nir/spirv: handle SpvStorageClassCrossWorkgroup
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitscan.h"
38 #include "util/bitset.h"
39 #include "util/macros.h"
40 #include "compiler/nir_types.h"
41 #include "compiler/shader_enums.h"
42 #include "compiler/shader_info.h"
43 #include <stdio.h>
44
45 #ifndef NDEBUG
46 #include "util/debug.h"
47 #endif /* NDEBUG */
48
49 #include "nir_opcodes.h"
50
51 #if defined(_WIN32) && !defined(snprintf)
52 #define snprintf _snprintf
53 #endif
54
55 #ifdef __cplusplus
56 extern "C" {
57 #endif
58
59 #define NIR_FALSE 0u
60 #define NIR_TRUE (~0u)
61 #define NIR_MAX_VEC_COMPONENTS 4
62 typedef uint8_t nir_component_mask_t;
63
64 /** Defines a cast function
65 *
66 * This macro defines a cast function from in_type to out_type where
67 * out_type is some structure type that contains a field of type out_type.
68 *
69 * Note that you have to be a bit careful as the generated cast function
70 * destroys constness.
71 */
72 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
73 type_field, type_value) \
74 static inline out_type * \
75 name(const in_type *parent) \
76 { \
77 assert(parent && parent->type_field == type_value); \
78 return exec_node_data(out_type, parent, field); \
79 }
80
81 struct nir_function;
82 struct nir_shader;
83 struct nir_instr;
84 struct nir_builder;
85
86
87 /**
88 * Description of built-in state associated with a uniform
89 *
90 * \sa nir_variable::state_slots
91 */
92 typedef struct {
93 gl_state_index16 tokens[STATE_LENGTH];
94 int swizzle;
95 } nir_state_slot;
96
97 typedef enum {
98 nir_var_shader_in = (1 << 0),
99 nir_var_shader_out = (1 << 1),
100 nir_var_shader_temp = (1 << 2),
101 nir_var_function_temp = (1 << 3),
102 nir_var_uniform = (1 << 4),
103 nir_var_mem_ubo = (1 << 5),
104 nir_var_system_value = (1 << 6),
105 nir_var_mem_ssbo = (1 << 7),
106 nir_var_mem_shared = (1 << 8),
107 nir_var_mem_global = (1 << 9),
108 nir_var_all = ~0,
109 } nir_variable_mode;
110
111 /**
112 * Rounding modes.
113 */
114 typedef enum {
115 nir_rounding_mode_undef = 0,
116 nir_rounding_mode_rtne = 1, /* round to nearest even */
117 nir_rounding_mode_ru = 2, /* round up */
118 nir_rounding_mode_rd = 3, /* round down */
119 nir_rounding_mode_rtz = 4, /* round towards zero */
120 } nir_rounding_mode;
121
122 typedef union {
123 bool b[NIR_MAX_VEC_COMPONENTS];
124 float f32[NIR_MAX_VEC_COMPONENTS];
125 double f64[NIR_MAX_VEC_COMPONENTS];
126 int8_t i8[NIR_MAX_VEC_COMPONENTS];
127 uint8_t u8[NIR_MAX_VEC_COMPONENTS];
128 int16_t i16[NIR_MAX_VEC_COMPONENTS];
129 uint16_t u16[NIR_MAX_VEC_COMPONENTS];
130 int32_t i32[NIR_MAX_VEC_COMPONENTS];
131 uint32_t u32[NIR_MAX_VEC_COMPONENTS];
132 int64_t i64[NIR_MAX_VEC_COMPONENTS];
133 uint64_t u64[NIR_MAX_VEC_COMPONENTS];
134 } nir_const_value;
135
136 typedef struct nir_constant {
137 /**
138 * Value of the constant.
139 *
140 * The field used to back the values supplied by the constant is determined
141 * by the type associated with the \c nir_variable. Constants may be
142 * scalars, vectors, or matrices.
143 */
144 nir_const_value values[NIR_MAX_VEC_COMPONENTS];
145
146 /* we could get this from the var->type but makes clone *much* easier to
147 * not have to care about the type.
148 */
149 unsigned num_elements;
150
151 /* Array elements / Structure Fields */
152 struct nir_constant **elements;
153 } nir_constant;
154
155 /**
156 * \brief Layout qualifiers for gl_FragDepth.
157 *
158 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
159 * with a layout qualifier.
160 */
161 typedef enum {
162 nir_depth_layout_none, /**< No depth layout is specified. */
163 nir_depth_layout_any,
164 nir_depth_layout_greater,
165 nir_depth_layout_less,
166 nir_depth_layout_unchanged
167 } nir_depth_layout;
168
169 /**
170 * Enum keeping track of how a variable was declared.
171 */
172 typedef enum {
173 /**
174 * Normal declaration.
175 */
176 nir_var_declared_normally = 0,
177
178 /**
179 * Variable is implicitly generated by the compiler and should not be
180 * visible via the API.
181 */
182 nir_var_hidden,
183 } nir_var_declaration_type;
184
185 /**
186 * Either a uniform, global variable, shader input, or shader output. Based on
187 * ir_variable - it should be easy to translate between the two.
188 */
189
190 typedef struct nir_variable {
191 struct exec_node node;
192
193 /**
194 * Declared type of the variable
195 */
196 const struct glsl_type *type;
197
198 /**
199 * Declared name of the variable
200 */
201 char *name;
202
203 struct nir_variable_data {
204 /**
205 * Storage class of the variable.
206 *
207 * \sa nir_variable_mode
208 */
209 nir_variable_mode mode;
210
211 /**
212 * Is the variable read-only?
213 *
214 * This is set for variables declared as \c const, shader inputs,
215 * and uniforms.
216 */
217 unsigned read_only:1;
218 unsigned centroid:1;
219 unsigned sample:1;
220 unsigned patch:1;
221 unsigned invariant:1;
222
223 /**
224 * When separate shader programs are enabled, only input/outputs between
225 * the stages of a multi-stage separate program can be safely removed
226 * from the shader interface. Other input/outputs must remains active.
227 *
228 * This is also used to make sure xfb varyings that are unused by the
229 * fragment shader are not removed.
230 */
231 unsigned always_active_io:1;
232
233 /**
234 * Interpolation mode for shader inputs / outputs
235 *
236 * \sa glsl_interp_mode
237 */
238 unsigned interpolation:2;
239
240 /**
241 * \name ARB_fragment_coord_conventions
242 * @{
243 */
244 unsigned origin_upper_left:1;
245 unsigned pixel_center_integer:1;
246 /*@}*/
247
248 /**
249 * If non-zero, then this variable may be packed along with other variables
250 * into a single varying slot, so this offset should be applied when
251 * accessing components. For example, an offset of 1 means that the x
252 * component of this variable is actually stored in component y of the
253 * location specified by \c location.
254 */
255 unsigned location_frac:2;
256
257 /**
258 * If true, this variable represents an array of scalars that should
259 * be tightly packed. In other words, consecutive array elements
260 * should be stored one component apart, rather than one slot apart.
261 */
262 unsigned compact:1;
263
264 /**
265 * Whether this is a fragment shader output implicitly initialized with
266 * the previous contents of the specified render target at the
267 * framebuffer location corresponding to this shader invocation.
268 */
269 unsigned fb_fetch_output:1;
270
271 /**
272 * Non-zero if this variable is considered bindless as defined by
273 * ARB_bindless_texture.
274 */
275 unsigned bindless:1;
276
277 /**
278 * Was an explicit binding set in the shader?
279 */
280 unsigned explicit_binding:1;
281
282 /**
283 * Was a transfer feedback buffer set in the shader?
284 */
285 unsigned explicit_xfb_buffer:1;
286
287 /**
288 * Was a transfer feedback stride set in the shader?
289 */
290 unsigned explicit_xfb_stride:1;
291
292 /**
293 * Was an explicit offset set in the shader?
294 */
295 unsigned explicit_offset:1;
296
297 /**
298 * \brief Layout qualifier for gl_FragDepth.
299 *
300 * This is not equal to \c ir_depth_layout_none if and only if this
301 * variable is \c gl_FragDepth and a layout qualifier is specified.
302 */
303 nir_depth_layout depth_layout;
304
305 /**
306 * Storage location of the base of this variable
307 *
308 * The precise meaning of this field depends on the nature of the variable.
309 *
310 * - Vertex shader input: one of the values from \c gl_vert_attrib.
311 * - Vertex shader output: one of the values from \c gl_varying_slot.
312 * - Geometry shader input: one of the values from \c gl_varying_slot.
313 * - Geometry shader output: one of the values from \c gl_varying_slot.
314 * - Fragment shader input: one of the values from \c gl_varying_slot.
315 * - Fragment shader output: one of the values from \c gl_frag_result.
316 * - Uniforms: Per-stage uniform slot number for default uniform block.
317 * - Uniforms: Index within the uniform block definition for UBO members.
318 * - Non-UBO Uniforms: uniform slot number.
319 * - Other: This field is not currently used.
320 *
321 * If the variable is a uniform, shader input, or shader output, and the
322 * slot has not been assigned, the value will be -1.
323 */
324 int location;
325
326 /**
327 * The actual location of the variable in the IR. Only valid for inputs
328 * and outputs.
329 */
330 unsigned int driver_location;
331
332 /**
333 * Vertex stream output identifier.
334 *
335 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
336 * stream of the i-th component.
337 */
338 unsigned stream;
339
340 /**
341 * output index for dual source blending.
342 */
343 int index;
344
345 /**
346 * Descriptor set binding for sampler or UBO.
347 */
348 int descriptor_set;
349
350 /**
351 * Initial binding point for a sampler or UBO.
352 *
353 * For array types, this represents the binding point for the first element.
354 */
355 int binding;
356
357 /**
358 * Location an atomic counter or transform feedback is stored at.
359 */
360 unsigned offset;
361
362 /**
363 * Transform feedback buffer.
364 */
365 unsigned xfb_buffer;
366
367 /**
368 * Transform feedback stride.
369 */
370 unsigned xfb_stride;
371
372 /**
373 * How the variable was declared. See nir_var_declaration_type.
374 *
375 * This is used to detect variables generated by the compiler, so should
376 * not be visible via the API.
377 */
378 unsigned how_declared:2;
379
380 /**
381 * ARB_shader_image_load_store qualifiers.
382 */
383 struct {
384 enum gl_access_qualifier access;
385
386 /** Image internal format if specified explicitly, otherwise GL_NONE. */
387 GLenum format;
388 } image;
389 } data;
390
391 /**
392 * Built-in state that backs this uniform
393 *
394 * Once set at variable creation, \c state_slots must remain invariant.
395 * This is because, ideally, this array would be shared by all clones of
396 * this variable in the IR tree. In other words, we'd really like for it
397 * to be a fly-weight.
398 *
399 * If the variable is not a uniform, \c num_state_slots will be zero and
400 * \c state_slots will be \c NULL.
401 */
402 /*@{*/
403 unsigned num_state_slots; /**< Number of state slots used */
404 nir_state_slot *state_slots; /**< State descriptors. */
405 /*@}*/
406
407 /**
408 * Constant expression assigned in the initializer of the variable
409 *
410 * This field should only be used temporarily by creators of NIR shaders
411 * and then lower_constant_initializers can be used to get rid of them.
412 * Most of the rest of NIR ignores this field or asserts that it's NULL.
413 */
414 nir_constant *constant_initializer;
415
416 /**
417 * For variables that are in an interface block or are an instance of an
418 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
419 *
420 * \sa ir_variable::location
421 */
422 const struct glsl_type *interface_type;
423
424 /**
425 * Description of per-member data for per-member struct variables
426 *
427 * This is used for variables which are actually an amalgamation of
428 * multiple entities such as a struct of built-in values or a struct of
429 * inputs each with their own layout specifier. This is only allowed on
430 * variables with a struct or array of array of struct type.
