nir: Return progress from nir_lower_64bit_pack().
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitset.h"
38 #include "util/macros.h"
39 #include "compiler/nir_types.h"
40 #include "compiler/shader_enums.h"
41 #include "compiler/shader_info.h"
42 #include <stdio.h>
43
44 #ifdef DEBUG
45 #include "util/debug.h"
46 #endif /* DEBUG */
47
48 #include "nir_opcodes.h"
49
50 #ifdef __cplusplus
51 extern "C" {
52 #endif
53
54 struct gl_program;
55 struct gl_shader_program;
56
57 #define NIR_FALSE 0u
58 #define NIR_TRUE (~0u)
59
60 /** Defines a cast function
61 *
62 * This macro defines a cast function from in_type to out_type where
63 * out_type is some structure type that contains a field of type out_type.
64 *
65 * Note that you have to be a bit careful as the generated cast function
66 * destroys constness.
67 */
68 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
69 type_field, type_value) \
70 static inline out_type * \
71 name(const in_type *parent) \
72 { \
73 assert(parent && parent->type_field == type_value); \
74 return exec_node_data(out_type, parent, field); \
75 }
76
77 struct nir_function;
78 struct nir_shader;
79 struct nir_instr;
80
81
82 /**
83 * Description of built-in state associated with a uniform
84 *
85 * \sa nir_variable::state_slots
86 */
87 typedef struct {
88 int tokens[5];
89 int swizzle;
90 } nir_state_slot;
91
92 typedef enum {
93 nir_var_shader_in = (1 << 0),
94 nir_var_shader_out = (1 << 1),
95 nir_var_global = (1 << 2),
96 nir_var_local = (1 << 3),
97 nir_var_uniform = (1 << 4),
98 nir_var_shader_storage = (1 << 5),
99 nir_var_system_value = (1 << 6),
100 nir_var_param = (1 << 7),
101 nir_var_shared = (1 << 8),
102 nir_var_all = ~0,
103 } nir_variable_mode;
104
105
106 typedef union {
107 float f32[4];
108 double f64[4];
109 int32_t i32[4];
110 uint32_t u32[4];
111 int64_t i64[4];
112 uint64_t u64[4];
113 } nir_const_value;
114
115 typedef struct nir_constant {
116 /**
117 * Value of the constant.
118 *
119 * The field used to back the values supplied by the constant is determined
120 * by the type associated with the \c nir_variable. Constants may be
121 * scalars, vectors, or matrices.
122 */
123 nir_const_value values[4];
124
125 /* we could get this from the var->type but makes clone *much* easier to
126 * not have to care about the type.
127 */
128 unsigned num_elements;
129
130 /* Array elements / Structure Fields */
131 struct nir_constant **elements;
132 } nir_constant;
133
134 /**
135 * \brief Layout qualifiers for gl_FragDepth.
136 *
137 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
138 * with a layout qualifier.
139 */
140 typedef enum {
141 nir_depth_layout_none, /**< No depth layout is specified. */
142 nir_depth_layout_any,
143 nir_depth_layout_greater,
144 nir_depth_layout_less,
145 nir_depth_layout_unchanged
146 } nir_depth_layout;
147
148 /**
149 * Either a uniform, global variable, shader input, or shader output. Based on
150 * ir_variable - it should be easy to translate between the two.
151 */
152
153 typedef struct nir_variable {
154 struct exec_node node;
155
156 /**
157 * Declared type of the variable
158 */
159 const struct glsl_type *type;
160
161 /**
162 * Declared name of the variable
163 */
164 char *name;
165
166 struct nir_variable_data {
167 /**
168 * Storage class of the variable.
169 *
170 * \sa nir_variable_mode
171 */
172 nir_variable_mode mode;
173
174 /**
175 * Is the variable read-only?
176 *
177 * This is set for variables declared as \c const, shader inputs,
178 * and uniforms.
179 */
180 unsigned read_only:1;
181 unsigned centroid:1;
182 unsigned sample:1;
183 unsigned patch:1;
184 unsigned invariant:1;
185
186 /**
187 * Interpolation mode for shader inputs / outputs
188 *
189 * \sa glsl_interp_mode
190 */
191 unsigned interpolation:2;
192
193 /**
194 * \name ARB_fragment_coord_conventions
195 * @{
196 */
197 unsigned origin_upper_left:1;
198 unsigned pixel_center_integer:1;
199 /*@}*/
200
201 /**
202 * If non-zero, then this variable may be packed along with other variables
203 * into a single varying slot, so this offset should be applied when
204 * accessing components. For example, an offset of 1 means that the x
205 * component of this variable is actually stored in component y of the
206 * location specified by \c location.
207 */
208 unsigned location_frac:2;
209
210 /**
211 * If true, this variable represents an array of scalars that should
212 * be tightly packed. In other words, consecutive array elements
213 * should be stored one component apart, rather than one slot apart.
214 */
215 bool compact:1;
216
217 /**
218 * Whether this is a fragment shader output implicitly initialized with
219 * the previous contents of the specified render target at the
220 * framebuffer location corresponding to this shader invocation.
221 */
222 unsigned fb_fetch_output:1;
223
224 /**
225 * \brief Layout qualifier for gl_FragDepth.
226 *
227 * This is not equal to \c ir_depth_layout_none if and only if this
228 * variable is \c gl_FragDepth and a layout qualifier is specified.
229 */
230 nir_depth_layout depth_layout;
231
232 /**
233 * Storage location of the base of this variable
234 *
235 * The precise meaning of this field depends on the nature of the variable.
236 *
237 * - Vertex shader input: one of the values from \c gl_vert_attrib.
238 * - Vertex shader output: one of the values from \c gl_varying_slot.
239 * - Geometry shader input: one of the values from \c gl_varying_slot.
240 * - Geometry shader output: one of the values from \c gl_varying_slot.
241 * - Fragment shader input: one of the values from \c gl_varying_slot.
242 * - Fragment shader output: one of the values from \c gl_frag_result.
243 * - Uniforms: Per-stage uniform slot number for default uniform block.
244 * - Uniforms: Index within the uniform block definition for UBO members.
245 * - Non-UBO Uniforms: uniform slot number.
246 * - Other: This field is not currently used.
247 *
248 * If the variable is a uniform, shader input, or shader output, and the
249 * slot has not been assigned, the value will be -1.
250 */
251 int location;
252
253 /**
254 * The actual location of the variable in the IR. Only valid for inputs
255 * and outputs.
256 */
257 unsigned int driver_location;
258
259 /**
260 * output index for dual source blending.
261 */
262 int index;
263
264 /**
265 * Descriptor set binding for sampler or UBO.
266 */
267 int descriptor_set;
268
269 /**
270 * Initial binding point for a sampler or UBO.
271 *
272 * For array types, this represents the binding point for the first element.
273 */
274 int binding;
275
276 /**
277 * Location an atomic counter is stored at.
278 */
279 unsigned offset;
280
281 /**
282 * ARB_shader_image_load_store qualifiers.
283 */
284 struct {
285 bool read_only; /**< "readonly" qualifier. */
286 bool write_only; /**< "writeonly" qualifier. */
287 bool coherent;
288 bool _volatile;
289 bool restrict_flag;
290
291 /** Image internal format if specified explicitly, otherwise GL_NONE. */
292 GLenum format;
293 } image;
294 } data;
295
296 /**
297 * Built-in state that backs this uniform
298 *
299 * Once set at variable creation, \c state_slots must remain invariant.
