nir: lower 64bit subgroup shuffle intrinsics
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitset.h"
38 #include "util/macros.h"
39 #include "compiler/nir_types.h"
40 #include "compiler/shader_enums.h"
41 #include "compiler/shader_info.h"
42 #include <stdio.h>
43
44 #ifndef NDEBUG
45 #include "util/debug.h"
46 #endif /* NDEBUG */
47
48 #include "nir_opcodes.h"
49
50 #if defined(_WIN32) && !defined(snprintf)
51 #define snprintf _snprintf
52 #endif
53
54 #ifdef __cplusplus
55 extern "C" {
56 #endif
57
58 struct gl_program;
59 struct gl_shader_program;
60
61 #define NIR_FALSE 0u
62 #define NIR_TRUE (~0u)
63
64 /** Defines a cast function
65 *
66 * This macro defines a cast function from in_type to out_type where
67 * out_type is some structure type that contains a field of type out_type.
68 *
69 * Note that you have to be a bit careful as the generated cast function
70 * destroys constness.
71 */
72 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
73 type_field, type_value) \
74 static inline out_type * \
75 name(const in_type *parent) \
76 { \
77 assert(parent && parent->type_field == type_value); \
78 return exec_node_data(out_type, parent, field); \
79 }
80
81 struct nir_function;
82 struct nir_shader;
83 struct nir_instr;
84
85
86 /**
87 * Description of built-in state associated with a uniform
88 *
89 * \sa nir_variable::state_slots
90 */
91 typedef struct {
92 gl_state_index16 tokens[STATE_LENGTH];
93 int swizzle;
94 } nir_state_slot;
95
96 typedef enum {
97 nir_var_shader_in = (1 << 0),
98 nir_var_shader_out = (1 << 1),
99 nir_var_global = (1 << 2),
100 nir_var_local = (1 << 3),
101 nir_var_uniform = (1 << 4),
102 nir_var_shader_storage = (1 << 5),
103 nir_var_system_value = (1 << 6),
104 nir_var_param = (1 << 7),
105 nir_var_shared = (1 << 8),
106 nir_var_all = ~0,
107 } nir_variable_mode;
108
109 /**
110 * Rounding modes.
111 */
112 typedef enum {
113 nir_rounding_mode_undef = 0,
114 nir_rounding_mode_rtne = 1, /* round to nearest even */
115 nir_rounding_mode_ru = 2, /* round up */
116 nir_rounding_mode_rd = 3, /* round down */
117 nir_rounding_mode_rtz = 4, /* round towards zero */
118 } nir_rounding_mode;
119
120 typedef union {
121 float f32[4];
122 double f64[4];
123 int8_t i8[4];
124 uint8_t u8[4];
125 int16_t i16[4];
126 uint16_t u16[4];
127 int32_t i32[4];
128 uint32_t u32[4];
129 int64_t i64[4];
130 uint64_t u64[4];
131 } nir_const_value;
132
133 typedef struct nir_constant {
134 /**
135 * Value of the constant.
136 *
137 * The field used to back the values supplied by the constant is determined
138 * by the type associated with the \c nir_variable. Constants may be
139 * scalars, vectors, or matrices.
140 */
141 nir_const_value values[4];
142
143 /* we could get this from the var->type but makes clone *much* easier to
144 * not have to care about the type.
145 */
146 unsigned num_elements;
147
148 /* Array elements / Structure Fields */
149 struct nir_constant **elements;
150 } nir_constant;
151
152 /**
153 * \brief Layout qualifiers for gl_FragDepth.
154 *
155 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
156 * with a layout qualifier.
157 */
158 typedef enum {
159 nir_depth_layout_none, /**< No depth layout is specified. */
160 nir_depth_layout_any,
161 nir_depth_layout_greater,
162 nir_depth_layout_less,
163 nir_depth_layout_unchanged
164 } nir_depth_layout;
165
166 /**
167 * Either a uniform, global variable, shader input, or shader output. Based on
168 * ir_variable - it should be easy to translate between the two.
169 */
170
171 typedef struct nir_variable {
172 struct exec_node node;
173
174 /**
175 * Declared type of the variable
176 */
177 const struct glsl_type *type;
178
179 /**
180 * Declared name of the variable
181 */
182 char *name;
183
184 struct nir_variable_data {
185 /**
186 * Storage class of the variable.
187 *
188 * \sa nir_variable_mode
189 */
190 nir_variable_mode mode;
191
192 /**
193 * Is the variable read-only?
194 *
195 * This is set for variables declared as \c const, shader inputs,
196 * and uniforms.
197 */
198 unsigned read_only:1;
199 unsigned centroid:1;
200 unsigned sample:1;
201 unsigned patch:1;
202 unsigned invariant:1;
203
204 /**
205 * When separate shader programs are enabled, only input/outputs between
206 * the stages of a multi-stage separate program can be safely removed
207 * from the shader interface. Other input/outputs must remains active.
208 *
209 * This is also used to make sure xfb varyings that are unused by the
210 * fragment shader are not removed.
211 */
212 unsigned always_active_io:1;
213
214 /**
215 * Interpolation mode for shader inputs / outputs
216 *
217 * \sa glsl_interp_mode
218 */
219 unsigned interpolation:2;
220
221 /**
222 * \name ARB_fragment_coord_conventions
223 * @{
224 */
225 unsigned origin_upper_left:1;
226 unsigned pixel_center_integer:1;
227 /*@}*/
228
229 /**
230 * If non-zero, then this variable may be packed along with other variables
231 * into a single varying slot, so this offset should be applied when
232 * accessing components. For example, an offset of 1 means that the x
233 * component of this variable is actually stored in component y of the
234 * location specified by \c location.
235 */
236 unsigned location_frac:2;
237
238 /**
239 * If true, this variable represents an array of scalars that should
240 * be tightly packed. In other words, consecutive array elements
241 * should be stored one component apart, rather than one slot apart.
242 */
243 unsigned compact:1;
244
245 /**
246 * Whether this is a fragment shader output implicitly initialized with
247 * the previous contents of the specified render target at the
248 * framebuffer location corresponding to this shader invocation.
249 */
250 unsigned fb_fetch_output:1;
251
252 /**
253 * Non-zero if this variable is considered bindless as defined by
254 * ARB_bindless_texture.
255 */
256 unsigned bindless:1;
257
258 /**
259 * \brief Layout qualifier for gl_FragDepth.
260 *
261 * This is not equal to \c ir_depth_layout_none if and only if this
262 * variable is \c gl_FragDepth and a layout qualifier is specified.
263 */
264 nir_depth_layout depth_layout;
265
266 /**
267 * Storage location of the base of this variable
268 *
269 * The precise meaning of this field depends on the nature of the variable.
270 *
271 * - Vertex shader input: one of the values from \c gl_vert_attrib.
272 * - Vertex shader output: one of the values from \c gl_varying_slot.
273 * - Geometry shader input: one of the values from \c gl_varying_slot.
274 * - Geometry shader output: one of the values from \c gl_varying_slot.
275 * - Fragment shader input: one of the values from \c gl_varying_slot.
276 * - Fragment shader output: one of the values from \c gl_frag_result.
277 * - Uniforms: Per-stage uniform slot number for default uniform block.
278 * - Uniforms: Index within the uniform block definition for UBO members.
279 * - Non-UBO Uniforms: uniform slot number.
280 * - Other: This field is not currently used.
281 *
282 * If the variable is a uniform, shader input, or shader output, and the
283 * slot has not been assigned, the value will be -1.
284 */
285 int location;
286
287 /**
288 * The actual location of the variable in the IR. Only valid for inputs
289 * and outputs.
290 */
291 unsigned int driver_location;
292
293 /**
294 * Vertex stream output identifier.
295 *
296 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
297 * stream of the i-th component.
298 */
299 unsigned stream;
300
301 /**
302 * output index for dual source blending.
303 */
304 int index;
305
306 /**
307 * Descriptor set binding for sampler or UBO.
308 */
309 int descriptor_set;
310
311 /**
312 * Initial binding point for a sampler or UBO.
313 *
314 * For array types, this represents the binding point for the first element.
315 */
316 int binding;
317
318 /**
319 * Location an atomic counter is stored at.
320 */
321 unsigned offset;
322
323 /**
324 * ARB_shader_image_load_store qualifiers.
325 */
326 struct {
327 bool read_only; /**< "readonly" qualifier. */
328 bool write_only; /**< "writeonly" qualifier. */
329 bool coherent;
330 bool _volatile;
331 bool restrict_flag;
332
333 /** Image internal format if specified explicitly, otherwise GL_NONE. */
334 GLenum format;
335 } image;
336 } data;
337
338 /**
339 * Built-in state that backs this uniform
340 *
341 * Once set at variable creation, \c state_slots must remain invariant.
342 * This is because, ideally, this array would be shared by all clones of
343 * this variable in the IR tree. In other words, we'd really like for it
344 * to be a fly-weight.
345 *
346 * If the variable is not a uniform, \c num_state_slots will be zero and
347 * \c state_slots will be \c NULL.
348 */
349 /*@{*/
350 unsigned num_state_slots; /**< Number of state slots used */
351 nir_state_slot *state_slots; /**< State descriptors. */
352 /*@}*/
353
354 /**
355 * Constant expression assigned in the initializer of the variable
356 *
357 * This field should only be used temporarily by creators of NIR shaders
358 * and then lower_constant_initializers can be used to get rid of them.
359 * Most of the rest of NIR ignores this field or asserts that it's NULL.
360 */
361 nir_constant *constant_initializer;
362
363 /**
364 * For variables that are in an interface block or are an instance of an
365 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
366 *
367 * \sa ir_variable::location
368 */
369 const struct glsl_type *interface_type;
370 } nir_variable;
371
372 #define nir_foreach_variable(var, var_list) \
373 foreach_list_typed(nir_variable, var, node, var_list)
374
375 #define nir_foreach_variable_safe(var, var_list) \
376 foreach_list_typed_safe(nir_variable, var, node, var_list)
377
378 static inline bool
379 nir_variable_is_global(const nir_variable *var)
380 {
381 return var->data.mode != nir_var_local && var->data.mode != nir_var_param;
382 }
383
384 typedef struct nir_register {
385 struct exec_node node;
386
387 unsigned num_components; /** < number of vector components */
388 unsigned num_array_elems; /** < size of array (0 for no array) */
389
390 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
391 uint8_t bit_size;
392
393 /** generic register index. */
394 unsigned index;
395
396 /** only for debug purposes, can be NULL */
397 const char *name;
398
399 /** whether this register is local (per-function) or global (per-shader) */
400 bool is_global;
401
402 /**
403 * If this flag is set to true, then accessing channels >= num_components
404 * is well-defined, and simply spills over to the next array element. This
405 * is useful for backends that can do per-component accessing, in
406 * particular scalar backends. By setting this flag and making
407 * num_components equal to 1, structures can be packed tightly into
408 * registers and then registers can be accessed per-component to get to
409 * each structure member, even if it crosses vec4 boundaries.
