nir: Add a helper to determine if an intrinsic can be reordered
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitscan.h"
38 #include "util/bitset.h"
39 #include "util/macros.h"
40 #include "compiler/nir_types.h"
41 #include "compiler/shader_enums.h"
42 #include "compiler/shader_info.h"
43 #include <stdio.h>
44
45 #ifndef NDEBUG
46 #include "util/debug.h"
47 #endif /* NDEBUG */
48
49 #include "nir_opcodes.h"
50
51 #if defined(_WIN32) && !defined(snprintf)
52 #define snprintf _snprintf
53 #endif
54
55 #ifdef __cplusplus
56 extern "C" {
57 #endif
58
59 #define NIR_FALSE 0u
60 #define NIR_TRUE (~0u)
61 #define NIR_MAX_VEC_COMPONENTS 4
62 #define NIR_MAX_MATRIX_COLUMNS 4
63 typedef uint8_t nir_component_mask_t;
64
65 /** Defines a cast function
66 *
67 * This macro defines a cast function from in_type to out_type where
68 * out_type is some structure type that contains a field of type out_type.
69 *
70 * Note that you have to be a bit careful as the generated cast function
71 * destroys constness.
72 */
73 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
74 type_field, type_value) \
75 static inline out_type * \
76 name(const in_type *parent) \
77 { \
78 assert(parent && parent->type_field == type_value); \
79 return exec_node_data(out_type, parent, field); \
80 }
81
82 struct nir_function;
83 struct nir_shader;
84 struct nir_instr;
85 struct nir_builder;
86
87
88 /**
89 * Description of built-in state associated with a uniform
90 *
91 * \sa nir_variable::state_slots
92 */
93 typedef struct {
94 gl_state_index16 tokens[STATE_LENGTH];
95 int swizzle;
96 } nir_state_slot;
97
98 typedef enum {
99 nir_var_shader_in = (1 << 0),
100 nir_var_shader_out = (1 << 1),
101 nir_var_shader_temp = (1 << 2),
102 nir_var_function_temp = (1 << 3),
103 nir_var_uniform = (1 << 4),
104 nir_var_mem_ubo = (1 << 5),
105 nir_var_system_value = (1 << 6),
106 nir_var_mem_ssbo = (1 << 7),
107 nir_var_mem_shared = (1 << 8),
108 nir_var_mem_global = (1 << 9),
109 nir_var_all = ~0,
110 } nir_variable_mode;
111
112 /**
113 * Rounding modes.
114 */
115 typedef enum {
116 nir_rounding_mode_undef = 0,
117 nir_rounding_mode_rtne = 1, /* round to nearest even */
118 nir_rounding_mode_ru = 2, /* round up */
119 nir_rounding_mode_rd = 3, /* round down */
120 nir_rounding_mode_rtz = 4, /* round towards zero */
121 } nir_rounding_mode;
122
123 typedef union {
124 bool b;
125 float f32;
126 double f64;
127 int8_t i8;
128 uint8_t u8;
129 int16_t i16;
130 uint16_t u16;
131 int32_t i32;
132 uint32_t u32;
133 int64_t i64;
134 uint64_t u64;
135 } nir_const_value;
136
137 #define nir_const_value_to_array(arr, c, components, m) \
138 { \
139 for (unsigned i = 0; i < components; ++i) \
140 arr[i] = c[i].m; \
141 } while (false)
142
143 typedef struct nir_constant {
144 /**
145 * Value of the constant.
146 *
147 * The field used to back the values supplied by the constant is determined
148 * by the type associated with the \c nir_variable. Constants may be
149 * scalars, vectors, or matrices.
150 */
151 nir_const_value values[NIR_MAX_MATRIX_COLUMNS][NIR_MAX_VEC_COMPONENTS];
152
153 /* we could get this from the var->type but makes clone *much* easier to
154 * not have to care about the type.
155 */
156 unsigned num_elements;
157
158 /* Array elements / Structure Fields */
159 struct nir_constant **elements;
160 } nir_constant;
161
162 /**
163 * \brief Layout qualifiers for gl_FragDepth.
164 *
165 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
166 * with a layout qualifier.
167 */
168 typedef enum {
169 nir_depth_layout_none, /**< No depth layout is specified. */
170 nir_depth_layout_any,
171 nir_depth_layout_greater,
172 nir_depth_layout_less,
173 nir_depth_layout_unchanged
174 } nir_depth_layout;
175
176 /**
177 * Enum keeping track of how a variable was declared.
178 */
179 typedef enum {
180 /**
181 * Normal declaration.
182 */
183 nir_var_declared_normally = 0,
184
185 /**
186 * Variable is implicitly generated by the compiler and should not be
187 * visible via the API.
188 */
189 nir_var_hidden,
190 } nir_var_declaration_type;
191
192 /**
193 * Either a uniform, global variable, shader input, or shader output. Based on
194 * ir_variable - it should be easy to translate between the two.
195 */
196
197 typedef struct nir_variable {
198 struct exec_node node;
199
200 /**
201 * Declared type of the variable
202 */
203 const struct glsl_type *type;
204
205 /**
206 * Declared name of the variable
207 */
208 char *name;
209
210 struct nir_variable_data {
211 /**
212 * Storage class of the variable.
213 *
214 * \sa nir_variable_mode
215 */
216 nir_variable_mode mode;
217
218 /**
219 * Is the variable read-only?
220 *
221 * This is set for variables declared as \c const, shader inputs,
222 * and uniforms.
223 */
224 unsigned read_only:1;
225 unsigned centroid:1;
226 unsigned sample:1;
227 unsigned patch:1;
228 unsigned invariant:1;
229
230 /**
231 * When separate shader programs are enabled, only input/outputs between
232 * the stages of a multi-stage separate program can be safely removed
233 * from the shader interface. Other input/outputs must remains active.
234 *
235 * This is also used to make sure xfb varyings that are unused by the
236 * fragment shader are not removed.
237 */
238 unsigned always_active_io:1;
239
240 /**
241 * Interpolation mode for shader inputs / outputs
242 *
243 * \sa glsl_interp_mode
244 */
245 unsigned interpolation:2;
246
247 /**
248 * If non-zero, then this variable may be packed along with other variables
249 * into a single varying slot, so this offset should be applied when
250 * accessing components. For example, an offset of 1 means that the x
251 * component of this variable is actually stored in component y of the
252 * location specified by \c location.
253 */
254 unsigned location_frac:2;
255
256 /**
257 * If true, this variable represents an array of scalars that should
258 * be tightly packed. In other words, consecutive array elements
259 * should be stored one component apart, rather than one slot apart.
260 */
261 unsigned compact:1;
262
263 /**
264 * Whether this is a fragment shader output implicitly initialized with
265 * the previous contents of the specified render target at the
266 * framebuffer location corresponding to this shader invocation.
267 */
268 unsigned fb_fetch_output:1;
269
270 /**
271 * Non-zero if this variable is considered bindless as defined by
272 * ARB_bindless_texture.
273 */
274 unsigned bindless:1;
275
276 /**
277 * Was an explicit binding set in the shader?
278 */
279 unsigned explicit_binding:1;
280
281 /**
282 * Was a transfer feedback buffer set in the shader?
283 */
284 unsigned explicit_xfb_buffer:1;
285
286 /**
287 * Was a transfer feedback stride set in the shader?
288 */
289 unsigned explicit_xfb_stride:1;
290
291 /**
292 * Was an explicit offset set in the shader?
293 */
294 unsigned explicit_offset:1;
295
296 /**
297 * \brief Layout qualifier for gl_FragDepth.
298 *
299 * This is not equal to \c ir_depth_layout_none if and only if this
300 * variable is \c gl_FragDepth and a layout qualifier is specified.
301 */
302 nir_depth_layout depth_layout;
303
304 /**
305 * Storage location of the base of this variable
306 *
307 * The precise meaning of this field depends on the nature of the variable.
308 *
309 * - Vertex shader input: one of the values from \c gl_vert_attrib.
310 * - Vertex shader output: one of the values from \c gl_varying_slot.
311 * - Geometry shader input: one of the values from \c gl_varying_slot.
312 * - Geometry shader output: one of the values from \c gl_varying_slot.
313 * - Fragment shader input: one of the values from \c gl_varying_slot.
314 * - Fragment shader output: one of the values from \c gl_frag_result.
315 * - Uniforms: Per-stage uniform slot number for default uniform block.
316 * - Uniforms: Index within the uniform block definition for UBO members.
317 * - Non-UBO Uniforms: uniform slot number.
318 * - Other: This field is not currently used.
319 *
320 * If the variable is a uniform, shader input, or shader output, and the
321 * slot has not been assigned, the value will be -1.
322 */
323 int location;
324
325 /**
326 * The actual location of the variable in the IR. Only valid for inputs
327 * and outputs.
328 */
329 unsigned int driver_location;
330
331 /**
332 * Vertex stream output identifier.
333 *
334 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
335 * stream of the i-th component.
336 */
337 unsigned stream;
338
339 /**
340 * output index for dual source blending.
341 */
342 int index;
343
344 /**
345 * Descriptor set binding for sampler or UBO.
346 */
347 int descriptor_set;
348
349 /**
350 * Initial binding point for a sampler or UBO.
351 *
352 * For array types, this represents the binding point for the first element.
353 */
354 int binding;
355
356 /**
357 * Location an atomic counter or transform feedback is stored at.
358 */
359 unsigned offset;
360
361 /**
362 * Transform feedback buffer.
363 */
364 unsigned xfb_buffer;
365
366 /**
367 * Transform feedback stride.
368 */
369 unsigned xfb_stride;
370
371 /**
372 * How the variable was declared. See nir_var_declaration_type.
373 *
374 * This is used to detect variables generated by the compiler, so should
375 * not be visible via the API.
376 */
377 unsigned how_declared:2;
378
379 /**
380 * ARB_shader_image_load_store qualifiers.
381 */
382 struct {
383 enum gl_access_qualifier access;
384
385 /** Image internal format if specified explicitly, otherwise GL_NONE. */
386 GLenum format;
387 } image;
388 } data;
389
390 /**
391 * Built-in state that backs this uniform
392 *
393 * Once set at variable creation, \c state_slots must remain invariant.
394 * This is because, ideally, this array would be shared by all clones of
395 * this variable in the IR tree. In other words, we'd really like for it
396 * to be a fly-weight.
397 *
398 * If the variable is not a uniform, \c num_state_slots will be zero and
399 * \c state_slots will be \c NULL.
400 */
401 /*@{*/
402 unsigned num_state_slots; /**< Number of state slots used */
403 nir_state_slot *state_slots; /**< State descriptors. */
404 /*@}*/
405
406 /**
407 * Constant expression assigned in the initializer of the variable
408 *
409 * This field should only be used temporarily by creators of NIR shaders
410 * and then lower_constant_initializers can be used to get rid of them.
411 * Most of the rest of NIR ignores this field or asserts that it's NULL.
412 */
413 nir_constant *constant_initializer;
414
415 /**
416 * For variables that are in an interface block or are an instance of an
417 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
418 *
419 * \sa ir_variable::location
420 */
421 const struct glsl_type *interface_type;
422
423 /**
424 * Description of per-member data for per-member struct variables
425 *
426 * This is used for variables which are actually an amalgamation of
427 * multiple entities such as a struct of built-in values or a struct of
428 * inputs each with their own layout specifier. This is only allowed on
429 * variables with a struct or array of array of struct type.
430 */
431 unsigned num_members;
432 struct nir_variable_data *members;
433 } nir_variable;
434
435 #define nir_foreach_variable(var, var_list) \
436 foreach_list_typed(nir_variable, var, node, var_list)
437
438 #define nir_foreach_variable_safe(var, var_list) \
439 foreach_list_typed_safe(nir_variable, var, node, var_list)
440
441 static inline bool
442 nir_variable_is_global(const nir_variable *var)
443 {
444 return var->data.mode != nir_var_function_temp;
445 }
446
447 typedef struct nir_register {
448 struct exec_node node;
449
450 unsigned num_components; /** < number of vector components */
451 unsigned num_array_elems; /** < size of array (0 for no array) */
452
453 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
454 uint8_t bit_size;
455
456 /** generic register index. */
457 unsigned index;
458
459 /** only for debug purposes, can be NULL */
460 const char *name;
461
462 /** set of nir_srcs where this register is used (read from) */
463 struct list_head uses;
464
465 /** set of nir_dests where this register is defined (written to) */
466 struct list_head defs;
467
468 /** set of nir_ifs where this register is used as a condition */
469 struct list_head if_uses;
470 } nir_register;
471
472 #define nir_foreach_register(reg, reg_list) \
473 foreach_list_typed(nir_register, reg, node, reg_list)
474 #define nir_foreach_register_safe(reg, reg_list) \
475 foreach_list_typed_safe(nir_register, reg, node, reg_list)
476
477 typedef enum PACKED {
478 nir_instr_type_alu,
479 nir_instr_type_deref,
480 nir_instr_type_call,
481 nir_instr_type_tex,
482 nir_instr_type_intrinsic,
483 nir_instr_type_load_const,
484 nir_instr_type_jump,
485 nir_instr_type_ssa_undef,
486 nir_instr_type_phi,
487 nir_instr_type_parallel_copy,
488 } nir_instr_type;
489
490 typedef struct nir_instr {
491 struct exec_node node;
492 struct nir_block *block;
493 nir_instr_type type;
494
495 /* A temporary for optimization and analysis passes to use for storing
496 * flags. For instance, DCE uses this to store the "dead/live" info.