300 * This is because, ideally, this array would be shared by all clones of
301 * this variable in the IR tree. In other words, we'd really like for it
302 * to be a fly-weight.
303 *
304 * If the variable is not a uniform, \c num_state_slots will be zero and
305 * \c state_slots will be \c NULL.
306 */
307 /*@{*/
308 unsigned num_state_slots; /**< Number of state slots used */
309 nir_state_slot *state_slots; /**< State descriptors. */
310 /*@}*/
311
312 /**
313 * Constant expression assigned in the initializer of the variable
314 *
315 * This field should only be used temporarily by creators of NIR shaders
316 * and then lower_constant_initializers can be used to get rid of them.
317 * Most of the rest of NIR ignores this field or asserts that it's NULL.
318 */
319 nir_constant *constant_initializer;
320
321 /**
322 * For variables that are in an interface block or are an instance of an
323 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
324 *
325 * \sa ir_variable::location
326 */
327 const struct glsl_type *interface_type;
328 } nir_variable;
329
330 #define nir_foreach_variable(var, var_list) \
331 foreach_list_typed(nir_variable, var, node, var_list)
332
333 #define nir_foreach_variable_safe(var, var_list) \
334 foreach_list_typed_safe(nir_variable, var, node, var_list)
335
336 static inline bool
337 nir_variable_is_global(const nir_variable *var)
338 {
339 return var->data.mode != nir_var_local && var->data.mode != nir_var_param;
340 }
341
342 typedef struct nir_register {
343 struct exec_node node;
344
345 unsigned num_components; /** < number of vector components */
346 unsigned num_array_elems; /** < size of array (0 for no array) */
347
348 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
349 uint8_t bit_size;
350
351 /** generic register index. */
352 unsigned index;
353
354 /** only for debug purposes, can be NULL */
355 const char *name;
356
357 /** whether this register is local (per-function) or global (per-shader) */
358 bool is_global;
359
360 /**
361 * If this flag is set to true, then accessing channels >= num_components
362 * is well-defined, and simply spills over to the next array element. This
363 * is useful for backends that can do per-component accessing, in
364 * particular scalar backends. By setting this flag and making
365 * num_components equal to 1, structures can be packed tightly into
366 * registers and then registers can be accessed per-component to get to
367 * each structure member, even if it crosses vec4 boundaries.
368 */
369 bool is_packed;
370
371 /** set of nir_srcs where this register is used (read from) */
372 struct list_head uses;
373
374 /** set of nir_dests where this register is defined (written to) */
375 struct list_head defs;
376
377 /** set of nir_ifs where this register is used as a condition */
378 struct list_head if_uses;
379 } nir_register;
380
381 #define nir_foreach_register(reg, reg_list) \
382 foreach_list_typed(nir_register, reg, node, reg_list)
383 #define nir_foreach_register_safe(reg, reg_list) \
384 foreach_list_typed_safe(nir_register, reg, node, reg_list)
385
386 typedef enum {
387 nir_instr_type_alu,
388 nir_instr_type_call,
389 nir_instr_type_tex,
390 nir_instr_type_intrinsic,
391 nir_instr_type_load_const,
392 nir_instr_type_jump,
393 nir_instr_type_ssa_undef,
394 nir_instr_type_phi,
395 nir_instr_type_parallel_copy,
396 } nir_instr_type;
397
398 typedef struct nir_instr {
399 struct exec_node node;
400 nir_instr_type type;
401 struct nir_block *block;
402
403 /** generic instruction index. */
404 unsigned index;
405
406 /* A temporary for optimization and analysis passes to use for storing
407 * flags. For instance, DCE uses this to store the "dead/live" info.
408 */
409 uint8_t pass_flags;
410 } nir_instr;
411
412 static inline nir_instr *
413 nir_instr_next(nir_instr *instr)
414 {
415 struct exec_node *next = exec_node_get_next(&instr->node);
416 if (exec_node_is_tail_sentinel(next))
417 return NULL;
418 else
419 return exec_node_data(nir_instr, next, node);
420 }
421
422 static inline nir_instr *
423 nir_instr_prev(nir_instr *instr)
424 {
425 struct exec_node *prev = exec_node_get_prev(&instr->node);
426 if (exec_node_is_head_sentinel(prev))
427 return NULL;
428 else
429 return exec_node_data(nir_instr, prev, node);
430 }
431
432 static inline bool
433 nir_instr_is_first(nir_instr *instr)
434 {
435 return exec_node_is_head_sentinel(exec_node_get_prev(&instr->node));
436 }
437
438 static inline bool
439 nir_instr_is_last(nir_instr *instr)
440 {
441 return exec_node_is_tail_sentinel(exec_node_get_next(&instr->node));
442 }
443
444 typedef struct nir_ssa_def {
445 /** for debugging only, can be NULL */
446 const char* name;
447
448 /** generic SSA definition index. */
449 unsigned index;
450
451 /** Index into the live_in and live_out bitfields */
452 unsigned live_index;
453
454 nir_instr *parent_instr;
455
456 /** set of nir_instrs where this register is used (read from) */
457 struct list_head uses;
458
459 /** set of nir_ifs where this register is used as a condition */
460 struct list_head if_uses;
461
462 uint8_t num_components;
463
464 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
465 uint8_t bit_size;
466 } nir_ssa_def;
467
468 struct nir_src;
469
470 typedef struct {
471 nir_register *reg;
472 struct nir_src *indirect; /** < NULL for no indirect offset */
473 unsigned base_offset;
474
475 /* TODO use-def chain goes here */
476 } nir_reg_src;
477
478 typedef struct {
479 nir_instr *parent_instr;
480 struct list_head def_link;
481
482 nir_register *reg;
483 struct nir_src *indirect; /** < NULL for no indirect offset */
484 unsigned base_offset;
485
486 /* TODO def-use chain goes here */
487 } nir_reg_dest;
488
489 struct nir_if;
490
491 typedef struct nir_src {
492 union {
493 nir_instr *parent_instr;
494 struct nir_if *parent_if;
495 };
496
497 struct list_head use_link;
498
499 union {
500 nir_reg_src reg;
501 nir_ssa_def *ssa;
502 };
503
504 bool is_ssa;
505 } nir_src;
506
507 static inline nir_src
508 nir_src_init(void)
509 {
510 nir_src src = { { NULL } };
511 return src;
512 }
513
514 #define NIR_SRC_INIT nir_src_init()
515
516 #define nir_foreach_use(src, reg_or_ssa_def) \
517 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
518
519 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
520 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
521
522 #define nir_foreach_if_use(src, reg_or_ssa_def) \
523 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
524
525 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
526 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
527
528 typedef struct {
529 union {
530 nir_reg_dest reg;
531 nir_ssa_def ssa;
532 };
533
534 bool is_ssa;
535 } nir_dest;
536
537 static inline nir_dest
538 nir_dest_init(void)
539 {
540 nir_dest dest = { { { NULL } } };
541 return dest;
542 }
543
544 #define NIR_DEST_INIT nir_dest_init()
545
546 #define nir_foreach_def(dest, reg) \
547 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
548
549 #define nir_foreach_def_safe(dest, reg) \
550 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
551
552 static inline nir_src
553 nir_src_for_ssa(nir_ssa_def *def)
554 {
555 nir_src src = NIR_SRC_INIT;
556
557 src.is_ssa = true;
558 src.ssa = def;
559
560 return src;
561 }
562
563 static inline nir_src
564 nir_src_for_reg(nir_register *reg)
565 {
566 nir_src src = NIR_SRC_INIT;
567
568 src.is_ssa = false;
569 src.reg.reg = reg;
570 src.reg.indirect = NULL;
571 src.reg.base_offset = 0;
572
573 return src;
574 }
575
576 static inline nir_dest
577 nir_dest_for_reg(nir_register *reg)
578 {
579 nir_dest dest = NIR_DEST_INIT;
580
581 dest.reg.reg = reg;
582
583 return dest;
584 }
585
586 static inline unsigned
587 nir_src_bit_size(nir_src src)
588 {
589 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
590 }
591
592 static inline unsigned
593 nir_dest_bit_size(nir_dest dest)
594 {
595 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
596 }
597
598 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
599 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
600
601 typedef struct {
602 nir_src src;
603
604 /**
605 * \name input modifiers
606 */
607 /*@{*/
608 /**
609 * For inputs interpreted as floating point, flips the sign bit. For
610 * inputs interpreted as integers, performs the two's complement negation.