410 */
411 bool is_packed;
412
413 /** set of nir_srcs where this register is used (read from) */
414 struct list_head uses;
415
416 /** set of nir_dests where this register is defined (written to) */
417 struct list_head defs;
418
419 /** set of nir_ifs where this register is used as a condition */
420 struct list_head if_uses;
421 } nir_register;
422
423 #define nir_foreach_register(reg, reg_list) \
424 foreach_list_typed(nir_register, reg, node, reg_list)
425 #define nir_foreach_register_safe(reg, reg_list) \
426 foreach_list_typed_safe(nir_register, reg, node, reg_list)
427
428 typedef enum {
429 nir_instr_type_alu,
430 nir_instr_type_call,
431 nir_instr_type_tex,
432 nir_instr_type_intrinsic,
433 nir_instr_type_load_const,
434 nir_instr_type_jump,
435 nir_instr_type_ssa_undef,
436 nir_instr_type_phi,
437 nir_instr_type_parallel_copy,
438 } nir_instr_type;
439
440 typedef struct nir_instr {
441 struct exec_node node;
442 nir_instr_type type;
443 struct nir_block *block;
444
445 /** generic instruction index. */
446 unsigned index;
447
448 /* A temporary for optimization and analysis passes to use for storing
449 * flags. For instance, DCE uses this to store the "dead/live" info.
450 */
451 uint8_t pass_flags;
452 } nir_instr;
453
454 static inline nir_instr *
455 nir_instr_next(nir_instr *instr)
456 {
457 struct exec_node *next = exec_node_get_next(&instr->node);
458 if (exec_node_is_tail_sentinel(next))
459 return NULL;
460 else
461 return exec_node_data(nir_instr, next, node);
462 }
463
464 static inline nir_instr *
465 nir_instr_prev(nir_instr *instr)
466 {
467 struct exec_node *prev = exec_node_get_prev(&instr->node);
468 if (exec_node_is_head_sentinel(prev))
469 return NULL;
470 else
471 return exec_node_data(nir_instr, prev, node);
472 }
473
474 static inline bool
475 nir_instr_is_first(const nir_instr *instr)
476 {
477 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
478 }
479
480 static inline bool
481 nir_instr_is_last(const nir_instr *instr)
482 {
483 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
484 }
485
486 typedef struct nir_ssa_def {
487 /** for debugging only, can be NULL */
488 const char* name;
489
490 /** generic SSA definition index. */
491 unsigned index;
492
493 /** Index into the live_in and live_out bitfields */
494 unsigned live_index;
495
496 nir_instr *parent_instr;
497
498 /** set of nir_instrs where this register is used (read from) */
499 struct list_head uses;
500
501 /** set of nir_ifs where this register is used as a condition */
502 struct list_head if_uses;
503
504 uint8_t num_components;
505
506 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
507 uint8_t bit_size;
508 } nir_ssa_def;
509
510 struct nir_src;
511
512 typedef struct {
513 nir_register *reg;
514 struct nir_src *indirect; /** < NULL for no indirect offset */
515 unsigned base_offset;
516
517 /* TODO use-def chain goes here */
518 } nir_reg_src;
519
520 typedef struct {
521 nir_instr *parent_instr;
522 struct list_head def_link;
523
524 nir_register *reg;
525 struct nir_src *indirect; /** < NULL for no indirect offset */
526 unsigned base_offset;
527
528 /* TODO def-use chain goes here */
529 } nir_reg_dest;
530
531 struct nir_if;
532
533 typedef struct nir_src {
534 union {
535 nir_instr *parent_instr;
536 struct nir_if *parent_if;
537 };
538
539 struct list_head use_link;
540
541 union {
542 nir_reg_src reg;
543 nir_ssa_def *ssa;
544 };
545
546 bool is_ssa;
547 } nir_src;
548
549 static inline nir_src
550 nir_src_init(void)
551 {
552 nir_src src = { { NULL } };
553 return src;
554 }
555
556 #define NIR_SRC_INIT nir_src_init()
557
558 #define nir_foreach_use(src, reg_or_ssa_def) \
559 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
560
561 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
562 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
563
564 #define nir_foreach_if_use(src, reg_or_ssa_def) \
565 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
566
567 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
568 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
569
570 typedef struct {
571 union {
572 nir_reg_dest reg;
573 nir_ssa_def ssa;
574 };
575
576 bool is_ssa;
577 } nir_dest;
578
579 static inline nir_dest
580 nir_dest_init(void)
581 {
582 nir_dest dest = { { { NULL } } };
583 return dest;
584 }
585
586 #define NIR_DEST_INIT nir_dest_init()
587
588 #define nir_foreach_def(dest, reg) \
589 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
590
591 #define nir_foreach_def_safe(dest, reg) \
592 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
593
594 static inline nir_src
595 nir_src_for_ssa(nir_ssa_def *def)
596 {
597 nir_src src = NIR_SRC_INIT;
598
599 src.is_ssa = true;
600 src.ssa = def;
601
602 return src;
603 }
604
605 static inline nir_src
606 nir_src_for_reg(nir_register *reg)
607 {
608 nir_src src = NIR_SRC_INIT;
609
610 src.is_ssa = false;
611 src.reg.reg = reg;
612 src.reg.indirect = NULL;
613 src.reg.base_offset = 0;
614
615 return src;
616 }
617
618 static inline nir_dest
619 nir_dest_for_reg(nir_register *reg)
620 {
621 nir_dest dest = NIR_DEST_INIT;
622
623 dest.reg.reg = reg;
624
625 return dest;
626 }
627
628 static inline unsigned
629 nir_src_bit_size(nir_src src)
630 {
631 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
632 }
633
634 static inline unsigned
635 nir_src_num_components(nir_src src)
636 {
637 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
638 }
639
640 static inline unsigned
641 nir_dest_bit_size(nir_dest dest)
642 {
643 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
644 }
645
646 static inline unsigned
647 nir_dest_num_components(nir_dest dest)
648 {
649 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
650 }
651
652 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
653 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
654
655 typedef struct {
656 nir_src src;
657
658 /**
659 * \name input modifiers
660 */
661 /*@{*/
662 /**
663 * For inputs interpreted as floating point, flips the sign bit. For
664 * inputs interpreted as integers, performs the two's complement negation.
665 */
666 bool negate;
667
668 /**
669 * Clears the sign bit for floating point values, and computes the integer
670 * absolute value for integers. Note that the negate modifier acts after
671 * the absolute value modifier, therefore if both are set then all inputs
672 * will become negative.
673 */
674 bool abs;
675 /*@}*/
676
677 /**
678 * For each input component, says which component of the register it is
679 * chosen from. Note that which elements of the swizzle are used and which
680 * are ignored are based on the write mask for most opcodes - for example,
681 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
682 * a swizzle of {2, x, 1, 0} where x means "don't care."
683 */
684 uint8_t swizzle[4];
685 } nir_alu_src;
686
687 typedef struct {
688 nir_dest dest;
689
690 /**
691 * \name saturate output modifier
692 *
693 * Only valid for opcodes that output floating-point numbers. Clamps the
694 * output to between 0.0 and 1.0 inclusive.
695 */
696
697 bool saturate;
698
699 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
700 } nir_alu_dest;
701
702 typedef enum {
703 nir_type_invalid = 0, /* Not a valid type */
704 nir_type_float,
705 nir_type_int,
706 nir_type_uint,
707 nir_type_bool,
708 nir_type_bool32 = 32 | nir_type_bool,
709 nir_type_int8 = 8 | nir_type_int,
710 nir_type_int16 = 16 | nir_type_int,
711 nir_type_int32 = 32 | nir_type_int,
712 nir_type_int64 = 64 | nir_type_int,
713 nir_type_uint8 = 8 | nir_type_uint,
714 nir_type_uint16 = 16 | nir_type_uint,
715 nir_type_uint32 = 32 | nir_type_uint,
716 nir_type_uint64 = 64 | nir_type_uint,
717 nir_type_float16 = 16 | nir_type_float,
718 nir_type_float32 = 32 | nir_type_float,
719 nir_type_float64 = 64 | nir_type_float,
720 } nir_alu_type;
721
722 #define NIR_ALU_TYPE_SIZE_MASK 0xfffffff8
723 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x00000007
724
725 static inline unsigned
726 nir_alu_type_get_type_size(nir_alu_type type)
727 {
728 return type & NIR_ALU_TYPE_SIZE_MASK;
729 }
730
731 static inline unsigned
732 nir_alu_type_get_base_type(nir_alu_type type)
733 {
734 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
735 }
736
737 static inline nir_alu_type
738 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
739 {
740 switch (base_type) {
741 case GLSL_TYPE_BOOL:
742 return nir_type_bool32;
743 break;
744 case GLSL_TYPE_UINT:
745 return nir_type_uint32;
746 break;
747 case GLSL_TYPE_INT:
748 return nir_type_int32;
749 break;
750 case GLSL_TYPE_UINT16:
751 return nir_type_uint16;
752 break;
753 case GLSL_TYPE_INT16:
754 return nir_type_int16;
755 break;
756 case GLSL_TYPE_UINT8:
757 return nir_type_uint8;
758 case GLSL_TYPE_INT8:
759 return nir_type_int8;
760 case GLSL_TYPE_UINT64:
761 return nir_type_uint64;
762 break;
763 case GLSL_TYPE_INT64:
764 return nir_type_int64;
765 break;
766 case GLSL_TYPE_FLOAT:
767 return nir_type_float32;
768 break;
769 case GLSL_TYPE_FLOAT16:
770 return nir_type_float16;
771 break;
772 case GLSL_TYPE_DOUBLE:
773 return nir_type_float64;
774 break;
775 default:
776 unreachable("unknown type");
777 }
778 }
779
780 static inline nir_alu_type
781 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
782 {
783 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
784 }
785
786 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
787 nir_rounding_mode rnd);
788
789 typedef enum {
790 NIR_OP_IS_COMMUTATIVE = (1 << 0),
791 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
792 } nir_op_algebraic_property;
793
794 typedef struct {
795 const char *name;
796
797 unsigned num_inputs;
798
799 /**
800 * The number of components in the output
801 *
802 * If non-zero, this is the size of the output and input sizes are
803 * explicitly given; swizzle and writemask are still in effect, but if
804 * the output component is masked out, then the input component may
805 * still be in use.