497 */
498 uint8_t pass_flags;
499
500 /** generic instruction index. */
501 unsigned index;
502 } nir_instr;
503
504 static inline nir_instr *
505 nir_instr_next(nir_instr *instr)
506 {
507 struct exec_node *next = exec_node_get_next(&instr->node);
508 if (exec_node_is_tail_sentinel(next))
509 return NULL;
510 else
511 return exec_node_data(nir_instr, next, node);
512 }
513
514 static inline nir_instr *
515 nir_instr_prev(nir_instr *instr)
516 {
517 struct exec_node *prev = exec_node_get_prev(&instr->node);
518 if (exec_node_is_head_sentinel(prev))
519 return NULL;
520 else
521 return exec_node_data(nir_instr, prev, node);
522 }
523
524 static inline bool
525 nir_instr_is_first(const nir_instr *instr)
526 {
527 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
528 }
529
530 static inline bool
531 nir_instr_is_last(const nir_instr *instr)
532 {
533 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
534 }
535
536 typedef struct nir_ssa_def {
537 /** for debugging only, can be NULL */
538 const char* name;
539
540 /** generic SSA definition index. */
541 unsigned index;
542
543 /** Index into the live_in and live_out bitfields */
544 unsigned live_index;
545
546 /** Instruction which produces this SSA value. */
547 nir_instr *parent_instr;
548
549 /** set of nir_instrs where this register is used (read from) */
550 struct list_head uses;
551
552 /** set of nir_ifs where this register is used as a condition */
553 struct list_head if_uses;
554
555 uint8_t num_components;
556
557 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
558 uint8_t bit_size;
559 } nir_ssa_def;
560
561 struct nir_src;
562
563 typedef struct {
564 nir_register *reg;
565 struct nir_src *indirect; /** < NULL for no indirect offset */
566 unsigned base_offset;
567
568 /* TODO use-def chain goes here */
569 } nir_reg_src;
570
571 typedef struct {
572 nir_instr *parent_instr;
573 struct list_head def_link;
574
575 nir_register *reg;
576 struct nir_src *indirect; /** < NULL for no indirect offset */
577 unsigned base_offset;
578
579 /* TODO def-use chain goes here */
580 } nir_reg_dest;
581
582 struct nir_if;
583
584 typedef struct nir_src {
585 union {
586 /** Instruction that consumes this value as a source. */
587 nir_instr *parent_instr;
588 struct nir_if *parent_if;
589 };
590
591 struct list_head use_link;
592
593 union {
594 nir_reg_src reg;
595 nir_ssa_def *ssa;
596 };
597
598 bool is_ssa;
599 } nir_src;
600
601 static inline nir_src
602 nir_src_init(void)
603 {
604 nir_src src = { { NULL } };
605 return src;
606 }
607
608 #define NIR_SRC_INIT nir_src_init()
609
610 #define nir_foreach_use(src, reg_or_ssa_def) \
611 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
612
613 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
614 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
615
616 #define nir_foreach_if_use(src, reg_or_ssa_def) \
617 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
618
619 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
620 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
621
622 typedef struct {
623 union {
624 nir_reg_dest reg;
625 nir_ssa_def ssa;
626 };
627
628 bool is_ssa;
629 } nir_dest;
630
631 static inline nir_dest
632 nir_dest_init(void)
633 {
634 nir_dest dest = { { { NULL } } };
635 return dest;
636 }
637
638 #define NIR_DEST_INIT nir_dest_init()
639
640 #define nir_foreach_def(dest, reg) \
641 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
642
643 #define nir_foreach_def_safe(dest, reg) \
644 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
645
646 static inline nir_src
647 nir_src_for_ssa(nir_ssa_def *def)
648 {
649 nir_src src = NIR_SRC_INIT;
650
651 src.is_ssa = true;
652 src.ssa = def;
653
654 return src;
655 }
656
657 static inline nir_src
658 nir_src_for_reg(nir_register *reg)
659 {
660 nir_src src = NIR_SRC_INIT;
661
662 src.is_ssa = false;
663 src.reg.reg = reg;
664 src.reg.indirect = NULL;
665 src.reg.base_offset = 0;
666
667 return src;
668 }
669
670 static inline nir_dest
671 nir_dest_for_reg(nir_register *reg)
672 {
673 nir_dest dest = NIR_DEST_INIT;
674
675 dest.reg.reg = reg;
676
677 return dest;
678 }
679
680 static inline unsigned
681 nir_src_bit_size(nir_src src)
682 {
683 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
684 }
685
686 static inline unsigned
687 nir_src_num_components(nir_src src)
688 {
689 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
690 }
691
692 static inline bool
693 nir_src_is_const(nir_src src)
694 {
695 return src.is_ssa &&
696 src.ssa->parent_instr->type == nir_instr_type_load_const;
697 }
698
699 int64_t nir_src_as_int(nir_src src);
700 uint64_t nir_src_as_uint(nir_src src);
701 bool nir_src_as_bool(nir_src src);
702 double nir_src_as_float(nir_src src);
703 int64_t nir_src_comp_as_int(nir_src src, unsigned component);
704 uint64_t nir_src_comp_as_uint(nir_src src, unsigned component);
705 bool nir_src_comp_as_bool(nir_src src, unsigned component);
706 double nir_src_comp_as_float(nir_src src, unsigned component);
707
708 static inline unsigned
709 nir_dest_bit_size(nir_dest dest)
710 {
711 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
712 }
713
714 static inline unsigned
715 nir_dest_num_components(nir_dest dest)
716 {
717 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
718 }
719
720 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
721 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
722
723 typedef struct {
724 nir_src src;
725
726 /**
727 * \name input modifiers
728 */
729 /*@{*/
730 /**
731 * For inputs interpreted as floating point, flips the sign bit. For
732 * inputs interpreted as integers, performs the two's complement negation.
733 */
734 bool negate;
735
736 /**
737 * Clears the sign bit for floating point values, and computes the integer
738 * absolute value for integers. Note that the negate modifier acts after
739 * the absolute value modifier, therefore if both are set then all inputs
740 * will become negative.
741 */
742 bool abs;
743 /*@}*/
744
745 /**
746 * For each input component, says which component of the register it is
747 * chosen from. Note that which elements of the swizzle are used and which
748 * are ignored are based on the write mask for most opcodes - for example,
749 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
750 * a swizzle of {2, x, 1, 0} where x means "don't care."
751 */
752 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
753 } nir_alu_src;
754
755 typedef struct {
756 nir_dest dest;
757
758 /**
759 * \name saturate output modifier
760 *
761 * Only valid for opcodes that output floating-point numbers. Clamps the
762 * output to between 0.0 and 1.0 inclusive.
763 */
764
765 bool saturate;
766
767 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
768 } nir_alu_dest;
769
770 /** NIR sized and unsized types
771 *
772 * The values in this enum are carefully chosen so that the sized type is
773 * just the unsized type OR the number of bits.
774 */
775 typedef enum {
776 nir_type_invalid = 0, /* Not a valid type */
777 nir_type_int = 2,
778 nir_type_uint = 4,
779 nir_type_bool = 6,
780 nir_type_float = 128,
781 nir_type_bool1 = 1 | nir_type_bool,
782 nir_type_bool32 = 32 | nir_type_bool,
783 nir_type_int1 = 1 | nir_type_int,
784 nir_type_int8 = 8 | nir_type_int,
785 nir_type_int16 = 16 | nir_type_int,
786 nir_type_int32 = 32 | nir_type_int,
787 nir_type_int64 = 64 | nir_type_int,
788 nir_type_uint1 = 1 | nir_type_uint,
789 nir_type_uint8 = 8 | nir_type_uint,
790 nir_type_uint16 = 16 | nir_type_uint,
791 nir_type_uint32 = 32 | nir_type_uint,
792 nir_type_uint64 = 64 | nir_type_uint,
793 nir_type_float16 = 16 | nir_type_float,
794 nir_type_float32 = 32 | nir_type_float,
795 nir_type_float64 = 64 | nir_type_float,
796 } nir_alu_type;
797
798 #define NIR_ALU_TYPE_SIZE_MASK 0x79
799 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
800
801 static inline unsigned
802 nir_alu_type_get_type_size(nir_alu_type type)
803 {
804 return type & NIR_ALU_TYPE_SIZE_MASK;
805 }
806
807 static inline unsigned
808 nir_alu_type_get_base_type(nir_alu_type type)
809 {
810 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
811 }
812
813 static inline nir_alu_type
814 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
815 {
816 switch (base_type) {
817 case GLSL_TYPE_BOOL:
818 return nir_type_bool1;
819 break;
820 case GLSL_TYPE_UINT:
821 return nir_type_uint32;
822 break;
823 case GLSL_TYPE_INT:
824 return nir_type_int32;
825 break;
826 case GLSL_TYPE_UINT16:
827 return nir_type_uint16;
828 break;
829 case GLSL_TYPE_INT16:
830 return nir_type_int16;
831 break;
832 case GLSL_TYPE_UINT8:
833 return nir_type_uint8;
834 case GLSL_TYPE_INT8:
835 return nir_type_int8;
836 case GLSL_TYPE_UINT64:
837 return nir_type_uint64;
838 break;
839 case GLSL_TYPE_INT64:
840 return nir_type_int64;
841 break;
842 case GLSL_TYPE_FLOAT:
843 return nir_type_float32;
844 break;
845 case GLSL_TYPE_FLOAT16:
846 return nir_type_float16;
847 break;
848 case GLSL_TYPE_DOUBLE:
849 return nir_type_float64;
850 break;
851
852 case GLSL_TYPE_SAMPLER:
853 case GLSL_TYPE_IMAGE:
854 case GLSL_TYPE_ATOMIC_UINT:
855 case GLSL_TYPE_STRUCT:
856 case GLSL_TYPE_INTERFACE:
857 case GLSL_TYPE_ARRAY:
858 case GLSL_TYPE_VOID:
859 case GLSL_TYPE_SUBROUTINE:
860 case GLSL_TYPE_FUNCTION:
861 case GLSL_TYPE_ERROR:
862 return nir_type_invalid;
863 }
864
865 unreachable("unknown type");
866 }
867
868 static inline nir_alu_type
869 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
870 {
871 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
872 }
873
874 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
875 nir_rounding_mode rnd);
876
877 static inline nir_op
878 nir_op_vec(unsigned components)
879 {
880 switch (components) {
881 case 1: return nir_op_mov;
882 case 2: return nir_op_vec2;
883 case 3: return nir_op_vec3;
884 case 4: return nir_op_vec4;
885 default: unreachable("bad component count");
886 }
887 }
888
889 typedef enum {
890 /**
891 * Operation where the first two sources are commutative.
892 *
893 * For 2-source operations, this just mathematical commutativity. Some
894 * 3-source operations, like ffma, are only commutative in the first two
895 * sources.
896 */
897 NIR_OP_IS_2SRC_COMMUTATIVE = (1 << 0),
898 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
899 } nir_op_algebraic_property;
900
901 typedef struct {
902 const char *name;
903
904 unsigned num_inputs;
905
906 /**
907 * The number of components in the output
908 *
909 * If non-zero, this is the size of the output and input sizes are
910 * explicitly given; swizzle and writemask are still in effect, but if
911 * the output component is masked out, then the input component may
912 * still be in use.
913 *
914 * If zero, the opcode acts in the standard, per-component manner; the
915 * operation is performed on each component (except the ones that are
916 * masked out) with the input being taken from the input swizzle for
917 * that component.
918 *
919 * The size of some of the inputs may be given (i.e. non-zero) even
920 * though output_size is zero; in that case, the inputs with a zero
921 * size act per-component, while the inputs with non-zero size don't.
922 */
923 unsigned output_size;
924
925 /**
926 * The type of vector that the instruction outputs. Note that the
927 * staurate modifier is only allowed on outputs with the float type.
928 */
929
930 nir_alu_type output_type;
931
932 /**
933 * The number of components in each input
934 */
935 unsigned input_sizes[NIR_MAX_VEC_COMPONENTS];
936
937 /**
938 * The type of vector that each input takes. Note that negate and
939 * absolute value are only allowed on inputs with int or float type and
940 * behave differently on the two.
941 */
942 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
943
944 nir_op_algebraic_property algebraic_properties;
945
946 /* Whether this represents a numeric conversion opcode */
947 bool is_conversion;
948 } nir_op_info;
949
950 extern const nir_op_info nir_op_infos[nir_num_opcodes];
951
952 typedef struct nir_alu_instr {
953 nir_instr instr;
954 nir_op op;
955
956 /** Indicates that this ALU instruction generates an exact value
957 *
958 * This is kind of a mixture of GLSL "precise" and "invariant" and not
959 * really equivalent to either. This indicates that the value generated by
960 * this operation is high-precision and any code transformations that touch
961 * it must ensure that the resulting value is bit-for-bit identical to the
962 * original.