611 */
612 bool negate;
613
614 /**
615 * Clears the sign bit for floating point values, and computes the integer
616 * absolute value for integers. Note that the negate modifier acts after
617 * the absolute value modifier, therefore if both are set then all inputs
618 * will become negative.
619 */
620 bool abs;
621 /*@}*/
622
623 /**
624 * For each input component, says which component of the register it is
625 * chosen from. Note that which elements of the swizzle are used and which
626 * are ignored are based on the write mask for most opcodes - for example,
627 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
628 * a swizzle of {2, x, 1, 0} where x means "don't care."
629 */
630 uint8_t swizzle[4];
631 } nir_alu_src;
632
633 typedef struct {
634 nir_dest dest;
635
636 /**
637 * \name saturate output modifier
638 *
639 * Only valid for opcodes that output floating-point numbers. Clamps the
640 * output to between 0.0 and 1.0 inclusive.
641 */
642
643 bool saturate;
644
645 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
646 } nir_alu_dest;
647
648 typedef enum {
649 nir_type_invalid = 0, /* Not a valid type */
650 nir_type_float,
651 nir_type_int,
652 nir_type_uint,
653 nir_type_bool,
654 nir_type_bool32 = 32 | nir_type_bool,
655 nir_type_int8 = 8 | nir_type_int,
656 nir_type_int16 = 16 | nir_type_int,
657 nir_type_int32 = 32 | nir_type_int,
658 nir_type_int64 = 64 | nir_type_int,
659 nir_type_uint8 = 8 | nir_type_uint,
660 nir_type_uint16 = 16 | nir_type_uint,
661 nir_type_uint32 = 32 | nir_type_uint,
662 nir_type_uint64 = 64 | nir_type_uint,
663 nir_type_float16 = 16 | nir_type_float,
664 nir_type_float32 = 32 | nir_type_float,
665 nir_type_float64 = 64 | nir_type_float,
666 } nir_alu_type;
667
668 #define NIR_ALU_TYPE_SIZE_MASK 0xfffffff8
669 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x00000007
670
671 static inline unsigned
672 nir_alu_type_get_type_size(nir_alu_type type)
673 {
674 return type & NIR_ALU_TYPE_SIZE_MASK;
675 }
676
677 static inline unsigned
678 nir_alu_type_get_base_type(nir_alu_type type)
679 {
680 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
681 }
682
683 static inline nir_alu_type
684 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
685 {
686 switch (base_type) {
687 case GLSL_TYPE_BOOL:
688 return nir_type_bool32;
689 break;
690 case GLSL_TYPE_UINT:
691 return nir_type_uint32;
692 break;
693 case GLSL_TYPE_INT:
694 return nir_type_int32;
695 break;
696 case GLSL_TYPE_UINT64:
697 return nir_type_uint64;
698 break;
699 case GLSL_TYPE_INT64:
700 return nir_type_int64;
701 break;
702 case GLSL_TYPE_FLOAT:
703 return nir_type_float32;
704 break;
705 case GLSL_TYPE_DOUBLE:
706 return nir_type_float64;
707 break;
708 default:
709 unreachable("unknown type");
710 }
711 }
712
713 static inline nir_alu_type
714 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
715 {
716 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
717 }
718
719 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst);
720
721 typedef enum {
722 NIR_OP_IS_COMMUTATIVE = (1 << 0),
723 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
724 } nir_op_algebraic_property;
725
726 typedef struct {
727 const char *name;
728
729 unsigned num_inputs;
730
731 /**
732 * The number of components in the output
733 *
734 * If non-zero, this is the size of the output and input sizes are
735 * explicitly given; swizzle and writemask are still in effect, but if
736 * the output component is masked out, then the input component may
737 * still be in use.
738 *
739 * If zero, the opcode acts in the standard, per-component manner; the
740 * operation is performed on each component (except the ones that are
741 * masked out) with the input being taken from the input swizzle for
742 * that component.
743 *
744 * The size of some of the inputs may be given (i.e. non-zero) even
745 * though output_size is zero; in that case, the inputs with a zero
746 * size act per-component, while the inputs with non-zero size don't.
747 */
748 unsigned output_size;
749
750 /**
751 * The type of vector that the instruction outputs. Note that the
752 * staurate modifier is only allowed on outputs with the float type.
753 */
754
755 nir_alu_type output_type;
756
757 /**
758 * The number of components in each input
759 */
760 unsigned input_sizes[4];
761
762 /**
763 * The type of vector that each input takes. Note that negate and
764 * absolute value are only allowed on inputs with int or float type and
765 * behave differently on the two.
766 */
767 nir_alu_type input_types[4];
768
769 nir_op_algebraic_property algebraic_properties;
770 } nir_op_info;
771
772 extern const nir_op_info nir_op_infos[nir_num_opcodes];
773
774 typedef struct nir_alu_instr {
775 nir_instr instr;
776 nir_op op;
777
778 /** Indicates that this ALU instruction generates an exact value
779 *
780 * This is kind of a mixture of GLSL "precise" and "invariant" and not
781 * really equivalent to either. This indicates that the value generated by
782 * this operation is high-precision and any code transformations that touch
783 * it must ensure that the resulting value is bit-for-bit identical to the
784 * original.