806 *
807 * If zero, the opcode acts in the standard, per-component manner; the
808 * operation is performed on each component (except the ones that are
809 * masked out) with the input being taken from the input swizzle for
810 * that component.
811 *
812 * The size of some of the inputs may be given (i.e. non-zero) even
813 * though output_size is zero; in that case, the inputs with a zero
814 * size act per-component, while the inputs with non-zero size don't.
815 */
816 unsigned output_size;
817
818 /**
819 * The type of vector that the instruction outputs. Note that the
820 * staurate modifier is only allowed on outputs with the float type.
821 */
822
823 nir_alu_type output_type;
824
825 /**
826 * The number of components in each input
827 */
828 unsigned input_sizes[4];
829
830 /**
831 * The type of vector that each input takes. Note that negate and
832 * absolute value are only allowed on inputs with int or float type and
833 * behave differently on the two.
834 */
835 nir_alu_type input_types[4];
836
837 nir_op_algebraic_property algebraic_properties;
838 } nir_op_info;
839
840 extern const nir_op_info nir_op_infos[nir_num_opcodes];
841
842 typedef struct nir_alu_instr {
843 nir_instr instr;
844 nir_op op;
845
846 /** Indicates that this ALU instruction generates an exact value
847 *
848 * This is kind of a mixture of GLSL "precise" and "invariant" and not
849 * really equivalent to either. This indicates that the value generated by
850 * this operation is high-precision and any code transformations that touch
851 * it must ensure that the resulting value is bit-for-bit identical to the
852 * original.
853 */
854 bool exact;
855
856 nir_alu_dest dest;
857 nir_alu_src src[];
858 } nir_alu_instr;
859
860 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
861 nir_alu_instr *instr);
862 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
863 nir_alu_instr *instr);
864
865 /* is this source channel used? */
866 static inline bool
867 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
868 unsigned channel)
869 {
870 if (nir_op_infos[instr->op].input_sizes[src] > 0)
871 return channel < nir_op_infos[instr->op].input_sizes[src];
872
873 return (instr->dest.write_mask >> channel) & 1;
874 }
875
876 /*
877 * For instructions whose destinations are SSA, get the number of channels
878 * used for a source
879 */
880 static inline unsigned
881 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
882 {
883 assert(instr->dest.dest.is_ssa);
884
885 if (nir_op_infos[instr->op].input_sizes[src] > 0)
886 return nir_op_infos[instr->op].input_sizes[src];
887
888 return instr->dest.dest.ssa.num_components;
889 }
890
891 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
892 unsigned src1, unsigned src2);
893
894 typedef enum {
895 nir_deref_type_var,
896 nir_deref_type_array,
897 nir_deref_type_struct
898 } nir_deref_type;
899
900 typedef struct nir_deref {
901 nir_deref_type deref_type;
902 struct nir_deref *child;
903 const struct glsl_type *type;
904 } nir_deref;
905
906 typedef struct {
907 nir_deref deref;
908
909 nir_variable *var;
910 } nir_deref_var;
911
912 /* This enum describes how the array is referenced. If the deref is
913 * direct then the base_offset is used. If the deref is indirect then
914 * offset is given by base_offset + indirect. If the deref is a wildcard
915 * then the deref refers to all of the elements of the array at the same
916 * time. Wildcard dereferences are only ever allowed in copy_var
917 * intrinsics and the source and destination derefs must have matching
918 * wildcards.
919 */
920 typedef enum {
921 nir_deref_array_type_direct,
922 nir_deref_array_type_indirect,
923 nir_deref_array_type_wildcard,
924 } nir_deref_array_type;
925
926 typedef struct {
927 nir_deref deref;
928
929 nir_deref_array_type deref_array_type;
930 unsigned base_offset;
931 nir_src indirect;
932 } nir_deref_array;
933
934 typedef struct {
935 nir_deref deref;
936
937 unsigned index;
938 } nir_deref_struct;
939
940 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref,
941 deref_type, nir_deref_type_var)
942 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref,
943 deref_type, nir_deref_type_array)
944 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref,
945 deref_type, nir_deref_type_struct)
946
947 /* Returns the last deref in the chain. */
948 static inline nir_deref *
949 nir_deref_tail(nir_deref *deref)
950 {
951 while (deref->child)
952 deref = deref->child;
953 return deref;
954 }
955
956 typedef struct {
957 nir_instr instr;
958
959 unsigned num_params;
960 nir_deref_var **params;
961 nir_deref_var *return_deref;
962
963 struct nir_function *callee;
964 } nir_call_instr;
965
966 #include "nir_intrinsics.h"
967
968 #define NIR_INTRINSIC_MAX_CONST_INDEX 3
969
970 /** Represents an intrinsic
971 *
972 * An intrinsic is an instruction type for handling things that are
973 * more-or-less regular operations but don't just consume and produce SSA
974 * values like ALU operations do. Intrinsics are not for things that have
975 * special semantic meaning such as phi nodes and parallel copies.
976 * Examples of intrinsics include variable load/store operations, system
977 * value loads, and the like. Even though texturing more-or-less falls
978 * under this category, texturing is its own instruction type because
979 * trying to represent texturing with intrinsics would lead to a
980 * combinatorial explosion of intrinsic opcodes.
981 *
982 * By having a single instruction type for handling a lot of different
983 * cases, optimization passes can look for intrinsics and, for the most
984 * part, completely ignore them. Each intrinsic type also has a few
985 * possible flags that govern whether or not they can be reordered or
986 * eliminated. That way passes like dead code elimination can still work
987 * on intrisics without understanding the meaning of each.
988 *
989 * Each intrinsic has some number of constant indices, some number of
990 * variables, and some number of sources. What these sources, variables,
991 * and indices mean depends on the intrinsic and is documented with the
992 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
993 * instructions are the only types of instruction that can operate on
994 * variables.
995 */
996 typedef struct {
997 nir_instr instr;
998
999 nir_intrinsic_op intrinsic;
1000
1001 nir_dest dest;
1002
1003 /** number of components if this is a vectorized intrinsic
1004 *
1005 * Similarly to ALU operations, some intrinsics are vectorized.
1006 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1007 * For vectorized intrinsics, the num_components field specifies the
1008 * number of destination components and the number of source components
1009 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1010 */
1011 uint8_t num_components;
1012
1013 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1014
1015 nir_deref_var *variables[2];
1016
1017 nir_src src[];
1018 } nir_intrinsic_instr;
1019
1020 /**
1021 * \name NIR intrinsics semantic flags
1022 *
1023 * information about what the compiler can do with the intrinsics.
1024 *
1025 * \sa nir_intrinsic_info::flags
1026 */
1027 typedef enum {
1028 /**
1029 * whether the intrinsic can be safely eliminated if none of its output
1030 * value is not being used.
1031 */
1032 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1033
1034 /**
1035 * Whether the intrinsic can be reordered with respect to any other
1036 * intrinsic, i.e. whether the only reordering dependencies of the
1037 * intrinsic are due to the register reads/writes.
1038 */
1039 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1040 } nir_intrinsic_semantic_flag;
1041
1042 /**
1043 * \name NIR intrinsics const-index flag
1044 *
1045 * Indicates the usage of a const_index slot.
1046 *
1047 * \sa nir_intrinsic_info::index_map
1048 */
1049 typedef enum {
1050 /**
1051 * Generally instructions that take a offset src argument, can encode
1052 * a constant 'base' value which is added to the offset.
1053 */
1054 NIR_INTRINSIC_BASE = 1,
1055
1056 /**
1057 * For store instructions, a writemask for the store.
1058 */
1059 NIR_INTRINSIC_WRMASK = 2,
1060
1061 /**
1062 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1063 */
1064 NIR_INTRINSIC_STREAM_ID = 3,
1065
1066 /**
1067 * The clip-plane id for load_user_clip_plane intrinsic.
1068 */
1069 NIR_INTRINSIC_UCP_ID = 4,
1070
1071 /**
1072 * The amount of data, starting from BASE, that this instruction may
1073 * access. This is used to provide bounds if the offset is not constant.
1074 */
1075 NIR_INTRINSIC_RANGE = 5,
1076
1077 /**
1078 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1079 */
1080 NIR_INTRINSIC_DESC_SET = 6,
1081
1082 /**
1083 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1084 */
1085 NIR_INTRINSIC_BINDING = 7,
1086
1087 /**
1088 * Component offset.
1089 */
1090 NIR_INTRINSIC_COMPONENT = 8,
1091
1092 /**
1093 * Interpolation mode (only meaningful for FS inputs).
1094 */
1095 NIR_INTRINSIC_INTERP_MODE = 9,
1096
1097 /**
1098 * A binary nir_op to use when performing a reduction or scan operation
1099 */
1100 NIR_INTRINSIC_REDUCTION_OP = 10,
1101
1102 /**
1103 * Cluster size for reduction operations
1104 */
1105 NIR_INTRINSIC_CLUSTER_SIZE = 11,
1106
1107 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1108
1109 } nir_intrinsic_index_flag;
1110
1111 #define NIR_INTRINSIC_MAX_INPUTS 4
1112
1113 typedef struct {
1114 const char *name;
1115
1116 unsigned num_srcs; /** < number of register/SSA inputs */
1117
1118 /** number of components of each input register
1119 *
1120 * If this value is 0, the number of components is given by the
1121 * num_components field of nir_intrinsic_instr.
1122 */
1123 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
1124
1125 bool has_dest;
1126
1127 /** number of components of the output register
1128 *
1129 * If this value is 0, the number of components is given by the
1130 * num_components field of nir_intrinsic_instr.
