;
2079
2080 /** next available SSA value index */
2081 unsigned ssa_alloc;
2082
2083 /* total number of basic blocks, only valid when block_index_dirty = false */
2084 unsigned num_blocks;
2085
2086 nir_metadata valid_metadata;
2087 } nir_function_impl;
2088
2089 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2090 nir_start_block(nir_function_impl *impl)
2091 {
2092 return (nir_block *) impl->body.head_sentinel.next;
2093 }
2094
2095 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2096 nir_impl_last_block(nir_function_impl *impl)
2097 {
2098 return (nir_block *) impl->body.tail_sentinel.prev;
2099 }
2100
2101 static inline nir_cf_node *
2102 nir_cf_node_next(nir_cf_node *node)
2103 {
2104 struct exec_node *next = exec_node_get_next(&node->node);
2105 if (exec_node_is_tail_sentinel(next))
2106 return NULL;
2107 else
2108 return exec_node_data(nir_cf_node, next, node);
2109 }
2110
2111 static inline nir_cf_node *
2112 nir_cf_node_prev(nir_cf_node *node)
2113 {
2114 struct exec_node *prev = exec_node_get_prev(&node->node);
2115 if (exec_node_is_head_sentinel(prev))
2116 return NULL;
2117 else
2118 return exec_node_data(nir_cf_node, prev, node);
2119 }
2120
2121 static inline bool
2122 nir_cf_node_is_first(const nir_cf_node *node)
2123 {
2124 return exec_node_is_head_sentinel(node->node.prev);
2125 }
2126
2127 static inline bool
2128 nir_cf_node_is_last(const nir_cf_node *node)
2129 {
2130 return exec_node_is_tail_sentinel(node->node.next);
2131 }
2132
2133 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
2134 type, nir_cf_node_block)
2135 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
2136 type, nir_cf_node_if)
2137 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
2138 type, nir_cf_node_loop)
2139 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
2140 nir_function_impl, cf_node, type, nir_cf_node_function)
2141
2142 static inline nir_block *
2143 nir_if_first_then_block(nir_if *if_stmt)
2144 {
2145 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
2146 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2147 }
2148
2149 static inline nir_block *
2150 nir_if_last_then_block(nir_if *if_stmt)
2151 {
2152 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
2153 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2154 }
2155
2156 static inline nir_block *
2157 nir_if_first_else_block(nir_if *if_stmt)
2158 {
2159 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
2160 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2161 }
2162
2163 static inline nir_block *
2164 nir_if_last_else_block(nir_if *if_stmt)
2165 {
2166 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
2167 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2168 }
2169
2170 static inline nir_block *
2171 nir_loop_first_block(nir_loop *loop)
2172 {
2173 struct exec_node *head = exec_list_get_head(&loop->body);
2174 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2175 }
2176
2177 static inline nir_block *
2178 nir_loop_last_block(nir_loop *loop)
2179 {
2180 struct exec_node *tail = exec_list_get_tail(&loop->body);
2181 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2182 }
2183
2184 /**
2185 * Return true if this list of cf_nodes contains a single empty block.
2186 */
2187 static inline bool
2188 nir_cf_list_is_empty_block(struct exec_list *cf_list)
2189 {
2190 if (exec_list_is_singular(cf_list)) {
2191 struct exec_node *head = exec_list_get_head(cf_list);
2192 nir_block *block =
2193 nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2194 return exec_list_is_empty(&block->instr_list);
2195 }
2196 return false;
2197 }
2198
2199 typedef struct {
2200 uint8_t num_components;
2201 uint8_t bit_size;
2202 } nir_parameter;
2203
2204 typedef struct nir_function {
2205 struct exec_node node;
2206
2207 const char *name;
2208 struct nir_shader *shader;
2209
2210 unsigned num_params;
2211 nir_parameter *params;
2212
2213 /** The implementation of this function.
2214 *
2215 * If the function is only declared and not implemented, this is NULL.
2216 */
2217 nir_function_impl *impl;
2218
2219 bool is_entrypoint;
2220 } nir_function;
2221
2222 typedef enum {
2223 nir_lower_imul64 = (1 << 0),
2224 nir_lower_isign64 = (1 << 1),
2225 /** Lower all int64 modulus and division opcodes */
2226 nir_lower_divmod64 = (1 << 2),
2227 /** Lower all 64-bit umul_high and imul_high opcodes */
2228 nir_lower_imul_high64 = (1 << 3),
2229 nir_lower_mov64 = (1 << 4),
2230 nir_lower_icmp64 = (1 << 5),
2231 nir_lower_iadd64 = (1 << 6),
2232 nir_lower_iabs64 = (1 << 7),
2233 nir_lower_ineg64 = (1 << 8),
2234 nir_lower_logic64 = (1 << 9),
2235 nir_lower_minmax64 = (1 << 10),
2236 nir_lower_shift64 = (1 << 11),
2237 nir_lower_imul_2x32_64 = (1 << 12),
2238 } nir_lower_int64_options;
2239
2240 typedef enum {
2241 nir_lower_drcp = (1 << 0),
2242 nir_lower_dsqrt = (1 << 1),
2243 nir_lower_drsq = (1 << 2),
2244 nir_lower_dtrunc = (1 << 3),
2245 nir_lower_dfloor = (1 << 4),
2246 nir_lower_dceil = (1 << 5),
2247 nir_lower_dfract = (1 << 6),
2248 nir_lower_dround_even = (1 << 7),
2249 nir_lower_dmod = (1 << 8),
2250 nir_lower_fp64_full_software = (1 << 9),
2251 } nir_lower_doubles_options;
2252
2253 typedef struct nir_shader_compiler_options {
2254 bool lower_fdiv;
2255 bool lower_ffma;
2256 bool fuse_ffma;
2257 bool lower_flrp16;
2258 bool lower_flrp32;
2259 /** Lowers flrp when it does not support doubles */
2260 bool lower_flrp64;
2261 bool lower_fpow;
2262 bool lower_fsat;
2263 bool lower_fsqrt;
2264 bool lower_fmod;
2265 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2266 bool lower_bitfield_extract;
2267 /** Lowers ibitfield_extract/ubitfield_extract to bfm, compares, shifts. */
2268 bool lower_bitfield_extract_to_shifts;
2269 /** Lowers bitfield_insert to bfi/bfm */
2270 bool lower_bitfield_insert;
2271 /** Lowers bitfield_insert to bfm, compares, and shifts. */
2272 bool lower_bitfield_insert_to_shifts;
2273 /** Lowers bitfield_reverse to shifts. */
2274 bool lower_bitfield_reverse;
2275 /** Lowers bit_count to shifts. */
2276 bool lower_bit_count;
2277 /** Lowers bfm to shifts and subtracts. */
2278 bool lower_bfm;
2279 /** Lowers ifind_msb to compare and ufind_msb */
2280 bool lower_ifind_msb;
2281 /** Lowers find_lsb to ufind_msb and logic ops */
2282 bool lower_find_lsb;
2283 bool lower_uadd_carry;
2284 bool lower_usub_borrow;
2285 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2286 bool lower_mul_high;
2287 /** lowers fneg and ineg to fsub and isub. */
2288 bool lower_negate;
2289 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2290 bool lower_sub;
2291
2292 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2293 bool lower_scmp;
2294
2295 /** enables rules to lower idiv by power-of-two: */
2296 bool lower_idiv;
2297
2298 /** enable rules to avoid bit shifts */
2299 bool lower_bitshift;
2300
2301 /** enables rules to lower isign to imin+imax */
2302 bool lower_isign;
2303
2304 /** enables rules to lower fsign to fsub and flt */
2305 bool lower_fsign;
2306
2307 /* Does the native fdot instruction replicate its result for four
2308 * components? If so, then opt_algebraic_late will turn all fdotN
2309 * instructions into fdot_replicatedN instructions.