963 */
964 bool exact;
965
966 nir_alu_dest dest;
967 nir_alu_src src[];
968 } nir_alu_instr;
969
970 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
971 nir_alu_instr *instr);
972 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
973 nir_alu_instr *instr);
974
975 /* is this source channel used? */
976 static inline bool
977 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
978 unsigned channel)
979 {
980 if (nir_op_infos[instr->op].input_sizes[src] > 0)
981 return channel < nir_op_infos[instr->op].input_sizes[src];
982
983 return (instr->dest.write_mask >> channel) & 1;
984 }
985
986 static inline nir_component_mask_t
987 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
988 {
989 nir_component_mask_t read_mask = 0;
990 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
991 if (!nir_alu_instr_channel_used(instr, src, c))
992 continue;
993
994 read_mask |= (1 << instr->src[src].swizzle[c]);
995 }
996 return read_mask;
997 }
998
999 /*
1000 * For instructions whose destinations are SSA, get the number of channels
1001 * used for a source
1002 */
1003 static inline unsigned
1004 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
1005 {
1006 assert(instr->dest.dest.is_ssa);
1007
1008 if (nir_op_infos[instr->op].input_sizes[src] > 0)
1009 return nir_op_infos[instr->op].input_sizes[src];
1010
1011 return instr->dest.dest.ssa.num_components;
1012 }
1013
1014 bool nir_const_value_negative_equal(const nir_const_value *c1,
1015 const nir_const_value *c2,
1016 unsigned components,
1017 nir_alu_type base_type,
1018 unsigned bits);
1019
1020 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
1021 unsigned src1, unsigned src2);
1022
1023 bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
1024 const nir_alu_instr *alu2,
1025 unsigned src1, unsigned src2);
1026
1027 typedef enum {
1028 nir_deref_type_var,
1029 nir_deref_type_array,
1030 nir_deref_type_array_wildcard,
1031 nir_deref_type_ptr_as_array,
1032 nir_deref_type_struct,
1033 nir_deref_type_cast,
1034 } nir_deref_type;
1035
1036 typedef struct {
1037 nir_instr instr;
1038
1039 /** The type of this deref instruction */
1040 nir_deref_type deref_type;
1041
1042 /** The mode of the underlying variable */
1043 nir_variable_mode mode;
1044
1045 /** The dereferenced type of the resulting pointer value */
1046 const struct glsl_type *type;
1047
1048 union {
1049 /** Variable being dereferenced if deref_type is a deref_var */
1050 nir_variable *var;
1051
1052 /** Parent deref if deref_type is not deref_var */
1053 nir_src parent;
1054 };
1055
1056 /** Additional deref parameters */
1057 union {
1058 struct {
1059 nir_src index;
1060 } arr;
1061
1062 struct {
1063 unsigned index;
1064 } strct;
1065
1066 struct {
1067 unsigned ptr_stride;
1068 } cast;
1069 };
1070
1071 /** Destination to store the resulting "pointer" */
1072 nir_dest dest;
1073 } nir_deref_instr;
1074
1075 static inline nir_deref_instr *nir_src_as_deref(nir_src src);
1076
1077 static inline nir_deref_instr *
1078 nir_deref_instr_parent(const nir_deref_instr *instr)
1079 {
1080 if (instr->deref_type == nir_deref_type_var)
1081 return NULL;
1082 else
1083 return nir_src_as_deref(instr->parent);
1084 }
1085
1086 static inline nir_variable *
1087 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1088 {
1089 while (instr->deref_type != nir_deref_type_var) {
1090 if (instr->deref_type == nir_deref_type_cast)
1091 return NULL;
1092
1093 instr = nir_deref_instr_parent(instr);
1094 }
1095
1096 return instr->var;
1097 }
1098
1099 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1100 bool nir_deref_instr_has_complex_use(nir_deref_instr *instr);
1101
1102 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1103
1104 unsigned nir_deref_instr_ptr_as_array_stride(nir_deref_instr *instr);
1105
1106 typedef struct {
1107 nir_instr instr;
1108
1109 struct nir_function *callee;
1110
1111 unsigned num_params;
1112 nir_src params[];
1113 } nir_call_instr;
1114
1115 #include "nir_intrinsics.h"
1116
1117 #define NIR_INTRINSIC_MAX_CONST_INDEX 4
1118
1119 /** Represents an intrinsic
1120 *
1121 * An intrinsic is an instruction type for handling things that are
1122 * more-or-less regular operations but don't just consume and produce SSA
1123 * values like ALU operations do. Intrinsics are not for things that have
1124 * special semantic meaning such as phi nodes and parallel copies.
1125 * Examples of intrinsics include variable load/store operations, system
1126 * value loads, and the like. Even though texturing more-or-less falls
1127 * under this category, texturing is its own instruction type because
1128 * trying to represent texturing with intrinsics would lead to a
1129 * combinatorial explosion of intrinsic opcodes.
1130 *
1131 * By having a single instruction type for handling a lot of different
1132 * cases, optimization passes can look for intrinsics and, for the most
1133 * part, completely ignore them. Each intrinsic type also has a few
1134 * possible flags that govern whether or not they can be reordered or
1135 * eliminated. That way passes like dead code elimination can still work
1136 * on intrisics without understanding the meaning of each.
1137 *
1138 * Each intrinsic has some number of constant indices, some number of
1139 * variables, and some number of sources. What these sources, variables,
1140 * and indices mean depends on the intrinsic and is documented with the
1141 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1142 * instructions are the only types of instruction that can operate on
1143 * variables.
1144 */
1145 typedef struct {
1146 nir_instr instr;
1147
1148 nir_intrinsic_op intrinsic;
1149
1150 nir_dest dest;
1151
1152 /** number of components if this is a vectorized intrinsic
1153 *
1154 * Similarly to ALU operations, some intrinsics are vectorized.
1155 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1156 * For vectorized intrinsics, the num_components field specifies the
1157 * number of destination components and the number of source components
1158 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1159 */
1160 uint8_t num_components;
1161
1162 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1163
1164 nir_src src[];
1165 } nir_intrinsic_instr;
1166
1167 static inline nir_variable *
1168 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1169 {
1170 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1171 }
1172
1173 /**
1174 * \name NIR intrinsics semantic flags
1175 *
1176 * information about what the compiler can do with the intrinsics.
1177 *
1178 * \sa nir_intrinsic_info::flags
1179 */
1180 typedef enum {
1181 /**
1182 * whether the intrinsic can be safely eliminated if none of its output
1183 * value is not being used.
1184 */
1185 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1186
1187 /**
1188 * Whether the intrinsic can be reordered with respect to any other
1189 * intrinsic, i.e. whether the only reordering dependencies of the
1190 * intrinsic are due to the register reads/writes.
1191 */
1192 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1193 } nir_intrinsic_semantic_flag;
1194
1195 /**
1196 * \name NIR intrinsics const-index flag
1197 *
1198 * Indicates the usage of a const_index slot.
1199 *
1200 * \sa nir_intrinsic_info::index_map
1201 */
1202 typedef enum {
1203 /**
1204 * Generally instructions that take a offset src argument, can encode
1205 * a constant 'base' value which is added to the offset.
1206 */
1207 NIR_INTRINSIC_BASE = 1,
1208
1209 /**
1210 * For store instructions, a writemask for the store.
1211 */
1212 NIR_INTRINSIC_WRMASK,
1213
1214 /**
1215 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1216 */
1217 NIR_INTRINSIC_STREAM_ID,
1218
1219 /**
1220 * The clip-plane id for load_user_clip_plane intrinsic.
1221 */
1222 NIR_INTRINSIC_UCP_ID,
1223
1224 /**
1225 * The amount of data, starting from BASE, that this instruction may
1226 * access. This is used to provide bounds if the offset is not constant.
1227 */
1228 NIR_INTRINSIC_RANGE,
1229
1230 /**
1231 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1232 */
1233 NIR_INTRINSIC_DESC_SET,
1234
1235 /**
1236 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1237 */
1238 NIR_INTRINSIC_BINDING,
1239
1240 /**
1241 * Component offset.
1242 */
1243 NIR_INTRINSIC_COMPONENT,
1244
1245 /**
1246 * Interpolation mode (only meaningful for FS inputs).
1247 */
1248 NIR_INTRINSIC_INTERP_MODE,
1249
1250 /**
1251 * A binary nir_op to use when performing a reduction or scan operation
1252 */
1253 NIR_INTRINSIC_REDUCTION_OP,
1254
1255 /**
1256 * Cluster size for reduction operations
1257 */
1258 NIR_INTRINSIC_CLUSTER_SIZE,
1259
1260 /**
1261 * Parameter index for a load_param intrinsic
1262 */
1263 NIR_INTRINSIC_PARAM_IDX,
1264
1265 /**
1266 * Image dimensionality for image intrinsics
1267 *
1268 * One of GLSL_SAMPLER_DIM_*
1269 */
1270 NIR_INTRINSIC_IMAGE_DIM,
1271
1272 /**
1273 * Non-zero if we are accessing an array image
1274 */
1275 NIR_INTRINSIC_IMAGE_ARRAY,
1276
1277 /**
1278 * Image format for image intrinsics
1279 */
1280 NIR_INTRINSIC_FORMAT,
1281
1282 /**
1283 * Access qualifiers for image and memory access intrinsics
1284 */
1285 NIR_INTRINSIC_ACCESS,
1286
1287 /**
1288 * Alignment for offsets and addresses
1289 *
1290 * These two parameters, specify an alignment in terms of a multiplier and
1291 * an offset. The offset or address parameter X of the intrinsic is
1292 * guaranteed to satisfy the following:
1293 *
1294 * (X - align_offset) % align_mul == 0
1295 */
1296 NIR_INTRINSIC_ALIGN_MUL,
1297 NIR_INTRINSIC_ALIGN_OFFSET,
1298
1299 /**
1300 * The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic.
1301 */
1302 NIR_INTRINSIC_DESC_TYPE,
1303
1304 /**
1305 * The nir_alu_type of a uniform/input/output
1306 */
1307 NIR_INTRINSIC_TYPE,
1308
1309 /**
1310 * The swizzle mask for the instructions
1311 * SwizzleInvocationsAMD and SwizzleInvocationsMaskedAMD
1312 */
1313 NIR_INTRINSIC_SWIZZLE_MASK,
1314
1315 /* Separate source/dest access flags for copies */
1316 NIR_INTRINSIC_SRC_ACCESS = 21,
1317 NIR_INTRINSIC_DST_ACCESS = 22,
1318
1319 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1320
1321 } nir_intrinsic_index_flag;
1322
1323 #define NIR_INTRINSIC_MAX_INPUTS 5
1324
1325 typedef struct {
1326 const char *name;
1327
1328 unsigned num_srcs; /** < number of register/SSA inputs */
1329
1330 /** number of components of each input register
1331 *
1332 * If this value is 0, the number of components is given by the
1333 * num_components field of nir_intrinsic_instr. If this value is -1, the
1334 * intrinsic consumes however many components are provided and it is not
1335 * validated at all.
1336 */
1337 int src_components[NIR_INTRINSIC_MAX_INPUTS];
1338
1339 bool has_dest;
1340
1341 /** number of components of the output register
1342 *
1343 * If this value is 0, the number of components is given by the
1344 * num_components field of nir_intrinsic_instr.
1345 */
1346 unsigned dest_components;
1347
1348 /** bitfield of legal bit sizes */
1349 unsigned dest_bit_sizes;
1350
1351 /** the number of constant indices used by the intrinsic */
1352 unsigned num_indices;
1353
1354 /** indicates the usage of intr->const_index[n] */
1355 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1356
1357 /** semantic flags for calls to this intrinsic */
1358 nir_intrinsic_semantic_flag flags;
1359 } nir_intrinsic_info;
1360
1361 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1362
1363 static inline unsigned
1364 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1365 {
1366 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1367 assert(srcn < info->num_srcs);
1368 if (info->src_components[srcn] > 0)
1369 return info->src_components[srcn];
1370 else if (info->src_components[srcn] == 0)
1371 return intr->num_components;
1372 else
1373 return nir_src_num_components(intr->src[srcn]);
1374 }
1375
1376 static inline unsigned
1377 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1378 {
1379 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1380 if (!info->has_dest)
1381 return 0;
1382 else if (info->dest_components)
1383 return info->dest_components;
1384 else
1385 return intr->num_components;
1386 }
1387
1388 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1389 static inline type \
1390 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1391 { \
1392 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1393 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1394 return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1395 } \
1396 static inline void \
1397 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1398 { \
1399 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1400 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1401 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1402 }
1403
1404 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1405 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1406 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1407 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1408 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1409 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1410 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1411 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1412 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1413 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1414 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1415 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1416 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1417 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1418 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1419 INTRINSIC_IDX_ACCESSORS(src_access, SRC_ACCESS, enum gl_access_qualifier)
1420 INTRINSIC_IDX_ACCESSORS(dst_access, DST_ACCESS, enum gl_access_qualifier)
1421 INTRINSIC_IDX_ACCESSORS(format, FORMAT, unsigned)
1422 INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
1423 INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
1424 INTRINSIC_IDX_ACCESSORS(desc_type, DESC_TYPE, unsigned)
1425 INTRINSIC_IDX_ACCESSORS(type, TYPE, nir_alu_type)
1426 INTRINSIC_IDX_ACCESSORS(swizzle_mask, SWIZZLE_MASK, unsigned)
1427
1428 static inline void
1429 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1430 unsigned align_mul, unsigned align_offset)
1431 {
1432 assert(util_is_power_of_two_nonzero(align_mul));
1433 assert(align_offset < align_mul);
1434 nir_intrinsic_set_align_mul(intrin, align_mul);
1435 nir_intrinsic_set_align_offset(intrin, align_offset);
1436 }
1437
1438 /** Returns a simple alignment for a load/store intrinsic offset
1439 *
1440 * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1441 * and ALIGN_OFFSET parameters, this helper takes both into account and
1442 * provides a single simple alignment parameter. The offset X is guaranteed
1443 * to satisfy X % align == 0.
1444 */
1445 static inline unsigned
1446 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
1447 {
1448 const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1449 const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1450 assert(align_offset < align_mul);
1451 return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1452 }
1453
1454 /* Converts a image_deref_* intrinsic into a image_* one */
1455 void nir_rewrite_image_intrinsic(nir_intrinsic_instr *instr,
1456 nir_ssa_def *handle, bool bindless);
1457
1458 /* Determine if an intrinsic can be arbitrarily reordered and eliminated. */
1459 static inline bool
1460 nir_intrinsic_can_reorder(nir_intrinsic_instr *instr)
1461 {
1462 const nir_intrinsic_info *info =
1463 &nir_intrinsic_infos[instr->intrinsic];
1464 return (info->flags & NIR_INTRINSIC_CAN_ELIMINATE) &&
1465 (info->flags & NIR_INTRINSIC_CAN_REORDER);
1466 }
1467
1468 /**
1469 * \group texture information
1470 *
1471 * This gives semantic information about textures which is useful to the
1472 * frontend, the backend, and lowering passes, but not the optimizer.