1131 */
1132 unsigned dest_components;
1133
1134 /** the number of inputs/outputs that are variables */
1135 unsigned num_variables;
1136
1137 /** the number of constant indices used by the intrinsic */
1138 unsigned num_indices;
1139
1140 /** indicates the usage of intr->const_index[n] */
1141 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1142
1143 /** semantic flags for calls to this intrinsic */
1144 nir_intrinsic_semantic_flag flags;
1145 } nir_intrinsic_info;
1146
1147 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1148
1149 static inline unsigned
1150 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1151 {
1152 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1153 assert(srcn < info->num_srcs);
1154 if (info->src_components[srcn])
1155 return info->src_components[srcn];
1156 else
1157 return intr->num_components;
1158 }
1159
1160 static inline unsigned
1161 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1162 {
1163 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1164 if (!info->has_dest)
1165 return 0;
1166 else if (info->dest_components)
1167 return info->dest_components;
1168 else
1169 return intr->num_components;
1170 }
1171
1172 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1173 static inline type \
1174 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1175 { \
1176 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1177 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1178 return instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1179 } \
1180 static inline void \
1181 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1182 { \
1183 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1184 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1185 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1186 }
1187
1188 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1189 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1190 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1191 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1192 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1193 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1194 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1195 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1196 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1197 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1198 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1199
1200 /**
1201 * \group texture information
1202 *
1203 * This gives semantic information about textures which is useful to the
1204 * frontend, the backend, and lowering passes, but not the optimizer.
1205 */
1206
1207 typedef enum {
1208 nir_tex_src_coord,
1209 nir_tex_src_projector,
1210 nir_tex_src_comparator, /* shadow comparator */
1211 nir_tex_src_offset,
1212 nir_tex_src_bias,
1213 nir_tex_src_lod,
1214 nir_tex_src_ms_index, /* MSAA sample index */
1215 nir_tex_src_ms_mcs, /* MSAA compression value */
1216 nir_tex_src_ddx,
1217 nir_tex_src_ddy,
1218 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1219 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1220 nir_tex_src_plane, /* < selects plane for planar textures */
1221 nir_num_tex_src_types
1222 } nir_tex_src_type;
1223
1224 typedef struct {
1225 nir_src src;
1226 nir_tex_src_type src_type;
1227 } nir_tex_src;
1228
1229 typedef enum {
1230 nir_texop_tex, /**< Regular texture look-up */
1231 nir_texop_txb, /**< Texture look-up with LOD bias */
1232 nir_texop_txl, /**< Texture look-up with explicit LOD */
1233 nir_texop_txd, /**< Texture look-up with partial derivatives */
1234 nir_texop_txf, /**< Texel fetch with explicit LOD */
1235 nir_texop_txf_ms, /**< Multisample texture fetch */
1236 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1237 nir_texop_txs, /**< Texture size */
1238 nir_texop_lod, /**< Texture lod query */
1239 nir_texop_tg4, /**< Texture gather */
1240 nir_texop_query_levels, /**< Texture levels query */
1241 nir_texop_texture_samples, /**< Texture samples query */
1242 nir_texop_samples_identical, /**< Query whether all samples are definitely
1243 * identical.
1244 */
1245 } nir_texop;
1246
1247 typedef struct {
1248 nir_instr instr;
1249
1250 enum glsl_sampler_dim sampler_dim;
1251 nir_alu_type dest_type;
1252
1253 nir_texop op;
1254 nir_dest dest;
1255 nir_tex_src *src;
1256 unsigned num_srcs, coord_components;
1257 bool is_array, is_shadow;
1258
1259 /**
1260 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1261 * components or the new-style shadow that outputs 1 component.
1262 */
1263 bool is_new_style_shadow;
1264
1265 /* gather component selector */
1266 unsigned component : 2;
1267
1268 /** The texture index
1269 *
1270 * If this texture instruction has a nir_tex_src_texture_offset source,
1271 * then the texture index is given by texture_index + texture_offset.
1272 */
1273 unsigned texture_index;
1274
1275 /** The size of the texture array or 0 if it's not an array */
1276 unsigned texture_array_size;
1277
1278 /** The texture deref
1279 *
1280 * If this is null, use texture_index instead.
1281 */
1282 nir_deref_var *texture;
1283
1284 /** The sampler index
1285 *
1286 * The following operations do not require a sampler and, as such, this
1287 * field should be ignored:
1288 * - nir_texop_txf
1289 * - nir_texop_txf_ms
1290 * - nir_texop_txs
1291 * - nir_texop_lod
1292 * - nir_texop_query_levels
1293 * - nir_texop_texture_samples
1294 * - nir_texop_samples_identical
1295 *
1296 * If this texture instruction has a nir_tex_src_sampler_offset source,
1297 * then the sampler index is given by sampler_index + sampler_offset.
1298 */
1299 unsigned sampler_index;
1300
1301 /** The sampler deref
1302 *
1303 * If this is null, use sampler_index instead.
1304 */
1305 nir_deref_var *sampler;
1306 } nir_tex_instr;
1307
1308 static inline unsigned
1309 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1310 {
1311 switch (instr->op) {
1312 case nir_texop_txs: {
1313 unsigned ret;
1314 switch (instr->sampler_dim) {
1315 case GLSL_SAMPLER_DIM_1D:
1316 case GLSL_SAMPLER_DIM_BUF:
1317 ret = 1;
1318 break;
1319 case GLSL_SAMPLER_DIM_2D:
1320 case GLSL_SAMPLER_DIM_CUBE:
1321 case GLSL_SAMPLER_DIM_MS:
1322 case GLSL_SAMPLER_DIM_RECT:
1323 case GLSL_SAMPLER_DIM_EXTERNAL:
1324 case GLSL_SAMPLER_DIM_SUBPASS:
1325 ret = 2;
1326 break;
1327 case GLSL_SAMPLER_DIM_3D:
1328 ret = 3;
1329 break;
1330 default:
1331 unreachable("not reached");
1332 }
1333 if (instr->is_array)
1334 ret++;
1335 return ret;
1336 }
1337
1338 case nir_texop_lod:
1339 return 2;
1340
1341 case nir_texop_texture_samples:
1342 case nir_texop_query_levels:
1343 case nir_texop_samples_identical:
1344 return 1;
1345
1346 default:
1347 if (instr->is_shadow && instr->is_new_style_shadow)
1348 return 1;
1349
1350 return 4;
1351 }
1352 }
1353
1354 /* Returns true if this texture operation queries something about the texture
1355 * rather than actually sampling it.
1356 */
1357 static inline bool
1358 nir_tex_instr_is_query(const nir_tex_instr *instr)
1359 {
1360 switch (instr->op) {
1361 case nir_texop_txs:
1362 case nir_texop_lod:
1363 case nir_texop_texture_samples:
1364 case nir_texop_query_levels:
1365 case nir_texop_txf_ms_mcs:
1366 return true;
1367 case nir_texop_tex:
1368 case nir_texop_txb:
1369 case nir_texop_txl:
1370 case nir_texop_txd:
1371 case nir_texop_txf:
1372 case nir_texop_txf_ms:
1373 case nir_texop_tg4:
1374 return false;
1375 default:
1376 unreachable("Invalid texture opcode");
1377 }
1378 }
1379
1380 static inline nir_alu_type
1381 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1382 {
1383 switch (instr->src[src].src_type) {
1384 case nir_tex_src_coord:
1385 switch (instr->op) {
1386 case nir_texop_txf:
1387 case nir_texop_txf_ms:
1388 case nir_texop_txf_ms_mcs:
1389 case nir_texop_samples_identical:
1390 return nir_type_int;
1391
1392 default:
1393 return nir_type_float;
1394 }
1395
1396 case nir_tex_src_lod:
1397 switch (instr->op) {
1398 case nir_texop_txs:
1399 case nir_texop_txf:
1400 return nir_type_int;
1401
1402 default:
1403 return nir_type_float;
1404 }
1405
1406 case nir_tex_src_projector:
1407 case nir_tex_src_comparator:
1408 case nir_tex_src_bias:
1409 case nir_tex_src_ddx:
1410 case nir_tex_src_ddy:
1411 return nir_type_float;
1412
1413 case nir_tex_src_offset:
1414 case nir_tex_src_ms_index:
1415 case nir_tex_src_texture_offset:
1416 case nir_tex_src_sampler_offset:
1417 return nir_type_int;
1418
1419 default:
1420 unreachable("Invalid texture source type");
1421 }
1422 }
1423
1424 static inline unsigned
1425 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1426 {
1427 if (instr->src[src].src_type == nir_tex_src_coord)
1428 return instr->coord_components;
1429
1430 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1431 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1432 return 4;
1433
1434 if (instr->src[src].src_type == nir_tex_src_ddx ||
1435 instr->src[src].src_type == nir_tex_src_ddy) {
1436 if (instr->is_array)
1437 return instr->coord_components - 1;
1438 else
1439 return instr->coord_components;
1440 }
1441
1442 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1443 * the offset, since a cube maps to a single face.
1444 */
1445 if (instr->src[src].src_type == nir_tex_src_offset) {
1446 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1447 return 2;
1448 else if (instr->is_array)
1449 return instr->coord_components - 1;
1450 else
1451 return instr->coord_components;
1452 }
1453
1454 return 1;
1455 }
1456
1457 static inline int
1458 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1459 {
1460 for (unsigned i = 0; i < instr->num_srcs; i++)
1461 if (instr->src[i].src_type == type)
1462 return (int) i;
1463
1464 return -1;
1465 }
1466
1467 void nir_tex_instr_add_src(nir_tex_instr *tex,
1468 nir_tex_src_type src_type,
1469 nir_src src);
1470
1471 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1472
1473 typedef struct {
1474 nir_instr instr;
1475
1476 nir_const_value value;
1477
1478 nir_ssa_def def;
1479 } nir_load_const_instr;
1480
1481 typedef enum {
1482 nir_jump_return,
1483 nir_jump_break,
1484 nir_jump_continue,
1485 } nir_jump_type;
1486
1487 typedef struct {
1488 nir_instr instr;
1489 nir_jump_type type;
1490 } nir_jump_instr;
1491
1492 /* creates a new SSA variable in an undefined state */
1493
1494 typedef struct {
1495 nir_instr instr;
1496 nir_ssa_def def;
1497 } nir_ssa_undef_instr;
1498
1499 typedef struct {
1500 struct exec_node node;
1501
1502 /* The predecessor block corresponding to this source */
1503 struct nir_block *pred;
1504
1505 nir_src src;
1506 } nir_phi_src;
1507
1508 #define nir_foreach_phi_src(phi_src, phi) \
1509 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1510 #define nir_foreach_phi_src_safe(phi_src, phi) \
1511 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1512
1513 typedef struct {
1514 nir_instr instr;
1515
1516 struct exec_list srcs; /** < list of nir_phi_src */
1517
1518 nir_dest dest;
1519 } nir_phi_instr;
1520
1521 typedef struct {
1522 struct exec_node node;
1523 nir_src src;
1524 nir_dest dest;
1525 } nir_parallel_copy_entry;
1526
1527 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1528 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1529
1530 typedef struct {
1531 nir_instr instr;
1532
1533 /* A list of nir_parallel_copy_entrys. The sources of all of the
1534 * entries are copied to the corresponding destinations "in parallel".