2310 */
2311 bool fdot_replicates;
2312
2313 /** lowers ffloor to fsub+ffract: */
2314 bool lower_ffloor;
2315
2316 /** lowers ffract to fsub+ffloor: */
2317 bool lower_ffract;
2318
2319 /** lowers fceil to fneg+ffloor+fneg: */
2320 bool lower_fceil;
2321
2322 bool lower_ftrunc;
2323
2324 bool lower_ldexp;
2325
2326 bool lower_pack_half_2x16;
2327 bool lower_pack_unorm_2x16;
2328 bool lower_pack_snorm_2x16;
2329 bool lower_pack_unorm_4x8;
2330 bool lower_pack_snorm_4x8;
2331 bool lower_unpack_half_2x16;
2332 bool lower_unpack_unorm_2x16;
2333 bool lower_unpack_snorm_2x16;
2334 bool lower_unpack_unorm_4x8;
2335 bool lower_unpack_snorm_4x8;
2336
2337 bool lower_extract_byte;
2338 bool lower_extract_word;
2339
2340 bool lower_all_io_to_temps;
2341 bool lower_all_io_to_elements;
2342
2343 /* Indicates that the driver only has zero-based vertex id */
2344 bool vertex_id_zero_based;
2345
2346 /**
2347 * If enabled, gl_BaseVertex will be lowered as:
2348 * is_indexed_draw (~0/0) & firstvertex
2349 */
2350 bool lower_base_vertex;
2351
2352 /**
2353 * If enabled, gl_HelperInvocation will be lowered as:
2354 *
2355 * !((1 << sample_id) & sample_mask_in))
2356 *
2357 * This depends on some possibly hw implementation details, which may
2358 * not be true for all hw. In particular that the FS is only executed
2359 * for covered samples or for helper invocations. So, do not blindly
2360 * enable this option.
2361 *
2362 * Note: See also issue #22 in ARB_shader_image_load_store
2363 */
2364 bool lower_helper_invocation;
2365
2366 /**
2367 * Convert gl_SampleMaskIn to gl_HelperInvocation as follows:
2368 *
2369 * gl_SampleMaskIn == 0 ---> gl_HelperInvocation
2370 * gl_SampleMaskIn != 0 ---> !gl_HelperInvocation
2371 */
2372 bool optimize_sample_mask_in;
2373
2374 bool lower_cs_local_index_from_id;
2375 bool lower_cs_local_id_from_index;
2376
2377 bool lower_device_index_to_zero;
2378
2379 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
2380 bool lower_wpos_pntc;
2381
2382 bool lower_hadd;
2383 bool lower_add_sat;
2384
2385 /**
2386 * Should IO be re-vectorized? Some scalar ISAs still operate on vec4's
2387 * for IO purposes and would prefer loads/stores be vectorized.
2388 */
2389 bool vectorize_io;
2390
2391 /**
2392 * Should nir_lower_io() create load_interpolated_input intrinsics?
2393 *
2394 * If not, it generates regular load_input intrinsics and interpolation
2395 * information must be inferred from the list of input nir_variables.
2396 */
2397 bool use_interpolated_input_intrinsics;
2398
2399 /* Lowers when 32x32->64 bit multiplication is not supported */
2400 bool lower_mul_2x32_64;
2401
2402 unsigned max_unroll_iterations;
2403
2404 nir_lower_int64_options lower_int64_options;
2405 nir_lower_doubles_options lower_doubles_options;
2406 } nir_shader_compiler_options;
2407
2408 typedef struct nir_shader {
2409 /** list of uniforms (nir_variable) */
2410 struct exec_list uniforms;
2411
2412 /** list of inputs (nir_variable) */
2413 struct exec_list inputs;
2414
2415 /** list of outputs (nir_variable) */
2416 struct exec_list outputs;
2417
2418 /** list of shared compute variables (nir_variable) */
2419 struct exec_list shared;
2420
2421 /** Set of driver-specific options for the shader.
2422 *
2423 * The memory for the options is expected to be kept in a single static
2424 * copy by the driver.
2425 */
2426 const struct nir_shader_compiler_options *options;
2427
2428 /** Various bits of compile-time information about a given shader */
2429 struct shader_info info;
2430
2431 /** list of global variables in the shader (nir_variable) */
2432 struct exec_list globals;
2433
2434 /** list of system value variables in the shader (nir_variable) */
2435 struct exec_list system_values;
2436
2437 struct exec_list functions; /** < list of nir_function */
2438
2439 /**
2440 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2441 * access plus one
2442 */
2443 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2444
2445 /** Size in bytes of required scratch space */
2446 unsigned scratch_size;
2447
2448 /** Constant data associated with this shader.
2449 *
2450 * Constant data is loaded through load_constant intrinsics. See also
2451 * nir_opt_large_constants.