431 */
432 unsigned num_members;
433 struct nir_variable_data *members;
434 } nir_variable;
435
436 #define nir_foreach_variable(var, var_list) \
437 foreach_list_typed(nir_variable, var, node, var_list)
438
439 #define nir_foreach_variable_safe(var, var_list) \
440 foreach_list_typed_safe(nir_variable, var, node, var_list)
441
442 static inline bool
443 nir_variable_is_global(const nir_variable *var)
444 {
445 return var->data.mode != nir_var_function_temp;
446 }
447
448 typedef struct nir_register {
449 struct exec_node node;
450
451 unsigned num_components; /** < number of vector components */
452 unsigned num_array_elems; /** < size of array (0 for no array) */
453
454 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
455 uint8_t bit_size;
456
457 /** generic register index. */
458 unsigned index;
459
460 /** only for debug purposes, can be NULL */
461 const char *name;
462
463 /** whether this register is local (per-function) or global (per-shader) */
464 bool is_global;
465
466 /**
467 * If this flag is set to true, then accessing channels >= num_components
468 * is well-defined, and simply spills over to the next array element. This
469 * is useful for backends that can do per-component accessing, in
470 * particular scalar backends. By setting this flag and making
471 * num_components equal to 1, structures can be packed tightly into
472 * registers and then registers can be accessed per-component to get to
473 * each structure member, even if it crosses vec4 boundaries.
474 */
475 bool is_packed;
476
477 /** set of nir_srcs where this register is used (read from) */
478 struct list_head uses;
479
480 /** set of nir_dests where this register is defined (written to) */
481 struct list_head defs;
482
483 /** set of nir_ifs where this register is used as a condition */
484 struct list_head if_uses;
485 } nir_register;
486
487 #define nir_foreach_register(reg, reg_list) \
488 foreach_list_typed(nir_register, reg, node, reg_list)
489 #define nir_foreach_register_safe(reg, reg_list) \
490 foreach_list_typed_safe(nir_register, reg, node, reg_list)
491
492 typedef enum PACKED {
493 nir_instr_type_alu,
494 nir_instr_type_deref,
495 nir_instr_type_call,
496 nir_instr_type_tex,
497 nir_instr_type_intrinsic,
498 nir_instr_type_load_const,
499 nir_instr_type_jump,
500 nir_instr_type_ssa_undef,
501 nir_instr_type_phi,
502 nir_instr_type_parallel_copy,
503 } nir_instr_type;
504
505 typedef struct nir_instr {
506 struct exec_node node;
507 struct nir_block *block;
508 nir_instr_type type;
509
510 /* A temporary for optimization and analysis passes to use for storing
511 * flags. For instance, DCE uses this to store the "dead/live" info.
512 */
513 uint8_t pass_flags;
514
515 /** generic instruction index. */
516 unsigned index;
517 } nir_instr;
518
519 static inline nir_instr *
520 nir_instr_next(nir_instr *instr)
521 {
522 struct exec_node *next = exec_node_get_next(&instr->node);
523 if (exec_node_is_tail_sentinel(next))
524 return NULL;
525 else
526 return exec_node_data(nir_instr, next, node);
527 }
528
529 static inline nir_instr *
530 nir_instr_prev(nir_instr *instr)
531 {
532 struct exec_node *prev = exec_node_get_prev(&instr->node);
533 if (exec_node_is_head_sentinel(prev))
534 return NULL;
535 else
536 return exec_node_data(nir_instr, prev, node);
537 }
538
539 static inline bool
540 nir_instr_is_first(const nir_instr *instr)
541 {
542 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
543 }
544
545 static inline bool
546 nir_instr_is_last(const nir_instr *instr)
547 {
548 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
549 }
550
551 typedef struct nir_ssa_def {
552 /** for debugging only, can be NULL */
553 const char* name;
554
555 /** generic SSA definition index. */
556 unsigned index;
557
558 /** Index into the live_in and live_out bitfields */
559 unsigned live_index;
560
561 /** Instruction which produces this SSA value. */
562 nir_instr *parent_instr;
563
564 /** set of nir_instrs where this register is used (read from) */
565 struct list_head uses;
566
567 /** set of nir_ifs where this register is used as a condition */
568 struct list_head if_uses;
569
570 uint8_t num_components;
571
572 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
573 uint8_t bit_size;
574 } nir_ssa_def;
575
576 struct nir_src;
577
578 typedef struct {
579 nir_register *reg;
580 struct nir_src *indirect; /** < NULL for no indirect offset */
581 unsigned base_offset;
582
583 /* TODO use-def chain goes here */
584 } nir_reg_src;
585
586 typedef struct {
587 nir_instr *parent_instr;
588 struct list_head def_link;
589
590 nir_register *reg;
591 struct nir_src *indirect; /** < NULL for no indirect offset */
592 unsigned base_offset;
593
594 /* TODO def-use chain goes here */
595 } nir_reg_dest;
596
597 struct nir_if;
598
599 typedef struct nir_src {
600 union {
601 /** Instruction that consumes this value as a source. */
602 nir_instr *parent_instr;
603 struct nir_if *parent_if;
604 };
605
606 struct list_head use_link;
607
608 union {
609 nir_reg_src reg;
610 nir_ssa_def *ssa;
611 };
612
613 bool is_ssa;
614 } nir_src;
615
616 static inline nir_src
617 nir_src_init(void)
618 {
619 nir_src src = { { NULL } };
620 return src;
621 }
622
623 #define NIR_SRC_INIT nir_src_init()
624
625 #define nir_foreach_use(src, reg_or_ssa_def) \
626 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
627
628 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
629 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
630
631 #define nir_foreach_if_use(src, reg_or_ssa_def) \
632 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
633
634 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
635 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
636
637 typedef struct {
638 union {
639 nir_reg_dest reg;
640 nir_ssa_def ssa;
641 };
642
643 bool is_ssa;
644 } nir_dest;
645
646 static inline nir_dest
647 nir_dest_init(void)
648 {
649 nir_dest dest = { { { NULL } } };
650 return dest;
651 }
652
653 #define NIR_DEST_INIT nir_dest_init()
654
655 #define nir_foreach_def(dest, reg) \
656 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
657
658 #define nir_foreach_def_safe(dest, reg) \
659 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
660
661 static inline nir_src
662 nir_src_for_ssa(nir_ssa_def *def)
663 {
664 nir_src src = NIR_SRC_INIT;
665
666 src.is_ssa = true;
667 src.ssa = def;
668
669 return src;
670 }
671
672 static inline nir_src
673 nir_src_for_reg(nir_register *reg)
674 {
675 nir_src src = NIR_SRC_INIT;
676
677 src.is_ssa = false;
678 src.reg.reg = reg;
679 src.reg.indirect = NULL;
680 src.reg.base_offset = 0;
681
682 return src;
683 }
684
685 static inline nir_dest
686 nir_dest_for_reg(nir_register *reg)
687 {
688 nir_dest dest = NIR_DEST_INIT;
689
690 dest.reg.reg = reg;
691
692 return dest;
693 }
694
695 static inline unsigned
696 nir_src_bit_size(nir_src src)
697 {
698 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
699 }
700
701 static inline unsigned
702 nir_src_num_components(nir_src src)
703 {
704 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
705 }
706
707 static inline bool
708 nir_src_is_const(nir_src src)
709 {
710 return src.is_ssa &&
711 src.ssa->parent_instr->type == nir_instr_type_load_const;
712 }
713
714 int64_t nir_src_as_int(nir_src src);
715 uint64_t nir_src_as_uint(nir_src src);
716 bool nir_src_as_bool(nir_src src);
717 double nir_src_as_float(nir_src src);
718 int64_t nir_src_comp_as_int(nir_src src, unsigned component);
719 uint64_t nir_src_comp_as_uint(nir_src src, unsigned component);
720 bool nir_src_comp_as_bool(nir_src src, unsigned component);
721 double nir_src_comp_as_float(nir_src src, unsigned component);
722
723 static inline unsigned
724 nir_dest_bit_size(nir_dest dest)
725 {
726 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
727 }
728
729 static inline unsigned
730 nir_dest_num_components(nir_dest dest)
731 {
732 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
733 }
734
735 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
736 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
737
738 typedef struct {
739 nir_src src;
740
741 /**
742 * \name input modifiers
743 */
744 /*@{*/
745 /**
746 * For inputs interpreted as floating point, flips the sign bit. For
747 * inputs interpreted as integers, performs the two's complement negation.
748 */
749 bool negate;
750
751 /**
752 * Clears the sign bit for floating point values, and computes the integer
753 * absolute value for integers. Note that the negate modifier acts after
754 * the absolute value modifier, therefore if both are set then all inputs
755 * will become negative.
756 */
757 bool abs;
758 /*@}*/
759
760 /**
761 * For each input component, says which component of the register it is
762 * chosen from. Note that which elements of the swizzle are used and which
763 * are ignored are based on the write mask for most opcodes - for example,
764 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
765 * a swizzle of {2, x, 1, 0} where x means "don't care."
766 */
767 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
768 } nir_alu_src;
769
770 typedef struct {
771 nir_dest dest;
772
773 /**
774 * \name saturate output modifier
775 *
776 * Only valid for opcodes that output floating-point numbers. Clamps the
777 * output to between 0.0 and 1.0 inclusive.
778 */
779
780 bool saturate;
781
782 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
783 } nir_alu_dest;
784
785 /** NIR sized and unsized types
786 *
787 * The values in this enum are carefully chosen so that the sized type is
788 * just the unsized type OR the number of bits.
789 */
790 typedef enum {
791 nir_type_invalid = 0, /* Not a valid type */
792 nir_type_int = 2,
793 nir_type_uint = 4,
794 nir_type_bool = 6,
795 nir_type_float = 128,
796 nir_type_bool1 = 1 | nir_type_bool,
797 nir_type_bool32 = 32 | nir_type_bool,
798 nir_type_int1 = 1 | nir_type_int,
799 nir_type_int8 = 8 | nir_type_int,
800 nir_type_int16 = 16 | nir_type_int,
801 nir_type_int32 = 32 | nir_type_int,
802 nir_type_int64 = 64 | nir_type_int,
803 nir_type_uint1 = 1 | nir_type_uint,
804 nir_type_uint8 = 8 | nir_type_uint,
805 nir_type_uint16 = 16 | nir_type_uint,
806 nir_type_uint32 = 32 | nir_type_uint,
807 nir_type_uint64 = 64 | nir_type_uint,
808 nir_type_float16 = 16 | nir_type_float,
809 nir_type_float32 = 32 | nir_type_float,
810 nir_type_float64 = 64 | nir_type_float,
811 } nir_alu_type;
812
813 #define NIR_ALU_TYPE_SIZE_MASK 0x79
814 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
815
816 static inline unsigned
817 nir_alu_type_get_type_size(nir_alu_type type)
818 {
819 return type & NIR_ALU_TYPE_SIZE_MASK;
820 }
821
822 static inline unsigned
823 nir_alu_type_get_base_type(nir_alu_type type)
824 {
825 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
826 }
827
828 static inline nir_alu_type
829 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
830 {
831 switch (base_type) {
832 case GLSL_TYPE_BOOL:
833 return nir_type_bool1;
834 break;
835 case GLSL_TYPE_UINT:
836 return nir_type_uint32;
837 break;
838 case GLSL_TYPE_INT:
839 return nir_type_int32;
840 break;
841 case GLSL_TYPE_UINT16:
842 return nir_type_uint16;
843 break;
844 case GLSL_TYPE_INT16:
845 return nir_type_int16;
846 break;
847 case GLSL_TYPE_UINT8:
848 return nir_type_uint8;
849 case GLSL_TYPE_INT8:
850 return nir_type_int8;
851 case GLSL_TYPE_UINT64:
852 return nir_type_uint64;
853 break;
854 case GLSL_TYPE_INT64:
855 return nir_type_int64;
856 break;
857 case GLSL_TYPE_FLOAT:
858 return nir_type_float32;
859 break;
860 case GLSL_TYPE_FLOAT16:
861 return nir_type_float16;
862 break;
863 case GLSL_TYPE_DOUBLE:
864 return nir_type_float64;
865 break;
866 default:
867 unreachable("unknown type");
868 }
869 }
870
871 static inline nir_alu_type
872 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
873 {
874 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
875 }
876
877 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
878 nir_rounding_mode rnd);
879
880 typedef enum {
881 NIR_OP_IS_COMMUTATIVE = (1 << 0),
882 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
883 } nir_op_algebraic_property;
884
885 typedef struct {
886 const char *name;
887
888 unsigned num_inputs;
889
890 /**
891 * The number of components in the output
892 *
893 * If non-zero, this is the size of the output and input sizes are
894 * explicitly given; swizzle and writemask are still in effect, but if
895 * the output component is masked out, then the input component may
896 * still be in use.