1535 * In other words, if we have two entries: a -> b and b -> a, the values
1536 * get swapped.
1537 */
1538 struct exec_list entries;
1539 } nir_parallel_copy_instr;
1540
1541 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1542 type, nir_instr_type_alu)
1543 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1544 type, nir_instr_type_call)
1545 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1546 type, nir_instr_type_jump)
1547 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1548 type, nir_instr_type_tex)
1549 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1550 type, nir_instr_type_intrinsic)
1551 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1552 type, nir_instr_type_load_const)
1553 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1554 type, nir_instr_type_ssa_undef)
1555 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1556 type, nir_instr_type_phi)
1557 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1558 nir_parallel_copy_instr, instr,
1559 type, nir_instr_type_parallel_copy)
1560
1561 /*
1562 * Control flow
1563 *
1564 * Control flow consists of a tree of control flow nodes, which include
1565 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1566 * instructions that always run start-to-finish. Each basic block also keeps
1567 * track of its successors (blocks which may run immediately after the current
1568 * block) and predecessors (blocks which could have run immediately before the
1569 * current block). Each function also has a start block and an end block which
1570 * all return statements point to (which is always empty). Together, all the
1571 * blocks with their predecessors and successors make up the control flow
1572 * graph (CFG) of the function. There are helpers that modify the tree of
1573 * control flow nodes while modifying the CFG appropriately; these should be
1574 * used instead of modifying the tree directly.
1575 */
1576
1577 typedef enum {
1578 nir_cf_node_block,
1579 nir_cf_node_if,
1580 nir_cf_node_loop,
1581 nir_cf_node_function
1582 } nir_cf_node_type;
1583
1584 typedef struct nir_cf_node {
1585 struct exec_node node;
1586 nir_cf_node_type type;
1587 struct nir_cf_node *parent;
1588 } nir_cf_node;
1589
1590 typedef struct nir_block {
1591 nir_cf_node cf_node;
1592
1593 struct exec_list instr_list; /** < list of nir_instr */
1594
1595 /** generic block index; generated by nir_index_blocks */
1596 unsigned index;
1597
1598 /*
1599 * Each block can only have up to 2 successors, so we put them in a simple
1600 * array - no need for anything more complicated.
1601 */
1602 struct nir_block *successors[2];
1603
1604 /* Set of nir_block predecessors in the CFG */
1605 struct set *predecessors;
1606
1607 /*
1608 * this node's immediate dominator in the dominance tree - set to NULL for
1609 * the start block.
1610 */
1611 struct nir_block *imm_dom;
1612
1613 /* This node's children in the dominance tree */
1614 unsigned num_dom_children;
1615 struct nir_block **dom_children;
1616
1617 /* Set of nir_blocks on the dominance frontier of this block */
1618 struct set *dom_frontier;
1619
1620 /*
1621 * These two indices have the property that dom_{pre,post}_index for each
1622 * child of this block in the dominance tree will always be between
1623 * dom_pre_index and dom_post_index for this block, which makes testing if
1624 * a given block is dominated by another block an O(1) operation.
1625 */
1626 unsigned dom_pre_index, dom_post_index;
1627
1628 /* live in and out for this block; used for liveness analysis */
1629 BITSET_WORD *live_in;
1630 BITSET_WORD *live_out;
1631 } nir_block;
1632
1633 static inline nir_instr *
1634 nir_block_first_instr(nir_block *block)
1635 {
1636 struct exec_node *head = exec_list_get_head(&block->instr_list);
1637 return exec_node_data(nir_instr, head, node);
1638 }
1639
1640 static inline nir_instr *
1641 nir_block_last_instr(nir_block *block)
1642 {
1643 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1644 return exec_node_data(nir_instr, tail, node);
1645 }
1646
1647 #define nir_foreach_instr(instr, block) \
1648 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1649 #define nir_foreach_instr_reverse(instr, block) \
1650 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1651 #define nir_foreach_instr_safe(instr, block) \
1652 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1653 #define nir_foreach_instr_reverse_safe(instr, block) \
1654 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1655
1656 typedef struct nir_if {
1657 nir_cf_node cf_node;
1658 nir_src condition;
1659
1660 struct exec_list then_list; /** < list of nir_cf_node */
1661 struct exec_list else_list; /** < list of nir_cf_node */
1662 } nir_if;
1663
1664 typedef struct {
1665 nir_if *nif;
1666
1667 nir_instr *conditional_instr;
1668
1669 nir_block *break_block;
1670 nir_block *continue_from_block;
1671
1672 bool continue_from_then;
1673
1674 struct list_head loop_terminator_link;
1675 } nir_loop_terminator;
1676
1677 typedef struct {
1678 /* Number of instructions in the loop */
1679 unsigned num_instructions;
1680
1681 /* How many times the loop is run (if known) */
1682 unsigned trip_count;
1683 bool is_trip_count_known;
1684
1685 /* Unroll the loop regardless of its size */
1686 bool force_unroll;
1687
1688 nir_loop_terminator *limiting_terminator;
1689
1690 /* A list of loop_terminators terminating this loop. */
1691 struct list_head loop_terminator_list;
1692 } nir_loop_info;
1693
1694 typedef struct {
1695 nir_cf_node cf_node;
1696
1697 struct exec_list body; /** < list of nir_cf_node */
1698
1699 nir_loop_info *info;
1700 } nir_loop;
1701
1702 /**
1703 * Various bits of metadata that can may be created or required by
1704 * optimization and analysis passes
1705 */
1706 typedef enum {
1707 nir_metadata_none = 0x0,
1708 nir_metadata_block_index = 0x1,
1709 nir_metadata_dominance = 0x2,
1710 nir_metadata_live_ssa_defs = 0x4,
1711 nir_metadata_not_properly_reset = 0x8,
1712 nir_metadata_loop_analysis = 0x10,
1713 } nir_metadata;
1714
1715 typedef struct {
1716 nir_cf_node cf_node;
1717
1718 /** pointer to the function of which this is an implementation */
1719 struct nir_function *function;
1720
1721 struct exec_list body; /** < list of nir_cf_node */
1722
1723 nir_block *end_block;
1724
1725 /** list for all local variables in the function */
1726 struct exec_list locals;
1727
1728 /** array of variables used as parameters */
1729 unsigned num_params;
1730 nir_variable **params;
1731
1732 /** variable used to hold the result of the function */
1733 nir_variable *return_var;
1734
1735 /** list of local registers in the function */
1736 struct exec_list registers;
1737
1738 /** next available local register index */
1739 unsigned reg_alloc;
1740
1741 /** next available SSA value index */
1742 unsigned ssa_alloc;
1743
1744 /* total number of basic blocks, only valid when block_index_dirty = false */
1745 unsigned num_blocks;
1746
1747 nir_metadata valid_metadata;
1748 } nir_function_impl;
1749
1750 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1751 nir_start_block(nir_function_impl *impl)
1752 {
1753 return (nir_block *) impl->body.head_sentinel.next;
1754 }
1755
1756 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1757 nir_impl_last_block(nir_function_impl *impl)
1758 {
1759 return (nir_block *) impl->body.tail_sentinel.prev;
1760 }
1761
1762 static inline nir_cf_node *
1763 nir_cf_node_next(nir_cf_node *node)
1764 {
1765 struct exec_node *next = exec_node_get_next(&node->node);
1766 if (exec_node_is_tail_sentinel(next))
1767 return NULL;
1768 else
1769 return exec_node_data(nir_cf_node, next, node);
1770 }
1771
1772 static inline nir_cf_node *
1773 nir_cf_node_prev(nir_cf_node *node)
1774 {
1775 struct exec_node *prev = exec_node_get_prev(&node->node);
1776 if (exec_node_is_head_sentinel(prev))
1777 return NULL;
1778 else
1779 return exec_node_data(nir_cf_node, prev, node);
1780 }
1781
1782 static inline bool
1783 nir_cf_node_is_first(const nir_cf_node *node)
1784 {
1785 return exec_node_is_head_sentinel(node->node.prev);
1786 }
1787
1788 static inline bool
1789 nir_cf_node_is_last(const nir_cf_node *node)
1790 {
1791 return exec_node_is_tail_sentinel(node->node.next);
1792 }
1793
1794 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
1795 type, nir_cf_node_block)
1796 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
1797 type, nir_cf_node_if)
1798 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
1799 type, nir_cf_node_loop)
1800 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
1801 nir_function_impl, cf_node, type, nir_cf_node_function)
1802
1803 static inline nir_block *
1804 nir_if_first_then_block(nir_if *if_stmt)
1805 {
1806 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1807 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1808 }
1809
1810 static inline nir_block *
1811 nir_if_last_then_block(nir_if *if_stmt)
1812 {
1813 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1814 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1815 }
1816
1817 static inline nir_block *
1818 nir_if_first_else_block(nir_if *if_stmt)
1819 {
1820 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1821 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1822 }
1823
1824 static inline nir_block *
1825 nir_if_last_else_block(nir_if *if_stmt)
1826 {
1827 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1828 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1829 }
1830
1831 static inline nir_block *
1832 nir_loop_first_block(nir_loop *loop)
1833 {
1834 struct exec_node *head = exec_list_get_head(&loop->body);
1835 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1836 }
1837
1838 static inline nir_block *
1839 nir_loop_last_block(nir_loop *loop)
1840 {
1841 struct exec_node *tail = exec_list_get_tail(&loop->body);
1842 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1843 }
1844
1845 typedef enum {
1846 nir_parameter_in,
1847 nir_parameter_out,
1848 nir_parameter_inout,
1849 } nir_parameter_type;
1850
1851 typedef struct {
1852 nir_parameter_type param_type;
1853 const struct glsl_type *type;
1854 } nir_parameter;
1855
1856 typedef struct nir_function {
1857 struct exec_node node;
1858
1859 const char *name;
1860 struct nir_shader *shader;
1861
1862 unsigned num_params;
1863 nir_parameter *params;
1864 const struct glsl_type *return_type;
1865
1866 /** The implementation of this function.
1867 *
1868 * If the function is only declared and not implemented, this is NULL.