2452 */
2453 void *constant_data;
2454 unsigned constant_data_size;
2455 } nir_shader;
2456
2457 #define nir_foreach_function(func, shader) \
2458 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2459
2460 static inline nir_function_impl *
2461 nir_shader_get_entrypoint(nir_shader *shader)
2462 {
2463 nir_function *func = NULL;
2464
2465 nir_foreach_function(function, shader) {
2466 assert(func == NULL);
2467 if (function->is_entrypoint) {
2468 func = function;
2469 #ifndef NDEBUG
2470 break;
2471 #endif
2472 }
2473 }
2474
2475 if (!func)
2476 return NULL;
2477
2478 assert(func->num_params == 0);
2479 assert(func->impl);
2480 return func->impl;
2481 }
2482
2483 nir_shader *nir_shader_create(void *mem_ctx,
2484 gl_shader_stage stage,
2485 const nir_shader_compiler_options *options,
2486 shader_info *si);
2487
2488 nir_register *nir_local_reg_create(nir_function_impl *impl);
2489
2490 void nir_reg_remove(nir_register *reg);
2491
2492 /** Adds a variable to the appropriate list in nir_shader */
2493 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2494
2495 static inline void
2496 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2497 {
2498 assert(var->data.mode == nir_var_function_temp);
2499 exec_list_push_tail(&impl->locals, &var->node);
2500 }
2501
2502 /** creates a variable, sets a few defaults, and adds it to the list */
2503 nir_variable *nir_variable_create(nir_shader *shader,
2504 nir_variable_mode mode,
2505 const struct glsl_type *type,
2506 const char *name);
2507 /** creates a local variable and adds it to the list */
2508 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2509 const struct glsl_type *type,
2510 const char *name);
2511
2512 /** creates a function and adds it to the shader's list of functions */
2513 nir_function *nir_function_create(nir_shader *shader, const char *name);
2514
2515 nir_function_impl *nir_function_impl_create(nir_function *func);
2516 /** creates a function_impl that isn't tied to any particular function */
2517 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2518
2519 nir_block *nir_block_create(nir_shader *shader);
2520 nir_if *nir_if_create(nir_shader *shader);
2521 nir_loop *nir_loop_create(nir_shader *shader);
2522
2523 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2524
2525 /** requests that the given pieces of metadata be generated */
2526 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2527 /** dirties all but the preserved metadata */
2528 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2529
2530 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2531 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2532
2533 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2534 nir_deref_type deref_type);
2535
2536 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2537
2538 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2539 unsigned num_components,
2540 unsigned bit_size);
2541
2542 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2543 nir_intrinsic_op op);
2544
2545 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2546 nir_function *callee);
2547
2548 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2549
2550 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2551
2552 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2553
2554 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2555 unsigned num_components,
2556 unsigned bit_size);
2557
2558 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2559
2560 /**
2561 * NIR Cursors and Instruction Insertion API
2562 * @{
2563 *
2564 * A tiny struct representing a point to insert/extract instructions or
2565 * control flow nodes. Helps reduce the combinatorial explosion of possible
2566 * points to insert/extract.
2567 *
2568 * \sa nir_control_flow.h
2569 */
2570 typedef enum {
2571 nir_cursor_before_block,
2572 nir_cursor_after_block,
2573 nir_cursor_before_instr,
2574 nir_cursor_after_instr,
2575 } nir_cursor_option;
2576
2577 typedef struct {
2578 nir_cursor_option option;
2579 union {
2580 nir_block *block;
2581 nir_instr *instr;
2582 };
2583 } nir_cursor;
2584
2585 static inline nir_block *
2586 nir_cursor_current_block(nir_cursor cursor)
2587 {
2588 if (cursor.option == nir_cursor_before_instr ||
2589 cursor.option == nir_cursor_after_instr) {
2590 return cursor.instr->block;
2591 } else {
2592 return cursor.block;
2593 }
2594 }
2595
2596 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2597
2598 static inline nir_cursor
2599 nir_before_block(nir_block *block)
2600 {
2601 nir_cursor cursor;
2602 cursor.option = nir_cursor_before_block;
2603 cursor.block = block;
2604 return cursor;
2605 }
2606
2607 static inline nir_cursor
2608 nir_after_block(nir_block *block)
2609 {
2610 nir_cursor cursor;
2611 cursor.option = nir_cursor_after_block;
2612 cursor.block = block;
2613 return cursor;
2614 }
2615
2616 static inline nir_cursor
2617 nir_before_instr(nir_instr *instr)
2618 {
2619 nir_cursor cursor;
2620 cursor.option = nir_cursor_before_instr;
2621 cursor.instr = instr;
2622 return cursor;
2623 }
2624
2625 static inline nir_cursor
2626 nir_after_instr(nir_instr *instr)
2627 {
2628 nir_cursor cursor;
2629 cursor.option = nir_cursor_after_instr;
2630 cursor.instr = instr;
2631 return cursor;
2632 }
2633
2634 static inline nir_cursor
2635 nir_after_block_before_jump(nir_block *block)
2636 {
2637 nir_instr *last_instr = nir_block_last_instr(block);
2638 if (last_instr && last_instr->type == nir_instr_type_jump) {
2639 return nir_before_instr(last_instr);
2640 } else {
2641 return nir_after_block(block);
2642 }
2643 }
2644
2645 static inline nir_cursor
2646 nir_before_src(nir_src *src, bool is_if_condition)
2647 {
2648 if (is_if_condition) {
2649 nir_block *prev_block =
2650 nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
2651 assert(!nir_block_ends_in_jump(prev_block));
2652 return nir_after_block(prev_block);
2653 } else if (src->parent_instr->type == nir_instr_type_phi) {
2654 #ifndef NDEBUG
2655 nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
2656 bool found = false;
2657 nir_foreach_phi_src(phi_src, cond_phi) {
2658 if (phi_src->src.ssa == src->ssa) {
2659 found = true;
2660 break;
2661 }
2662 }
2663 assert(found);
2664 #endif
2665 /* The LIST_ENTRY macro is a generic container-of macro, it just happens
2666 * to have a more specific name.