897 *
898 * If zero, the opcode acts in the standard, per-component manner; the
899 * operation is performed on each component (except the ones that are
900 * masked out) with the input being taken from the input swizzle for
901 * that component.
902 *
903 * The size of some of the inputs may be given (i.e. non-zero) even
904 * though output_size is zero; in that case, the inputs with a zero
905 * size act per-component, while the inputs with non-zero size don't.
906 */
907 unsigned output_size;
908
909 /**
910 * The type of vector that the instruction outputs. Note that the
911 * staurate modifier is only allowed on outputs with the float type.
912 */
913
914 nir_alu_type output_type;
915
916 /**
917 * The number of components in each input
918 */
919 unsigned input_sizes[NIR_MAX_VEC_COMPONENTS];
920
921 /**
922 * The type of vector that each input takes. Note that negate and
923 * absolute value are only allowed on inputs with int or float type and
924 * behave differently on the two.
925 */
926 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
927
928 nir_op_algebraic_property algebraic_properties;
929 } nir_op_info;
930
931 extern const nir_op_info nir_op_infos[nir_num_opcodes];
932
933 typedef struct nir_alu_instr {
934 nir_instr instr;
935 nir_op op;
936
937 /** Indicates that this ALU instruction generates an exact value
938 *
939 * This is kind of a mixture of GLSL "precise" and "invariant" and not
940 * really equivalent to either. This indicates that the value generated by
941 * this operation is high-precision and any code transformations that touch
942 * it must ensure that the resulting value is bit-for-bit identical to the
943 * original.
944 */
945 bool exact;
946
947 nir_alu_dest dest;
948 nir_alu_src src[];
949 } nir_alu_instr;
950
951 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
952 nir_alu_instr *instr);
953 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
954 nir_alu_instr *instr);
955
956 /* is this source channel used? */
957 static inline bool
958 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
959 unsigned channel)
960 {
961 if (nir_op_infos[instr->op].input_sizes[src] > 0)
962 return channel < nir_op_infos[instr->op].input_sizes[src];
963
964 return (instr->dest.write_mask >> channel) & 1;
965 }
966
967 static inline nir_component_mask_t
968 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
969 {
970 nir_component_mask_t read_mask = 0;
971 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
972 if (!nir_alu_instr_channel_used(instr, src, c))
973 continue;
974
975 read_mask |= (1 << instr->src[src].swizzle[c]);
976 }
977 return read_mask;
978 }
979
980 /*
981 * For instructions whose destinations are SSA, get the number of channels
982 * used for a source
983 */
984 static inline unsigned
985 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
986 {
987 assert(instr->dest.dest.is_ssa);
988
989 if (nir_op_infos[instr->op].input_sizes[src] > 0)
990 return nir_op_infos[instr->op].input_sizes[src];
991
992 return instr->dest.dest.ssa.num_components;
993 }
994
995 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
996 unsigned src1, unsigned src2);
997
998 typedef enum {
999 nir_deref_type_var,
1000 nir_deref_type_array,
1001 nir_deref_type_array_wildcard,
1002 nir_deref_type_ptr_as_array,
1003 nir_deref_type_struct,
1004 nir_deref_type_cast,
1005 } nir_deref_type;
1006
1007 typedef struct {
1008 nir_instr instr;
1009
1010 /** The type of this deref instruction */
1011 nir_deref_type deref_type;
1012
1013 /** The mode of the underlying variable */
1014 nir_variable_mode mode;
1015
1016 /** The dereferenced type of the resulting pointer value */
1017 const struct glsl_type *type;
1018
1019 union {
1020 /** Variable being dereferenced if deref_type is a deref_var */
1021 nir_variable *var;
1022
1023 /** Parent deref if deref_type is not deref_var */
1024 nir_src parent;
1025 };
1026
1027 /** Additional deref parameters */
1028 union {
1029 struct {
1030 nir_src index;
1031 } arr;
1032
1033 struct {
1034 unsigned index;
1035 } strct;
1036
1037 struct {
1038 unsigned ptr_stride;
1039 } cast;
1040 };
1041
1042 /** Destination to store the resulting "pointer" */
1043 nir_dest dest;
1044 } nir_deref_instr;
1045
1046 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
1047 type, nir_instr_type_deref)
1048
1049 static inline nir_deref_instr *
1050 nir_src_as_deref(nir_src src)
1051 {
1052 if (!src.is_ssa)
1053 return NULL;
1054
1055 if (src.ssa->parent_instr->type != nir_instr_type_deref)
1056 return NULL;
1057
1058 return nir_instr_as_deref(src.ssa->parent_instr);
1059 }
1060
1061 static inline nir_deref_instr *
1062 nir_deref_instr_parent(const nir_deref_instr *instr)
1063 {
1064 if (instr->deref_type == nir_deref_type_var)
1065 return NULL;
1066 else
1067 return nir_src_as_deref(instr->parent);
1068 }
1069
1070 static inline nir_variable *
1071 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1072 {
1073 while (instr->deref_type != nir_deref_type_var) {
1074 if (instr->deref_type == nir_deref_type_cast)
1075 return NULL;
1076
1077 instr = nir_deref_instr_parent(instr);
1078 }
1079
1080 return instr->var;
1081 }
1082
1083 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1084
1085 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1086
1087 unsigned nir_deref_instr_ptr_as_array_stride(nir_deref_instr *instr);
1088
1089 typedef struct {
1090 nir_instr instr;
1091
1092 struct nir_function *callee;
1093
1094 unsigned num_params;
1095 nir_src params[];
1096 } nir_call_instr;
1097
1098 #include "nir_intrinsics.h"
1099
1100 #define NIR_INTRINSIC_MAX_CONST_INDEX 4
1101
1102 /** Represents an intrinsic
1103 *
1104 * An intrinsic is an instruction type for handling things that are
1105 * more-or-less regular operations but don't just consume and produce SSA
1106 * values like ALU operations do. Intrinsics are not for things that have
1107 * special semantic meaning such as phi nodes and parallel copies.
1108 * Examples of intrinsics include variable load/store operations, system
1109 * value loads, and the like. Even though texturing more-or-less falls
1110 * under this category, texturing is its own instruction type because
1111 * trying to represent texturing with intrinsics would lead to a
1112 * combinatorial explosion of intrinsic opcodes.
1113 *
1114 * By having a single instruction type for handling a lot of different
1115 * cases, optimization passes can look for intrinsics and, for the most
1116 * part, completely ignore them. Each intrinsic type also has a few
1117 * possible flags that govern whether or not they can be reordered or
1118 * eliminated. That way passes like dead code elimination can still work
1119 * on intrisics without understanding the meaning of each.
1120 *
1121 * Each intrinsic has some number of constant indices, some number of
1122 * variables, and some number of sources. What these sources, variables,
1123 * and indices mean depends on the intrinsic and is documented with the
1124 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1125 * instructions are the only types of instruction that can operate on
1126 * variables.
1127 */
1128 typedef struct {
1129 nir_instr instr;
1130
1131 nir_intrinsic_op intrinsic;
1132
1133 nir_dest dest;
1134
1135 /** number of components if this is a vectorized intrinsic
1136 *
1137 * Similarly to ALU operations, some intrinsics are vectorized.
1138 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1139 * For vectorized intrinsics, the num_components field specifies the
1140 * number of destination components and the number of source components
1141 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1142 */
1143 uint8_t num_components;
1144
1145 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1146
1147 nir_src src[];
1148 } nir_intrinsic_instr;
1149
1150 static inline nir_variable *
1151 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1152 {
1153 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1154 }
1155
1156 /**
1157 * \name NIR intrinsics semantic flags
1158 *
1159 * information about what the compiler can do with the intrinsics.
1160 *
1161 * \sa nir_intrinsic_info::flags
1162 */
1163 typedef enum {
1164 /**
1165 * whether the intrinsic can be safely eliminated if none of its output
1166 * value is not being used.
1167 */
1168 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1169
1170 /**
1171 * Whether the intrinsic can be reordered with respect to any other
1172 * intrinsic, i.e. whether the only reordering dependencies of the
1173 * intrinsic are due to the register reads/writes.
1174 */
1175 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1176 } nir_intrinsic_semantic_flag;
1177
1178 /**
1179 * \name NIR intrinsics const-index flag
1180 *
1181 * Indicates the usage of a const_index slot.
1182 *
1183 * \sa nir_intrinsic_info::index_map
1184 */
1185 typedef enum {
1186 /**
1187 * Generally instructions that take a offset src argument, can encode
1188 * a constant 'base' value which is added to the offset.
1189 */
1190 NIR_INTRINSIC_BASE = 1,
1191
1192 /**
1193 * For store instructions, a writemask for the store.
1194 */
1195 NIR_INTRINSIC_WRMASK = 2,
1196
1197 /**
1198 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1199 */
1200 NIR_INTRINSIC_STREAM_ID = 3,
1201
1202 /**
1203 * The clip-plane id for load_user_clip_plane intrinsic.
1204 */
1205 NIR_INTRINSIC_UCP_ID = 4,
1206
1207 /**
1208 * The amount of data, starting from BASE, that this instruction may
1209 * access. This is used to provide bounds if the offset is not constant.
1210 */
1211 NIR_INTRINSIC_RANGE = 5,
1212
1213 /**
1214 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1215 */
1216 NIR_INTRINSIC_DESC_SET = 6,
1217
1218 /**
1219 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1220 */
1221 NIR_INTRINSIC_BINDING = 7,
1222
1223 /**
1224 * Component offset.
1225 */
1226 NIR_INTRINSIC_COMPONENT = 8,
1227
1228 /**
1229 * Interpolation mode (only meaningful for FS inputs).
1230 */
1231 NIR_INTRINSIC_INTERP_MODE = 9,
1232
1233 /**
1234 * A binary nir_op to use when performing a reduction or scan operation
1235 */
1236 NIR_INTRINSIC_REDUCTION_OP = 10,
1237
1238 /**
1239 * Cluster size for reduction operations
1240 */
1241 NIR_INTRINSIC_CLUSTER_SIZE = 11,
1242
1243 /**
1244 * Parameter index for a load_param intrinsic
1245 */
1246 NIR_INTRINSIC_PARAM_IDX = 12,
1247
1248 /**
1249 * Image dimensionality for image intrinsics
1250 *
1251 * One of GLSL_SAMPLER_DIM_*
1252 */
1253 NIR_INTRINSIC_IMAGE_DIM = 13,
1254
1255 /**
1256 * Non-zero if we are accessing an array image
1257 */
1258 NIR_INTRINSIC_IMAGE_ARRAY = 14,
1259
1260 /**
1261 * Image format for image intrinsics
1262 */
1263 NIR_INTRINSIC_FORMAT = 15,
1264
1265 /**
1266 * Access qualifiers for image and memory access intrinsics
1267 */
1268 NIR_INTRINSIC_ACCESS = 16,
1269
1270 /**
1271 * Alignment for offsets and addresses
1272 *
1273 * These two parameters, specify an alignment in terms of a multiplier and
1274 * an offset. The offset or address parameter X of the intrinsic is
1275 * guaranteed to satisfy the following:
1276 *
1277 * (X - align_offset) % align_mul == 0
1278 */
1279 NIR_INTRINSIC_ALIGN_MUL = 17,
1280 NIR_INTRINSIC_ALIGN_OFFSET = 18,
1281
1282 /**
1283 * The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic.
1284 */
1285 NIR_INTRINSIC_DESC_TYPE = 19,
1286
1287 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1288
1289 } nir_intrinsic_index_flag;
1290
1291 #define NIR_INTRINSIC_MAX_INPUTS 5
1292
1293 typedef struct {
1294 const char *name;
1295
1296 unsigned num_srcs; /** < number of register/SSA inputs */
1297
1298 /** number of components of each input register
1299 *
1300 * If this value is 0, the number of components is given by the
1301 * num_components field of nir_intrinsic_instr. If this value is -1, the
1302 * intrinsic consumes however many components are provided and it is not
1303 * validated at all.
1304 */
1305 int src_components[NIR_INTRINSIC_MAX_INPUTS];
1306
1307 bool has_dest;
1308
1309 /** number of components of the output register
1310 *
1311 * If this value is 0, the number of components is given by the
1312 * num_components field of nir_intrinsic_instr.