1869 */
1870 nir_function_impl *impl;
1871 } nir_function;
1872
1873 typedef struct nir_shader_compiler_options {
1874 bool lower_fdiv;
1875 bool lower_ffma;
1876 bool fuse_ffma;
1877 bool lower_flrp32;
1878 /** Lowers flrp when it does not support doubles */
1879 bool lower_flrp64;
1880 bool lower_fpow;
1881 bool lower_fsat;
1882 bool lower_fsqrt;
1883 bool lower_fmod32;
1884 bool lower_fmod64;
1885 bool lower_bitfield_extract;
1886 bool lower_bitfield_insert;
1887 bool lower_uadd_carry;
1888 bool lower_usub_borrow;
1889 /** lowers fneg and ineg to fsub and isub. */
1890 bool lower_negate;
1891 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1892 bool lower_sub;
1893
1894 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1895 bool lower_scmp;
1896
1897 /** enables rules to lower idiv by power-of-two: */
1898 bool lower_idiv;
1899
1900 /* Does the native fdot instruction replicate its result for four
1901 * components? If so, then opt_algebraic_late will turn all fdotN
1902 * instructions into fdot_replicatedN instructions.
1903 */
1904 bool fdot_replicates;
1905
1906 /** lowers ffract to fsub+ffloor: */
1907 bool lower_ffract;
1908
1909 bool lower_ldexp;
1910
1911 bool lower_pack_half_2x16;
1912 bool lower_pack_unorm_2x16;
1913 bool lower_pack_snorm_2x16;
1914 bool lower_pack_unorm_4x8;
1915 bool lower_pack_snorm_4x8;
1916 bool lower_unpack_half_2x16;
1917 bool lower_unpack_unorm_2x16;
1918 bool lower_unpack_snorm_2x16;
1919 bool lower_unpack_unorm_4x8;
1920 bool lower_unpack_snorm_4x8;
1921
1922 bool lower_extract_byte;
1923 bool lower_extract_word;
1924
1925 bool lower_all_io_to_temps;
1926
1927 /**
1928 * Does the driver support real 32-bit integers? (Otherwise, integers
1929 * are simulated by floats.)
1930 */
1931 bool native_integers;
1932
1933 /* Indicates that the driver only has zero-based vertex id */
1934 bool vertex_id_zero_based;
1935
1936 bool lower_cs_local_index_from_id;
1937
1938 bool lower_device_index_to_zero;
1939
1940 /**
1941 * Should nir_lower_io() create load_interpolated_input intrinsics?
1942 *
1943 * If not, it generates regular load_input intrinsics and interpolation
1944 * information must be inferred from the list of input nir_variables.
1945 */
1946 bool use_interpolated_input_intrinsics;
1947
1948 /**
1949 * Do vertex shader double inputs use two locations? The Vulkan spec
1950 * requires two locations to be used, OpenGL allows a single location.
1951 */
1952 bool vs_inputs_dual_locations;
1953
1954 unsigned max_unroll_iterations;
1955 } nir_shader_compiler_options;
1956
1957 typedef struct nir_shader {
1958 /** list of uniforms (nir_variable) */
1959 struct exec_list uniforms;
1960
1961 /** list of inputs (nir_variable) */
1962 struct exec_list inputs;
1963
1964 /** list of outputs (nir_variable) */
1965 struct exec_list outputs;
1966
1967 /** list of shared compute variables (nir_variable) */
1968 struct exec_list shared;
1969
1970 /** Set of driver-specific options for the shader.
1971 *
1972 * The memory for the options is expected to be kept in a single static
1973 * copy by the driver.
1974 */
1975 const struct nir_shader_compiler_options *options;
1976
1977 /** Various bits of compile-time information about a given shader */
1978 struct shader_info info;
1979
1980 /** list of global variables in the shader (nir_variable) */
1981 struct exec_list globals;
1982
1983 /** list of system value variables in the shader (nir_variable) */
1984 struct exec_list system_values;
1985
1986 struct exec_list functions; /** < list of nir_function */
1987
1988 /** list of global register in the shader */
1989 struct exec_list registers;
1990
1991 /** next available global register index */
1992 unsigned reg_alloc;
1993
1994 /**
1995 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1996 * access plus one
1997 */
1998 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
1999 } nir_shader;
2000
2001 static inline nir_function_impl *
2002 nir_shader_get_entrypoint(nir_shader *shader)
2003 {
2004 assert(exec_list_length(&shader->functions) == 1);
2005 struct exec_node *func_node = exec_list_get_head(&shader->functions);
2006 nir_function *func = exec_node_data(nir_function, func_node, node);
2007 assert(func->return_type == glsl_void_type());
2008 assert(func->num_params == 0);
2009 assert(func->impl);
2010 return func->impl;
2011 }
2012
2013 #define nir_foreach_function(func, shader) \
2014 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2015
2016 nir_shader *nir_shader_create(void *mem_ctx,
2017 gl_shader_stage stage,
2018 const nir_shader_compiler_options *options,
2019 shader_info *si);
2020
2021 /** creates a register, including assigning it an index and adding it to the list */
2022 nir_register *nir_global_reg_create(nir_shader *shader);
2023
2024 nir_register *nir_local_reg_create(nir_function_impl *impl);
2025
2026 void nir_reg_remove(nir_register *reg);
2027
2028 /** Adds a variable to the appropriate list in nir_shader */
2029 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2030
2031 static inline void
2032 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2033 {
2034 assert(var->data.mode == nir_var_local);
2035 exec_list_push_tail(&impl->locals, &var->node);
2036 }
2037
2038 /** creates a variable, sets a few defaults, and adds it to the list */
2039 nir_variable *nir_variable_create(nir_shader *shader,
2040 nir_variable_mode mode,
2041 const struct glsl_type *type,
2042 const char *name);
2043 /** creates a local variable and adds it to the list */
2044 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2045 const struct glsl_type *type,
2046 const char *name);
2047
2048 /** creates a function and adds it to the shader's list of functions */
2049 nir_function *nir_function_create(nir_shader *shader, const char *name);
2050
2051 nir_function_impl *nir_function_impl_create(nir_function *func);
2052 /** creates a function_impl that isn't tied to any particular function */
2053 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2054
2055 nir_block *nir_block_create(nir_shader *shader);
2056 nir_if *nir_if_create(nir_shader *shader);
2057 nir_loop *nir_loop_create(nir_shader *shader);
2058
2059 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2060
2061 /** requests that the given pieces of metadata be generated */
2062 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2063 /** dirties all but the preserved metadata */
2064 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2065
2066 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2067 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2068
2069 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2070
2071 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2072 unsigned num_components,
2073 unsigned bit_size);
2074
2075 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2076 nir_intrinsic_op op);
2077
2078 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2079 nir_function *callee);
2080
2081 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2082
2083 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2084
2085 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2086
2087 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2088 unsigned num_components,
2089 unsigned bit_size);
2090
2091 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
2092 nir_deref_array *nir_deref_array_create(void *mem_ctx);
2093 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
2094
2095 typedef bool (*nir_deref_foreach_leaf_cb)(nir_deref_var *deref, void *state);
2096 bool nir_deref_foreach_leaf(nir_deref_var *deref,
2097 nir_deref_foreach_leaf_cb cb, void *state);
2098
2099 nir_load_const_instr *
2100 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
2101
2102 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2103
2104 /**
2105 * NIR Cursors and Instruction Insertion API
2106 * @{
2107 *
2108 * A tiny struct representing a point to insert/extract instructions or
2109 * control flow nodes. Helps reduce the combinatorial explosion of possible
2110 * points to insert/extract.
2111 *
2112 * \sa nir_control_flow.h
2113 */
2114 typedef enum {
2115 nir_cursor_before_block,
2116 nir_cursor_after_block,
2117 nir_cursor_before_instr,
2118 nir_cursor_after_instr,
2119 } nir_cursor_option;
2120
2121 typedef struct {
2122 nir_cursor_option option;
2123 union {
2124 nir_block *block;
2125 nir_instr *instr;
2126 };
2127 } nir_cursor;
2128
2129 static inline nir_block *
2130 nir_cursor_current_block(nir_cursor cursor)
2131 {
2132 if (cursor.option == nir_cursor_before_instr ||
2133 cursor.option == nir_cursor_after_instr) {
2134 return cursor.instr->block;
2135 } else {
2136 return cursor.block;
2137 }
2138 }
2139
2140 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2141
2142 static inline nir_cursor
2143 nir_before_block(nir_block *block)
2144 {
2145 nir_cursor cursor;
2146 cursor.option = nir_cursor_before_block;
2147 cursor.block = block;
2148 return cursor;
2149 }
2150
2151 static inline nir_cursor
2152 nir_after_block(nir_block *block)
2153 {
2154 nir_cursor cursor;
2155 cursor.option = nir_cursor_after_block;
2156 cursor.block = block;
2157 return cursor;
2158 }
2159
2160 static inline nir_cursor
2161 nir_before_instr(nir_instr *instr)
2162 {
2163 nir_cursor cursor;
2164 cursor.option = nir_cursor_before_instr;
2165 cursor.instr = instr;
2166 return cursor;
2167 }
2168
2169 static inline nir_cursor
2170 nir_after_instr(nir_instr *instr)
2171 {
2172 nir_cursor cursor;
2173 cursor.option = nir_cursor_after_instr;
2174 cursor.instr = instr;
2175 return cursor;
2176 }
2177
2178 static inline nir_cursor
2179 nir_after_block_before_jump(nir_block *block)
2180 {
2181 nir_instr *last_instr = nir_block_last_instr(block);
2182 if (last_instr && last_instr->type == nir_instr_type_jump) {
2183 return nir_before_instr(last_instr);
2184 } else {
2185 return nir_after_block(block);
2186 }
2187 }
2188
2189 static inline nir_cursor
2190 nir_before_cf_node(nir_cf_node *node)
2191 {
2192 if (node->type == nir_cf_node_block)
2193 return nir_before_block(nir_cf_node_as_block(node));
2194
2195 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2196 }
2197
2198 static inline nir_cursor
2199 nir_after_cf_node(nir_cf_node *node)
2200 {
2201 if (node->type == nir_cf_node_block)
2202 return nir_after_block(nir_cf_node_as_block(node));
2203
2204 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2205 }
2206
2207 static inline nir_cursor
2208 nir_after_phis(nir_block *block)
2209 {
2210 nir_foreach_instr(instr, block) {
2211 if (instr->type != nir_instr_type_phi)
2212 return nir_before_instr(instr);
2213 }
2214 return nir_after_block(block);
2215 }
2216
2217 static inline nir_cursor
2218 nir_after_cf_node_and_phis(nir_cf_node *node)
2219 {
2220 if (node->type == nir_cf_node_block)
2221 return nir_after_block(nir_cf_node_as_block(node));
2222
2223 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2224
2225 return nir_after_phis(block);
2226 }
2227
2228 static inline nir_cursor
2229 nir_before_cf_list(struct exec_list *cf_list)
2230 {
2231 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2232 exec_list_get_head(cf_list), node);
2233 return nir_before_cf_node(first_node);
2234 }
2235
2236 static inline nir_cursor
2237 nir_after_cf_list(struct exec_list *cf_list)
2238 {
2239 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2240 exec_list_get_tail(cf_list), node);
2241 return nir_after_cf_node(last_node);
2242 }
2243
2244 /**
2245 * Insert a NIR instruction at the given cursor.