1473 */
1474
1475 typedef enum {
1476 nir_tex_src_coord,
1477 nir_tex_src_projector,
1478 nir_tex_src_comparator, /* shadow comparator */
1479 nir_tex_src_offset,
1480 nir_tex_src_bias,
1481 nir_tex_src_lod,
1482 nir_tex_src_min_lod,
1483 nir_tex_src_ms_index, /* MSAA sample index */
1484 nir_tex_src_ms_mcs, /* MSAA compression value */
1485 nir_tex_src_ddx,
1486 nir_tex_src_ddy,
1487 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1488 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1489 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1490 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1491 nir_tex_src_texture_handle, /* < bindless texture handle */
1492 nir_tex_src_sampler_handle, /* < bindless sampler handle */
1493 nir_tex_src_plane, /* < selects plane for planar textures */
1494 nir_num_tex_src_types
1495 } nir_tex_src_type;
1496
1497 typedef struct {
1498 nir_src src;
1499 nir_tex_src_type src_type;
1500 } nir_tex_src;
1501
1502 typedef enum {
1503 nir_texop_tex, /**< Regular texture look-up */
1504 nir_texop_txb, /**< Texture look-up with LOD bias */
1505 nir_texop_txl, /**< Texture look-up with explicit LOD */
1506 nir_texop_txd, /**< Texture look-up with partial derivatives */
1507 nir_texop_txf, /**< Texel fetch with explicit LOD */
1508 nir_texop_txf_ms, /**< Multisample texture fetch */
1509 nir_texop_txf_ms_fb, /**< Multisample texture fetch from framebuffer */
1510 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1511 nir_texop_txs, /**< Texture size */
1512 nir_texop_lod, /**< Texture lod query */
1513 nir_texop_tg4, /**< Texture gather */
1514 nir_texop_query_levels, /**< Texture levels query */
1515 nir_texop_texture_samples, /**< Texture samples query */
1516 nir_texop_samples_identical, /**< Query whether all samples are definitely
1517 * identical.
1518 */
1519 } nir_texop;
1520
1521 typedef struct {
1522 nir_instr instr;
1523
1524 enum glsl_sampler_dim sampler_dim;
1525 nir_alu_type dest_type;
1526
1527 nir_texop op;
1528 nir_dest dest;
1529 nir_tex_src *src;
1530 unsigned num_srcs, coord_components;
1531 bool is_array, is_shadow;
1532
1533 /**
1534 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1535 * components or the new-style shadow that outputs 1 component.
1536 */
1537 bool is_new_style_shadow;
1538
1539 /* gather component selector */
1540 unsigned component : 2;
1541
1542 /* gather offsets */
1543 int8_t tg4_offsets[4][2];
1544
1545 /* True if the texture index or handle is not dynamically uniform */
1546 bool texture_non_uniform;
1547
1548 /* True if the sampler index or handle is not dynamically uniform */
1549 bool sampler_non_uniform;
1550
1551 /** The texture index
1552 *
1553 * If this texture instruction has a nir_tex_src_texture_offset source,
1554 * then the texture index is given by texture_index + texture_offset.
1555 */
1556 unsigned texture_index;
1557
1558 /** The size of the texture array or 0 if it's not an array */
1559 unsigned texture_array_size;
1560
1561 /** The sampler index
1562 *
1563 * The following operations do not require a sampler and, as such, this
1564 * field should be ignored:
1565 * - nir_texop_txf
1566 * - nir_texop_txf_ms
1567 * - nir_texop_txs
1568 * - nir_texop_lod
1569 * - nir_texop_query_levels
1570 * - nir_texop_texture_samples
1571 * - nir_texop_samples_identical
1572 *
1573 * If this texture instruction has a nir_tex_src_sampler_offset source,
1574 * then the sampler index is given by sampler_index + sampler_offset.
1575 */
1576 unsigned sampler_index;
1577 } nir_tex_instr;
1578
1579 static inline unsigned
1580 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1581 {
1582 switch (instr->op) {
1583 case nir_texop_txs: {
1584 unsigned ret;
1585 switch (instr->sampler_dim) {
1586 case GLSL_SAMPLER_DIM_1D:
1587 case GLSL_SAMPLER_DIM_BUF:
1588 ret = 1;
1589 break;
1590 case GLSL_SAMPLER_DIM_2D:
1591 case GLSL_SAMPLER_DIM_CUBE:
1592 case GLSL_SAMPLER_DIM_MS:
1593 case GLSL_SAMPLER_DIM_RECT:
1594 case GLSL_SAMPLER_DIM_EXTERNAL:
1595 case GLSL_SAMPLER_DIM_SUBPASS:
1596 ret = 2;
1597 break;
1598 case GLSL_SAMPLER_DIM_3D:
1599 ret = 3;
1600 break;
1601 default:
1602 unreachable("not reached");
1603 }
1604 if (instr->is_array)
1605 ret++;
1606 return ret;
1607 }
1608
1609 case nir_texop_lod:
1610 return 2;
1611
1612 case nir_texop_texture_samples:
1613 case nir_texop_query_levels:
1614 case nir_texop_samples_identical:
1615 return 1;
1616
1617 default:
1618 if (instr->is_shadow && instr->is_new_style_shadow)
1619 return 1;
1620
1621 return 4;
1622 }
1623 }
1624
1625 /* Returns true if this texture operation queries something about the texture
1626 * rather than actually sampling it.
1627 */
1628 static inline bool
1629 nir_tex_instr_is_query(const nir_tex_instr *instr)
1630 {
1631 switch (instr->op) {
1632 case nir_texop_txs:
1633 case nir_texop_lod:
1634 case nir_texop_texture_samples:
1635 case nir_texop_query_levels:
1636 case nir_texop_txf_ms_mcs:
1637 return true;
1638 case nir_texop_tex:
1639 case nir_texop_txb:
1640 case nir_texop_txl:
1641 case nir_texop_txd:
1642 case nir_texop_txf:
1643 case nir_texop_txf_ms:
1644 case nir_texop_txf_ms_fb:
1645 case nir_texop_tg4:
1646 return false;
1647 default:
1648 unreachable("Invalid texture opcode");
1649 }
1650 }
1651
1652 static inline bool
1653 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1654 {
1655 switch (instr->op) {
1656 case nir_op_flt:
1657 case nir_op_fge:
1658 case nir_op_feq:
1659 case nir_op_fne:
1660 case nir_op_ilt:
1661 case nir_op_ult:
1662 case nir_op_ige:
1663 case nir_op_uge:
1664 case nir_op_ieq:
1665 case nir_op_ine:
1666 case nir_op_i2b1:
1667 case nir_op_f2b1:
1668 case nir_op_inot:
1669 case nir_op_fnot:
1670 return true;
1671 default:
1672 return false;
1673 }
1674 }
1675
1676 static inline nir_alu_type
1677 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1678 {
1679 switch (instr->src[src].src_type) {
1680 case nir_tex_src_coord:
1681 switch (instr->op) {
1682 case nir_texop_txf:
1683 case nir_texop_txf_ms:
1684 case nir_texop_txf_ms_fb:
1685 case nir_texop_txf_ms_mcs:
1686 case nir_texop_samples_identical:
1687 return nir_type_int;
1688
1689 default:
1690 return nir_type_float;
1691 }
1692
1693 case nir_tex_src_lod:
1694 switch (instr->op) {
1695 case nir_texop_txs:
1696 case nir_texop_txf:
1697 return nir_type_int;
1698
1699 default:
1700 return nir_type_float;
1701 }
1702
1703 case nir_tex_src_projector:
1704 case nir_tex_src_comparator:
1705 case nir_tex_src_bias:
1706 case nir_tex_src_ddx:
1707 case nir_tex_src_ddy:
1708 return nir_type_float;
1709
1710 case nir_tex_src_offset:
1711 case nir_tex_src_ms_index:
1712 case nir_tex_src_texture_offset:
1713 case nir_tex_src_sampler_offset:
1714 return nir_type_int;
1715
1716 default:
1717 unreachable("Invalid texture source type");
1718 }
1719 }
1720
1721 static inline unsigned
1722 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1723 {
1724 if (instr->src[src].src_type == nir_tex_src_coord)
1725 return instr->coord_components;
1726
1727 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1728 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1729 return 4;
1730
1731 if (instr->src[src].src_type == nir_tex_src_ddx ||
1732 instr->src[src].src_type == nir_tex_src_ddy) {
1733 if (instr->is_array)
1734 return instr->coord_components - 1;
1735 else
1736 return instr->coord_components;
1737 }
1738
1739 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1740 * the offset, since a cube maps to a single face.
1741 */
1742 if (instr->src[src].src_type == nir_tex_src_offset) {
1743 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1744 return 2;
1745 else if (instr->is_array)
1746 return instr->coord_components - 1;
1747 else
1748 return instr->coord_components;
1749 }
1750
1751 return 1;
1752 }
1753
1754 static inline int
1755 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1756 {
1757 for (unsigned i = 0; i < instr->num_srcs; i++)
1758 if (instr->src[i].src_type == type)
1759 return (int) i;
1760
1761 return -1;
1762 }
1763
1764 void nir_tex_instr_add_src(nir_tex_instr *tex,
1765 nir_tex_src_type src_type,
1766 nir_src src);
1767
1768 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1769
1770 bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
1771
1772 typedef struct {
1773 nir_instr instr;
1774
1775 nir_ssa_def def;
1776
1777 nir_const_value value[];
1778 } nir_load_const_instr;
1779
1780 #define nir_const_load_to_arr(arr, l, m) \
1781 { \
1782 nir_const_value_to_array(arr, l->value, l->def.num_components, m); \
1783 } while (false);
1784
1785 typedef enum {
1786 nir_jump_return,
1787 nir_jump_break,
1788 nir_jump_continue,
1789 } nir_jump_type;
1790
1791 typedef struct {
1792 nir_instr instr;
1793 nir_jump_type type;
1794 } nir_jump_instr;
1795
1796 /* creates a new SSA variable in an undefined state */
1797
1798 typedef struct {
1799 nir_instr instr;
1800 nir_ssa_def def;
1801 } nir_ssa_undef_instr;
1802
1803 typedef struct {
1804 struct exec_node node;
1805
1806 /* The predecessor block corresponding to this source */
1807 struct nir_block *pred;
1808
1809 nir_src src;
1810 } nir_phi_src;
1811
1812 #define nir_foreach_phi_src(phi_src, phi) \
1813 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1814 #define nir_foreach_phi_src_safe(phi_src, phi) \
1815 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1816
1817 typedef struct {
1818 nir_instr instr;
1819
1820 struct exec_list srcs; /** < list of nir_phi_src */
1821
1822 nir_dest dest;
1823 } nir_phi_instr;
1824
1825 typedef struct {
1826 struct exec_node node;
1827 nir_src src;
1828 nir_dest dest;
1829 } nir_parallel_copy_entry;
1830
1831 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1832 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1833
1834 typedef struct {
1835 nir_instr instr;
1836
1837 /* A list of nir_parallel_copy_entrys. The sources of all of the
1838 * entries are copied to the corresponding destinations "in parallel".
1839 * In other words, if we have two entries: a -> b and b -> a, the values
1840 * get swapped.
1841 */
1842 struct exec_list entries;
1843 } nir_parallel_copy_instr;
1844
1845 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1846 type, nir_instr_type_alu)
1847 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
1848 type, nir_instr_type_deref)
1849 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1850 type, nir_instr_type_call)
1851 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1852 type, nir_instr_type_jump)
1853 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1854 type, nir_instr_type_tex)
1855 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1856 type, nir_instr_type_intrinsic)
1857 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1858 type, nir_instr_type_load_const)
1859 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1860 type, nir_instr_type_ssa_undef)
1861 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1862 type, nir_instr_type_phi)
1863 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1864 nir_parallel_copy_instr, instr,
1865 type, nir_instr_type_parallel_copy)
1866
1867 /*
1868 * Control flow
1869 *
1870 * Control flow consists of a tree of control flow nodes, which include
1871 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1872 * instructions that always run start-to-finish. Each basic block also keeps
1873 * track of its successors (blocks which may run immediately after the current
1874 * block) and predecessors (blocks which could have run immediately before the
1875 * current block). Each function also has a start block and an end block which
1876 * all return statements point to (which is always empty). Together, all the
1877 * blocks with their predecessors and successors make up the control flow
1878 * graph (CFG) of the function. There are helpers that modify the tree of
1879 * control flow nodes while modifying the CFG appropriately; these should be
1880 * used instead of modifying the tree directly.
1881 */
1882
1883 typedef enum {
1884 nir_cf_node_block,
1885 nir_cf_node_if,
1886 nir_cf_node_loop,
1887 nir_cf_node_function
1888 } nir_cf_node_type;
1889
1890 typedef struct nir_cf_node {
1891 struct exec_node node;
1892 nir_cf_node_type type;
1893 struct nir_cf_node *parent;
1894 } nir_cf_node;
1895
1896 typedef struct nir_block {
1897 nir_cf_node cf_node;
1898
1899 struct exec_list instr_list; /** < list of nir_instr */
1900
1901 /** generic block index; generated by nir_index_blocks */
1902 unsigned index;
1903
1904 /*
1905 * Each block can only have up to 2 successors, so we put them in a simple
1906 * array - no need for anything more complicated.
1907 */
1908 struct nir_block *successors[2];
1909
1910 /* Set of nir_block predecessors in the CFG */
1911 struct set *predecessors;
1912
1913 /*
1914 * this node's immediate dominator in the dominance tree - set to NULL for
1915 * the start block.
1916 */
1917 struct nir_block *imm_dom;
1918
1919 /* This node's children in the dominance tree */
1920 unsigned num_dom_children;
1921 struct nir_block **dom_children;
1922
1923 /* Set of nir_blocks on the dominance frontier of this block */
1924 struct set *dom_frontier;
1925
1926 /*
1927 * These two indices have the property that dom_{pre,post}_index for each
1928 * child of this block in the dominance tree will always be between
1929 * dom_pre_index and dom_post_index for this block, which makes testing if
1930 * a given block is dominated by another block an O(1) operation.