1313 */
1314 unsigned dest_components;
1315
1316 /** the number of constant indices used by the intrinsic */
1317 unsigned num_indices;
1318
1319 /** indicates the usage of intr->const_index[n] */
1320 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1321
1322 /** semantic flags for calls to this intrinsic */
1323 nir_intrinsic_semantic_flag flags;
1324 } nir_intrinsic_info;
1325
1326 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1327
1328 static inline unsigned
1329 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1330 {
1331 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1332 assert(srcn < info->num_srcs);
1333 if (info->src_components[srcn] > 0)
1334 return info->src_components[srcn];
1335 else if (info->src_components[srcn] == 0)
1336 return intr->num_components;
1337 else
1338 return nir_src_num_components(intr->src[srcn]);
1339 }
1340
1341 static inline unsigned
1342 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1343 {
1344 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1345 if (!info->has_dest)
1346 return 0;
1347 else if (info->dest_components)
1348 return info->dest_components;
1349 else
1350 return intr->num_components;
1351 }
1352
1353 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1354 static inline type \
1355 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1356 { \
1357 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1358 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1359 return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1360 } \
1361 static inline void \
1362 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1363 { \
1364 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1365 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1366 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1367 }
1368
1369 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1370 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1371 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1372 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1373 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1374 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1375 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1376 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1377 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1378 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1379 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1380 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1381 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1382 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1383 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1384 INTRINSIC_IDX_ACCESSORS(format, FORMAT, unsigned)
1385 INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
1386 INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
1387 INTRINSIC_IDX_ACCESSORS(desc_type, DESC_TYPE, unsigned)
1388
1389 static inline void
1390 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1391 unsigned align_mul, unsigned align_offset)
1392 {
1393 assert(util_is_power_of_two_nonzero(align_mul));
1394 assert(align_offset < align_mul);
1395 nir_intrinsic_set_align_mul(intrin, align_mul);
1396 nir_intrinsic_set_align_offset(intrin, align_offset);
1397 }
1398
1399 /** Returns a simple alignment for a load/store intrinsic offset
1400 *
1401 * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1402 * and ALIGN_OFFSET parameters, this helper takes both into account and
1403 * provides a single simple alignment parameter. The offset X is guaranteed
1404 * to satisfy X % align == 0.
1405 */
1406 static inline unsigned
1407 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
1408 {
1409 const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1410 const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1411 assert(align_offset < align_mul);
1412 return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1413 }
1414
1415 /**
1416 * \group texture information
1417 *
1418 * This gives semantic information about textures which is useful to the
1419 * frontend, the backend, and lowering passes, but not the optimizer.
1420 */
1421
1422 typedef enum {
1423 nir_tex_src_coord,
1424 nir_tex_src_projector,
1425 nir_tex_src_comparator, /* shadow comparator */
1426 nir_tex_src_offset,
1427 nir_tex_src_bias,
1428 nir_tex_src_lod,
1429 nir_tex_src_min_lod,
1430 nir_tex_src_ms_index, /* MSAA sample index */
1431 nir_tex_src_ms_mcs, /* MSAA compression value */
1432 nir_tex_src_ddx,
1433 nir_tex_src_ddy,
1434 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1435 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1436 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1437 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1438 nir_tex_src_plane, /* < selects plane for planar textures */
1439 nir_num_tex_src_types
1440 } nir_tex_src_type;
1441
1442 typedef struct {
1443 nir_src src;
1444 nir_tex_src_type src_type;
1445 } nir_tex_src;
1446
1447 typedef enum {
1448 nir_texop_tex, /**< Regular texture look-up */
1449 nir_texop_txb, /**< Texture look-up with LOD bias */
1450 nir_texop_txl, /**< Texture look-up with explicit LOD */
1451 nir_texop_txd, /**< Texture look-up with partial derivatives */
1452 nir_texop_txf, /**< Texel fetch with explicit LOD */
1453 nir_texop_txf_ms, /**< Multisample texture fetch */
1454 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1455 nir_texop_txs, /**< Texture size */
1456 nir_texop_lod, /**< Texture lod query */
1457 nir_texop_tg4, /**< Texture gather */
1458 nir_texop_query_levels, /**< Texture levels query */
1459 nir_texop_texture_samples, /**< Texture samples query */
1460 nir_texop_samples_identical, /**< Query whether all samples are definitely
1461 * identical.
1462 */
1463 } nir_texop;
1464
1465 typedef struct {
1466 nir_instr instr;
1467
1468 enum glsl_sampler_dim sampler_dim;
1469 nir_alu_type dest_type;
1470
1471 nir_texop op;
1472 nir_dest dest;
1473 nir_tex_src *src;
1474 unsigned num_srcs, coord_components;
1475 bool is_array, is_shadow;
1476
1477 /**
1478 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1479 * components or the new-style shadow that outputs 1 component.
1480 */
1481 bool is_new_style_shadow;
1482
1483 /* gather component selector */
1484 unsigned component : 2;
1485
1486 /** The texture index
1487 *
1488 * If this texture instruction has a nir_tex_src_texture_offset source,
1489 * then the texture index is given by texture_index + texture_offset.
1490 */
1491 unsigned texture_index;
1492
1493 /** The size of the texture array or 0 if it's not an array */
1494 unsigned texture_array_size;
1495
1496 /** The sampler index
1497 *
1498 * The following operations do not require a sampler and, as such, this
1499 * field should be ignored:
1500 * - nir_texop_txf
1501 * - nir_texop_txf_ms
1502 * - nir_texop_txs
1503 * - nir_texop_lod
1504 * - nir_texop_query_levels
1505 * - nir_texop_texture_samples
1506 * - nir_texop_samples_identical
1507 *
1508 * If this texture instruction has a nir_tex_src_sampler_offset source,
1509 * then the sampler index is given by sampler_index + sampler_offset.
1510 */
1511 unsigned sampler_index;
1512 } nir_tex_instr;
1513
1514 static inline unsigned
1515 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1516 {
1517 switch (instr->op) {
1518 case nir_texop_txs: {
1519 unsigned ret;
1520 switch (instr->sampler_dim) {
1521 case GLSL_SAMPLER_DIM_1D:
1522 case GLSL_SAMPLER_DIM_BUF:
1523 ret = 1;
1524 break;
1525 case GLSL_SAMPLER_DIM_2D:
1526 case GLSL_SAMPLER_DIM_CUBE:
1527 case GLSL_SAMPLER_DIM_MS:
1528 case GLSL_SAMPLER_DIM_RECT:
1529 case GLSL_SAMPLER_DIM_EXTERNAL:
1530 case GLSL_SAMPLER_DIM_SUBPASS:
1531 ret = 2;
1532 break;
1533 case GLSL_SAMPLER_DIM_3D:
1534 ret = 3;
1535 break;
1536 default:
1537 unreachable("not reached");
1538 }
1539 if (instr->is_array)
1540 ret++;
1541 return ret;
1542 }
1543
1544 case nir_texop_lod:
1545 return 2;
1546
1547 case nir_texop_texture_samples:
1548 case nir_texop_query_levels:
1549 case nir_texop_samples_identical:
1550 return 1;
1551
1552 default:
1553 if (instr->is_shadow && instr->is_new_style_shadow)
1554 return 1;
1555
1556 return 4;
1557 }
1558 }
1559
1560 /* Returns true if this texture operation queries something about the texture
1561 * rather than actually sampling it.
1562 */
1563 static inline bool
1564 nir_tex_instr_is_query(const nir_tex_instr *instr)
1565 {
1566 switch (instr->op) {
1567 case nir_texop_txs:
1568 case nir_texop_lod:
1569 case nir_texop_texture_samples:
1570 case nir_texop_query_levels:
1571 case nir_texop_txf_ms_mcs:
1572 return true;
1573 case nir_texop_tex:
1574 case nir_texop_txb:
1575 case nir_texop_txl:
1576 case nir_texop_txd:
1577 case nir_texop_txf:
1578 case nir_texop_txf_ms:
1579 case nir_texop_tg4:
1580 return false;
1581 default:
1582 unreachable("Invalid texture opcode");
1583 }
1584 }
1585
1586 static inline bool
1587 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1588 {
1589 switch (instr->op) {
1590 case nir_op_flt:
1591 case nir_op_fge:
1592 case nir_op_feq:
1593 case nir_op_fne:
1594 case nir_op_ilt:
1595 case nir_op_ult:
1596 case nir_op_ige:
1597 case nir_op_uge:
1598 case nir_op_ieq:
1599 case nir_op_ine:
1600 case nir_op_i2b1:
1601 case nir_op_f2b1:
1602 case nir_op_inot:
1603 case nir_op_fnot:
1604 return true;
1605 default:
1606 return false;
1607 }
1608 }
1609
1610 static inline nir_alu_type
1611 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1612 {
1613 switch (instr->src[src].src_type) {
1614 case nir_tex_src_coord:
1615 switch (instr->op) {
1616 case nir_texop_txf:
1617 case nir_texop_txf_ms:
1618 case nir_texop_txf_ms_mcs:
1619 case nir_texop_samples_identical:
1620 return nir_type_int;
1621
1622 default:
1623 return nir_type_float;
1624 }
1625
1626 case nir_tex_src_lod:
1627 switch (instr->op) {
1628 case nir_texop_txs:
1629 case nir_texop_txf:
1630 return nir_type_int;
1631
1632 default:
1633 return nir_type_float;
1634 }
1635
1636 case nir_tex_src_projector:
1637 case nir_tex_src_comparator:
1638 case nir_tex_src_bias:
1639 case nir_tex_src_ddx:
1640 case nir_tex_src_ddy:
1641 return nir_type_float;
1642
1643 case nir_tex_src_offset:
1644 case nir_tex_src_ms_index:
1645 case nir_tex_src_texture_offset:
1646 case nir_tex_src_sampler_offset:
1647 return nir_type_int;
1648
1649 default:
1650 unreachable("Invalid texture source type");
1651 }
1652 }
1653
1654 static inline unsigned
1655 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1656 {
1657 if (instr->src[src].src_type == nir_tex_src_coord)
1658 return instr->coord_components;
1659
1660 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1661 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1662 return 4;
1663
1664 if (instr->src[src].src_type == nir_tex_src_ddx ||
1665 instr->src[src].src_type == nir_tex_src_ddy) {
1666 if (instr->is_array)
1667 return instr->coord_components - 1;
1668 else
1669 return instr->coord_components;
1670 }
1671
1672 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1673 * the offset, since a cube maps to a single face.
1674 */
1675 if (instr->src[src].src_type == nir_tex_src_offset) {
1676 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1677 return 2;
1678 else if (instr->is_array)
1679 return instr->coord_components - 1;
1680 else
1681 return instr->coord_components;
1682 }
1683
1684 return 1;
1685 }
1686
1687 static inline int
1688 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1689 {
1690 for (unsigned i = 0; i < instr->num_srcs; i++)
1691 if (instr->src[i].src_type == type)
1692 return (int) i;
1693
1694 return -1;
1695 }
1696
1697 void nir_tex_instr_add_src(nir_tex_instr *tex,
1698 nir_tex_src_type src_type,
1699 nir_src src);
1700
1701 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1702
1703 typedef struct {
1704 nir_instr instr;
1705
1706 nir_const_value value;
1707
1708 nir_ssa_def def;
1709 } nir_load_const_instr;
1710
1711 typedef enum {
1712 nir_jump_return,
1713 nir_jump_break,
1714 nir_jump_continue,
1715 } nir_jump_type;
1716
1717 typedef struct {
1718 nir_instr instr;
1719 nir_jump_type type;
1720 } nir_jump_instr;
1721
1722 /* creates a new SSA variable in an undefined state */
1723
1724 typedef struct {
1725 nir_instr instr;
1726 nir_ssa_def def;
1727 } nir_ssa_undef_instr;
1728
1729 typedef struct {
1730 struct exec_node node;
1731
1732 /* The predecessor block corresponding to this source */
1733 struct nir_block *pred;
1734
1735 nir_src src;
1736 } nir_phi_src;
1737
1738 #define nir_foreach_phi_src(phi_src, phi) \
1739 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1740 #define nir_foreach_phi_src_safe(phi_src, phi) \
1741 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1742
1743 typedef struct {
1744 nir_instr instr;
1745
1746 struct exec_list srcs; /** < list of nir_phi_src */
1747
1748 nir_dest dest;
1749 } nir_phi_instr;
1750
1751 typedef struct {
1752 struct exec_node node;
1753 nir_src src;
1754 nir_dest dest;
1755 } nir_parallel_copy_entry;
1756
1757 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1758 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1759
1760 typedef struct {
1761 nir_instr instr;
1762
1763 /* A list of nir_parallel_copy_entrys. The sources of all of the
1764 * entries are copied to the corresponding destinations "in parallel".