2667 */
2668 nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
2669 return nir_after_block_before_jump(phi_src->pred);
2670 } else {
2671 return nir_before_instr(src->parent_instr);
2672 }
2673 }
2674
2675 static inline nir_cursor
2676 nir_before_cf_node(nir_cf_node *node)
2677 {
2678 if (node->type == nir_cf_node_block)
2679 return nir_before_block(nir_cf_node_as_block(node));
2680
2681 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2682 }
2683
2684 static inline nir_cursor
2685 nir_after_cf_node(nir_cf_node *node)
2686 {
2687 if (node->type == nir_cf_node_block)
2688 return nir_after_block(nir_cf_node_as_block(node));
2689
2690 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2691 }
2692
2693 static inline nir_cursor
2694 nir_after_phis(nir_block *block)
2695 {
2696 nir_foreach_instr(instr, block) {
2697 if (instr->type != nir_instr_type_phi)
2698 return nir_before_instr(instr);
2699 }
2700 return nir_after_block(block);
2701 }
2702
2703 static inline nir_cursor
2704 nir_after_cf_node_and_phis(nir_cf_node *node)
2705 {
2706 if (node->type == nir_cf_node_block)
2707 return nir_after_block(nir_cf_node_as_block(node));
2708
2709 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2710
2711 return nir_after_phis(block);
2712 }
2713
2714 static inline nir_cursor
2715 nir_before_cf_list(struct exec_list *cf_list)
2716 {
2717 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2718 exec_list_get_head(cf_list), node);
2719 return nir_before_cf_node(first_node);
2720 }
2721
2722 static inline nir_cursor
2723 nir_after_cf_list(struct exec_list *cf_list)
2724 {
2725 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2726 exec_list_get_tail(cf_list), node);
2727 return nir_after_cf_node(last_node);
2728 }
2729
2730 /**
2731 * Insert a NIR instruction at the given cursor.
2732 *
2733 * Note: This does not update the cursor.
2734 */
2735 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2736
2737 static inline void
2738 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2739 {
2740 nir_instr_insert(nir_before_instr(instr), before);
2741 }
2742
2743 static inline void
2744 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2745 {
2746 nir_instr_insert(nir_after_instr(instr), after);
2747 }
2748
2749 static inline void
2750 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2751 {
2752 nir_instr_insert(nir_before_block(block), before);
2753 }
2754
2755 static inline void
2756 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2757 {
2758 nir_instr_insert(nir_after_block(block), after);
2759 }
2760
2761 static inline void
2762 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2763 {
2764 nir_instr_insert(nir_before_cf_node(node), before);
2765 }
2766
2767 static inline void
2768 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2769 {
2770 nir_instr_insert(nir_after_cf_node(node), after);
2771 }
2772
2773 static inline void
2774 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2775 {
2776 nir_instr_insert(nir_before_cf_list(list), before);
2777 }
2778
2779 static inline void
2780 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2781 {
2782 nir_instr_insert(nir_after_cf_list(list), after);
2783 }
2784
2785 void nir_instr_remove_v(nir_instr *instr);
2786
2787 static inline nir_cursor
2788 nir_instr_remove(nir_instr *instr)
2789 {
2790 nir_cursor cursor;
2791 nir_instr *prev = nir_instr_prev(instr);
2792 if (prev) {
2793 cursor = nir_after_instr(prev);
2794 } else {
2795 cursor = nir_before_block(instr->block);
2796 }
2797 nir_instr_remove_v(instr);
2798 return cursor;
2799 }
2800
2801 /** @} */
2802
2803 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2804 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2805 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2806 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2807 void *state);
2808 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2809 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2810
2811 nir_const_value *nir_src_as_const_value(nir_src src);
2812
2813 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
2814 static inline c_type * \
2815 nir_src_as_ ## name (nir_src src) \
2816 { \
2817 return src.is_ssa && src.ssa->parent_instr->type == type_enum \
2818 ? cast_macro(src.ssa->parent_instr) : NULL; \
2819 }
2820
2821 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
2822 NIR_SRC_AS_(intrinsic, nir_intrinsic_instr,
2823 nir_instr_type_intrinsic, nir_instr_as_intrinsic)
2824 NIR_SRC_AS_(deref, nir_deref_instr, nir_instr_type_deref, nir_instr_as_deref)
2825
2826 bool nir_src_is_dynamically_uniform(nir_src src);
2827 bool nir_srcs_equal(nir_src src1, nir_src src2);
2828 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2829 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2830 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2831 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2832 nir_dest new_dest);
2833
2834 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2835 unsigned num_components, unsigned bit_size,
2836 const char *name);
2837 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2838 unsigned num_components, unsigned bit_size,
2839 const char *name);
2840 static inline void
2841 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
2842 const struct glsl_type *type,
2843 const char *name)
2844 {
2845 assert(glsl_type_is_vector_or_scalar(type));
2846 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
2847 glsl_get_bit_size(type), name);
2848 }
2849 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2850 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2851 nir_instr *after_me);
2852
2853 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
2854
2855 /*
2856 * finds the next basic block in source-code order, returns NULL if there is
2857 * none
2858 */
2859
2860 nir_block *nir_block_cf_tree_next(nir_block *block);
2861
2862 /* Performs the opposite of nir_block_cf_tree_next() */
2863
2864 nir_block *nir_block_cf_tree_prev(nir_block *block);
2865
2866 /* Gets the first block in a CF node in source-code order */
2867
2868 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2869
2870 /* Gets the last block in a CF node in source-code order */
2871
2872 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2873
2874 /* Gets the next block after a CF node in source-code order */
2875
2876 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2877
2878 /* Macros for loops that visit blocks in source-code order */
2879
2880 #define nir_foreach_block(block, impl) \
2881 for (nir_block *block = nir_start_block(impl); block != NULL; \
2882 block = nir_block_cf_tree_next(block))
2883
2884 #define nir_foreach_block_safe(block, impl) \
2885 for (nir_block *block = nir_start_block(impl), \
2886 *next = nir_block_cf_tree_next(block); \
2887 block != NULL; \
2888 block = next, next = nir_block_cf_tree_next(block))
2889
2890 #define nir_foreach_block_reverse(block, impl) \
2891 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2892 block = nir_block_cf_tree_prev(block))
2893
2894 #define nir_foreach_block_reverse_safe(block, impl) \
2895 for (nir_block *block = nir_impl_last_block(impl), \
2896 *prev = nir_block_cf_tree_prev(block); \
2897 block != NULL; \
2898 block = prev, prev = nir_block_cf_tree_prev(block))
2899
2900 #define nir_foreach_block_in_cf_node(block, node) \
2901 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2902 block != nir_cf_node_cf_tree_next(node); \
2903 block = nir_block_cf_tree_next(block))
2904
2905 /* If the following CF node is an if, this function returns that if.
2906 * Otherwise, it returns NULL.