2246 *
2247 * Note: This does not update the cursor.
2248 */
2249 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2250
2251 static inline void
2252 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2253 {
2254 nir_instr_insert(nir_before_instr(instr), before);
2255 }
2256
2257 static inline void
2258 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2259 {
2260 nir_instr_insert(nir_after_instr(instr), after);
2261 }
2262
2263 static inline void
2264 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2265 {
2266 nir_instr_insert(nir_before_block(block), before);
2267 }
2268
2269 static inline void
2270 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2271 {
2272 nir_instr_insert(nir_after_block(block), after);
2273 }
2274
2275 static inline void
2276 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2277 {
2278 nir_instr_insert(nir_before_cf_node(node), before);
2279 }
2280
2281 static inline void
2282 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2283 {
2284 nir_instr_insert(nir_after_cf_node(node), after);
2285 }
2286
2287 static inline void
2288 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2289 {
2290 nir_instr_insert(nir_before_cf_list(list), before);
2291 }
2292
2293 static inline void
2294 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2295 {
2296 nir_instr_insert(nir_after_cf_list(list), after);
2297 }
2298
2299 void nir_instr_remove_v(nir_instr *instr);
2300
2301 static inline nir_cursor
2302 nir_instr_remove(nir_instr *instr)
2303 {
2304 nir_cursor cursor;
2305 nir_instr *prev = nir_instr_prev(instr);
2306 if (prev) {
2307 cursor = nir_after_instr(prev);
2308 } else {
2309 cursor = nir_before_block(instr->block);
2310 }
2311 nir_instr_remove_v(instr);
2312 return cursor;
2313 }
2314
2315 /** @} */
2316
2317 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2318 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2319 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2320 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2321 void *state);
2322 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2323 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2324
2325 nir_const_value *nir_src_as_const_value(nir_src src);
2326 bool nir_src_is_dynamically_uniform(nir_src src);
2327 bool nir_srcs_equal(nir_src src1, nir_src src2);
2328 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2329 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2330 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2331 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2332 nir_dest new_dest);
2333 void nir_instr_rewrite_deref(nir_instr *instr, nir_deref_var **deref,
2334 nir_deref_var *new_deref);
2335
2336 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2337 unsigned num_components, unsigned bit_size,
2338 const char *name);
2339 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2340 unsigned num_components, unsigned bit_size,
2341 const char *name);
2342 static inline void
2343 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
2344 const struct glsl_type *type,
2345 const char *name)
2346 {
2347 assert(glsl_type_is_vector_or_scalar(type));
2348 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
2349 glsl_get_bit_size(type), name);
2350 }
2351 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2352 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2353 nir_instr *after_me);
2354
2355 uint8_t nir_ssa_def_components_read(const nir_ssa_def *def);
2356
2357 /*
2358 * finds the next basic block in source-code order, returns NULL if there is
2359 * none
2360 */
2361
2362 nir_block *nir_block_cf_tree_next(nir_block *block);
2363
2364 /* Performs the opposite of nir_block_cf_tree_next() */
2365
2366 nir_block *nir_block_cf_tree_prev(nir_block *block);
2367
2368 /* Gets the first block in a CF node in source-code order */
2369
2370 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2371
2372 /* Gets the last block in a CF node in source-code order */
2373
2374 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2375
2376 /* Gets the next block after a CF node in source-code order */
2377
2378 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2379
2380 /* Macros for loops that visit blocks in source-code order */
2381
2382 #define nir_foreach_block(block, impl) \
2383 for (nir_block *block = nir_start_block(impl); block != NULL; \
2384 block = nir_block_cf_tree_next(block))
2385
2386 #define nir_foreach_block_safe(block, impl) \
2387 for (nir_block *block = nir_start_block(impl), \
2388 *next = nir_block_cf_tree_next(block); \
2389 block != NULL; \
2390 block = next, next = nir_block_cf_tree_next(block))
2391
2392 #define nir_foreach_block_reverse(block, impl) \
2393 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2394 block = nir_block_cf_tree_prev(block))
2395
2396 #define nir_foreach_block_reverse_safe(block, impl) \
2397 for (nir_block *block = nir_impl_last_block(impl), \
2398 *prev = nir_block_cf_tree_prev(block); \
2399 block != NULL; \
2400 block = prev, prev = nir_block_cf_tree_prev(block))
2401
2402 #define nir_foreach_block_in_cf_node(block, node) \
2403 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2404 block != nir_cf_node_cf_tree_next(node); \
2405 block = nir_block_cf_tree_next(block))
2406
2407 /* If the following CF node is an if, this function returns that if.
2408 * Otherwise, it returns NULL.
2409 */
2410 nir_if *nir_block_get_following_if(nir_block *block);
2411
2412 nir_loop *nir_block_get_following_loop(nir_block *block);
2413
2414 void nir_index_local_regs(nir_function_impl *impl);
2415 void nir_index_global_regs(nir_shader *shader);
2416 void nir_index_ssa_defs(nir_function_impl *impl);
2417 unsigned nir_index_instrs(nir_function_impl *impl);
2418
2419 void nir_index_blocks(nir_function_impl *impl);
2420
2421 void nir_print_shader(nir_shader *shader, FILE *fp);
2422 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2423 void nir_print_instr(const nir_instr *instr, FILE *fp);
2424
2425 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2426 nir_function_impl *nir_function_impl_clone(const nir_function_impl *fi);
2427 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2428 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2429 nir_deref *nir_deref_clone(const nir_deref *deref, void *mem_ctx);
2430 nir_deref_var *nir_deref_var_clone(const nir_deref_var *deref, void *mem_ctx);
2431
2432 nir_shader *nir_shader_serialize_deserialize(void *mem_ctx, nir_shader *s);
2433
2434 #ifndef NDEBUG
2435 void nir_validate_shader(nir_shader *shader);
2436 void nir_metadata_set_validation_flag(nir_shader *shader);
2437 void nir_metadata_check_validation_flag(nir_shader *shader);
2438
2439 static inline bool
2440 should_clone_nir(void)
2441 {
2442 static int should_clone = -1;
2443 if (should_clone < 0)
2444 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2445
2446 return should_clone;
2447 }
2448
2449 static inline bool
2450 should_serialize_deserialize_nir(void)
2451 {
2452 static int test_serialize = -1;
2453 if (test_serialize < 0)
2454 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
2455
2456 return test_serialize;
2457 }
2458
2459 static inline bool
2460 should_print_nir(void)
2461 {
2462 static int should_print = -1;
2463 if (should_print < 0)
2464 should_print = env_var_as_boolean("NIR_PRINT", false);
2465
2466 return should_print;
2467 }
2468 #else
2469 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
2470 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2471 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2472 static inline bool should_clone_nir(void) { return false; }
2473 static inline bool should_serialize_deserialize_nir(void) { return false; }
2474 static inline bool should_print_nir(void) { return false; }
2475 #endif /* NDEBUG */
2476
2477 #define _PASS(nir, do_pass) do { \
2478 do_pass \
2479 nir_validate_shader(nir); \
2480 if (should_clone_nir()) { \
2481 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2482 ralloc_free(nir); \
2483 nir = clone; \
2484 } \
2485 if (should_serialize_deserialize_nir()) { \
2486 void *mem_ctx = ralloc_parent(nir); \
2487 nir = nir_shader_serialize_deserialize(mem_ctx, nir); \
2488 } \
2489 } while (0)
2490
2491 #define NIR_PASS(progress, nir, pass, ...) _PASS(nir, \
2492 nir_metadata_set_validation_flag(nir); \
2493 if (should_print_nir()) \
2494 printf("%s\n", #pass); \
2495 if (pass(nir, ##__VA_ARGS__)) { \
2496 progress = true; \
2497 if (should_print_nir()) \
2498 nir_print_shader(nir, stdout); \
2499 nir_metadata_check_validation_flag(nir); \
2500 } \
2501 )
2502
2503 #define NIR_PASS_V(nir, pass, ...) _PASS(nir, \
2504 if (should_print_nir()) \
2505 printf("%s\n", #pass); \
2506 pass(nir, ##__VA_ARGS__); \
2507 if (should_print_nir()) \
2508 nir_print_shader(nir, stdout); \
2509 )
2510
2511 void nir_calc_dominance_impl(nir_function_impl *impl);
2512 void nir_calc_dominance(nir_shader *shader);
2513
2514 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2515 bool nir_block_dominates(nir_block *parent, nir_block *child);
2516
2517 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2518 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2519
2520 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2521 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2522
2523 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2524 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2525
2526 int nir_gs_count_vertices(const nir_shader *shader);
2527
2528 bool nir_split_var_copies(nir_shader *shader);
2529
2530 bool nir_lower_returns_impl(nir_function_impl *impl);
2531 bool nir_lower_returns(nir_shader *shader);
2532
2533 bool nir_inline_functions(nir_shader *shader);
2534
2535 bool nir_propagate_invariant(nir_shader *shader);
2536
2537 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
2538 bool nir_lower_var_copies(nir_shader *shader);
2539
2540 bool nir_lower_global_vars_to_local(nir_shader *shader);
2541
2542 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
2543
2544 bool nir_lower_locals_to_regs(nir_shader *shader);
2545
2546 void nir_lower_io_to_temporaries(nir_shader *shader,
2547 nir_function_impl *entrypoint,
2548 bool outputs, bool inputs);
2549
2550 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2551
2552 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
2553 int (*type_size)(const struct glsl_type *));
2554
2555 /* Some helpers to do very simple linking */
2556 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
2557 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
2558 bool default_to_smooth_interp);
2559
2560 typedef enum {
2561 /* If set, this forces all non-flat fragment shader inputs to be
2562 * interpolated as if with the "sample" qualifier. This requires
2563 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
2564 */
2565 nir_lower_io_force_sample_interpolation = (1 << 1),
2566 } nir_lower_io_options;
2567 bool nir_lower_io(nir_shader *shader,
2568 nir_variable_mode modes,
2569 int (*type_size)(const struct glsl_type *),
2570 nir_lower_io_options);
2571 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2572 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2573
2574 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
2575
2576 void nir_lower_io_types(nir_shader *shader);
2577 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
2578 bool nir_lower_regs_to_ssa(nir_shader *shader);
2579 bool nir_lower_vars_to_ssa(nir_shader *shader);
2580
2581 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
2582 bool nir_lower_constant_initializers(nir_shader *shader,
2583 nir_variable_mode modes);
2584
2585 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
2586 bool nir_lower_vec_to_movs(nir_shader *shader);
2587 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
2588 bool alpha_to_one);
2589 bool nir_lower_alu_to_scalar(nir_shader *shader);
2590 bool nir_lower_load_const_to_scalar(nir_shader *shader);
2591 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
2592 bool nir_lower_phis_to_scalar(nir_shader *shader);
2593 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
2594 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
2595 bool outputs_only);
2596 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
2597 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
2598
2599 bool nir_lower_samplers(nir_shader *shader,
2600 const struct gl_shader_program *shader_program);
2601 bool nir_lower_samplers_as_deref(nir_shader *shader,
2602 const struct gl_shader_program *shader_program);
2603
2604 typedef struct nir_lower_subgroups_options {
2605 uint8_t subgroup_size;
2606 uint8_t ballot_bit_size;
2607 bool lower_to_scalar:1;
2608 bool lower_vote_trivial:1;
2609 bool lower_vote_eq_to_ballot:1;
2610 bool lower_subgroup_masks:1;
2611 bool lower_shuffle:1;
2612 bool lower_shuffle_to_32bit:1;
2613 bool lower_quad:1;
2614 } nir_lower_subgroups_options;
2615
2616 bool nir_lower_subgroups(nir_shader *shader,
2617 const nir_lower_subgroups_options *options);
2618
2619 bool nir_lower_system_values(nir_shader *shader);
2620
2621 typedef struct nir_lower_tex_options {
2622 /**
2623 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2624 * sampler types a texture projector is lowered.