1765 * In other words, if we have two entries: a -> b and b -> a, the values
1766 * get swapped.
1767 */
1768 struct exec_list entries;
1769 } nir_parallel_copy_instr;
1770
1771 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1772 type, nir_instr_type_alu)
1773 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1774 type, nir_instr_type_call)
1775 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1776 type, nir_instr_type_jump)
1777 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1778 type, nir_instr_type_tex)
1779 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1780 type, nir_instr_type_intrinsic)
1781 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1782 type, nir_instr_type_load_const)
1783 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1784 type, nir_instr_type_ssa_undef)
1785 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1786 type, nir_instr_type_phi)
1787 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1788 nir_parallel_copy_instr, instr,
1789 type, nir_instr_type_parallel_copy)
1790
1791 /*
1792 * Control flow
1793 *
1794 * Control flow consists of a tree of control flow nodes, which include
1795 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1796 * instructions that always run start-to-finish. Each basic block also keeps
1797 * track of its successors (blocks which may run immediately after the current
1798 * block) and predecessors (blocks which could have run immediately before the
1799 * current block). Each function also has a start block and an end block which
1800 * all return statements point to (which is always empty). Together, all the
1801 * blocks with their predecessors and successors make up the control flow
1802 * graph (CFG) of the function. There are helpers that modify the tree of
1803 * control flow nodes while modifying the CFG appropriately; these should be
1804 * used instead of modifying the tree directly.
1805 */
1806
1807 typedef enum {
1808 nir_cf_node_block,
1809 nir_cf_node_if,
1810 nir_cf_node_loop,
1811 nir_cf_node_function
1812 } nir_cf_node_type;
1813
1814 typedef struct nir_cf_node {
1815 struct exec_node node;
1816 nir_cf_node_type type;
1817 struct nir_cf_node *parent;
1818 } nir_cf_node;
1819
1820 typedef struct nir_block {
1821 nir_cf_node cf_node;
1822
1823 struct exec_list instr_list; /** < list of nir_instr */
1824
1825 /** generic block index; generated by nir_index_blocks */
1826 unsigned index;
1827
1828 /*
1829 * Each block can only have up to 2 successors, so we put them in a simple
1830 * array - no need for anything more complicated.
1831 */
1832 struct nir_block *successors[2];
1833
1834 /* Set of nir_block predecessors in the CFG */
1835 struct set *predecessors;
1836
1837 /*
1838 * this node's immediate dominator in the dominance tree - set to NULL for
1839 * the start block.
1840 */
1841 struct nir_block *imm_dom;
1842
1843 /* This node's children in the dominance tree */
1844 unsigned num_dom_children;
1845 struct nir_block **dom_children;
1846
1847 /* Set of nir_blocks on the dominance frontier of this block */
1848 struct set *dom_frontier;
1849
1850 /*
1851 * These two indices have the property that dom_{pre,post}_index for each
1852 * child of this block in the dominance tree will always be between
1853 * dom_pre_index and dom_post_index for this block, which makes testing if
1854 * a given block is dominated by another block an O(1) operation.
1855 */
1856 unsigned dom_pre_index, dom_post_index;
1857
1858 /* live in and out for this block; used for liveness analysis */
1859 BITSET_WORD *live_in;
1860 BITSET_WORD *live_out;
1861 } nir_block;
1862
1863 static inline nir_instr *
1864 nir_block_first_instr(nir_block *block)
1865 {
1866 struct exec_node *head = exec_list_get_head(&block->instr_list);
1867 return exec_node_data(nir_instr, head, node);
1868 }
1869
1870 static inline nir_instr *
1871 nir_block_last_instr(nir_block *block)
1872 {
1873 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1874 return exec_node_data(nir_instr, tail, node);
1875 }
1876
1877 static inline bool
1878 nir_block_ends_in_jump(nir_block *block)
1879 {
1880 return !exec_list_is_empty(&block->instr_list) &&
1881 nir_block_last_instr(block)->type == nir_instr_type_jump;
1882 }
1883
1884 #define nir_foreach_instr(instr, block) \
1885 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1886 #define nir_foreach_instr_reverse(instr, block) \
1887 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1888 #define nir_foreach_instr_safe(instr, block) \
1889 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1890 #define nir_foreach_instr_reverse_safe(instr, block) \
1891 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1892
1893 typedef struct nir_if {
1894 nir_cf_node cf_node;
1895 nir_src condition;
1896
1897 struct exec_list then_list; /** < list of nir_cf_node */
1898 struct exec_list else_list; /** < list of nir_cf_node */
1899 } nir_if;
1900
1901 typedef struct {
1902 nir_if *nif;
1903
1904 nir_instr *conditional_instr;
1905
1906 nir_block *break_block;
1907 nir_block *continue_from_block;
1908
1909 bool continue_from_then;
1910
1911 struct list_head loop_terminator_link;
1912 } nir_loop_terminator;
1913
1914 typedef struct {
1915 /* Number of instructions in the loop */
1916 unsigned num_instructions;
1917
1918 /* Maximum number of times the loop is run (if known) */
1919 unsigned max_trip_count;
1920
1921 /* Do we know the exact number of times the loop will be run */
1922 bool exact_trip_count_known;
1923
1924 /* Unroll the loop regardless of its size */
1925 bool force_unroll;
1926
1927 /* Does the loop contain complex loop terminators, continues or other
1928 * complex behaviours? If this is true we can't rely on
1929 * loop_terminator_list to be complete or accurate.
1930 */
1931 bool complex_loop;
1932
1933 nir_loop_terminator *limiting_terminator;
1934
1935 /* A list of loop_terminators terminating this loop. */
1936 struct list_head loop_terminator_list;
1937 } nir_loop_info;
1938
1939 typedef struct {
1940 nir_cf_node cf_node;
1941
1942 struct exec_list body; /** < list of nir_cf_node */
1943
1944 nir_loop_info *info;
1945 } nir_loop;
1946
1947 /**
1948 * Various bits of metadata that can may be created or required by
1949 * optimization and analysis passes
1950 */
1951 typedef enum {
1952 nir_metadata_none = 0x0,
1953 nir_metadata_block_index = 0x1,
1954 nir_metadata_dominance = 0x2,
1955 nir_metadata_live_ssa_defs = 0x4,
1956 nir_metadata_not_properly_reset = 0x8,
1957 nir_metadata_loop_analysis = 0x10,
1958 } nir_metadata;
1959
1960 typedef struct {
1961 nir_cf_node cf_node;
1962
1963 /** pointer to the function of which this is an implementation */
1964 struct nir_function *function;
1965
1966 struct exec_list body; /** < list of nir_cf_node */
1967
1968 nir_block *end_block;
1969
1970 /** list for all local variables in the function */
1971 struct exec_list locals;
1972
1973 /** list of local registers in the function */
1974 struct exec_list registers;
1975
1976 /** next available local register index */
1977 unsigned reg_alloc;
1978
1979 /** next available SSA value index */
1980 unsigned ssa_alloc;
1981
1982 /* total number of basic blocks, only valid when block_index_dirty = false */
1983 unsigned num_blocks;
1984
1985 nir_metadata valid_metadata;
1986 } nir_function_impl;
1987
1988 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1989 nir_start_block(nir_function_impl *impl)
1990 {
1991 return (nir_block *) impl->body.head_sentinel.next;
1992 }
1993
1994 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1995 nir_impl_last_block(nir_function_impl *impl)
1996 {
1997 return (nir_block *) impl->body.tail_sentinel.prev;
1998 }
1999
2000 static inline nir_cf_node *
2001 nir_cf_node_next(nir_cf_node *node)
2002 {
2003 struct exec_node *next = exec_node_get_next(&node->node);
2004 if (exec_node_is_tail_sentinel(next))
2005 return NULL;
2006 else
2007 return exec_node_data(nir_cf_node, next, node);
2008 }
2009
2010 static inline nir_cf_node *
2011 nir_cf_node_prev(nir_cf_node *node)
2012 {
2013 struct exec_node *prev = exec_node_get_prev(&node->node);
2014 if (exec_node_is_head_sentinel(prev))
2015 return NULL;
2016 else
2017 return exec_node_data(nir_cf_node, prev, node);
2018 }
2019
2020 static inline bool
2021 nir_cf_node_is_first(const nir_cf_node *node)
2022 {
2023 return exec_node_is_head_sentinel(node->node.prev);
2024 }
2025
2026 static inline bool
2027 nir_cf_node_is_last(const nir_cf_node *node)
2028 {
2029 return exec_node_is_tail_sentinel(node->node.next);
2030 }
2031
2032 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
2033 type, nir_cf_node_block)
2034 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
2035 type, nir_cf_node_if)
2036 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
2037 type, nir_cf_node_loop)
2038 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
2039 nir_function_impl, cf_node, type, nir_cf_node_function)
2040
2041 static inline nir_block *
2042 nir_if_first_then_block(nir_if *if_stmt)
2043 {
2044 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
2045 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2046 }
2047
2048 static inline nir_block *
2049 nir_if_last_then_block(nir_if *if_stmt)
2050 {
2051 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
2052 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2053 }
2054
2055 static inline nir_block *
2056 nir_if_first_else_block(nir_if *if_stmt)
2057 {
2058 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
2059 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2060 }
2061
2062 static inline nir_block *
2063 nir_if_last_else_block(nir_if *if_stmt)
2064 {
2065 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
2066 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2067 }
2068
2069 static inline nir_block *
2070 nir_loop_first_block(nir_loop *loop)
2071 {
2072 struct exec_node *head = exec_list_get_head(&loop->body);
2073 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2074 }
2075
2076 static inline nir_block *
2077 nir_loop_last_block(nir_loop *loop)
2078 {
2079 struct exec_node *tail = exec_list_get_tail(&loop->body);
2080 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2081 }
2082
2083 typedef struct {
2084 uint8_t num_components;
2085 uint8_t bit_size;
2086 } nir_parameter;
2087
2088 typedef struct nir_function {
2089 struct exec_node node;
2090
2091 const char *name;
2092 struct nir_shader *shader;
2093
2094 unsigned num_params;
2095 nir_parameter *params;
2096
2097 /** The implementation of this function.
2098 *
2099 * If the function is only declared and not implemented, this is NULL.
2100 */
2101 nir_function_impl *impl;
2102
2103 bool is_entrypoint;
2104 } nir_function;
2105
2106 typedef struct nir_shader_compiler_options {
2107 bool lower_fdiv;
2108 bool lower_ffma;
2109 bool fuse_ffma;
2110 bool lower_flrp32;
2111 /** Lowers flrp when it does not support doubles */
2112 bool lower_flrp64;
2113 bool lower_fpow;
2114 bool lower_fsat;
2115 bool lower_fsqrt;
2116 bool lower_fmod32;
2117 bool lower_fmod64;
2118 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2119 bool lower_bitfield_extract;
2120 /** Lowers ibitfield_extract/ubitfield_extract to bfm, compares, shifts. */
2121 bool lower_bitfield_extract_to_shifts;
2122 /** Lowers bitfield_insert to bfi/bfm */
2123 bool lower_bitfield_insert;
2124 /** Lowers bitfield_insert to bfm, compares, and shifts. */
2125 bool lower_bitfield_insert_to_shifts;
2126 /** Lowers bitfield_reverse to shifts. */
2127 bool lower_bitfield_reverse;
2128 /** Lowers bit_count to shifts. */
2129 bool lower_bit_count;
2130 /** Lowers bfm to shifts and subtracts. */
2131 bool lower_bfm;
2132 /** Lowers ifind_msb to compare and ufind_msb */
2133 bool lower_ifind_msb;
2134 /** Lowers find_lsb to ufind_msb and logic ops */
2135 bool lower_find_lsb;
2136 bool lower_uadd_carry;
2137 bool lower_usub_borrow;
2138 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2139 bool lower_mul_high;
2140 /** lowers fneg and ineg to fsub and isub. */
2141 bool lower_negate;
2142 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2143 bool lower_sub;
2144
2145 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2146 bool lower_scmp;
2147
2148 /** enables rules to lower idiv by power-of-two: */
2149 bool lower_idiv;
2150
2151 /* Does the native fdot instruction replicate its result for four
2152 * components? If so, then opt_algebraic_late will turn all fdotN
2153 * instructions into fdot_replicatedN instructions.