2907 */
2908 nir_if *nir_block_get_following_if(nir_block *block);
2909
2910 nir_loop *nir_block_get_following_loop(nir_block *block);
2911
2912 void nir_index_local_regs(nir_function_impl *impl);
2913 void nir_index_ssa_defs(nir_function_impl *impl);
2914 unsigned nir_index_instrs(nir_function_impl *impl);
2915
2916 void nir_index_blocks(nir_function_impl *impl);
2917
2918 void nir_print_shader(nir_shader *shader, FILE *fp);
2919 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2920 void nir_print_instr(const nir_instr *instr, FILE *fp);
2921 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
2922
2923 /** Shallow clone of a single ALU instruction. */
2924 nir_alu_instr *nir_alu_instr_clone(nir_shader *s, const nir_alu_instr *orig);
2925
2926 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2927 nir_function_impl *nir_function_impl_clone(nir_shader *shader,
2928 const nir_function_impl *fi);
2929 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2930 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2931
2932 void nir_shader_replace(nir_shader *dest, nir_shader *src);
2933
2934 void nir_shader_serialize_deserialize(nir_shader *s);
2935
2936 #ifndef NDEBUG
2937 void nir_validate_shader(nir_shader *shader, const char *when);
2938 void nir_metadata_set_validation_flag(nir_shader *shader);
2939 void nir_metadata_check_validation_flag(nir_shader *shader);
2940
2941 static inline bool
2942 should_skip_nir(const char *name)
2943 {
2944 static const char *list = NULL;
2945 if (!list) {
2946 /* Comma separated list of names to skip. */
2947 list = getenv("NIR_SKIP");
2948 if (!list)
2949 list = "";
2950 }
2951
2952 if (!list[0])
2953 return false;
2954
2955 return comma_separated_list_contains(list, name);
2956 }
2957
2958 static inline bool
2959 should_clone_nir(void)
2960 {
2961 static int should_clone = -1;
2962 if (should_clone < 0)
2963 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2964
2965 return should_clone;
2966 }
2967
2968 static inline bool
2969 should_serialize_deserialize_nir(void)
2970 {
2971 static int test_serialize = -1;
2972 if (test_serialize < 0)
2973 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
2974
2975 return test_serialize;
2976 }
2977
2978 static inline bool
2979 should_print_nir(void)
2980 {
2981 static int should_print = -1;
2982 if (should_print < 0)
2983 should_print = env_var_as_boolean("NIR_PRINT", false);
2984
2985 return should_print;
2986 }
2987 #else
2988 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
2989 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2990 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2991 static inline bool should_skip_nir(UNUSED const char *pass_name) { return false; }
2992 static inline bool should_clone_nir(void) { return false; }
2993 static inline bool should_serialize_deserialize_nir(void) { return false; }
2994 static inline bool should_print_nir(void) { return false; }
2995 #endif /* NDEBUG */
2996
2997 #define _PASS(pass, nir, do_pass) do { \
2998 if (should_skip_nir(#pass)) { \
2999 printf("skipping %s\n", #pass); \
3000 break; \
3001 } \
3002 do_pass \
3003 nir_validate_shader(nir, "after " #pass); \
3004 if (should_clone_nir()) { \
3005 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
3006 nir_shader_replace(nir, clone); \
3007 } \
3008 if (should_serialize_deserialize_nir()) { \
3009 nir_shader_serialize_deserialize(nir); \
3010 } \
3011 } while (0)
3012
3013 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, \
3014 nir_metadata_set_validation_flag(nir); \
3015 if (should_print_nir()) \
3016 printf("%s\n", #pass); \
3017 if (pass(nir, ##__VA_ARGS__)) { \
3018 progress = true; \
3019 if (should_print_nir()) \
3020 nir_print_shader(nir, stdout); \
3021 nir_metadata_check_validation_flag(nir); \
3022 } \
3023 )
3024
3025 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, \
3026 if (should_print_nir()) \
3027 printf("%s\n", #pass); \
3028 pass(nir, ##__VA_ARGS__); \
3029 if (should_print_nir()) \
3030 nir_print_shader(nir, stdout); \
3031 )
3032
3033 #define NIR_SKIP(name) should_skip_nir(#name)
3034
3035 void nir_calc_dominance_impl(nir_function_impl *impl);
3036 void nir_calc_dominance(nir_shader *shader);
3037
3038 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
3039 bool nir_block_dominates(nir_block *parent, nir_block *child);
3040
3041 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
3042 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
3043
3044 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
3045 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
3046
3047 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
3048 void nir_dump_cfg(nir_shader *shader, FILE *fp);
3049
3050 int nir_gs_count_vertices(const nir_shader *shader);
3051
3052 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
3053 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
3054 bool nir_split_var_copies(nir_shader *shader);
3055 bool nir_split_per_member_structs(nir_shader *shader);
3056 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
3057
3058 bool nir_lower_returns_impl(nir_function_impl *impl);
3059 bool nir_lower_returns(nir_shader *shader);
3060
3061 void nir_inline_function_impl(struct nir_builder *b,
3062 const nir_function_impl *impl,
3063 nir_ssa_def **params);
3064 bool nir_inline_functions(nir_shader *shader);
3065
3066 bool nir_propagate_invariant(nir_shader *shader);
3067
3068 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
3069 void nir_lower_deref_copy_instr(struct nir_builder *b,
3070 nir_intrinsic_instr *copy);
3071 bool nir_lower_var_copies(nir_shader *shader);
3072
3073 void nir_fixup_deref_modes(nir_shader *shader);
3074
3075 bool nir_lower_global_vars_to_local(nir_shader *shader);
3076
3077 typedef enum {
3078 nir_lower_direct_array_deref_of_vec_load = (1 << 0),
3079 nir_lower_indirect_array_deref_of_vec_load = (1 << 1),
3080 nir_lower_direct_array_deref_of_vec_store = (1 << 2),
3081 nir_lower_indirect_array_deref_of_vec_store = (1 << 3),
3082 } nir_lower_array_deref_of_vec_options;
3083
3084 bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
3085 nir_lower_array_deref_of_vec_options options);
3086
3087 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
3088
3089 bool nir_lower_locals_to_regs(nir_shader *shader);
3090
3091 void nir_lower_io_to_temporaries(nir_shader *shader,
3092 nir_function_impl *entrypoint,
3093 bool outputs, bool inputs);
3094
3095 bool nir_lower_vars_to_scratch(nir_shader *shader,
3096 nir_variable_mode modes,
3097 int size_threshold,
3098 glsl_type_size_align_func size_align);
3099
3100 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
3101
3102 void nir_gather_ssa_types(nir_function_impl *impl,
3103 BITSET_WORD *float_types,
3104 BITSET_WORD *int_types);
3105
3106 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
3107 int (*type_size)(const struct glsl_type *, bool));
3108
3109 /* Some helpers to do very simple linking */
3110 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
3111 bool nir_remove_unused_io_vars(nir_shader *shader, struct exec_list *var_list,
3112 uint64_t *used_by_other_stage,
3113 uint64_t *used_by_other_stage_patches);
3114 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
3115 bool default_to_smooth_interp);
3116 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
3117 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
3118
3119 typedef enum {
3120 /* If set, this forces all non-flat fragment shader inputs to be
3121 * interpolated as if with the "sample" qualifier. This requires
3122 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
3123 */
3124 nir_lower_io_force_sample_interpolation = (1 << 1),
3125 } nir_lower_io_options;
3126 bool nir_lower_io(nir_shader *shader,
3127 nir_variable_mode modes,
3128 int (*type_size)(const struct glsl_type *, bool),
3129 nir_lower_io_options);
3130
3131 typedef enum {
3132 /**
3133 * An address format which is a simple 32-bit global GPU address.