1931 */
1932 unsigned dom_pre_index, dom_post_index;
1933
1934 /* live in and out for this block; used for liveness analysis */
1935 BITSET_WORD *live_in;
1936 BITSET_WORD *live_out;
1937 } nir_block;
1938
1939 static inline nir_instr *
1940 nir_block_first_instr(nir_block *block)
1941 {
1942 struct exec_node *head = exec_list_get_head(&block->instr_list);
1943 return exec_node_data(nir_instr, head, node);
1944 }
1945
1946 static inline nir_instr *
1947 nir_block_last_instr(nir_block *block)
1948 {
1949 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1950 return exec_node_data(nir_instr, tail, node);
1951 }
1952
1953 static inline bool
1954 nir_block_ends_in_jump(nir_block *block)
1955 {
1956 return !exec_list_is_empty(&block->instr_list) &&
1957 nir_block_last_instr(block)->type == nir_instr_type_jump;
1958 }
1959
1960 #define nir_foreach_instr(instr, block) \
1961 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1962 #define nir_foreach_instr_reverse(instr, block) \
1963 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1964 #define nir_foreach_instr_safe(instr, block) \
1965 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1966 #define nir_foreach_instr_reverse_safe(instr, block) \
1967 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1968
1969 typedef enum {
1970 nir_selection_control_none = 0x0,
1971 nir_selection_control_flatten = 0x1,
1972 nir_selection_control_dont_flatten = 0x2,
1973 } nir_selection_control;
1974
1975 typedef struct nir_if {
1976 nir_cf_node cf_node;
1977 nir_src condition;
1978 nir_selection_control control;
1979
1980 struct exec_list then_list; /** < list of nir_cf_node */
1981 struct exec_list else_list; /** < list of nir_cf_node */
1982 } nir_if;
1983
1984 typedef struct {
1985 nir_if *nif;
1986
1987 /** Instruction that generates nif::condition. */
1988 nir_instr *conditional_instr;
1989
1990 /** Block within ::nif that has the break instruction. */
1991 nir_block *break_block;
1992
1993 /** Last block for the then- or else-path that does not contain the break. */
1994 nir_block *continue_from_block;
1995
1996 /** True when ::break_block is in the else-path of ::nif. */
1997 bool continue_from_then;
1998 bool induction_rhs;
1999
2000 /* This is true if the terminators exact trip count is unknown. For
2001 * example:
2002 *
2003 * for (int i = 0; i < imin(x, 4); i++)
2004 * ...
2005 *
2006 * Here loop analysis would have set a max_trip_count of 4 however we dont
2007 * know for sure that this is the exact trip count.
2008 */
2009 bool exact_trip_count_unknown;
2010
2011 struct list_head loop_terminator_link;
2012 } nir_loop_terminator;
2013
2014 typedef struct {
2015 /* Estimated cost (in number of instructions) of the loop */
2016 unsigned instr_cost;
2017
2018 /* Guessed trip count based on array indexing */
2019 unsigned guessed_trip_count;
2020
2021 /* Maximum number of times the loop is run (if known) */
2022 unsigned max_trip_count;
2023
2024 /* Do we know the exact number of times the loop will be run */
2025 bool exact_trip_count_known;
2026
2027 /* Unroll the loop regardless of its size */
2028 bool force_unroll;
2029
2030 /* Does the loop contain complex loop terminators, continues or other
2031 * complex behaviours? If this is true we can't rely on
2032 * loop_terminator_list to be complete or accurate.
2033 */
2034 bool complex_loop;
2035
2036 nir_loop_terminator *limiting_terminator;
2037
2038 /* A list of loop_terminators terminating this loop. */
2039 struct list_head loop_terminator_list;
2040 } nir_loop_info;
2041
2042 typedef enum {
2043 nir_loop_control_none = 0x0,
2044 nir_loop_control_unroll = 0x1,
2045 nir_loop_control_dont_unroll = 0x2,
2046 } nir_loop_control;
2047
2048 typedef struct {
2049 nir_cf_node cf_node;
2050
2051 struct exec_list body; /** < list of nir_cf_node */
2052
2053 nir_loop_info *info;
2054 nir_loop_control control;
2055 bool partially_unrolled;
2056 } nir_loop;
2057
2058 /**
2059 * Various bits of metadata that can may be created or required by
2060 * optimization and analysis passes
2061 */
2062 typedef enum {
2063 nir_metadata_none = 0x0,
2064 nir_metadata_block_index = 0x1,
2065 nir_metadata_dominance = 0x2,
2066 nir_metadata_live_ssa_defs = 0x4,
2067 nir_metadata_not_properly_reset = 0x8,
2068 nir_metadata_loop_analysis = 0x10,
2069 } nir_metadata;
2070
2071 typedef struct {
2072 nir_cf_node cf_node;
2073
2074 /** pointer to the function of which this is an implementation */
2075 struct nir_function *function;
2076
2077 struct exec_list body; /** < list of nir_cf_node */
2078
2079 nir_block *end_block;
2080
2081 /** list for all local variables in the function */
2082 struct exec_list locals;
2083
2084 /** list of local registers in the function */
2085 struct exec_list registers;
2086
2087 /** next available local register index */
2088 unsigned reg_alloc;
2089
2090 /** next available SSA value index */
2091 unsigned ssa_alloc;
2092
2093 /* total number of basic blocks, only valid when block_index_dirty = false */
2094 unsigned num_blocks;
2095
2096 nir_metadata valid_metadata;
2097 } nir_function_impl;
2098
2099 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2100 nir_start_block(nir_function_impl *impl)
2101 {
2102 return (nir_block *) impl->body.head_sentinel.next;
2103 }
2104
2105 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2106 nir_impl_last_block(nir_function_impl *impl)
2107 {
2108 return (nir_block *) impl->body.tail_sentinel.prev;
2109 }
2110
2111 static inline nir_cf_node *
2112 nir_cf_node_next(nir_cf_node *node)
2113 {
2114 struct exec_node *next = exec_node_get_next(&node->node);
2115 if (exec_node_is_tail_sentinel(next))
2116 return NULL;
2117 else
2118 return exec_node_data(nir_cf_node, next, node);
2119 }
2120
2121 static inline nir_cf_node *
2122 nir_cf_node_prev(nir_cf_node *node)
2123 {
2124 struct exec_node *prev = exec_node_get_prev(&node->node);
2125 if (exec_node_is_head_sentinel(prev))
2126 return NULL;
2127 else
2128 return exec_node_data(nir_cf_node, prev, node);
2129 }
2130
2131 static inline bool
2132 nir_cf_node_is_first(const nir_cf_node *node)
2133 {
2134 return exec_node_is_head_sentinel(node->node.prev);
2135 }
2136
2137 static inline bool
2138 nir_cf_node_is_last(const nir_cf_node *node)
2139 {
2140 return exec_node_is_tail_sentinel(node->node.next);
2141 }
2142
2143 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
2144 type, nir_cf_node_block)
2145 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
2146 type, nir_cf_node_if)
2147 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
2148 type, nir_cf_node_loop)
2149 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
2150 nir_function_impl, cf_node, type, nir_cf_node_function)
2151
2152 static inline nir_block *
2153 nir_if_first_then_block(nir_if *if_stmt)
2154 {
2155 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
2156 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2157 }
2158
2159 static inline nir_block *
2160 nir_if_last_then_block(nir_if *if_stmt)
2161 {
2162 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
2163 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2164 }
2165
2166 static inline nir_block *
2167 nir_if_first_else_block(nir_if *if_stmt)
2168 {
2169 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
2170 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2171 }
2172
2173 static inline nir_block *
2174 nir_if_last_else_block(nir_if *if_stmt)
2175 {
2176 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
2177 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2178 }
2179
2180 static inline nir_block *
2181 nir_loop_first_block(nir_loop *loop)
2182 {
2183 struct exec_node *head = exec_list_get_head(&loop->body);
2184 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2185 }
2186
2187 static inline nir_block *
2188 nir_loop_last_block(nir_loop *loop)
2189 {
2190 struct exec_node *tail = exec_list_get_tail(&loop->body);
2191 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2192 }
2193
2194 /**
2195 * Return true if this list of cf_nodes contains a single empty block.
2196 */
2197 static inline bool
2198 nir_cf_list_is_empty_block(struct exec_list *cf_list)
2199 {
2200 if (exec_list_is_singular(cf_list)) {
2201 struct exec_node *head = exec_list_get_head(cf_list);
2202 nir_block *block =
2203 nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2204 return exec_list_is_empty(&block->instr_list);
2205 }
2206 return false;
2207 }
2208
2209 typedef struct {
2210 uint8_t num_components;
2211 uint8_t bit_size;
2212 } nir_parameter;
2213
2214 typedef struct nir_function {
2215 struct exec_node node;
2216
2217 const char *name;
2218 struct nir_shader *shader;
2219
2220 unsigned num_params;
2221 nir_parameter *params;
2222
2223 /** The implementation of this function.
2224 *
2225 * If the function is only declared and not implemented, this is NULL.
2226 */
2227 nir_function_impl *impl;
2228
2229 bool is_entrypoint;
2230 } nir_function;
2231
2232 typedef enum {
2233 nir_lower_imul64 = (1 << 0),
2234 nir_lower_isign64 = (1 << 1),
2235 /** Lower all int64 modulus and division opcodes */
2236 nir_lower_divmod64 = (1 << 2),
2237 /** Lower all 64-bit umul_high and imul_high opcodes */
2238 nir_lower_imul_high64 = (1 << 3),
2239 nir_lower_mov64 = (1 << 4),
2240 nir_lower_icmp64 = (1 << 5),
2241 nir_lower_iadd64 = (1 << 6),
2242 nir_lower_iabs64 = (1 << 7),
2243 nir_lower_ineg64 = (1 << 8),
2244 nir_lower_logic64 = (1 << 9),
2245 nir_lower_minmax64 = (1 << 10),
2246 nir_lower_shift64 = (1 << 11),
2247 nir_lower_imul_2x32_64 = (1 << 12),
2248 } nir_lower_int64_options;
2249
2250 typedef enum {
2251 nir_lower_drcp = (1 << 0),
2252 nir_lower_dsqrt = (1 << 1),
2253 nir_lower_drsq = (1 << 2),
2254 nir_lower_dtrunc = (1 << 3),
2255 nir_lower_dfloor = (1 << 4),
2256 nir_lower_dceil = (1 << 5),
2257 nir_lower_dfract = (1 << 6),
2258 nir_lower_dround_even = (1 << 7),
2259 nir_lower_dmod = (1 << 8),
2260 nir_lower_fp64_full_software = (1 << 9),
2261 } nir_lower_doubles_options;
2262
2263 typedef struct nir_shader_compiler_options {
2264 bool lower_fdiv;
2265 bool lower_ffma;
2266 bool fuse_ffma;
2267 bool lower_flrp16;
2268 bool lower_flrp32;
2269 /** Lowers flrp when it does not support doubles */
2270 bool lower_flrp64;
2271 bool lower_fpow;
2272 bool lower_fsat;
2273 bool lower_fsqrt;
2274 bool lower_fmod;
2275 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2276 bool lower_bitfield_extract;
2277 /** Lowers ibitfield_extract/ubitfield_extract to bfm, compares, shifts. */
2278 bool lower_bitfield_extract_to_shifts;
2279 /** Lowers bitfield_insert to bfi/bfm */
2280 bool lower_bitfield_insert;
2281 /** Lowers bitfield_insert to bfm, compares, and shifts. */
2282 bool lower_bitfield_insert_to_shifts;
2283 /** Lowers bitfield_reverse to shifts. */
2284 bool lower_bitfield_reverse;
2285 /** Lowers bit_count to shifts. */
2286 bool lower_bit_count;
2287 /** Lowers bfm to shifts and subtracts. */
2288 bool lower_bfm;
2289 /** Lowers ifind_msb to compare and ufind_msb */
2290 bool lower_ifind_msb;
2291 /** Lowers find_lsb to ufind_msb and logic ops */
2292 bool lower_find_lsb;
2293 bool lower_uadd_carry;
2294 bool lower_usub_borrow;
2295 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2296 bool lower_mul_high;
2297 /** lowers fneg and ineg to fsub and isub. */
2298 bool lower_negate;
2299 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2300 bool lower_sub;
2301
2302 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2303 bool lower_scmp;
2304
2305 /** enables rules to lower idiv by power-of-two: */
2306 bool lower_idiv;
2307
2308 /** enable rules to avoid bit shifts */
2309 bool lower_bitshift;
2310
2311 /** enables rules to lower isign to imin+imax */
2312 bool lower_isign;
2313
2314 /** enables rules to lower fsign to fsub and flt */
2315 bool lower_fsign;
2316
2317 /* Does the native fdot instruction replicate its result for four
2318 * components? If so, then opt_algebraic_late will turn all fdotN
2319 * instructions into fdot_replicatedN instructions.
2320 */
2321 bool fdot_replicates;
2322
2323 /** lowers ffloor to fsub+ffract: */
2324 bool lower_ffloor;
2325
2326 /** lowers ffract to fsub+ffloor: */
2327 bool lower_ffract;
2328
2329 /** lowers fceil to fneg+ffloor+fneg: */
2330 bool lower_fceil;
2331
2332 bool lower_ftrunc;
2333
2334 bool lower_ldexp;
2335
2336 bool lower_pack_half_2x16;
2337 bool lower_pack_unorm_2x16;
2338 bool lower_pack_snorm_2x16;
2339 bool lower_pack_unorm_4x8;
2340 bool lower_pack_snorm_4x8;
2341 bool lower_unpack_half_2x16;
2342 bool lower_unpack_unorm_2x16;
2343 bool lower_unpack_snorm_2x16;
2344 bool lower_unpack_unorm_4x8;
2345 bool lower_unpack_snorm_4x8;
2346
2347 bool lower_extract_byte;
2348 bool lower_extract_word;
2349
2350 bool lower_all_io_to_temps;
2351 bool lower_all_io_to_elements;
2352
2353 /* Indicates that the driver only has zero-based vertex id */
2354 bool vertex_id_zero_based;
2355
2356 /**
2357 * If enabled, gl_BaseVertex will be lowered as:
2358 * is_indexed_draw (~0/0) & firstvertex
2359 */
2360 bool lower_base_vertex;
2361
2362 /**
2363 * If enabled, gl_HelperInvocation will be lowered as:
2364 *
2365 * !((1 << sample_id) & sample_mask_in))
2366 *
2367 * This depends on some possibly hw implementation details, which may
2368 * not be true for all hw. In particular that the FS is only executed
2369 * for covered samples or for helper invocations. So, do not blindly
2370 * enable this option.