785 */
786 bool exact;
787
788 nir_alu_dest dest;
789 nir_alu_src src[];
790 } nir_alu_instr;
791
792 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
793 nir_alu_instr *instr);
794 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
795 nir_alu_instr *instr);
796
797 /* is this source channel used? */
798 static inline bool
799 nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel)
800 {
801 if (nir_op_infos[instr->op].input_sizes[src] > 0)
802 return channel < nir_op_infos[instr->op].input_sizes[src];
803
804 return (instr->dest.write_mask >> channel) & 1;
805 }
806
807 /*
808 * For instructions whose destinations are SSA, get the number of channels
809 * used for a source
810 */
811 static inline unsigned
812 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
813 {
814 assert(instr->dest.dest.is_ssa);
815
816 if (nir_op_infos[instr->op].input_sizes[src] > 0)
817 return nir_op_infos[instr->op].input_sizes[src];
818
819 return instr->dest.dest.ssa.num_components;
820 }
821
822 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
823 unsigned src1, unsigned src2);
824
825 typedef enum {
826 nir_deref_type_var,
827 nir_deref_type_array,
828 nir_deref_type_struct
829 } nir_deref_type;
830
831 typedef struct nir_deref {
832 nir_deref_type deref_type;
833 struct nir_deref *child;
834 const struct glsl_type *type;
835 } nir_deref;
836
837 typedef struct {
838 nir_deref deref;
839
840 nir_variable *var;
841 } nir_deref_var;
842
843 /* This enum describes how the array is referenced. If the deref is
844 * direct then the base_offset is used. If the deref is indirect then
845 * offset is given by base_offset + indirect. If the deref is a wildcard
846 * then the deref refers to all of the elements of the array at the same
847 * time. Wildcard dereferences are only ever allowed in copy_var
848 * intrinsics and the source and destination derefs must have matching
849 * wildcards.
850 */
851 typedef enum {
852 nir_deref_array_type_direct,
853 nir_deref_array_type_indirect,
854 nir_deref_array_type_wildcard,
855 } nir_deref_array_type;
856
857 typedef struct {
858 nir_deref deref;
859
860 nir_deref_array_type deref_array_type;
861 unsigned base_offset;
862 nir_src indirect;
863 } nir_deref_array;
864
865 typedef struct {
866 nir_deref deref;
867
868 unsigned index;
869 } nir_deref_struct;
870
871 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref,
872 deref_type, nir_deref_type_var)
873 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref,
874 deref_type, nir_deref_type_array)
875 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref,
876 deref_type, nir_deref_type_struct)
877
878 /* Returns the last deref in the chain. */
879 static inline nir_deref *
880 nir_deref_tail(nir_deref *deref)
881 {
882 while (deref->child)
883 deref = deref->child;
884 return deref;
885 }
886
887 typedef struct {
888 nir_instr instr;
889
890 unsigned num_params;
891 nir_deref_var **params;
892 nir_deref_var *return_deref;
893
894 struct nir_function *callee;
895 } nir_call_instr;
896
897 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
898 num_variables, num_indices, idx0, idx1, idx2, flags) \
899 nir_intrinsic_##name,
900
901 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
902
903 typedef enum {
904 #include "nir_intrinsics.h"
905 nir_num_intrinsics = nir_last_intrinsic + 1
906 } nir_intrinsic_op;
907
908 #define NIR_INTRINSIC_MAX_CONST_INDEX 3
909
910 /** Represents an intrinsic
911 *
912 * An intrinsic is an instruction type for handling things that are
913 * more-or-less regular operations but don't just consume and produce SSA
914 * values like ALU operations do. Intrinsics are not for things that have
915 * special semantic meaning such as phi nodes and parallel copies.
916 * Examples of intrinsics include variable load/store operations, system
917 * value loads, and the like. Even though texturing more-or-less falls
918 * under this category, texturing is its own instruction type because
919 * trying to represent texturing with intrinsics would lead to a
920 * combinatorial explosion of intrinsic opcodes.
921 *
922 * By having a single instruction type for handling a lot of different
923 * cases, optimization passes can look for intrinsics and, for the most
924 * part, completely ignore them. Each intrinsic type also has a few
925 * possible flags that govern whether or not they can be reordered or
926 * eliminated. That way passes like dead code elimination can still work
927 * on intrisics without understanding the meaning of each.
928 *
929 * Each intrinsic has some number of constant indices, some number of
930 * variables, and some number of sources. What these sources, variables,
931 * and indices mean depends on the intrinsic and is documented with the
932 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
933 * instructions are the only types of instruction that can operate on
934 * variables.
935 */
936 typedef struct {
937 nir_instr instr;
938
939 nir_intrinsic_op intrinsic;
940
941 nir_dest dest;
942
943 /** number of components if this is a vectorized intrinsic
944 *
945 * Similarly to ALU operations, some intrinsics are vectorized.
946 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
947 * For vectorized intrinsics, the num_components field specifies the
948 * number of destination components and the number of source components
949 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
950 */
951 uint8_t num_components;
952
953 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
954
955 nir_deref_var *variables[2];
956
957 nir_src src[];
958 } nir_intrinsic_instr;
959
960 /**
961 * \name NIR intrinsics semantic flags
962 *
963 * information about what the compiler can do with the intrinsics.
964 *
965 * \sa nir_intrinsic_info::flags
966 */
967 typedef enum {
968 /**
969 * whether the intrinsic can be safely eliminated if none of its output
970 * value is not being used.
971 */
972 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
973
974 /**
975 * Whether the intrinsic can be reordered with respect to any other
976 * intrinsic, i.e. whether the only reordering dependencies of the
977 * intrinsic are due to the register reads/writes.
978 */
979 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
980 } nir_intrinsic_semantic_flag;
981
982 /**
983 * \name NIR intrinsics const-index flag
984 *
985 * Indicates the usage of a const_index slot.
986 *
987 * \sa nir_intrinsic_info::index_map
988 */
989 typedef enum {
990 /**
991 * Generally instructions that take a offset src argument, can encode
992 * a constant 'base' value which is added to the offset.
993 */
994 NIR_INTRINSIC_BASE = 1,
995
996 /**
997 * For store instructions, a writemask for the store.
998 */
999 NIR_INTRINSIC_WRMASK = 2,
1000
1001 /**
1002 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1003 */
1004 NIR_INTRINSIC_STREAM_ID = 3,
1005
1006 /**
1007 * The clip-plane id for load_user_clip_plane intrinsic.
1008 */
1009 NIR_INTRINSIC_UCP_ID = 4,
1010
1011 /**
1012 * The amount of data, starting from BASE, that this instruction may
1013 * access. This is used to provide bounds if the offset is not constant.
1014 */
1015 NIR_INTRINSIC_RANGE = 5,
1016
1017 /**
1018 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1019 */
1020 NIR_INTRINSIC_DESC_SET = 6,
1021
1022 /**
1023 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1024 */
1025 NIR_INTRINSIC_BINDING = 7,
1026
1027 /**
1028 * Component offset.
1029 */
1030 NIR_INTRINSIC_COMPONENT = 8,
1031
1032 /**
1033 * Interpolation mode (only meaningful for FS inputs).
1034 */
1035 NIR_INTRINSIC_INTERP_MODE = 9,
1036
1037 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1038
1039 } nir_intrinsic_index_flag;
1040
1041 #define NIR_INTRINSIC_MAX_INPUTS 4
1042
1043 typedef struct {
1044 const char *name;
1045
1046 unsigned num_srcs; /** < number of register/SSA inputs */
1047
1048 /** number of components of each input register
1049 *
1050 * If this value is 0, the number of components is given by the
1051 * num_components field of nir_intrinsic_instr.
1052 */
1053 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
1054
1055 bool has_dest;
1056
1057 /** number of components of the output register
1058 *
1059 * If this value is 0, the number of components is given by the
1060 * num_components field of nir_intrinsic_instr.