3134 */
3135 nir_address_format_32bit_global,
3136
3137 /**
3138 * An address format which is a simple 64-bit global GPU address.
3139 */
3140 nir_address_format_64bit_global,
3141
3142 /**
3143 * An address format which is a bounds-checked 64-bit global GPU address.
3144 *
3145 * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
3146 * address stored with the low bits in .x and high bits in .y, .z is a
3147 * size, and .w is an offset. When the final I/O operation is lowered, .w
3148 * is checked against .z and the operation is predicated on the result.
3149 */
3150 nir_address_format_64bit_bounded_global,
3151
3152 /**
3153 * An address format which is comprised of a vec2 where the first
3154 * component is a buffer index and the second is an offset.
3155 */
3156 nir_address_format_32bit_index_offset,
3157
3158 /**
3159 * An address format which is a simple 32-bit offset.
3160 */
3161 nir_address_format_32bit_offset,
3162
3163 /**
3164 * An address format representing a purely logical addressing model. In
3165 * this model, all deref chains must be complete from the dereference
3166 * operation to the variable. Cast derefs are not allowed. These
3167 * addresses will be 32-bit scalars but the format is immaterial because
3168 * you can always chase the chain.
3169 */
3170 nir_address_format_logical,
3171 } nir_address_format;
3172
3173 static inline unsigned
3174 nir_address_format_bit_size(nir_address_format addr_format)
3175 {
3176 switch (addr_format) {
3177 case nir_address_format_32bit_global: return 32;
3178 case nir_address_format_64bit_global: return 64;
3179 case nir_address_format_64bit_bounded_global: return 32;
3180 case nir_address_format_32bit_index_offset: return 32;
3181 case nir_address_format_32bit_offset: return 32;
3182 case nir_address_format_logical: return 32;
3183 }
3184 unreachable("Invalid address format");
3185 }
3186
3187 static inline unsigned
3188 nir_address_format_num_components(nir_address_format addr_format)
3189 {
3190 switch (addr_format) {
3191 case nir_address_format_32bit_global: return 1;
3192 case nir_address_format_64bit_global: return 1;
3193 case nir_address_format_64bit_bounded_global: return 4;
3194 case nir_address_format_32bit_index_offset: return 2;
3195 case nir_address_format_32bit_offset: return 1;
3196 case nir_address_format_logical: return 1;
3197 }
3198 unreachable("Invalid address format");
3199 }
3200
3201 static inline const struct glsl_type *
3202 nir_address_format_to_glsl_type(nir_address_format addr_format)
3203 {
3204 unsigned bit_size = nir_address_format_bit_size(addr_format);
3205 assert(bit_size == 32 || bit_size == 64);
3206 return glsl_vector_type(bit_size == 32 ? GLSL_TYPE_UINT : GLSL_TYPE_UINT64,
3207 nir_address_format_num_components(addr_format));
3208 }
3209
3210 const nir_const_value *nir_address_format_null_value(nir_address_format addr_format);
3211
3212 nir_ssa_def *nir_build_addr_ieq(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
3213 nir_address_format addr_format);
3214
3215 nir_ssa_def *nir_build_addr_isub(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
3216 nir_address_format addr_format);
3217
3218 nir_ssa_def * nir_explicit_io_address_from_deref(struct nir_builder *b,
3219 nir_deref_instr *deref,
3220 nir_ssa_def *base_addr,
3221 nir_address_format addr_format);
3222 void nir_lower_explicit_io_instr(struct nir_builder *b,
3223 nir_intrinsic_instr *io_instr,
3224 nir_ssa_def *addr,
3225 nir_address_format addr_format);
3226
3227 bool nir_lower_explicit_io(nir_shader *shader,
3228 nir_variable_mode modes,
3229 nir_address_format);
3230
3231 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
3232 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
3233
3234 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
3235
3236 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
3237 bool nir_lower_regs_to_ssa(nir_shader *shader);
3238 bool nir_lower_vars_to_ssa(nir_shader *shader);
3239
3240 bool nir_remove_dead_derefs(nir_shader *shader);
3241 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
3242 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
3243 bool nir_lower_constant_initializers(nir_shader *shader,
3244 nir_variable_mode modes);
3245
3246 bool nir_move_load_const(nir_shader *shader);
3247 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
3248 bool nir_lower_vec_to_movs(nir_shader *shader);
3249 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
3250 bool alpha_to_one);
3251 bool nir_lower_alu(nir_shader *shader);
3252
3253 bool nir_lower_flrp(nir_shader *shader, unsigned lowering_mask,
3254 bool always_precise, bool have_ffma);
3255
3256 bool nir_lower_alu_to_scalar(nir_shader *shader, BITSET_WORD *lower_set);
3257 bool nir_lower_bool_to_float(nir_shader *shader);
3258 bool nir_lower_bool_to_int32(nir_shader *shader);
3259 bool nir_lower_int_to_float(nir_shader *shader);
3260 bool nir_lower_load_const_to_scalar(nir_shader *shader);
3261 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
3262 bool nir_lower_phis_to_scalar(nir_shader *shader);
3263 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
3264 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
3265 bool outputs_only);
3266 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
3267 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
3268 bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
3269
3270 void nir_lower_fragcoord_wtrans(nir_shader *shader);
3271 void nir_lower_viewport_transform(nir_shader *shader);
3272 bool nir_lower_uniforms_to_ubo(nir_shader *shader, int multiplier);
3273
3274 typedef struct nir_lower_subgroups_options {
3275 uint8_t subgroup_size;
3276 uint8_t ballot_bit_size;
3277 bool lower_to_scalar:1;
3278 bool lower_vote_trivial:1;
3279 bool lower_vote_eq_to_ballot:1;
3280 bool lower_subgroup_masks:1;
3281 bool lower_shuffle:1;
3282 bool lower_shuffle_to_32bit:1;
3283 bool lower_quad:1;
3284 } nir_lower_subgroups_options;
3285
3286 bool nir_lower_subgroups(nir_shader *shader,
3287 const nir_lower_subgroups_options *options);
3288
3289 bool nir_lower_system_values(nir_shader *shader);
3290
3291 enum PACKED nir_lower_tex_packing {
3292 nir_lower_tex_packing_none = 0,
3293 /* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
3294 * or unsigned ints based on the sampler type
3295 */
3296 nir_lower_tex_packing_16,
3297 /* The sampler returns 1 32-bit word of 4x8 unorm */
3298 nir_lower_tex_packing_8,
3299 };
3300
3301 typedef struct nir_lower_tex_options {
3302 /**
3303 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
3304 * sampler types a texture projector is lowered.