2371 *
2372 * Note: See also issue #22 in ARB_shader_image_load_store
2373 */
2374 bool lower_helper_invocation;
2375
2376 /**
2377 * Convert gl_SampleMaskIn to gl_HelperInvocation as follows:
2378 *
2379 * gl_SampleMaskIn == 0 ---> gl_HelperInvocation
2380 * gl_SampleMaskIn != 0 ---> !gl_HelperInvocation
2381 */
2382 bool optimize_sample_mask_in;
2383
2384 bool lower_cs_local_index_from_id;
2385 bool lower_cs_local_id_from_index;
2386
2387 bool lower_device_index_to_zero;
2388
2389 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
2390 bool lower_wpos_pntc;
2391
2392 bool lower_hadd;
2393 bool lower_add_sat;
2394
2395 /**
2396 * Should IO be re-vectorized? Some scalar ISAs still operate on vec4's
2397 * for IO purposes and would prefer loads/stores be vectorized.
2398 */
2399 bool vectorize_io;
2400
2401 /**
2402 * Should nir_lower_io() create load_interpolated_input intrinsics?
2403 *
2404 * If not, it generates regular load_input intrinsics and interpolation
2405 * information must be inferred from the list of input nir_variables.
2406 */
2407 bool use_interpolated_input_intrinsics;
2408
2409 /* Lowers when 32x32->64 bit multiplication is not supported */
2410 bool lower_mul_2x32_64;
2411
2412 unsigned max_unroll_iterations;
2413
2414 nir_lower_int64_options lower_int64_options;
2415 nir_lower_doubles_options lower_doubles_options;
2416 } nir_shader_compiler_options;
2417
2418 typedef struct nir_shader {
2419 /** list of uniforms (nir_variable) */
2420 struct exec_list uniforms;
2421
2422 /** list of inputs (nir_variable) */
2423 struct exec_list inputs;
2424
2425 /** list of outputs (nir_variable) */
2426 struct exec_list outputs;
2427
2428 /** list of shared compute variables (nir_variable) */
2429 struct exec_list shared;
2430
2431 /** Set of driver-specific options for the shader.
2432 *
2433 * The memory for the options is expected to be kept in a single static
2434 * copy by the driver.
2435 */
2436 const struct nir_shader_compiler_options *options;
2437
2438 /** Various bits of compile-time information about a given shader */
2439 struct shader_info info;
2440
2441 /** list of global variables in the shader (nir_variable) */
2442 struct exec_list globals;
2443
2444 /** list of system value variables in the shader (nir_variable) */
2445 struct exec_list system_values;
2446
2447 struct exec_list functions; /** < list of nir_function */
2448
2449 /**
2450 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2451 * access plus one
2452 */
2453 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2454
2455 /** Size in bytes of required scratch space */
2456 unsigned scratch_size;
2457
2458 /** Constant data associated with this shader.
2459 *
2460 * Constant data is loaded through load_constant intrinsics. See also
2461 * nir_opt_large_constants.
2462 */
2463 void *constant_data;
2464 unsigned constant_data_size;
2465 } nir_shader;
2466
2467 #define nir_foreach_function(func, shader) \
2468 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2469
2470 static inline nir_function_impl *
2471 nir_shader_get_entrypoint(nir_shader *shader)
2472 {
2473 nir_function *func = NULL;
2474
2475 nir_foreach_function(function, shader) {
2476 assert(func == NULL);
2477 if (function->is_entrypoint) {
2478 func = function;
2479 #ifndef NDEBUG
2480 break;
2481 #endif
2482 }
2483 }
2484
2485 if (!func)
2486 return NULL;
2487
2488 assert(func->num_params == 0);
2489 assert(func->impl);
2490 return func->impl;
2491 }
2492
2493 nir_shader *nir_shader_create(void *mem_ctx,
2494 gl_shader_stage stage,
2495 const nir_shader_compiler_options *options,
2496 shader_info *si);
2497
2498 nir_register *nir_local_reg_create(nir_function_impl *impl);
2499
2500 void nir_reg_remove(nir_register *reg);
2501
2502 /** Adds a variable to the appropriate list in nir_shader */
2503 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2504
2505 static inline void
2506 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2507 {
2508 assert(var->data.mode == nir_var_function_temp);
2509 exec_list_push_tail(&impl->locals, &var->node);
2510 }
2511
2512 /** creates a variable, sets a few defaults, and adds it to the list */
2513 nir_variable *nir_variable_create(nir_shader *shader,
2514 nir_variable_mode mode,
2515 const struct glsl_type *type,
2516 const char *name);
2517 /** creates a local variable and adds it to the list */
2518 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2519 const struct glsl_type *type,
2520 const char *name);
2521
2522 /** creates a function and adds it to the shader's list of functions */
2523 nir_function *nir_function_create(nir_shader *shader, const char *name);
2524
2525 nir_function_impl *nir_function_impl_create(nir_function *func);
2526 /** creates a function_impl that isn't tied to any particular function */
2527 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2528
2529 nir_block *nir_block_create(nir_shader *shader);
2530 nir_if *nir_if_create(nir_shader *shader);
2531 nir_loop *nir_loop_create(nir_shader *shader);
2532
2533 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2534
2535 /** requests that the given pieces of metadata be generated */
2536 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2537 /** dirties all but the preserved metadata */
2538 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2539
2540 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2541 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2542
2543 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2544 nir_deref_type deref_type);
2545
2546 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2547
2548 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2549 unsigned num_components,
2550 unsigned bit_size);
2551
2552 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2553 nir_intrinsic_op op);
2554
2555 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2556 nir_function *callee);
2557
2558 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2559
2560 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2561
2562 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2563
2564 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2565 unsigned num_components,
2566 unsigned bit_size);
2567
2568 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2569
2570 /**
2571 * NIR Cursors and Instruction Insertion API
2572 * @{
2573 *
2574 * A tiny struct representing a point to insert/extract instructions or
2575 * control flow nodes. Helps reduce the combinatorial explosion of possible
2576 * points to insert/extract.
2577 *
2578 * \sa nir_control_flow.h
2579 */
2580 typedef enum {
2581 nir_cursor_before_block,
2582 nir_cursor_after_block,
2583 nir_cursor_before_instr,
2584 nir_cursor_after_instr,
2585 } nir_cursor_option;
2586
2587 typedef struct {
2588 nir_cursor_option option;
2589 union {
2590 nir_block *block;
2591 nir_instr *instr;
2592 };
2593 } nir_cursor;
2594
2595 static inline nir_block *
2596 nir_cursor_current_block(nir_cursor cursor)
2597 {
2598 if (cursor.option == nir_cursor_before_instr ||
2599 cursor.option == nir_cursor_after_instr) {
2600 return cursor.instr->block;
2601 } else {
2602 return cursor.block;
2603 }
2604 }
2605
2606 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2607
2608 static inline nir_cursor
2609 nir_before_block(nir_block *block)
2610 {
2611 nir_cursor cursor;
2612 cursor.option = nir_cursor_before_block;
2613 cursor.block = block;
2614 return cursor;
2615 }
2616
2617 static inline nir_cursor
2618 nir_after_block(nir_block *block)
2619 {
2620 nir_cursor cursor;
2621 cursor.option = nir_cursor_after_block;
2622 cursor.block = block;
2623 return cursor;
2624 }
2625
2626 static inline nir_cursor
2627 nir_before_instr(nir_instr *instr)
2628 {
2629 nir_cursor cursor;
2630 cursor.option = nir_cursor_before_instr;
2631 cursor.instr = instr;
2632 return cursor;
2633 }
2634
2635 static inline nir_cursor
2636 nir_after_instr(nir_instr *instr)
2637 {
2638 nir_cursor cursor;
2639 cursor.option = nir_cursor_after_instr;
2640 cursor.instr = instr;
2641 return cursor;
2642 }
2643
2644 static inline nir_cursor
2645 nir_after_block_before_jump(nir_block *block)
2646 {
2647 nir_instr *last_instr = nir_block_last_instr(block);
2648 if (last_instr && last_instr->type == nir_instr_type_jump) {
2649 return nir_before_instr(last_instr);
2650 } else {
2651 return nir_after_block(block);
2652 }
2653 }
2654
2655 static inline nir_cursor
2656 nir_before_src(nir_src *src, bool is_if_condition)
2657 {
2658 if (is_if_condition) {
2659 nir_block *prev_block =
2660 nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
2661 assert(!nir_block_ends_in_jump(prev_block));
2662 return nir_after_block(prev_block);
2663 } else if (src->parent_instr->type == nir_instr_type_phi) {
2664 #ifndef NDEBUG
2665 nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
2666 bool found = false;
2667 nir_foreach_phi_src(phi_src, cond_phi) {
2668 if (phi_src->src.ssa == src->ssa) {
2669 found = true;
2670 break;
2671 }
2672 }
2673 assert(found);
2674 #endif
2675 /* The LIST_ENTRY macro is a generic container-of macro, it just happens
2676 * to have a more specific name.
2677 */
2678 nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
2679 return nir_after_block_before_jump(phi_src->pred);
2680 } else {
2681 return nir_before_instr(src->parent_instr);
2682 }
2683 }
2684
2685 static inline nir_cursor
2686 nir_before_cf_node(nir_cf_node *node)
2687 {
2688 if (node->type == nir_cf_node_block)
2689 return nir_before_block(nir_cf_node_as_block(node));
2690
2691 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2692 }
2693
2694 static inline nir_cursor
2695 nir_after_cf_node(nir_cf_node *node)
2696 {
2697 if (node->type == nir_cf_node_block)
2698 return nir_after_block(nir_cf_node_as_block(node));
2699
2700 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2701 }
2702
2703 static inline nir_cursor
2704 nir_after_phis(nir_block *block)
2705 {
2706 nir_foreach_instr(instr, block) {
2707 if (instr->type != nir_instr_type_phi)
2708 return nir_before_instr(instr);
2709 }
2710 return nir_after_block(block);
2711 }
2712
2713 static inline nir_cursor
2714 nir_after_cf_node_and_phis(nir_cf_node *node)
2715 {
2716 if (node->type == nir_cf_node_block)
2717 return nir_after_block(nir_cf_node_as_block(node));
2718
2719 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2720
2721 return nir_after_phis(block);
2722 }
2723
2724 static inline nir_cursor
2725 nir_before_cf_list(struct exec_list *cf_list)
2726 {
2727 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2728 exec_list_get_head(cf_list), node);
2729 return nir_before_cf_node(first_node);
2730 }
2731
2732 static inline nir_cursor
2733 nir_after_cf_list(struct exec_list *cf_list)
2734 {
2735 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2736 exec_list_get_tail(cf_list), node);
2737 return nir_after_cf_node(last_node);
2738 }
2739
2740 /**
2741 * Insert a NIR instruction at the given cursor.
2742 *
2743 * Note: This does not update the cursor.