2154 */
2155 bool fdot_replicates;
2156
2157 /** lowers ffloor to fsub+ffract: */
2158 bool lower_ffloor;
2159
2160 /** lowers ffract to fsub+ffloor: */
2161 bool lower_ffract;
2162
2163 /** lowers fceil to fneg+ffloor+fneg: */
2164 bool lower_fceil;
2165
2166 bool lower_ldexp;
2167
2168 bool lower_pack_half_2x16;
2169 bool lower_pack_unorm_2x16;
2170 bool lower_pack_snorm_2x16;
2171 bool lower_pack_unorm_4x8;
2172 bool lower_pack_snorm_4x8;
2173 bool lower_unpack_half_2x16;
2174 bool lower_unpack_unorm_2x16;
2175 bool lower_unpack_snorm_2x16;
2176 bool lower_unpack_unorm_4x8;
2177 bool lower_unpack_snorm_4x8;
2178
2179 bool lower_extract_byte;
2180 bool lower_extract_word;
2181
2182 bool lower_all_io_to_temps;
2183
2184 /**
2185 * Does the driver support real 32-bit integers? (Otherwise, integers
2186 * are simulated by floats.)
2187 */
2188 bool native_integers;
2189
2190 /* Indicates that the driver only has zero-based vertex id */
2191 bool vertex_id_zero_based;
2192
2193 /**
2194 * If enabled, gl_BaseVertex will be lowered as:
2195 * is_indexed_draw (~0/0) & firstvertex
2196 */
2197 bool lower_base_vertex;
2198
2199 /**
2200 * If enabled, gl_HelperInvocation will be lowered as:
2201 *
2202 * !((1 << sample_id) & sample_mask_in))
2203 *
2204 * This depends on some possibly hw implementation details, which may
2205 * not be true for all hw. In particular that the FS is only executed
2206 * for covered samples or for helper invocations. So, do not blindly
2207 * enable this option.
2208 *
2209 * Note: See also issue #22 in ARB_shader_image_load_store
2210 */
2211 bool lower_helper_invocation;
2212
2213 bool lower_cs_local_index_from_id;
2214 bool lower_cs_local_id_from_index;
2215
2216 bool lower_device_index_to_zero;
2217
2218 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
2219 bool lower_wpos_pntc;
2220
2221 /**
2222 * Should nir_lower_io() create load_interpolated_input intrinsics?
2223 *
2224 * If not, it generates regular load_input intrinsics and interpolation
2225 * information must be inferred from the list of input nir_variables.
2226 */
2227 bool use_interpolated_input_intrinsics;
2228
2229 unsigned max_unroll_iterations;
2230 } nir_shader_compiler_options;
2231
2232 typedef struct nir_shader {
2233 /** list of uniforms (nir_variable) */
2234 struct exec_list uniforms;
2235
2236 /** list of inputs (nir_variable) */
2237 struct exec_list inputs;
2238
2239 /** list of outputs (nir_variable) */
2240 struct exec_list outputs;
2241
2242 /** list of shared compute variables (nir_variable) */
2243 struct exec_list shared;
2244
2245 /** Set of driver-specific options for the shader.
2246 *
2247 * The memory for the options is expected to be kept in a single static
2248 * copy by the driver.
2249 */
2250 const struct nir_shader_compiler_options *options;
2251
2252 /** Various bits of compile-time information about a given shader */
2253 struct shader_info info;
2254
2255 /** list of global variables in the shader (nir_variable) */
2256 struct exec_list globals;
2257
2258 /** list of system value variables in the shader (nir_variable) */
2259 struct exec_list system_values;
2260
2261 struct exec_list functions; /** < list of nir_function */
2262
2263 /** list of global register in the shader */
2264 struct exec_list registers;
2265
2266 /** next available global register index */
2267 unsigned reg_alloc;
2268
2269 /**
2270 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2271 * access plus one
2272 */
2273 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2274
2275 /** Constant data associated with this shader.
2276 *
2277 * Constant data is loaded through load_constant intrinsics. See also
2278 * nir_opt_large_constants.
2279 */
2280 void *constant_data;
2281 unsigned constant_data_size;
2282 } nir_shader;
2283
2284 #define nir_foreach_function(func, shader) \
2285 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2286
2287 static inline nir_function_impl *
2288 nir_shader_get_entrypoint(nir_shader *shader)
2289 {
2290 nir_function *func = NULL;
2291
2292 nir_foreach_function(function, shader) {
2293 assert(func == NULL);
2294 if (function->is_entrypoint) {
2295 func = function;
2296 #ifndef NDEBUG
2297 break;
2298 #endif
2299 }
2300 }
2301
2302 if (!func)
2303 return NULL;
2304
2305 assert(func->num_params == 0);
2306 assert(func->impl);
2307 return func->impl;
2308 }
2309
2310 nir_shader *nir_shader_create(void *mem_ctx,
2311 gl_shader_stage stage,
2312 const nir_shader_compiler_options *options,
2313 shader_info *si);
2314
2315 /** creates a register, including assigning it an index and adding it to the list */
2316 nir_register *nir_global_reg_create(nir_shader *shader);
2317
2318 nir_register *nir_local_reg_create(nir_function_impl *impl);
2319
2320 void nir_reg_remove(nir_register *reg);
2321
2322 /** Adds a variable to the appropriate list in nir_shader */
2323 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2324
2325 static inline void
2326 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2327 {
2328 assert(var->data.mode == nir_var_function_temp);
2329 exec_list_push_tail(&impl->locals, &var->node);
2330 }
2331
2332 /** creates a variable, sets a few defaults, and adds it to the list */
2333 nir_variable *nir_variable_create(nir_shader *shader,
2334 nir_variable_mode mode,
2335 const struct glsl_type *type,
2336 const char *name);
2337 /** creates a local variable and adds it to the list */
2338 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2339 const struct glsl_type *type,
2340 const char *name);
2341
2342 /** creates a function and adds it to the shader's list of functions */
2343 nir_function *nir_function_create(nir_shader *shader, const char *name);
2344
2345 nir_function_impl *nir_function_impl_create(nir_function *func);
2346 /** creates a function_impl that isn't tied to any particular function */
2347 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2348
2349 nir_block *nir_block_create(nir_shader *shader);
2350 nir_if *nir_if_create(nir_shader *shader);
2351 nir_loop *nir_loop_create(nir_shader *shader);
2352
2353 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2354
2355 /** requests that the given pieces of metadata be generated */
2356 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2357 /** dirties all but the preserved metadata */
2358 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2359
2360 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2361 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2362
2363 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2364 nir_deref_type deref_type);
2365
2366 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2367
2368 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2369 unsigned num_components,
2370 unsigned bit_size);
2371
2372 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2373 nir_intrinsic_op op);
2374
2375 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2376 nir_function *callee);
2377
2378 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2379
2380 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2381
2382 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2383
2384 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2385 unsigned num_components,
2386 unsigned bit_size);
2387
2388 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2389
2390 /**
2391 * NIR Cursors and Instruction Insertion API
2392 * @{
2393 *
2394 * A tiny struct representing a point to insert/extract instructions or
2395 * control flow nodes. Helps reduce the combinatorial explosion of possible
2396 * points to insert/extract.
2397 *
2398 * \sa nir_control_flow.h
2399 */
2400 typedef enum {
2401 nir_cursor_before_block,
2402 nir_cursor_after_block,
2403 nir_cursor_before_instr,
2404 nir_cursor_after_instr,
2405 } nir_cursor_option;
2406
2407 typedef struct {
2408 nir_cursor_option option;
2409 union {
2410 nir_block *block;
2411 nir_instr *instr;
2412 };
2413 } nir_cursor;
2414
2415 static inline nir_block *
2416 nir_cursor_current_block(nir_cursor cursor)
2417 {
2418 if (cursor.option == nir_cursor_before_instr ||
2419 cursor.option == nir_cursor_after_instr) {
2420 return cursor.instr->block;
2421 } else {
2422 return cursor.block;
2423 }
2424 }
2425
2426 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2427
2428 static inline nir_cursor
2429 nir_before_block(nir_block *block)
2430 {
2431 nir_cursor cursor;
2432 cursor.option = nir_cursor_before_block;
2433 cursor.block = block;
2434 return cursor;
2435 }
2436
2437 static inline nir_cursor
2438 nir_after_block(nir_block *block)
2439 {
2440 nir_cursor cursor;
2441 cursor.option = nir_cursor_after_block;
2442 cursor.block = block;
2443 return cursor;
2444 }
2445
2446 static inline nir_cursor
2447 nir_before_instr(nir_instr *instr)
2448 {
2449 nir_cursor cursor;
2450 cursor.option = nir_cursor_before_instr;
2451 cursor.instr = instr;
2452 return cursor;
2453 }
2454
2455 static inline nir_cursor
2456 nir_after_instr(nir_instr *instr)
2457 {
2458 nir_cursor cursor;
2459 cursor.option = nir_cursor_after_instr;
2460 cursor.instr = instr;
2461 return cursor;
2462 }
2463
2464 static inline nir_cursor
2465 nir_after_block_before_jump(nir_block *block)
2466 {
2467 nir_instr *last_instr = nir_block_last_instr(block);
2468 if (last_instr && last_instr->type == nir_instr_type_jump) {
2469 return nir_before_instr(last_instr);
2470 } else {
2471 return nir_after_block(block);
2472 }
2473 }
2474
2475 static inline nir_cursor
2476 nir_before_src(nir_src *src, bool is_if_condition)
2477 {
2478 if (is_if_condition) {
2479 nir_block *prev_block =
2480 nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
2481 assert(!nir_block_ends_in_jump(prev_block));
2482 return nir_after_block(prev_block);
2483 } else if (src->parent_instr->type == nir_instr_type_phi) {
2484 #ifndef NDEBUG
2485 nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
2486 bool found = false;
2487 nir_foreach_phi_src(phi_src, cond_phi) {
2488 if (phi_src->src.ssa == src->ssa) {
2489 found = true;
2490 break;
2491 }
2492 }
2493 assert(found);
2494 #endif
2495 /* The LIST_ENTRY macro is a generic container-of macro, it just happens
2496 * to have a more specific name.
2497 */
2498 nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
2499 return nir_after_block_before_jump(phi_src->pred);
2500 } else {
2501 return nir_before_instr(src->parent_instr);
2502 }
2503 }
2504
2505 static inline nir_cursor
2506 nir_before_cf_node(nir_cf_node *node)
2507 {
2508 if (node->type == nir_cf_node_block)
2509 return nir_before_block(nir_cf_node_as_block(node));
2510
2511 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2512 }
2513
2514 static inline nir_cursor
2515 nir_after_cf_node(nir_cf_node *node)
2516 {
2517 if (node->type == nir_cf_node_block)
2518 return nir_after_block(nir_cf_node_as_block(node));
2519
2520 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2521 }
2522
2523 static inline nir_cursor
2524 nir_after_phis(nir_block *block)
2525 {
2526 nir_foreach_instr(instr, block) {
2527 if (instr->type != nir_instr_type_phi)
2528 return nir_before_instr(instr);
2529 }
2530 return nir_after_block(block);
2531 }
2532
2533 static inline nir_cursor
2534 nir_after_cf_node_and_phis(nir_cf_node *node)
2535 {
2536 if (node->type == nir_cf_node_block)
2537 return nir_after_block(nir_cf_node_as_block(node));
2538
2539 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2540
2541 return nir_after_phis(block);
2542 }
2543
2544 static inline nir_cursor
2545 nir_before_cf_list(struct exec_list *cf_list)
2546 {
2547 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2548 exec_list_get_head(cf_list), node);
2549 return nir_before_cf_node(first_node);
2550 }
2551
2552 static inline nir_cursor
2553 nir_after_cf_list(struct exec_list *cf_list)
2554 {
2555 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2556 exec_list_get_tail(cf_list), node);
2557 return nir_after_cf_node(last_node);
2558 }
2559
2560 /**
2561 * Insert a NIR instruction at the given cursor.
2562 *
2563 * Note: This does not update the cursor.