1061 */
1062 unsigned dest_components;
1063
1064 /** the number of inputs/outputs that are variables */
1065 unsigned num_variables;
1066
1067 /** the number of constant indices used by the intrinsic */
1068 unsigned num_indices;
1069
1070 /** indicates the usage of intr->const_index[n] */
1071 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1072
1073 /** semantic flags for calls to this intrinsic */
1074 nir_intrinsic_semantic_flag flags;
1075 } nir_intrinsic_info;
1076
1077 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1078
1079
1080 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1081 static inline type \
1082 nir_intrinsic_##name(nir_intrinsic_instr *instr) \
1083 { \
1084 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1085 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1086 return instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1087 } \
1088 static inline void \
1089 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1090 { \
1091 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1092 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1093 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1094 }
1095
1096 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1097 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1098 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1099 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1100 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1101 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1102 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1103 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1104 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1105
1106 /**
1107 * \group texture information
1108 *
1109 * This gives semantic information about textures which is useful to the
1110 * frontend, the backend, and lowering passes, but not the optimizer.
1111 */
1112
1113 typedef enum {
1114 nir_tex_src_coord,
1115 nir_tex_src_projector,
1116 nir_tex_src_comparator, /* shadow comparator */
1117 nir_tex_src_offset,
1118 nir_tex_src_bias,
1119 nir_tex_src_lod,
1120 nir_tex_src_ms_index, /* MSAA sample index */
1121 nir_tex_src_ms_mcs, /* MSAA compression value */
1122 nir_tex_src_ddx,
1123 nir_tex_src_ddy,
1124 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1125 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1126 nir_tex_src_plane, /* < selects plane for planar textures */
1127 nir_num_tex_src_types
1128 } nir_tex_src_type;
1129
1130 typedef struct {
1131 nir_src src;
1132 nir_tex_src_type src_type;
1133 } nir_tex_src;
1134
1135 typedef enum {
1136 nir_texop_tex, /**< Regular texture look-up */
1137 nir_texop_txb, /**< Texture look-up with LOD bias */
1138 nir_texop_txl, /**< Texture look-up with explicit LOD */
1139 nir_texop_txd, /**< Texture look-up with partial derivatvies */
1140 nir_texop_txf, /**< Texel fetch with explicit LOD */
1141 nir_texop_txf_ms, /**< Multisample texture fetch */
1142 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1143 nir_texop_txs, /**< Texture size */
1144 nir_texop_lod, /**< Texture lod query */
1145 nir_texop_tg4, /**< Texture gather */
1146 nir_texop_query_levels, /**< Texture levels query */
1147 nir_texop_texture_samples, /**< Texture samples query */
1148 nir_texop_samples_identical, /**< Query whether all samples are definitely
1149 * identical.
1150 */
1151 } nir_texop;
1152
1153 typedef struct {
1154 nir_instr instr;
1155
1156 enum glsl_sampler_dim sampler_dim;
1157 nir_alu_type dest_type;
1158
1159 nir_texop op;
1160 nir_dest dest;
1161 nir_tex_src *src;
1162 unsigned num_srcs, coord_components;
1163 bool is_array, is_shadow;
1164
1165 /**
1166 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1167 * components or the new-style shadow that outputs 1 component.
1168 */
1169 bool is_new_style_shadow;
1170
1171 /* gather component selector */
1172 unsigned component : 2;
1173
1174 /** The texture index
1175 *
1176 * If this texture instruction has a nir_tex_src_texture_offset source,
1177 * then the texture index is given by texture_index + texture_offset.
1178 */
1179 unsigned texture_index;
1180
1181 /** The size of the texture array or 0 if it's not an array */
1182 unsigned texture_array_size;
1183
1184 /** The texture deref
1185 *
1186 * If this is null, use texture_index instead.
1187 */
1188 nir_deref_var *texture;
1189
1190 /** The sampler index
1191 *
1192 * The following operations do not require a sampler and, as such, this
1193 * field should be ignored:
1194 * - nir_texop_txf
1195 * - nir_texop_txf_ms
1196 * - nir_texop_txs
1197 * - nir_texop_lod
1198 * - nir_texop_tg4
1199 * - nir_texop_query_levels
1200 * - nir_texop_texture_samples
1201 * - nir_texop_samples_identical
1202 *
1203 * If this texture instruction has a nir_tex_src_sampler_offset source,
1204 * then the sampler index is given by sampler_index + sampler_offset.
1205 */
1206 unsigned sampler_index;
1207
1208 /** The sampler deref
1209 *
1210 * If this is null, use sampler_index instead.
1211 */
1212 nir_deref_var *sampler;
1213 } nir_tex_instr;
1214
1215 static inline unsigned
1216 nir_tex_instr_dest_size(nir_tex_instr *instr)
1217 {
1218 switch (instr->op) {
1219 case nir_texop_txs: {
1220 unsigned ret;
1221 switch (instr->sampler_dim) {
1222 case GLSL_SAMPLER_DIM_1D:
1223 case GLSL_SAMPLER_DIM_BUF:
1224 ret = 1;
1225 break;
1226 case GLSL_SAMPLER_DIM_2D:
1227 case GLSL_SAMPLER_DIM_CUBE:
1228 case GLSL_SAMPLER_DIM_MS:
1229 case GLSL_SAMPLER_DIM_RECT:
1230 case GLSL_SAMPLER_DIM_EXTERNAL:
1231 case GLSL_SAMPLER_DIM_SUBPASS:
1232 ret = 2;
1233 break;
1234 case GLSL_SAMPLER_DIM_3D:
1235 ret = 3;
1236 break;
1237 default:
1238 unreachable("not reached");
1239 }
1240 if (instr->is_array)
1241 ret++;
1242 return ret;
1243 }
1244
1245 case nir_texop_lod:
1246 return 2;
1247
1248 case nir_texop_texture_samples:
1249 case nir_texop_query_levels:
1250 case nir_texop_samples_identical:
1251 return 1;
1252
1253 default:
1254 if (instr->is_shadow && instr->is_new_style_shadow)
1255 return 1;
1256
1257 return 4;
1258 }
1259 }
1260
1261 /* Returns true if this texture operation queries something about the texture
1262 * rather than actually sampling it.