2744 */
2745 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2746
2747 static inline void
2748 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2749 {
2750 nir_instr_insert(nir_before_instr(instr), before);
2751 }
2752
2753 static inline void
2754 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2755 {
2756 nir_instr_insert(nir_after_instr(instr), after);
2757 }
2758
2759 static inline void
2760 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2761 {
2762 nir_instr_insert(nir_before_block(block), before);
2763 }
2764
2765 static inline void
2766 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2767 {
2768 nir_instr_insert(nir_after_block(block), after);
2769 }
2770
2771 static inline void
2772 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2773 {
2774 nir_instr_insert(nir_before_cf_node(node), before);
2775 }
2776
2777 static inline void
2778 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2779 {
2780 nir_instr_insert(nir_after_cf_node(node), after);
2781 }
2782
2783 static inline void
2784 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2785 {
2786 nir_instr_insert(nir_before_cf_list(list), before);
2787 }
2788
2789 static inline void
2790 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2791 {
2792 nir_instr_insert(nir_after_cf_list(list), after);
2793 }
2794
2795 void nir_instr_remove_v(nir_instr *instr);
2796
2797 static inline nir_cursor
2798 nir_instr_remove(nir_instr *instr)
2799 {
2800 nir_cursor cursor;
2801 nir_instr *prev = nir_instr_prev(instr);
2802 if (prev) {
2803 cursor = nir_after_instr(prev);
2804 } else {
2805 cursor = nir_before_block(instr->block);
2806 }
2807 nir_instr_remove_v(instr);
2808 return cursor;
2809 }
2810
2811 /** @} */
2812
2813 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2814 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2815 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2816 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2817 void *state);
2818 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2819 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2820
2821 nir_const_value *nir_src_as_const_value(nir_src src);
2822
2823 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
2824 static inline c_type * \
2825 nir_src_as_ ## name (nir_src src) \
2826 { \
2827 return src.is_ssa && src.ssa->parent_instr->type == type_enum \
2828 ? cast_macro(src.ssa->parent_instr) : NULL; \
2829 }
2830
2831 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
2832 NIR_SRC_AS_(intrinsic, nir_intrinsic_instr,
2833 nir_instr_type_intrinsic, nir_instr_as_intrinsic)
2834 NIR_SRC_AS_(deref, nir_deref_instr, nir_instr_type_deref, nir_instr_as_deref)
2835
2836 bool nir_src_is_dynamically_uniform(nir_src src);
2837 bool nir_srcs_equal(nir_src src1, nir_src src2);
2838 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2839 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2840 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2841 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2842 nir_dest new_dest);
2843
2844 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2845 unsigned num_components, unsigned bit_size,
2846 const char *name);
2847 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2848 unsigned num_components, unsigned bit_size,
2849 const char *name);
2850 static inline void
2851 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
2852 const struct glsl_type *type,
2853 const char *name)
2854 {
2855 assert(glsl_type_is_vector_or_scalar(type));
2856 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
2857 glsl_get_bit_size(type), name);
2858 }
2859 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2860 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2861 nir_instr *after_me);
2862
2863 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
2864
2865 /*
2866 * finds the next basic block in source-code order, returns NULL if there is
2867 * none
2868 */
2869
2870 nir_block *nir_block_cf_tree_next(nir_block *block);
2871
2872 /* Performs the opposite of nir_block_cf_tree_next() */
2873
2874 nir_block *nir_block_cf_tree_prev(nir_block *block);
2875
2876 /* Gets the first block in a CF node in source-code order */
2877
2878 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2879
2880 /* Gets the last block in a CF node in source-code order */
2881
2882 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2883
2884 /* Gets the next block after a CF node in source-code order */
2885
2886 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2887
2888 /* Macros for loops that visit blocks in source-code order */
2889
2890 #define nir_foreach_block(block, impl) \
2891 for (nir_block *block = nir_start_block(impl); block != NULL; \
2892 block = nir_block_cf_tree_next(block))
2893
2894 #define nir_foreach_block_safe(block, impl) \
2895 for (nir_block *block = nir_start_block(impl), \
2896 *next = nir_block_cf_tree_next(block); \
2897 block != NULL; \
2898 block = next, next = nir_block_cf_tree_next(block))
2899
2900 #define nir_foreach_block_reverse(block, impl) \
2901 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2902 block = nir_block_cf_tree_prev(block))
2903
2904 #define nir_foreach_block_reverse_safe(block, impl) \
2905 for (nir_block *block = nir_impl_last_block(impl), \
2906 *prev = nir_block_cf_tree_prev(block); \
2907 block != NULL; \
2908 block = prev, prev = nir_block_cf_tree_prev(block))
2909
2910 #define nir_foreach_block_in_cf_node(block, node) \
2911 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2912 block != nir_cf_node_cf_tree_next(node); \
2913 block = nir_block_cf_tree_next(block))
2914
2915 /* If the following CF node is an if, this function returns that if.
2916 * Otherwise, it returns NULL.
2917 */
2918 nir_if *nir_block_get_following_if(nir_block *block);
2919
2920 nir_loop *nir_block_get_following_loop(nir_block *block);
2921
2922 void nir_index_local_regs(nir_function_impl *impl);
2923 void nir_index_ssa_defs(nir_function_impl *impl);
2924 unsigned nir_index_instrs(nir_function_impl *impl);
2925
2926 void nir_index_blocks(nir_function_impl *impl);
2927
2928 void nir_print_shader(nir_shader *shader, FILE *fp);
2929 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2930 void nir_print_instr(const nir_instr *instr, FILE *fp);
2931 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
2932
2933 /** Shallow clone of a single ALU instruction. */
2934 nir_alu_instr *nir_alu_instr_clone(nir_shader *s, const nir_alu_instr *orig);
2935
2936 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2937 nir_function_impl *nir_function_impl_clone(nir_shader *shader,
2938 const nir_function_impl *fi);
2939 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2940 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2941
2942 void nir_shader_replace(nir_shader *dest, nir_shader *src);
2943
2944 void nir_shader_serialize_deserialize(nir_shader *s);
2945
2946 #ifndef NDEBUG
2947 void nir_validate_shader(nir_shader *shader, const char *when);
2948 void nir_metadata_set_validation_flag(nir_shader *shader);
2949 void nir_metadata_check_validation_flag(nir_shader *shader);
2950
2951 static inline bool
2952 should_skip_nir(const char *name)
2953 {
2954 static const char *list = NULL;
2955 if (!list) {
2956 /* Comma separated list of names to skip. */
2957 list = getenv("NIR_SKIP");
2958 if (!list)
2959 list = "";
2960 }
2961
2962 if (!list[0])
2963 return false;
2964
2965 return comma_separated_list_contains(list, name);
2966 }
2967
2968 static inline bool
2969 should_clone_nir(void)
2970 {
2971 static int should_clone = -1;
2972 if (should_clone < 0)
2973 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2974
2975 return should_clone;
2976 }
2977
2978 static inline bool
2979 should_serialize_deserialize_nir(void)
2980 {
2981 static int test_serialize = -1;
2982 if (test_serialize < 0)
2983 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
2984
2985 return test_serialize;
2986 }
2987
2988 static inline bool
2989 should_print_nir(void)
2990 {
2991 static int should_print = -1;
2992 if (should_print < 0)
2993 should_print = env_var_as_boolean("NIR_PRINT", false);
2994
2995 return should_print;
2996 }
2997 #else
2998 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
2999 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
3000 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
3001 static inline bool should_skip_nir(UNUSED const char *pass_name) { return false; }
3002 static inline bool should_clone_nir(void) { return false; }
3003 static inline bool should_serialize_deserialize_nir(void) { return false; }
3004 static inline bool should_print_nir(void) { return false; }
3005 #endif /* NDEBUG */
3006
3007 #define _PASS(pass, nir, do_pass) do { \
3008 if (should_skip_nir(#pass)) { \
3009 printf("skipping %s\n", #pass); \
3010 break; \
3011 } \
3012 do_pass \
3013 nir_validate_shader(nir, "after " #pass); \
3014 if (should_clone_nir()) { \
3015 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
3016 nir_shader_replace(nir, clone); \
3017 } \
3018 if (should_serialize_deserialize_nir()) { \
3019 nir_shader_serialize_deserialize(nir); \
3020 } \
3021 } while (0)
3022
3023 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, \
3024 nir_metadata_set_validation_flag(nir); \
3025 if (should_print_nir()) \
3026 printf("%s\n", #pass); \
3027 if (pass(nir, ##__VA_ARGS__)) { \
3028 progress = true; \
3029 if (should_print_nir()) \
3030 nir_print_shader(nir, stdout); \
3031 nir_metadata_check_validation_flag(nir); \
3032 } \
3033 )
3034
3035 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, \
3036 if (should_print_nir()) \
3037 printf("%s\n", #pass); \
3038 pass(nir, ##__VA_ARGS__); \
3039 if (should_print_nir()) \
3040 nir_print_shader(nir, stdout); \
3041 )
3042
3043 #define NIR_SKIP(name) should_skip_nir(#name)
3044
3045 void nir_calc_dominance_impl(nir_function_impl *impl);
3046 void nir_calc_dominance(nir_shader *shader);
3047
3048 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
3049 bool nir_block_dominates(nir_block *parent, nir_block *child);
3050
3051 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
3052 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
3053
3054 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
3055 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
3056
3057 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
3058 void nir_dump_cfg(nir_shader *shader, FILE *fp);
3059
3060 int nir_gs_count_vertices(const nir_shader *shader);
3061
3062 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
3063 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
3064 bool nir_split_var_copies(nir_shader *shader);
3065 bool nir_split_per_member_structs(nir_shader *shader);
3066 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
3067
3068 bool nir_lower_returns_impl(nir_function_impl *impl);
3069 bool nir_lower_returns(nir_shader *shader);
3070
3071 void nir_inline_function_impl(struct nir_builder *b,
3072 const nir_function_impl *impl,
3073 nir_ssa_def **params);
3074 bool nir_inline_functions(nir_shader *shader);
3075
3076 bool nir_propagate_invariant(nir_shader *shader);
3077
3078 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
3079 void nir_lower_deref_copy_instr(struct nir_builder *b,
3080 nir_intrinsic_instr *copy);
3081 bool nir_lower_var_copies(nir_shader *shader);
3082
3083 void nir_fixup_deref_modes(nir_shader *shader);
3084
3085 bool nir_lower_global_vars_to_local(nir_shader *shader);
3086
3087 typedef enum {
3088 nir_lower_direct_array_deref_of_vec_load = (1 << 0),
3089 nir_lower_indirect_array_deref_of_vec_load = (1 << 1),
3090 nir_lower_direct_array_deref_of_vec_store = (1 << 2),
3091 nir_lower_indirect_array_deref_of_vec_store = (1 << 3),
3092 } nir_lower_array_deref_of_vec_options;
3093
3094 bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
3095 nir_lower_array_deref_of_vec_options options);
3096
3097 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
3098
3099 bool nir_lower_locals_to_regs(nir_shader *shader);
3100
3101 void nir_lower_io_to_temporaries(nir_shader *shader,
3102 nir_function_impl *entrypoint,
3103 bool outputs, bool inputs);
3104
3105 bool nir_lower_vars_to_scratch(nir_shader *shader,
3106 nir_variable_mode modes,
3107 int size_threshold,
3108 glsl_type_size_align_func size_align);
3109
3110 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
3111
3112 void nir_gather_ssa_types(nir_function_impl *impl,
3113 BITSET_WORD *float_types,
3114 BITSET_WORD *int_types);
3115
3116 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
3117 int (*type_size)(const struct glsl_type *, bool));
3118
3119 /* Some helpers to do very simple linking */
3120 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
3121 bool nir_remove_unused_io_vars(nir_shader *shader, struct exec_list *var_list,
3122 uint64_t *used_by_other_stage,
3123 uint64_t *used_by_other_stage_patches);
3124 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
3125 bool default_to_smooth_interp);
3126 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
3127 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
3128
3129 typedef enum {
3130 /* If set, this forces all non-flat fragment shader inputs to be
3131 * interpolated as if with the "sample" qualifier. This requires
3132 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
3133 */
3134 nir_lower_io_force_sample_interpolation = (1 << 1),
3135 } nir_lower_io_options;
3136 bool nir_lower_io(nir_shader *shader,
3137 nir_variable_mode modes,
3138 int (*type_size)(const struct glsl_type *, bool),
3139 nir_lower_io_options);
3140
3141 typedef enum {
3142 /**
3143 * An address format which is a simple 32-bit global GPU address.
3144 */
3145 nir_address_format_32bit_global,
3146
3147 /**
3148 * An address format which is a simple 64-bit global GPU address.
3149 */
3150 nir_address_format_64bit_global,
3151
3152 /**
3153 * An address format which is a bounds-checked 64-bit global GPU address.
3154 *
3155 * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
3156 * address stored with the low bits in .x and high bits in .y, .z is a
3157 * size, and .w is an offset. When the final I/O operation is lowered, .w
3158 * is checked against .z and the operation is predicated on the result.
3159 */
3160 nir_address_format_64bit_bounded_global,
3161
3162 /**
3163 * An address format which is comprised of a vec2 where the first
3164 * component is a buffer index and the second is an offset.
3165 */
3166 nir_address_format_32bit_index_offset,
3167
3168 /**
3169 * An address format which is a simple 32-bit offset.
3170 */
3171 nir_address_format_32bit_offset,
3172
3173 /**
3174 * An address format representing a purely logical addressing model. In
3175 * this model, all deref chains must be complete from the dereference
3176 * operation to the variable. Cast derefs are not allowed. These
3177 * addresses will be 32-bit scalars but the format is immaterial because
3178 * you can always chase the chain.