2564 */
2565 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2566
2567 static inline void
2568 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2569 {
2570 nir_instr_insert(nir_before_instr(instr), before);
2571 }
2572
2573 static inline void
2574 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2575 {
2576 nir_instr_insert(nir_after_instr(instr), after);
2577 }
2578
2579 static inline void
2580 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2581 {
2582 nir_instr_insert(nir_before_block(block), before);
2583 }
2584
2585 static inline void
2586 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2587 {
2588 nir_instr_insert(nir_after_block(block), after);
2589 }
2590
2591 static inline void
2592 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2593 {
2594 nir_instr_insert(nir_before_cf_node(node), before);
2595 }
2596
2597 static inline void
2598 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2599 {
2600 nir_instr_insert(nir_after_cf_node(node), after);
2601 }
2602
2603 static inline void
2604 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2605 {
2606 nir_instr_insert(nir_before_cf_list(list), before);
2607 }
2608
2609 static inline void
2610 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2611 {
2612 nir_instr_insert(nir_after_cf_list(list), after);
2613 }
2614
2615 void nir_instr_remove_v(nir_instr *instr);
2616
2617 static inline nir_cursor
2618 nir_instr_remove(nir_instr *instr)
2619 {
2620 nir_cursor cursor;
2621 nir_instr *prev = nir_instr_prev(instr);
2622 if (prev) {
2623 cursor = nir_after_instr(prev);
2624 } else {
2625 cursor = nir_before_block(instr->block);
2626 }
2627 nir_instr_remove_v(instr);
2628 return cursor;
2629 }
2630
2631 /** @} */
2632
2633 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2634 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2635 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2636 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2637 void *state);
2638 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2639 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2640
2641 nir_const_value *nir_src_as_const_value(nir_src src);
2642
2643 static inline struct nir_instr *
2644 nir_src_instr(const struct nir_src *src)
2645 {
2646 return src->is_ssa ? src->ssa->parent_instr : NULL;
2647 }
2648
2649 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
2650 static inline c_type * \
2651 nir_src_as_ ## name (struct nir_src *src) \
2652 { \
2653 return src->is_ssa && src->ssa->parent_instr->type == type_enum \
2654 ? cast_macro(src->ssa->parent_instr) : NULL; \
2655 } \
2656 static inline const c_type * \
2657 nir_src_as_ ## name ## _const(const struct nir_src *src) \
2658 { \
2659 return src->is_ssa && src->ssa->parent_instr->type == type_enum \
2660 ? cast_macro(src->ssa->parent_instr) : NULL; \
2661 }
2662
2663 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
2664
2665 bool nir_src_is_dynamically_uniform(nir_src src);
2666 bool nir_srcs_equal(nir_src src1, nir_src src2);
2667 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2668 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2669 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2670 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2671 nir_dest new_dest);
2672
2673 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2674 unsigned num_components, unsigned bit_size,
2675 const char *name);
2676 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2677 unsigned num_components, unsigned bit_size,
2678 const char *name);
2679 static inline void
2680 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
2681 const struct glsl_type *type,
2682 const char *name)
2683 {
2684 assert(glsl_type_is_vector_or_scalar(type));
2685 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
2686 glsl_get_bit_size(type), name);
2687 }
2688 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2689 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2690 nir_instr *after_me);
2691
2692 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
2693
2694 /*
2695 * finds the next basic block in source-code order, returns NULL if there is
2696 * none
2697 */
2698
2699 nir_block *nir_block_cf_tree_next(nir_block *block);
2700
2701 /* Performs the opposite of nir_block_cf_tree_next() */
2702
2703 nir_block *nir_block_cf_tree_prev(nir_block *block);
2704
2705 /* Gets the first block in a CF node in source-code order */
2706
2707 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2708
2709 /* Gets the last block in a CF node in source-code order */
2710
2711 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2712
2713 /* Gets the next block after a CF node in source-code order */
2714
2715 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2716
2717 /* Macros for loops that visit blocks in source-code order */
2718
2719 #define nir_foreach_block(block, impl) \
2720 for (nir_block *block = nir_start_block(impl); block != NULL; \
2721 block = nir_block_cf_tree_next(block))
2722
2723 #define nir_foreach_block_safe(block, impl) \
2724 for (nir_block *block = nir_start_block(impl), \
2725 *next = nir_block_cf_tree_next(block); \
2726 block != NULL; \
2727 block = next, next = nir_block_cf_tree_next(block))
2728
2729 #define nir_foreach_block_reverse(block, impl) \
2730 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2731 block = nir_block_cf_tree_prev(block))
2732
2733 #define nir_foreach_block_reverse_safe(block, impl) \
2734 for (nir_block *block = nir_impl_last_block(impl), \
2735 *prev = nir_block_cf_tree_prev(block); \
2736 block != NULL; \
2737 block = prev, prev = nir_block_cf_tree_prev(block))
2738
2739 #define nir_foreach_block_in_cf_node(block, node) \
2740 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2741 block != nir_cf_node_cf_tree_next(node); \
2742 block = nir_block_cf_tree_next(block))
2743
2744 /* If the following CF node is an if, this function returns that if.
2745 * Otherwise, it returns NULL.
2746 */
2747 nir_if *nir_block_get_following_if(nir_block *block);
2748
2749 nir_loop *nir_block_get_following_loop(nir_block *block);
2750
2751 void nir_index_local_regs(nir_function_impl *impl);
2752 void nir_index_global_regs(nir_shader *shader);
2753 void nir_index_ssa_defs(nir_function_impl *impl);
2754 unsigned nir_index_instrs(nir_function_impl *impl);
2755
2756 void nir_index_blocks(nir_function_impl *impl);
2757
2758 void nir_print_shader(nir_shader *shader, FILE *fp);
2759 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2760 void nir_print_instr(const nir_instr *instr, FILE *fp);
2761 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
2762
2763 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2764 nir_function_impl *nir_function_impl_clone(const nir_function_impl *fi);
2765 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2766 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2767
2768 nir_shader *nir_shader_serialize_deserialize(void *mem_ctx, nir_shader *s);
2769
2770 #ifndef NDEBUG
2771 void nir_validate_shader(nir_shader *shader, const char *when);
2772 void nir_metadata_set_validation_flag(nir_shader *shader);
2773 void nir_metadata_check_validation_flag(nir_shader *shader);
2774
2775 static inline bool
2776 should_skip_nir(const char *name)
2777 {
2778 static const char *list = NULL;
2779 if (!list) {
2780 /* Comma separated list of names to skip. */
2781 list = getenv("NIR_SKIP");
2782 if (!list)
2783 list = "";
2784 }
2785
2786 if (!list[0])
2787 return false;
2788
2789 return comma_separated_list_contains(list, name);
2790 }
2791
2792 static inline bool
2793 should_clone_nir(void)
2794 {
2795 static int should_clone = -1;
2796 if (should_clone < 0)
2797 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2798
2799 return should_clone;
2800 }
2801
2802 static inline bool
2803 should_serialize_deserialize_nir(void)
2804 {
2805 static int test_serialize = -1;
2806 if (test_serialize < 0)
2807 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
2808
2809 return test_serialize;
2810 }
2811
2812 static inline bool
2813 should_print_nir(void)
2814 {
2815 static int should_print = -1;
2816 if (should_print < 0)
2817 should_print = env_var_as_boolean("NIR_PRINT", false);
2818
2819 return should_print;
2820 }
2821 #else
2822 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
2823 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2824 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2825 static inline bool should_skip_nir(const char *pass_name) { return false; }
2826 static inline bool should_clone_nir(void) { return false; }
2827 static inline bool should_serialize_deserialize_nir(void) { return false; }
2828 static inline bool should_print_nir(void) { return false; }
2829 #endif /* NDEBUG */
2830
2831 #define _PASS(pass, nir, do_pass) do { \
2832 if (should_skip_nir(#pass)) { \
2833 printf("skipping %s\n", #pass); \
2834 break; \
2835 } \
2836 do_pass \
2837 nir_validate_shader(nir, "after " #pass); \
2838 if (should_clone_nir()) { \
2839 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2840 ralloc_free(nir); \
2841 nir = clone; \
2842 } \
2843 if (should_serialize_deserialize_nir()) { \
2844 void *mem_ctx = ralloc_parent(nir); \
2845 nir = nir_shader_serialize_deserialize(mem_ctx, nir); \
2846 } \
2847 } while (0)
2848
2849 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, \
2850 nir_metadata_set_validation_flag(nir); \
2851 if (should_print_nir()) \
2852 printf("%s\n", #pass); \
2853 if (pass(nir, ##__VA_ARGS__)) { \
2854 progress = true; \
2855 if (should_print_nir()) \
2856 nir_print_shader(nir, stdout); \
2857 nir_metadata_check_validation_flag(nir); \
2858 } \
2859 )
2860
2861 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, \
2862 if (should_print_nir()) \
2863 printf("%s\n", #pass); \
2864 pass(nir, ##__VA_ARGS__); \
2865 if (should_print_nir()) \
2866 nir_print_shader(nir, stdout); \
2867 )
2868
2869 #define NIR_SKIP(name) should_skip_nir(#name)
2870
2871 void nir_calc_dominance_impl(nir_function_impl *impl);
2872 void nir_calc_dominance(nir_shader *shader);
2873
2874 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2875 bool nir_block_dominates(nir_block *parent, nir_block *child);
2876
2877 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2878 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2879
2880 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2881 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2882
2883 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2884 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2885
2886 int nir_gs_count_vertices(const nir_shader *shader);
2887
2888 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
2889 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
2890 bool nir_split_var_copies(nir_shader *shader);
2891 bool nir_split_per_member_structs(nir_shader *shader);
2892 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
2893
2894 bool nir_lower_returns_impl(nir_function_impl *impl);
2895 bool nir_lower_returns(nir_shader *shader);
2896
2897 bool nir_inline_functions(nir_shader *shader);
2898
2899 bool nir_propagate_invariant(nir_shader *shader);
2900
2901 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
2902 void nir_lower_deref_copy_instr(struct nir_builder *b,
2903 nir_intrinsic_instr *copy);
2904 bool nir_lower_var_copies(nir_shader *shader);
2905
2906 void nir_fixup_deref_modes(nir_shader *shader);
2907
2908 bool nir_lower_global_vars_to_local(nir_shader *shader);
2909
2910 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
2911
2912 bool nir_lower_locals_to_regs(nir_shader *shader);
2913
2914 void nir_lower_io_to_temporaries(nir_shader *shader,
2915 nir_function_impl *entrypoint,
2916 bool outputs, bool inputs);
2917
2918 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2919
2920 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
2921 int (*type_size)(const struct glsl_type *));
2922
2923 /* Some helpers to do very simple linking */
2924 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
2925 bool nir_remove_unused_io_vars(nir_shader *shader, struct exec_list *var_list,
2926 uint64_t *used_by_other_stage,
2927 uint64_t *used_by_other_stage_patches);
2928 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
2929 bool default_to_smooth_interp);
2930 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
2931 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
2932
2933 typedef enum {
2934 /* If set, this forces all non-flat fragment shader inputs to be
2935 * interpolated as if with the "sample" qualifier. This requires
2936 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
2937 */
2938 nir_lower_io_force_sample_interpolation = (1 << 1),
2939 } nir_lower_io_options;
2940 bool nir_lower_io(nir_shader *shader,
2941 nir_variable_mode modes,
2942 int (*type_size)(const struct glsl_type *),
2943 nir_lower_io_options);
2944
2945 typedef enum {
2946 /**
2947 * An address format which is comprised of a vec2 where the first
2948 * component is a vulkan descriptor index and the second is an offset.