1263 */
1264 static inline bool
1265 nir_tex_instr_is_query(nir_tex_instr *instr)
1266 {
1267 switch (instr->op) {
1268 case nir_texop_txs:
1269 case nir_texop_lod:
1270 case nir_texop_texture_samples:
1271 case nir_texop_query_levels:
1272 case nir_texop_txf_ms_mcs:
1273 return true;
1274 case nir_texop_tex:
1275 case nir_texop_txb:
1276 case nir_texop_txl:
1277 case nir_texop_txd:
1278 case nir_texop_txf:
1279 case nir_texop_txf_ms:
1280 case nir_texop_tg4:
1281 return false;
1282 default:
1283 unreachable("Invalid texture opcode");
1284 }
1285 }
1286
1287 static inline nir_alu_type
1288 nir_tex_instr_src_type(nir_tex_instr *instr, unsigned src)
1289 {
1290 switch (instr->src[src].src_type) {
1291 case nir_tex_src_coord:
1292 switch (instr->op) {
1293 case nir_texop_txf:
1294 case nir_texop_txf_ms:
1295 case nir_texop_txf_ms_mcs:
1296 case nir_texop_samples_identical:
1297 return nir_type_int;
1298
1299 default:
1300 return nir_type_float;
1301 }
1302
1303 case nir_tex_src_lod:
1304 switch (instr->op) {
1305 case nir_texop_txs:
1306 case nir_texop_txf:
1307 return nir_type_int;
1308
1309 default:
1310 return nir_type_float;
1311 }
1312
1313 case nir_tex_src_projector:
1314 case nir_tex_src_comparator:
1315 case nir_tex_src_bias:
1316 case nir_tex_src_ddx:
1317 case nir_tex_src_ddy:
1318 return nir_type_float;
1319
1320 case nir_tex_src_offset:
1321 case nir_tex_src_ms_index:
1322 case nir_tex_src_texture_offset:
1323 case nir_tex_src_sampler_offset:
1324 return nir_type_int;
1325
1326 default:
1327 unreachable("Invalid texture source type");
1328 }
1329 }
1330
1331 static inline unsigned
1332 nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src)
1333 {
1334 if (instr->src[src].src_type == nir_tex_src_coord)
1335 return instr->coord_components;
1336
1337 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1338 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1339 return 4;
1340
1341 if (instr->src[src].src_type == nir_tex_src_offset ||
1342 instr->src[src].src_type == nir_tex_src_ddx ||
1343 instr->src[src].src_type == nir_tex_src_ddy) {
1344 if (instr->is_array)
1345 return instr->coord_components - 1;
1346 else
1347 return instr->coord_components;
1348 }
1349
1350 return 1;
1351 }
1352
1353 static inline int
1354 nir_tex_instr_src_index(nir_tex_instr *instr, nir_tex_src_type type)
1355 {
1356 for (unsigned i = 0; i < instr->num_srcs; i++)
1357 if (instr->src[i].src_type == type)
1358 return (int) i;
1359
1360 return -1;
1361 }
1362
1363 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1364
1365 typedef struct {
1366 nir_instr instr;
1367
1368 nir_const_value value;
1369
1370 nir_ssa_def def;
1371 } nir_load_const_instr;
1372
1373 typedef enum {
1374 nir_jump_return,
1375 nir_jump_break,
1376 nir_jump_continue,
1377 } nir_jump_type;
1378
1379 typedef struct {
1380 nir_instr instr;
1381 nir_jump_type type;
1382 } nir_jump_instr;
1383
1384 /* creates a new SSA variable in an undefined state */
1385
1386 typedef struct {
1387 nir_instr instr;
1388 nir_ssa_def def;
1389 } nir_ssa_undef_instr;
1390
1391 typedef struct {
1392 struct exec_node node;
1393
1394 /* The predecessor block corresponding to this source */
1395 struct nir_block *pred;
1396
1397 nir_src src;
1398 } nir_phi_src;
1399
1400 #define nir_foreach_phi_src(phi_src, phi) \
1401 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1402 #define nir_foreach_phi_src_safe(phi_src, phi) \
1403 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1404
1405 typedef struct {
1406 nir_instr instr;
1407
1408 struct exec_list srcs; /** < list of nir_phi_src */
1409
1410 nir_dest dest;
1411 } nir_phi_instr;
1412
1413 typedef struct {
1414 struct exec_node node;
1415 nir_src src;
1416 nir_dest dest;
1417 } nir_parallel_copy_entry;
1418
1419 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1420 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1421
1422 typedef struct {
1423 nir_instr instr;
1424
1425 /* A list of nir_parallel_copy_entrys. The sources of all of the
1426 * entries are copied to the corresponding destinations "in parallel".
1427 * In other words, if we have two entries: a -> b and b -> a, the values
1428 * get swapped.
1429 */
1430 struct exec_list entries;
1431 } nir_parallel_copy_instr;
1432
1433 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1434 type, nir_instr_type_alu)
1435 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1436 type, nir_instr_type_call)
1437 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1438 type, nir_instr_type_jump)
1439 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1440 type, nir_instr_type_tex)
1441 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1442 type, nir_instr_type_intrinsic)
1443 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1444 type, nir_instr_type_load_const)
1445 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1446 type, nir_instr_type_ssa_undef)
1447 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1448 type, nir_instr_type_phi)
1449 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1450 nir_parallel_copy_instr, instr,
1451 type, nir_instr_type_parallel_copy)
1452
1453 /*
1454 * Control flow
1455 *
1456 * Control flow consists of a tree of control flow nodes, which include
1457 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1458 * instructions that always run start-to-finish. Each basic block also keeps
1459 * track of its successors (blocks which may run immediately after the current
1460 * block) and predecessors (blocks which could have run immediately before the
1461 * current block). Each function also has a start block and an end block which
1462 * all return statements point to (which is always empty). Together, all the
1463 * blocks with their predecessors and successors make up the control flow
1464 * graph (CFG) of the function. There are helpers that modify the tree of
1465 * control flow nodes while modifying the CFG appropriately; these should be
1466 * used instead of modifying the tree directly.
1467 */
1468
1469 typedef enum {
1470 nir_cf_node_block,
1471 nir_cf_node_if,
1472 nir_cf_node_loop,
1473 nir_cf_node_function
1474 } nir_cf_node_type;
1475
1476 typedef struct nir_cf_node {
1477 struct exec_node node;
1478 nir_cf_node_type type;
1479 struct nir_cf_node *parent;
1480 } nir_cf_node;
1481
1482 typedef struct nir_block {
1483 nir_cf_node cf_node;
1484
1485 struct exec_list instr_list; /** < list of nir_instr */
1486
1487 /** generic block index; generated by nir_index_blocks */
1488 unsigned index;
1489
1490 /*
1491 * Each block can only have up to 2 successors, so we put them in a simple
1492 * array - no need for anything more complicated.
1493 */
1494 struct nir_block *successors[2];
1495
1496 /* Set of nir_block predecessors in the CFG */
1497 struct set *predecessors;
1498
1499 /*
1500 * this node's immediate dominator in the dominance tree - set to NULL for
1501 * the start block.
1502 */
1503 struct nir_block *imm_dom;
1504
1505 /* This node's children in the dominance tree */
1506 unsigned num_dom_children;
1507 struct nir_block **dom_children;
1508
1509 /* Set of nir_blocks on the dominance frontier of this block */
1510 struct set *dom_frontier;
1511
1512 /*
1513 * These two indices have the property that dom_{pre,post}_index for each
1514 * child of this block in the dominance tree will always be between
1515 * dom_pre_index and dom_post_index for this block, which makes testing if
1516 * a given block is dominated by another block an O(1) operation.