3305 */
3306 unsigned lower_txp;
3307
3308 /**
3309 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
3310 */
3311 bool lower_txf_offset;
3312
3313 /**
3314 * If true, lower away nir_tex_src_offset for all rect textures.
3315 */
3316 bool lower_rect_offset;
3317
3318 /**
3319 * If true, lower rect textures to 2D, using txs to fetch the
3320 * texture dimensions and dividing the texture coords by the
3321 * texture dims to normalize.
3322 */
3323 bool lower_rect;
3324
3325 /**
3326 * If true, convert yuv to rgb.
3327 */
3328 unsigned lower_y_uv_external;
3329 unsigned lower_y_u_v_external;
3330 unsigned lower_yx_xuxv_external;
3331 unsigned lower_xy_uxvx_external;
3332 unsigned lower_ayuv_external;
3333 unsigned lower_xyuv_external;
3334
3335 /**
3336 * To emulate certain texture wrap modes, this can be used
3337 * to saturate the specified tex coord to [0.0, 1.0]. The
3338 * bits are according to sampler #, ie. if, for example:
3339 *
3340 * (conf->saturate_s & (1 << n))
3341 *
3342 * is true, then the s coord for sampler n is saturated.
3343 *
3344 * Note that clamping must happen *after* projector lowering
3345 * so any projected texture sample instruction with a clamped
3346 * coordinate gets automatically lowered, regardless of the
3347 * 'lower_txp' setting.
3348 */
3349 unsigned saturate_s;
3350 unsigned saturate_t;
3351 unsigned saturate_r;
3352
3353 /* Bitmask of textures that need swizzling.
3354 *
3355 * If (swizzle_result & (1 << texture_index)), then the swizzle in
3356 * swizzles[texture_index] is applied to the result of the texturing
3357 * operation.
3358 */
3359 unsigned swizzle_result;
3360
3361 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
3362 * while 4 and 5 represent 0 and 1 respectively.
3363 */
3364 uint8_t swizzles[32][4];
3365
3366 /* Can be used to scale sampled values in range required by the format. */
3367 float scale_factors[32];
3368
3369 /**
3370 * Bitmap of textures that need srgb to linear conversion. If
3371 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
3372 * of the texture are lowered to linear.
3373 */
3374 unsigned lower_srgb;
3375
3376 /**
3377 * If true, lower nir_texop_tex on shaders that doesn't support implicit
3378 * LODs to nir_texop_txl.
3379 */
3380 bool lower_tex_without_implicit_lod;
3381
3382 /**
3383 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
3384 */
3385 bool lower_txd_cube_map;
3386
3387 /**
3388 * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
3389 */
3390 bool lower_txd_3d;
3391
3392 /**
3393 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
3394 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
3395 * with lower_txd_cube_map.
3396 */
3397 bool lower_txd_shadow;
3398
3399 /**
3400 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
3401 * Implies lower_txd_cube_map and lower_txd_shadow.
3402 */
3403 bool lower_txd;
3404
3405 /**
3406 * If true, lower nir_texop_txb that try to use shadow compare and min_lod
3407 * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
3408 */
3409 bool lower_txb_shadow_clamp;
3410
3411 /**
3412 * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
3413 * with nir_texop_txl. This includes cube maps.
3414 */
3415 bool lower_txd_shadow_clamp;
3416
3417 /**
3418 * If true, lower nir_texop_txd on when it uses both offset and min_lod
3419 * with nir_texop_txl. This includes cube maps.
3420 */
3421 bool lower_txd_offset_clamp;
3422
3423 /**
3424 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3425 * sampler is bindless.
3426 */
3427 bool lower_txd_clamp_bindless_sampler;
3428
3429 /**
3430 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3431 * sampler index is not statically determinable to be less than 16.
3432 */
3433 bool lower_txd_clamp_if_sampler_index_not_lt_16;
3434
3435 /**
3436 * If true, lower nir_texop_txs with a non-0-lod into nir_texop_txs with
3437 * 0-lod followed by a nir_ishr.
3438 */
3439 bool lower_txs_lod;
3440
3441 /**
3442 * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
3443 * mixed-up tg4 locations.