2625 */
2626 unsigned lower_txp;
2627
2628 /**
2629 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
2630 */
2631 bool lower_txf_offset;
2632
2633 /**
2634 * If true, lower away nir_tex_src_offset for all rect textures.
2635 */
2636 bool lower_rect_offset;
2637
2638 /**
2639 * If true, lower rect textures to 2D, using txs to fetch the
2640 * texture dimensions and dividing the texture coords by the
2641 * texture dims to normalize.
2642 */
2643 bool lower_rect;
2644
2645 /**
2646 * If true, convert yuv to rgb.
2647 */
2648 unsigned lower_y_uv_external;
2649 unsigned lower_y_u_v_external;
2650 unsigned lower_yx_xuxv_external;
2651 unsigned lower_xy_uxvx_external;
2652
2653 /**
2654 * To emulate certain texture wrap modes, this can be used
2655 * to saturate the specified tex coord to [0.0, 1.0]. The
2656 * bits are according to sampler #, ie. if, for example:
2657 *
2658 * (conf->saturate_s & (1 << n))
2659 *
2660 * is true, then the s coord for sampler n is saturated.
2661 *
2662 * Note that clamping must happen *after* projector lowering
2663 * so any projected texture sample instruction with a clamped
2664 * coordinate gets automatically lowered, regardless of the
2665 * 'lower_txp' setting.
2666 */
2667 unsigned saturate_s;
2668 unsigned saturate_t;
2669 unsigned saturate_r;
2670
2671 /* Bitmask of textures that need swizzling.
2672 *
2673 * If (swizzle_result & (1 << texture_index)), then the swizzle in
2674 * swizzles[texture_index] is applied to the result of the texturing
2675 * operation.
2676 */
2677 unsigned swizzle_result;
2678
2679 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
2680 * while 4 and 5 represent 0 and 1 respectively.
2681 */
2682 uint8_t swizzles[32][4];
2683
2684 /**
2685 * Bitmap of textures that need srgb to linear conversion. If
2686 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
2687 * of the texture are lowered to linear.
2688 */
2689 unsigned lower_srgb;
2690
2691 /**
2692 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
2693 */
2694 bool lower_txd_cube_map;
2695
2696 /**
2697 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
2698 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
2699 * with lower_txd_cube_map.
2700 */
2701 bool lower_txd_shadow;
2702
2703 /**
2704 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
2705 * Implies lower_txd_cube_map and lower_txd_shadow.
2706 */
2707 bool lower_txd;
2708 } nir_lower_tex_options;
2709
2710 bool nir_lower_tex(nir_shader *shader,
2711 const nir_lower_tex_options *options);
2712
2713 bool nir_lower_idiv(nir_shader *shader);
2714
2715 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
2716 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
2717 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
2718
2719 void nir_lower_two_sided_color(nir_shader *shader);
2720
2721 bool nir_lower_clamp_color_outputs(nir_shader *shader);
2722
2723 void nir_lower_passthrough_edgeflags(nir_shader *shader);
2724 void nir_lower_tes_patch_vertices(nir_shader *tes, unsigned patch_vertices);
2725
2726 typedef struct nir_lower_wpos_ytransform_options {
2727 gl_state_index16 state_tokens[STATE_LENGTH];
2728 bool fs_coord_origin_upper_left :1;
2729 bool fs_coord_origin_lower_left :1;
2730 bool fs_coord_pixel_center_integer :1;
2731 bool fs_coord_pixel_center_half_integer :1;
2732 } nir_lower_wpos_ytransform_options;
2733
2734 bool nir_lower_wpos_ytransform(nir_shader *shader,
2735 const nir_lower_wpos_ytransform_options *options);
2736 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
2737
2738 typedef struct nir_lower_drawpixels_options {
2739 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
2740 gl_state_index16 scale_state_tokens[STATE_LENGTH];
2741 gl_state_index16 bias_state_tokens[STATE_LENGTH];
2742 unsigned drawpix_sampler;
2743 unsigned pixelmap_sampler;
2744 bool pixel_maps :1;
2745 bool scale_and_bias :1;
2746 } nir_lower_drawpixels_options;
2747
2748 void nir_lower_drawpixels(nir_shader *shader,
2749 const nir_lower_drawpixels_options *options);
2750
2751 typedef struct nir_lower_bitmap_options {
2752 unsigned sampler;
2753 bool swizzle_xxxx;
2754 } nir_lower_bitmap_options;
2755
2756 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
2757
2758 bool nir_lower_atomics(nir_shader *shader,
2759 const struct gl_shader_program *shader_program,
2760 bool use_binding_as_idx);
2761 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
2762 bool nir_lower_to_source_mods(nir_shader *shader);
2763
2764 bool nir_lower_gs_intrinsics(nir_shader *shader);
2765
2766 typedef enum {
2767 nir_lower_imul64 = (1 << 0),
2768 nir_lower_isign64 = (1 << 1),
2769 /** Lower all int64 modulus and division opcodes */
2770 nir_lower_divmod64 = (1 << 2),
2771 } nir_lower_int64_options;
2772
2773 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
2774
2775 typedef enum {
2776 nir_lower_drcp = (1 << 0),
2777 nir_lower_dsqrt = (1 << 1),
2778 nir_lower_drsq = (1 << 2),
2779 nir_lower_dtrunc = (1 << 3),
2780 nir_lower_dfloor = (1 << 4),
2781 nir_lower_dceil = (1 << 5),
2782 nir_lower_dfract = (1 << 6),
2783 nir_lower_dround_even = (1 << 7),
2784 nir_lower_dmod = (1 << 8)
2785 } nir_lower_doubles_options;
2786
2787 bool nir_lower_doubles(nir_shader *shader, nir_lower_doubles_options options);
2788 bool nir_lower_64bit_pack(nir_shader *shader);
2789
2790 bool nir_normalize_cubemap_coords(nir_shader *shader);
2791
2792 void nir_live_ssa_defs_impl(nir_function_impl *impl);
2793
2794 void nir_loop_analyze_impl(nir_function_impl *impl,
2795 nir_variable_mode indirect_mask);
2796
2797 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
2798
2799 bool nir_repair_ssa_impl(nir_function_impl *impl);
2800 bool nir_repair_ssa(nir_shader *shader);
2801
2802 void nir_convert_loop_to_lcssa(nir_loop *loop);
2803
2804 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
2805 * registers. If false, convert all values (even those not involved in a phi
2806 * node) to registers.
2807 */
2808 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
2809
2810 bool nir_lower_phis_to_regs_block(nir_block *block);
2811 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
2812
2813 bool nir_opt_algebraic(nir_shader *shader);
2814 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
2815 bool nir_opt_algebraic_late(nir_shader *shader);
2816 bool nir_opt_constant_folding(nir_shader *shader);
2817
2818 bool nir_opt_global_to_local(nir_shader *shader);
2819
2820 bool nir_copy_prop(nir_shader *shader);
2821
2822 bool nir_opt_copy_prop_vars(nir_shader *shader);
2823
2824 bool nir_opt_cse(nir_shader *shader);
2825
2826 bool nir_opt_dce(nir_shader *shader);
2827
2828 bool nir_opt_dead_cf(nir_shader *shader);
2829
2830 bool nir_opt_gcm(nir_shader *shader, bool value_number);
2831
2832 bool nir_opt_if(nir_shader *shader);
2833
2834 bool nir_opt_intrinsics(nir_shader *shader);
2835
2836 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
2837
2838 bool nir_opt_move_comparisons(nir_shader *shader);
2839
2840 bool nir_opt_move_load_ubo(nir_shader *shader);
2841
2842 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit);
2843
2844 bool nir_opt_remove_phis(nir_shader *shader);
2845
2846 bool nir_opt_shrink_load(nir_shader *shader);
2847
2848 bool nir_opt_trivial_continues(nir_shader *shader);
2849
2850 bool nir_opt_undef(nir_shader *shader);
2851
2852 bool nir_opt_conditional_discard(nir_shader *shader);
2853
2854 void nir_sweep(nir_shader *shader);
2855
2856 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
2857 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
2858
2859 #ifdef __cplusplus
2860 } /* extern "C" */
2861 #endif
2862
2863 #endif /* NIR_H */