1517 */
1518 unsigned dom_pre_index, dom_post_index;
1519
1520 /* live in and out for this block; used for liveness analysis */
1521 BITSET_WORD *live_in;
1522 BITSET_WORD *live_out;
1523 } nir_block;
1524
1525 static inline nir_instr *
1526 nir_block_first_instr(nir_block *block)
1527 {
1528 struct exec_node *head = exec_list_get_head(&block->instr_list);
1529 return exec_node_data(nir_instr, head, node);
1530 }
1531
1532 static inline nir_instr *
1533 nir_block_last_instr(nir_block *block)
1534 {
1535 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1536 return exec_node_data(nir_instr, tail, node);
1537 }
1538
1539 #define nir_foreach_instr(instr, block) \
1540 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1541 #define nir_foreach_instr_reverse(instr, block) \
1542 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1543 #define nir_foreach_instr_safe(instr, block) \
1544 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1545 #define nir_foreach_instr_reverse_safe(instr, block) \
1546 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1547
1548 typedef struct nir_if {
1549 nir_cf_node cf_node;
1550 nir_src condition;
1551
1552 struct exec_list then_list; /** < list of nir_cf_node */
1553 struct exec_list else_list; /** < list of nir_cf_node */
1554 } nir_if;
1555
1556 typedef struct {
1557 nir_if *nif;
1558
1559 nir_instr *conditional_instr;
1560
1561 nir_block *break_block;
1562 nir_block *continue_from_block;
1563
1564 bool continue_from_then;
1565
1566 struct list_head loop_terminator_link;
1567 } nir_loop_terminator;
1568
1569 typedef struct {
1570 /* Number of instructions in the loop */
1571 unsigned num_instructions;
1572
1573 /* How many times the loop is run (if known) */
1574 unsigned trip_count;
1575 bool is_trip_count_known;
1576
1577 /* Unroll the loop regardless of its size */
1578 bool force_unroll;
1579
1580 nir_loop_terminator *limiting_terminator;
1581
1582 /* A list of loop_terminators terminating this loop. */
1583 struct list_head loop_terminator_list;
1584 } nir_loop_info;
1585
1586 typedef struct {
1587 nir_cf_node cf_node;
1588
1589 struct exec_list body; /** < list of nir_cf_node */
1590
1591 nir_loop_info *info;
1592 } nir_loop;
1593
1594 /**
1595 * Various bits of metadata that can may be created or required by
1596 * optimization and analysis passes
1597 */
1598 typedef enum {
1599 nir_metadata_none = 0x0,
1600 nir_metadata_block_index = 0x1,
1601 nir_metadata_dominance = 0x2,
1602 nir_metadata_live_ssa_defs = 0x4,
1603 nir_metadata_not_properly_reset = 0x8,
1604 nir_metadata_loop_analysis = 0x10,
1605 } nir_metadata;
1606
1607 typedef struct {
1608 nir_cf_node cf_node;
1609
1610 /** pointer to the function of which this is an implementation */
1611 struct nir_function *function;
1612
1613 struct exec_list body; /** < list of nir_cf_node */
1614
1615 nir_block *end_block;
1616
1617 /** list for all local variables in the function */
1618 struct exec_list locals;
1619
1620 /** array of variables used as parameters */
1621 unsigned num_params;
1622 nir_variable **params;
1623
1624 /** variable used to hold the result of the function */
1625 nir_variable *return_var;
1626
1627 /** list of local registers in the function */
1628 struct exec_list registers;
1629
1630 /** next available local register index */
1631 unsigned reg_alloc;
1632
1633 /** next available SSA value index */
1634 unsigned ssa_alloc;
1635
1636 /* total number of basic blocks, only valid when block_index_dirty = false */
1637 unsigned num_blocks;
1638
1639 nir_metadata valid_metadata;
1640 } nir_function_impl;
1641
1642 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1643 nir_start_block(nir_function_impl *impl)
1644 {
1645 return (nir_block *) impl->body.head_sentinel.next;
1646 }
1647
1648 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1649 nir_impl_last_block(nir_function_impl *impl)
1650 {
1651 return (nir_block *) impl->body.tail_sentinel.prev;
1652 }
1653
1654 static inline nir_cf_node *
1655 nir_cf_node_next(nir_cf_node *node)
1656 {
1657 struct exec_node *next = exec_node_get_next(&node->node);
1658 if (exec_node_is_tail_sentinel(next))
1659 return NULL;
1660 else
1661 return exec_node_data(nir_cf_node, next, node);
1662 }
1663
1664 static inline nir_cf_node *
1665 nir_cf_node_prev(nir_cf_node *node)
1666 {
1667 struct exec_node *prev = exec_node_get_prev(&node->node);
1668 if (exec_node_is_head_sentinel(prev))
1669 return NULL;
1670 else
1671 return exec_node_data(nir_cf_node, prev, node);
1672 }
1673
1674 static inline bool
1675 nir_cf_node_is_first(const nir_cf_node *node)
1676 {
1677 return exec_node_is_head_sentinel(node->node.prev);
1678 }
1679
1680 static inline bool
1681 nir_cf_node_is_last(const nir_cf_node *node)
1682 {
1683 return exec_node_is_tail_sentinel(node->node.next);
1684 }
1685
1686 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
1687 type, nir_cf_node_block)
1688 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
1689 type, nir_cf_node_if)
1690 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
1691 type, nir_cf_node_loop)
1692 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
1693 nir_function_impl, cf_node, type, nir_cf_node_function)
1694
1695 static inline nir_block *
1696 nir_if_first_then_block(nir_if *if_stmt)
1697 {
1698 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1699 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1700 }
1701
1702 static inline nir_block *
1703 nir_if_last_then_block(nir_if *if_stmt)
1704 {
1705 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1706 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1707 }
1708
1709 static inline nir_block *
1710 nir_if_first_else_block(nir_if *if_stmt)
1711 {
1712 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1713 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1714 }
1715
1716 static inline nir_block *
1717 nir_if_last_else_block(nir_if *if_stmt)
1718 {
1719 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1720 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1721 }
1722
1723 static inline nir_block *
1724 nir_loop_first_block(nir_loop *loop)
1725 {
1726 struct exec_node *head = exec_list_get_head(&loop->body);
1727 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1728 }
1729
1730 static inline nir_block *
1731 nir_loop_last_block(nir_loop *loop)
1732 {
1733 struct exec_node *tail = exec_list_get_tail(&loop->body);
1734 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1735 }
1736
1737 typedef enum {
1738 nir_parameter_in,
1739 nir_parameter_out,
1740 nir_parameter_inout,
1741 } nir_parameter_type;
1742
1743 typedef struct {
1744 nir_parameter_type param_type;
1745 const struct glsl_type *type;
1746 } nir_parameter;
1747
1748 typedef struct nir_function {
1749 struct exec_node node;
1750
1751 const char *name;
1752 struct nir_shader *shader;
1753
1754 unsigned num_params;
1755 nir_parameter *params;
1756 const struct glsl_type *return_type;
1757
1758 /** The implementation of this function.
1759 *
1760 * If the function is only declared and not implemented, this is NULL.
1761 */
1762 nir_function_impl *impl;
1763 } nir_function;
1764
1765 typedef struct nir_shader_compiler_options {
1766 bool lower_fdiv;
1767 bool lower_ffma;
1768 bool fuse_ffma;
1769 bool lower_flrp32;
1770 /** Lowers flrp when it does not support doubles */
1771 bool lower_flrp64;
1772 bool lower_fpow;
1773 bool lower_fsat;
1774 bool lower_fsqrt;
1775 bool lower_fmod32;
1776 bool lower_fmod64;
1777 bool lower_bitfield_extract;
1778 bool lower_bitfield_insert;
1779 bool lower_uadd_carry;
1780 bool lower_usub_borrow;
1781 /** lowers fneg and ineg to fsub and isub. */
1782 bool lower_negate;
1783 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1784 bool lower_sub;
1785
1786 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1787 bool lower_scmp;
1788
1789 /** enables rules to lower idiv by power-of-two: */
1790 bool lower_idiv;
1791
1792 /* Does the native fdot instruction replicate its result for four
1793 * components? If so, then opt_algebraic_late will turn all fdotN
1794 * instructions into fdot_replicatedN instructions.