3444 */
3445 bool lower_tg4_broadcom_swizzle;
3446
3447 /**
3448 * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
3449 */
3450 bool lower_tg4_offsets;
3451
3452 enum nir_lower_tex_packing lower_tex_packing[32];
3453 } nir_lower_tex_options;
3454
3455 bool nir_lower_tex(nir_shader *shader,
3456 const nir_lower_tex_options *options);
3457
3458 enum nir_lower_non_uniform_access_type {
3459 nir_lower_non_uniform_ubo_access = (1 << 0),
3460 nir_lower_non_uniform_ssbo_access = (1 << 1),
3461 nir_lower_non_uniform_texture_access = (1 << 2),
3462 nir_lower_non_uniform_image_access = (1 << 3),
3463 };
3464
3465 bool nir_lower_non_uniform_access(nir_shader *shader,
3466 enum nir_lower_non_uniform_access_type);
3467
3468 bool nir_lower_idiv(nir_shader *shader);
3469
3470 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables, bool use_vars);
3471 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
3472 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
3473
3474 bool nir_lower_frexp(nir_shader *nir);
3475
3476 void nir_lower_two_sided_color(nir_shader *shader);
3477
3478 bool nir_lower_clamp_color_outputs(nir_shader *shader);
3479
3480 void nir_lower_passthrough_edgeflags(nir_shader *shader);
3481 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
3482 const gl_state_index16 *uniform_state_tokens);
3483
3484 typedef struct nir_lower_wpos_ytransform_options {
3485 gl_state_index16 state_tokens[STATE_LENGTH];
3486 bool fs_coord_origin_upper_left :1;
3487 bool fs_coord_origin_lower_left :1;
3488 bool fs_coord_pixel_center_integer :1;
3489 bool fs_coord_pixel_center_half_integer :1;
3490 } nir_lower_wpos_ytransform_options;
3491
3492 bool nir_lower_wpos_ytransform(nir_shader *shader,
3493 const nir_lower_wpos_ytransform_options *options);
3494 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
3495
3496 bool nir_lower_fb_read(nir_shader *shader);
3497
3498 typedef struct nir_lower_drawpixels_options {
3499 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
3500 gl_state_index16 scale_state_tokens[STATE_LENGTH];
3501 gl_state_index16 bias_state_tokens[STATE_LENGTH];
3502 unsigned drawpix_sampler;
3503 unsigned pixelmap_sampler;
3504 bool pixel_maps :1;
3505 bool scale_and_bias :1;
3506 } nir_lower_drawpixels_options;
3507
3508 void nir_lower_drawpixels(nir_shader *shader,
3509 const nir_lower_drawpixels_options *options);
3510
3511 typedef struct nir_lower_bitmap_options {
3512 unsigned sampler;
3513 bool swizzle_xxxx;
3514 } nir_lower_bitmap_options;
3515
3516 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
3517
3518 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
3519
3520 typedef enum {
3521 nir_lower_int_source_mods = 1 << 0,
3522 nir_lower_float_source_mods = 1 << 1,
3523 nir_lower_triop_abs = 1 << 2,
3524 nir_lower_all_source_mods = (1 << 3) - 1
3525 } nir_lower_to_source_mods_flags;
3526
3527
3528 bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
3529
3530 bool nir_lower_gs_intrinsics(nir_shader *shader);
3531
3532 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
3533
3534 bool nir_lower_bit_size(nir_shader *shader,
3535 nir_lower_bit_size_callback callback,
3536 void *callback_data);
3537
3538 nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
3539 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
3540
3541 nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
3542 bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
3543 nir_lower_doubles_options options);
3544 bool nir_lower_pack(nir_shader *shader);
3545
3546 bool nir_normalize_cubemap_coords(nir_shader *shader);
3547
3548 void nir_live_ssa_defs_impl(nir_function_impl *impl);
3549
3550 void nir_loop_analyze_impl(nir_function_impl *impl,
3551 nir_variable_mode indirect_mask);
3552
3553 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
3554
3555 bool nir_repair_ssa_impl(nir_function_impl *impl);
3556 bool nir_repair_ssa(nir_shader *shader);
3557
3558 void nir_convert_loop_to_lcssa(nir_loop *loop);
3559
3560 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
3561 * registers. If false, convert all values (even those not involved in a phi
3562 * node) to registers.
3563 */
3564 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
3565
3566 bool nir_lower_phis_to_regs_block(nir_block *block);
3567 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
3568 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
3569
3570 bool nir_opt_comparison_pre(nir_shader *shader);
3571
3572 bool nir_opt_algebraic(nir_shader *shader);
3573 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
3574 bool nir_opt_algebraic_late(nir_shader *shader);
3575 bool nir_opt_constant_folding(nir_shader *shader);
3576
3577 bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
3578
3579 bool nir_copy_prop(nir_shader *shader);
3580
3581 bool nir_opt_copy_prop_vars(nir_shader *shader);
3582
3583 bool nir_opt_cse(nir_shader *shader);
3584
3585 bool nir_opt_dce(nir_shader *shader);
3586
3587 bool nir_opt_dead_cf(nir_shader *shader);
3588
3589 bool nir_opt_dead_write_vars(nir_shader *shader);
3590
3591 bool nir_opt_deref_impl(nir_function_impl *impl);
3592 bool nir_opt_deref(nir_shader *shader);
3593
3594 bool nir_opt_find_array_copies(nir_shader *shader);
3595
3596 bool nir_opt_gcm(nir_shader *shader, bool value_number);
3597
3598 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
3599
3600 bool nir_opt_if(nir_shader *shader, bool aggressive_last_continue);
3601
3602 bool nir_opt_intrinsics(nir_shader *shader);
3603
3604 bool nir_opt_large_constants(nir_shader *shader,
3605 glsl_type_size_align_func size_align,
3606 unsigned threshold);
3607
3608 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
3609
3610 bool nir_opt_move_comparisons(nir_shader *shader);
3611
3612 bool nir_opt_move_load_ubo(nir_shader *shader);
3613
3614 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
3615 bool indirect_load_ok, bool expensive_alu_ok);
3616
3617 bool nir_opt_rematerialize_compares(nir_shader *shader);
3618
3619 bool nir_opt_remove_phis(nir_shader *shader);
3620
3621 bool nir_opt_shrink_load(nir_shader *shader);
3622
3623 bool nir_opt_trivial_continues(nir_shader *shader);
3624
3625 bool nir_opt_undef(nir_shader *shader);
3626
3627 bool nir_opt_vectorize(nir_shader *shader);
3628
3629 bool nir_opt_conditional_discard(nir_shader *shader);
3630
3631 void nir_strip(nir_shader *shader);
3632
3633 void nir_sweep(nir_shader *shader);
3634
3635 void nir_remap_dual_slot_attributes(nir_shader *shader,
3636 uint64_t *dual_slot_inputs);
3637 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
3638
3639 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
3640 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
3641
3642 bool nir_lower_sincos(nir_shader *shader);
3643
3644 #ifdef __cplusplus
3645 } /* extern "C" */
3646 #endif
3647
3648 #endif /* NIR_H */