3179 */
3180 nir_address_format_logical,
3181 } nir_address_format;
3182
3183 static inline unsigned
3184 nir_address_format_bit_size(nir_address_format addr_format)
3185 {
3186 switch (addr_format) {
3187 case nir_address_format_32bit_global: return 32;
3188 case nir_address_format_64bit_global: return 64;
3189 case nir_address_format_64bit_bounded_global: return 32;
3190 case nir_address_format_32bit_index_offset: return 32;
3191 case nir_address_format_32bit_offset: return 32;
3192 case nir_address_format_logical: return 32;
3193 }
3194 unreachable("Invalid address format");
3195 }
3196
3197 static inline unsigned
3198 nir_address_format_num_components(nir_address_format addr_format)
3199 {
3200 switch (addr_format) {
3201 case nir_address_format_32bit_global: return 1;
3202 case nir_address_format_64bit_global: return 1;
3203 case nir_address_format_64bit_bounded_global: return 4;
3204 case nir_address_format_32bit_index_offset: return 2;
3205 case nir_address_format_32bit_offset: return 1;
3206 case nir_address_format_logical: return 1;
3207 }
3208 unreachable("Invalid address format");
3209 }
3210
3211 static inline const struct glsl_type *
3212 nir_address_format_to_glsl_type(nir_address_format addr_format)
3213 {
3214 unsigned bit_size = nir_address_format_bit_size(addr_format);
3215 assert(bit_size == 32 || bit_size == 64);
3216 return glsl_vector_type(bit_size == 32 ? GLSL_TYPE_UINT : GLSL_TYPE_UINT64,
3217 nir_address_format_num_components(addr_format));
3218 }
3219
3220 const nir_const_value *nir_address_format_null_value(nir_address_format addr_format);
3221
3222 nir_ssa_def *nir_build_addr_ieq(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
3223 nir_address_format addr_format);
3224
3225 nir_ssa_def *nir_build_addr_isub(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
3226 nir_address_format addr_format);
3227
3228 nir_ssa_def * nir_explicit_io_address_from_deref(struct nir_builder *b,
3229 nir_deref_instr *deref,
3230 nir_ssa_def *base_addr,
3231 nir_address_format addr_format);
3232 void nir_lower_explicit_io_instr(struct nir_builder *b,
3233 nir_intrinsic_instr *io_instr,
3234 nir_ssa_def *addr,
3235 nir_address_format addr_format);
3236
3237 bool nir_lower_explicit_io(nir_shader *shader,
3238 nir_variable_mode modes,
3239 nir_address_format);
3240
3241 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
3242 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
3243
3244 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
3245
3246 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
3247 bool nir_lower_regs_to_ssa(nir_shader *shader);
3248 bool nir_lower_vars_to_ssa(nir_shader *shader);
3249
3250 bool nir_remove_dead_derefs(nir_shader *shader);
3251 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
3252 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
3253 bool nir_lower_constant_initializers(nir_shader *shader,
3254 nir_variable_mode modes);
3255
3256 bool nir_move_load_const(nir_shader *shader);
3257 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
3258 bool nir_lower_vec_to_movs(nir_shader *shader);
3259 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
3260 bool alpha_to_one);
3261 bool nir_lower_alu(nir_shader *shader);
3262
3263 bool nir_lower_flrp(nir_shader *shader, unsigned lowering_mask,
3264 bool always_precise, bool have_ffma);
3265
3266 bool nir_lower_alu_to_scalar(nir_shader *shader, BITSET_WORD *lower_set);
3267 bool nir_lower_bool_to_float(nir_shader *shader);
3268 bool nir_lower_bool_to_int32(nir_shader *shader);
3269 bool nir_lower_int_to_float(nir_shader *shader);
3270 bool nir_lower_load_const_to_scalar(nir_shader *shader);
3271 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
3272 bool nir_lower_phis_to_scalar(nir_shader *shader);
3273 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
3274 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
3275 bool outputs_only);
3276 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
3277 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
3278 bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
3279
3280 void nir_lower_fragcoord_wtrans(nir_shader *shader);
3281 void nir_lower_viewport_transform(nir_shader *shader);
3282 bool nir_lower_uniforms_to_ubo(nir_shader *shader, int multiplier);
3283
3284 typedef struct nir_lower_subgroups_options {
3285 uint8_t subgroup_size;
3286 uint8_t ballot_bit_size;
3287 bool lower_to_scalar:1;
3288 bool lower_vote_trivial:1;
3289 bool lower_vote_eq_to_ballot:1;
3290 bool lower_subgroup_masks:1;
3291 bool lower_shuffle:1;
3292 bool lower_shuffle_to_32bit:1;
3293 bool lower_quad:1;
3294 } nir_lower_subgroups_options;
3295
3296 bool nir_lower_subgroups(nir_shader *shader,
3297 const nir_lower_subgroups_options *options);
3298
3299 bool nir_lower_system_values(nir_shader *shader);
3300
3301 enum PACKED nir_lower_tex_packing {
3302 nir_lower_tex_packing_none = 0,
3303 /* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
3304 * or unsigned ints based on the sampler type
3305 */
3306 nir_lower_tex_packing_16,
3307 /* The sampler returns 1 32-bit word of 4x8 unorm */
3308 nir_lower_tex_packing_8,
3309 };
3310
3311 typedef struct nir_lower_tex_options {
3312 /**
3313 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
3314 * sampler types a texture projector is lowered.
3315 */
3316 unsigned lower_txp;
3317
3318 /**
3319 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
3320 */
3321 bool lower_txf_offset;
3322
3323 /**
3324 * If true, lower away nir_tex_src_offset for all rect textures.
3325 */
3326 bool lower_rect_offset;
3327
3328 /**
3329 * If true, lower rect textures to 2D, using txs to fetch the
3330 * texture dimensions and dividing the texture coords by the
3331 * texture dims to normalize.
3332 */
3333 bool lower_rect;
3334
3335 /**
3336 * If true, convert yuv to rgb.
3337 */
3338 unsigned lower_y_uv_external;
3339 unsigned lower_y_u_v_external;
3340 unsigned lower_yx_xuxv_external;
3341 unsigned lower_xy_uxvx_external;
3342 unsigned lower_ayuv_external;
3343 unsigned lower_xyuv_external;
3344
3345 /**
3346 * To emulate certain texture wrap modes, this can be used
3347 * to saturate the specified tex coord to [0.0, 1.0]. The
3348 * bits are according to sampler #, ie. if, for example:
3349 *
3350 * (conf->saturate_s & (1 << n))
3351 *
3352 * is true, then the s coord for sampler n is saturated.
3353 *
3354 * Note that clamping must happen *after* projector lowering
3355 * so any projected texture sample instruction with a clamped
3356 * coordinate gets automatically lowered, regardless of the
3357 * 'lower_txp' setting.
3358 */
3359 unsigned saturate_s;
3360 unsigned saturate_t;
3361 unsigned saturate_r;
3362
3363 /* Bitmask of textures that need swizzling.
3364 *
3365 * If (swizzle_result & (1 << texture_index)), then the swizzle in
3366 * swizzles[texture_index] is applied to the result of the texturing
3367 * operation.
3368 */
3369 unsigned swizzle_result;
3370
3371 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
3372 * while 4 and 5 represent 0 and 1 respectively.
3373 */
3374 uint8_t swizzles[32][4];
3375
3376 /* Can be used to scale sampled values in range required by the format. */
3377 float scale_factors[32];
3378
3379 /**
3380 * Bitmap of textures that need srgb to linear conversion. If
3381 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
3382 * of the texture are lowered to linear.
3383 */
3384 unsigned lower_srgb;
3385
3386 /**
3387 * If true, lower nir_texop_tex on shaders that doesn't support implicit
3388 * LODs to nir_texop_txl.
3389 */
3390 bool lower_tex_without_implicit_lod;
3391
3392 /**
3393 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
3394 */
3395 bool lower_txd_cube_map;
3396
3397 /**
3398 * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
3399 */
3400 bool lower_txd_3d;
3401
3402 /**
3403 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
3404 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
3405 * with lower_txd_cube_map.
3406 */
3407 bool lower_txd_shadow;
3408
3409 /**
3410 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
3411 * Implies lower_txd_cube_map and lower_txd_shadow.
3412 */
3413 bool lower_txd;
3414
3415 /**
3416 * If true, lower nir_texop_txb that try to use shadow compare and min_lod
3417 * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
3418 */
3419 bool lower_txb_shadow_clamp;
3420
3421 /**
3422 * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
3423 * with nir_texop_txl. This includes cube maps.
3424 */
3425 bool lower_txd_shadow_clamp;
3426
3427 /**
3428 * If true, lower nir_texop_txd on when it uses both offset and min_lod
3429 * with nir_texop_txl. This includes cube maps.
3430 */
3431 bool lower_txd_offset_clamp;
3432
3433 /**
3434 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3435 * sampler is bindless.
3436 */
3437 bool lower_txd_clamp_bindless_sampler;
3438
3439 /**
3440 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3441 * sampler index is not statically determinable to be less than 16.
3442 */
3443 bool lower_txd_clamp_if_sampler_index_not_lt_16;
3444
3445 /**
3446 * If true, lower nir_texop_txs with a non-0-lod into nir_texop_txs with
3447 * 0-lod followed by a nir_ishr.
3448 */
3449 bool lower_txs_lod;
3450
3451 /**
3452 * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
3453 * mixed-up tg4 locations.
3454 */
3455 bool lower_tg4_broadcom_swizzle;
3456
3457 /**
3458 * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
3459 */
3460 bool lower_tg4_offsets;
3461
3462 enum nir_lower_tex_packing lower_tex_packing[32];
3463 } nir_lower_tex_options;
3464
3465 bool nir_lower_tex(nir_shader *shader,
3466 const nir_lower_tex_options *options);
3467
3468 enum nir_lower_non_uniform_access_type {
3469 nir_lower_non_uniform_ubo_access = (1 << 0),
3470 nir_lower_non_uniform_ssbo_access = (1 << 1),
3471 nir_lower_non_uniform_texture_access = (1 << 2),
3472 nir_lower_non_uniform_image_access = (1 << 3),
3473 };
3474
3475 bool nir_lower_non_uniform_access(nir_shader *shader,
3476 enum nir_lower_non_uniform_access_type);
3477
3478 bool nir_lower_idiv(nir_shader *shader);
3479
3480 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables, bool use_vars);
3481 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
3482 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
3483
3484 bool nir_lower_frexp(nir_shader *nir);
3485
3486 void nir_lower_two_sided_color(nir_shader *shader);
3487
3488 bool nir_lower_clamp_color_outputs(nir_shader *shader);
3489
3490 void nir_lower_passthrough_edgeflags(nir_shader *shader);
3491 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
3492 const gl_state_index16 *uniform_state_tokens);
3493
3494 typedef struct nir_lower_wpos_ytransform_options {
3495 gl_state_index16 state_tokens[STATE_LENGTH];
3496 bool fs_coord_origin_upper_left :1;
3497 bool fs_coord_origin_lower_left :1;
3498 bool fs_coord_pixel_center_integer :1;
3499 bool fs_coord_pixel_center_half_integer :1;
3500 } nir_lower_wpos_ytransform_options;
3501
3502 bool nir_lower_wpos_ytransform(nir_shader *shader,
3503 const nir_lower_wpos_ytransform_options *options);
3504 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
3505
3506 bool nir_lower_fb_read(nir_shader *shader);
3507
3508 typedef struct nir_lower_drawpixels_options {
3509 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
3510 gl_state_index16 scale_state_tokens[STATE_LENGTH];
3511 gl_state_index16 bias_state_tokens[STATE_LENGTH];
3512 unsigned drawpix_sampler;
3513 unsigned pixelmap_sampler;
3514 bool pixel_maps :1;
3515 bool scale_and_bias :1;
3516 } nir_lower_drawpixels_options;
3517
3518 void nir_lower_drawpixels(nir_shader *shader,
3519 const nir_lower_drawpixels_options *options);
3520
3521 typedef struct nir_lower_bitmap_options {
3522 unsigned sampler;
3523 bool swizzle_xxxx;
3524 } nir_lower_bitmap_options;
3525
3526 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
3527
3528 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
3529
3530 typedef enum {
3531 nir_lower_int_source_mods = 1 << 0,
3532 nir_lower_float_source_mods = 1 << 1,
3533 nir_lower_triop_abs = 1 << 2,
3534 nir_lower_all_source_mods = (1 << 3) - 1
3535 } nir_lower_to_source_mods_flags;
3536
3537
3538 bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
3539
3540 bool nir_lower_gs_intrinsics(nir_shader *shader);
3541
3542 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
3543
3544 bool nir_lower_bit_size(nir_shader *shader,
3545 nir_lower_bit_size_callback callback,
3546 void *callback_data);
3547
3548 nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
3549 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
3550
3551 nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
3552 bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
3553 nir_lower_doubles_options options);
3554 bool nir_lower_pack(nir_shader *shader);
3555
3556 bool nir_normalize_cubemap_coords(nir_shader *shader);
3557
3558 void nir_live_ssa_defs_impl(nir_function_impl *impl);
3559
3560 void nir_loop_analyze_impl(nir_function_impl *impl,
3561 nir_variable_mode indirect_mask);
3562
3563 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
3564
3565 bool nir_repair_ssa_impl(nir_function_impl *impl);
3566 bool nir_repair_ssa(nir_shader *shader);
3567
3568 void nir_convert_loop_to_lcssa(nir_loop *loop);
3569
3570 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
3571 * registers. If false, convert all values (even those not involved in a phi
3572 * node) to registers.
3573 */
3574 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
3575
3576 bool nir_lower_phis_to_regs_block(nir_block *block);
3577 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
3578 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
3579
3580 bool nir_opt_comparison_pre(nir_shader *shader);
3581
3582 bool nir_opt_algebraic(nir_shader *shader);
3583 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
3584 bool nir_opt_algebraic_late(nir_shader *shader);
3585 bool nir_opt_constant_folding(nir_shader *shader);
3586
3587 bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
3588
3589 bool nir_copy_prop(nir_shader *shader);
3590
3591 bool nir_opt_copy_prop_vars(nir_shader *shader);
3592
3593 bool nir_opt_cse(nir_shader *shader);
3594
3595 bool nir_opt_dce(nir_shader *shader);
3596
3597 bool nir_opt_dead_cf(nir_shader *shader);
3598
3599 bool nir_opt_dead_write_vars(nir_shader *shader);
3600
3601 bool nir_opt_deref_impl(nir_function_impl *impl);
3602 bool nir_opt_deref(nir_shader *shader);
3603
3604 bool nir_opt_find_array_copies(nir_shader *shader);
3605
3606 bool nir_opt_gcm(nir_shader *shader, bool value_number);
3607
3608 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
3609
3610 bool nir_opt_if(nir_shader *shader, bool aggressive_last_continue);
3611
3612 bool nir_opt_intrinsics(nir_shader *shader);
3613
3614 bool nir_opt_large_constants(nir_shader *shader,
3615 glsl_type_size_align_func size_align,
3616 unsigned threshold);
3617
3618 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
3619
3620 bool nir_opt_move_comparisons(nir_shader *shader);
3621
3622 bool nir_opt_move_load_ubo(nir_shader *shader);
3623
3624 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
3625 bool indirect_load_ok, bool expensive_alu_ok);
3626
3627 bool nir_opt_rematerialize_compares(nir_shader *shader);
3628
3629 bool nir_opt_remove_phis(nir_shader *shader);
3630
3631 bool nir_opt_shrink_load(nir_shader *shader);
3632
3633 bool nir_opt_trivial_continues(nir_shader *shader);
3634
3635 bool nir_opt_undef(nir_shader *shader);
3636
3637 bool nir_opt_vectorize(nir_shader *shader);
3638
3639 bool nir_opt_conditional_discard(nir_shader *shader);
3640
3641 void nir_strip(nir_shader *shader);
3642
3643 void nir_sweep(nir_shader *shader);
3644
3645 void nir_remap_dual_slot_attributes(nir_shader *shader,
3646 uint64_t *dual_slot_inputs);
3647 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
3648
3649 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
3650 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
3651
3652 bool nir_lower_sincos(nir_shader *shader);
3653
3654 #ifdef __cplusplus
3655 } /* extern "C" */
3656 #endif
3657
3658 #endif /* NIR_H */