2949 */
2950 nir_address_format_vk_index_offset,
2951 } nir_address_format;
2952 bool nir_lower_explicit_io(nir_shader *shader,
2953 nir_variable_mode modes,
2954 nir_address_format);
2955
2956 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2957 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2958
2959 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
2960
2961 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
2962 bool nir_lower_regs_to_ssa(nir_shader *shader);
2963 bool nir_lower_vars_to_ssa(nir_shader *shader);
2964
2965 bool nir_remove_dead_derefs(nir_shader *shader);
2966 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
2967 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
2968 bool nir_lower_constant_initializers(nir_shader *shader,
2969 nir_variable_mode modes);
2970
2971 bool nir_move_load_const(nir_shader *shader);
2972 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
2973 bool nir_lower_vec_to_movs(nir_shader *shader);
2974 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
2975 bool alpha_to_one);
2976 bool nir_lower_alu(nir_shader *shader);
2977 bool nir_lower_alu_to_scalar(nir_shader *shader);
2978 bool nir_lower_bool_to_float(nir_shader *shader);
2979 bool nir_lower_bool_to_int32(nir_shader *shader);
2980 bool nir_lower_load_const_to_scalar(nir_shader *shader);
2981 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
2982 bool nir_lower_phis_to_scalar(nir_shader *shader);
2983 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
2984 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
2985 bool outputs_only);
2986 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
2987 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
2988
2989 typedef struct nir_lower_subgroups_options {
2990 uint8_t subgroup_size;
2991 uint8_t ballot_bit_size;
2992 bool lower_to_scalar:1;
2993 bool lower_vote_trivial:1;
2994 bool lower_vote_eq_to_ballot:1;
2995 bool lower_subgroup_masks:1;
2996 bool lower_shuffle:1;
2997 bool lower_shuffle_to_32bit:1;
2998 bool lower_quad:1;
2999 } nir_lower_subgroups_options;
3000
3001 bool nir_lower_subgroups(nir_shader *shader,
3002 const nir_lower_subgroups_options *options);
3003
3004 bool nir_lower_system_values(nir_shader *shader);
3005
3006 enum PACKED nir_lower_tex_packing {
3007 nir_lower_tex_packing_none = 0,
3008 /* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
3009 * or unsigned ints based on the sampler type
3010 */
3011 nir_lower_tex_packing_16,
3012 /* The sampler returns 1 32-bit word of 4x8 unorm */
3013 nir_lower_tex_packing_8,
3014 };
3015
3016 typedef struct nir_lower_tex_options {
3017 /**
3018 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
3019 * sampler types a texture projector is lowered.
3020 */
3021 unsigned lower_txp;
3022
3023 /**
3024 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
3025 */
3026 bool lower_txf_offset;
3027
3028 /**
3029 * If true, lower away nir_tex_src_offset for all rect textures.
3030 */
3031 bool lower_rect_offset;
3032
3033 /**
3034 * If true, lower rect textures to 2D, using txs to fetch the
3035 * texture dimensions and dividing the texture coords by the
3036 * texture dims to normalize.
3037 */
3038 bool lower_rect;
3039
3040 /**
3041 * If true, convert yuv to rgb.
3042 */
3043 unsigned lower_y_uv_external;
3044 unsigned lower_y_u_v_external;
3045 unsigned lower_yx_xuxv_external;
3046 unsigned lower_xy_uxvx_external;
3047 unsigned lower_ayuv_external;
3048
3049 /**
3050 * To emulate certain texture wrap modes, this can be used
3051 * to saturate the specified tex coord to [0.0, 1.0]. The
3052 * bits are according to sampler #, ie. if, for example:
3053 *
3054 * (conf->saturate_s & (1 << n))
3055 *
3056 * is true, then the s coord for sampler n is saturated.
3057 *
3058 * Note that clamping must happen *after* projector lowering
3059 * so any projected texture sample instruction with a clamped
3060 * coordinate gets automatically lowered, regardless of the
3061 * 'lower_txp' setting.
3062 */
3063 unsigned saturate_s;
3064 unsigned saturate_t;
3065 unsigned saturate_r;
3066
3067 /* Bitmask of textures that need swizzling.
3068 *
3069 * If (swizzle_result & (1 << texture_index)), then the swizzle in
3070 * swizzles[texture_index] is applied to the result of the texturing
3071 * operation.
3072 */
3073 unsigned swizzle_result;
3074
3075 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
3076 * while 4 and 5 represent 0 and 1 respectively.
3077 */
3078 uint8_t swizzles[32][4];
3079
3080 /**
3081 * Bitmap of textures that need srgb to linear conversion. If
3082 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
3083 * of the texture are lowered to linear.
3084 */
3085 unsigned lower_srgb;
3086
3087 /**
3088 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
3089 */
3090 bool lower_txd_cube_map;
3091
3092 /**
3093 * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
3094 */
3095 bool lower_txd_3d;
3096
3097 /**
3098 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
3099 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
3100 * with lower_txd_cube_map.
3101 */
3102 bool lower_txd_shadow;
3103
3104 /**
3105 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
3106 * Implies lower_txd_cube_map and lower_txd_shadow.
3107 */
3108 bool lower_txd;
3109
3110 /**
3111 * If true, lower nir_texop_txb that try to use shadow compare and min_lod
3112 * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
3113 */
3114 bool lower_txb_shadow_clamp;
3115
3116 /**
3117 * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
3118 * with nir_texop_txl. This includes cube maps.
3119 */
3120 bool lower_txd_shadow_clamp;
3121
3122 /**
3123 * If true, lower nir_texop_txd on when it uses both offset and min_lod
3124 * with nir_texop_txl. This includes cube maps.
3125 */
3126 bool lower_txd_offset_clamp;
3127
3128 /**
3129 * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
3130 * mixed-up tg4 locations.
3131 */
3132 bool lower_tg4_broadcom_swizzle;
3133
3134 enum nir_lower_tex_packing lower_tex_packing[32];
3135 } nir_lower_tex_options;
3136
3137 bool nir_lower_tex(nir_shader *shader,
3138 const nir_lower_tex_options *options);
3139
3140 bool nir_lower_idiv(nir_shader *shader);
3141
3142 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables, bool use_vars);
3143 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
3144 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
3145
3146 void nir_lower_two_sided_color(nir_shader *shader);
3147
3148 bool nir_lower_clamp_color_outputs(nir_shader *shader);
3149
3150 void nir_lower_passthrough_edgeflags(nir_shader *shader);
3151 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
3152 const gl_state_index16 *uniform_state_tokens);
3153
3154 typedef struct nir_lower_wpos_ytransform_options {
3155 gl_state_index16 state_tokens[STATE_LENGTH];
3156 bool fs_coord_origin_upper_left :1;
3157 bool fs_coord_origin_lower_left :1;
3158 bool fs_coord_pixel_center_integer :1;
3159 bool fs_coord_pixel_center_half_integer :1;
3160 } nir_lower_wpos_ytransform_options;
3161
3162 bool nir_lower_wpos_ytransform(nir_shader *shader,
3163 const nir_lower_wpos_ytransform_options *options);
3164 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
3165
3166 typedef struct nir_lower_drawpixels_options {
3167 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
3168 gl_state_index16 scale_state_tokens[STATE_LENGTH];
3169 gl_state_index16 bias_state_tokens[STATE_LENGTH];
3170 unsigned drawpix_sampler;
3171 unsigned pixelmap_sampler;
3172 bool pixel_maps :1;
3173 bool scale_and_bias :1;
3174 } nir_lower_drawpixels_options;
3175
3176 void nir_lower_drawpixels(nir_shader *shader,
3177 const nir_lower_drawpixels_options *options);
3178
3179 typedef struct nir_lower_bitmap_options {
3180 unsigned sampler;
3181 bool swizzle_xxxx;
3182 } nir_lower_bitmap_options;
3183
3184 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
3185
3186 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
3187
3188 typedef enum {
3189 nir_lower_int_source_mods = 1 << 0,
3190 nir_lower_float_source_mods = 1 << 1,
3191 nir_lower_all_source_mods = (1 << 2) - 1
3192 } nir_lower_to_source_mods_flags;
3193
3194
3195 bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
3196
3197 bool nir_lower_gs_intrinsics(nir_shader *shader);
3198
3199 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
3200
3201 bool nir_lower_bit_size(nir_shader *shader,
3202 nir_lower_bit_size_callback callback,
3203 void *callback_data);
3204
3205 typedef enum {
3206 nir_lower_imul64 = (1 << 0),
3207 nir_lower_isign64 = (1 << 1),
3208 /** Lower all int64 modulus and division opcodes */
3209 nir_lower_divmod64 = (1 << 2),
3210 /** Lower all 64-bit umul_high and imul_high opcodes */
3211 nir_lower_imul_high64 = (1 << 3),
3212 nir_lower_mov64 = (1 << 4),
3213 nir_lower_icmp64 = (1 << 5),
3214 nir_lower_iadd64 = (1 << 6),
3215 nir_lower_iabs64 = (1 << 7),
3216 nir_lower_ineg64 = (1 << 8),
3217 nir_lower_logic64 = (1 << 9),
3218 nir_lower_minmax64 = (1 << 10),
3219 nir_lower_shift64 = (1 << 11),
3220 } nir_lower_int64_options;
3221
3222 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
3223
3224 typedef enum {
3225 nir_lower_drcp = (1 << 0),
3226 nir_lower_dsqrt = (1 << 1),
3227 nir_lower_drsq = (1 << 2),
3228 nir_lower_dtrunc = (1 << 3),
3229 nir_lower_dfloor = (1 << 4),
3230 nir_lower_dceil = (1 << 5),
3231 nir_lower_dfract = (1 << 6),
3232 nir_lower_dround_even = (1 << 7),
3233 nir_lower_dmod = (1 << 8),
3234 nir_lower_fp64_full_software = (1 << 9),
3235 } nir_lower_doubles_options;
3236
3237 bool nir_lower_doubles(nir_shader *shader, nir_lower_doubles_options options);
3238 bool nir_lower_pack(nir_shader *shader);
3239
3240 bool nir_normalize_cubemap_coords(nir_shader *shader);
3241
3242 void nir_live_ssa_defs_impl(nir_function_impl *impl);
3243
3244 void nir_loop_analyze_impl(nir_function_impl *impl,
3245 nir_variable_mode indirect_mask);
3246
3247 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
3248
3249 bool nir_repair_ssa_impl(nir_function_impl *impl);
3250 bool nir_repair_ssa(nir_shader *shader);
3251
3252 void nir_convert_loop_to_lcssa(nir_loop *loop);
3253
3254 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
3255 * registers. If false, convert all values (even those not involved in a phi
3256 * node) to registers.
3257 */
3258 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
3259
3260 bool nir_lower_phis_to_regs_block(nir_block *block);
3261 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
3262 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
3263
3264 bool nir_opt_algebraic(nir_shader *shader);
3265 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
3266 bool nir_opt_algebraic_late(nir_shader *shader);
3267 bool nir_opt_constant_folding(nir_shader *shader);
3268
3269 bool nir_opt_global_to_local(nir_shader *shader);
3270
3271 bool nir_copy_prop(nir_shader *shader);
3272
3273 bool nir_opt_copy_prop_vars(nir_shader *shader);
3274
3275 bool nir_opt_cse(nir_shader *shader);
3276
3277 bool nir_opt_dce(nir_shader *shader);
3278
3279 bool nir_opt_dead_cf(nir_shader *shader);
3280
3281 bool nir_opt_dead_write_vars(nir_shader *shader);
3282
3283 bool nir_opt_deref(nir_shader *shader);
3284
3285 bool nir_opt_find_array_copies(nir_shader *shader);
3286
3287 bool nir_opt_gcm(nir_shader *shader, bool value_number);
3288
3289 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
3290
3291 bool nir_opt_if(nir_shader *shader);
3292
3293 bool nir_opt_intrinsics(nir_shader *shader);
3294
3295 bool nir_opt_large_constants(nir_shader *shader,
3296 glsl_type_size_align_func size_align,
3297 unsigned threshold);
3298
3299 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
3300
3301 bool nir_opt_move_comparisons(nir_shader *shader);
3302
3303 bool nir_opt_move_load_ubo(nir_shader *shader);
3304
3305 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
3306 bool indirect_load_ok, bool expensive_alu_ok);
3307
3308 bool nir_opt_remove_phis(nir_shader *shader);
3309
3310 bool nir_opt_shrink_load(nir_shader *shader);
3311
3312 bool nir_opt_trivial_continues(nir_shader *shader);
3313
3314 bool nir_opt_undef(nir_shader *shader);
3315
3316 bool nir_opt_conditional_discard(nir_shader *shader);
3317
3318 void nir_sweep(nir_shader *shader);
3319
3320 void nir_remap_dual_slot_attributes(nir_shader *shader,
3321 uint64_t *dual_slot_inputs);
3322 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
3323
3324 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
3325 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
3326
3327 #ifdef __cplusplus
3328 } /* extern "C" */
3329 #endif
3330
3331 #endif /* NIR_H */