1795 */
1796 bool fdot_replicates;
1797
1798 /** lowers ffract to fsub+ffloor: */
1799 bool lower_ffract;
1800
1801 bool lower_pack_half_2x16;
1802 bool lower_pack_unorm_2x16;
1803 bool lower_pack_snorm_2x16;
1804 bool lower_pack_unorm_4x8;
1805 bool lower_pack_snorm_4x8;
1806 bool lower_unpack_half_2x16;
1807 bool lower_unpack_unorm_2x16;
1808 bool lower_unpack_snorm_2x16;
1809 bool lower_unpack_unorm_4x8;
1810 bool lower_unpack_snorm_4x8;
1811
1812 bool lower_extract_byte;
1813 bool lower_extract_word;
1814
1815 /**
1816 * Does the driver support real 32-bit integers? (Otherwise, integers
1817 * are simulated by floats.)
1818 */
1819 bool native_integers;
1820
1821 /* Indicates that the driver only has zero-based vertex id */
1822 bool vertex_id_zero_based;
1823
1824 bool lower_cs_local_index_from_id;
1825
1826 /**
1827 * Should nir_lower_io() create load_interpolated_input intrinsics?
1828 *
1829 * If not, it generates regular load_input intrinsics and interpolation
1830 * information must be inferred from the list of input nir_variables.
1831 */
1832 bool use_interpolated_input_intrinsics;
1833
1834 unsigned max_unroll_iterations;
1835 } nir_shader_compiler_options;
1836
1837 typedef struct nir_shader {
1838 /** list of uniforms (nir_variable) */
1839 struct exec_list uniforms;
1840
1841 /** list of inputs (nir_variable) */
1842 struct exec_list inputs;
1843
1844 /** list of outputs (nir_variable) */
1845 struct exec_list outputs;
1846
1847 /** list of shared compute variables (nir_variable) */
1848 struct exec_list shared;
1849
1850 /** Set of driver-specific options for the shader.
1851 *
1852 * The memory for the options is expected to be kept in a single static
1853 * copy by the driver.
1854 */
1855 const struct nir_shader_compiler_options *options;
1856
1857 /** Various bits of compile-time information about a given shader */
1858 struct shader_info *info;
1859
1860 /** list of global variables in the shader (nir_variable) */
1861 struct exec_list globals;
1862
1863 /** list of system value variables in the shader (nir_variable) */
1864 struct exec_list system_values;
1865
1866 struct exec_list functions; /** < list of nir_function */
1867
1868 /** list of global register in the shader */
1869 struct exec_list registers;
1870
1871 /** next available global register index */
1872 unsigned reg_alloc;
1873
1874 /**
1875 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1876 * access plus one
1877 */
1878 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
1879
1880 /** The shader stage, such as MESA_SHADER_VERTEX. */
1881 gl_shader_stage stage;
1882 } nir_shader;
1883
1884 static inline nir_function_impl *
1885 nir_shader_get_entrypoint(nir_shader *shader)
1886 {
1887 assert(exec_list_length(&shader->functions) == 1);
1888 struct exec_node *func_node = exec_list_get_head(&shader->functions);
1889 nir_function *func = exec_node_data(nir_function, func_node, node);
1890 assert(func->return_type == glsl_void_type());
1891 assert(func->num_params == 0);
1892 assert(func->impl);
1893 return func->impl;
1894 }
1895
1896 #define nir_foreach_function(func, shader) \
1897 foreach_list_typed(nir_function, func, node, &(shader)->functions)
1898
1899 nir_shader *nir_shader_create(void *mem_ctx,
1900 gl_shader_stage stage,
1901 const nir_shader_compiler_options *options,
1902 shader_info *si);
1903
1904 /** creates a register, including assigning it an index and adding it to the list */
1905 nir_register *nir_global_reg_create(nir_shader *shader);
1906
1907 nir_register *nir_local_reg_create(nir_function_impl *impl);
1908
1909 void nir_reg_remove(nir_register *reg);
1910
1911 /** Adds a variable to the appropriate list in nir_shader */
1912 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
1913
1914 static inline void
1915 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
1916 {
1917 assert(var->data.mode == nir_var_local);
1918 exec_list_push_tail(&impl->locals, &var->node);
1919 }
1920
1921 /** creates a variable, sets a few defaults, and adds it to the list */
1922 nir_variable *nir_variable_create(nir_shader *shader,
1923 nir_variable_mode mode,
1924 const struct glsl_type *type,
1925 const char *name);
1926 /** creates a local variable and adds it to the list */
1927 nir_variable *nir_local_variable_create(nir_function_impl *impl,
1928 const struct glsl_type *type,
1929 const char *name);
1930
1931 /** creates a function and adds it to the shader's list of functions */
1932 nir_function *nir_function_create(nir_shader *shader, const char *name);
1933
1934 nir_function_impl *nir_function_impl_create(nir_function *func);
1935 /** creates a function_impl that isn't tied to any particular function */
1936 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
1937
1938 nir_block *nir_block_create(nir_shader *shader);
1939 nir_if *nir_if_create(nir_shader *shader);
1940 nir_loop *nir_loop_create(nir_shader *shader);
1941
1942 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1943
1944 /** requests that the given pieces of metadata be generated */
1945 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
1946 /** dirties all but the preserved metadata */
1947 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1948
1949 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1950 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
1951
1952 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
1953
1954 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
1955 unsigned num_components,
1956 unsigned bit_size);
1957
1958 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
1959 nir_intrinsic_op op);
1960
1961 nir_call_instr *nir_call_instr_create(nir_shader *shader,
1962 nir_function *callee);
1963
1964 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
1965
1966 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
1967
1968 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
1969
1970 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
1971 unsigned num_components,
1972 unsigned bit_size);
1973
1974 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1975 nir_deref_array *nir_deref_array_create(void *mem_ctx);
1976 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
1977
1978 typedef bool (*nir_deref_foreach_leaf_cb)(nir_deref_var *deref, void *state);
1979 bool nir_deref_foreach_leaf(nir_deref_var *deref,
1980 nir_deref_foreach_leaf_cb cb, void *state);
1981
1982 nir_load_const_instr *
1983 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
1984
1985 /**
1986 * NIR Cursors and Instruction Insertion API
1987 * @{
1988 *
1989 * A tiny struct representing a point to insert/extract instructions or
1990 * control flow nodes. Helps reduce the combinatorial explosion of possible
1991 * points to insert/extract.
1992 *
1993 * \sa nir_control_flow.h
1994 */
1995 typedef enum {
1996 nir_cursor_before_block,
1997 nir_cursor_after_block,
1998 nir_cursor_before_instr,
1999 nir_cursor_after_instr,
2000 } nir_cursor_option;
2001
2002 typedef struct {
2003 nir_cursor_option option;
2004 union {
2005 nir_block *block;
2006 nir_instr *instr;
2007 };
2008 } nir_cursor;
2009
2010 static inline nir_block *
2011 nir_cursor_current_block(nir_cursor cursor)
2012 {
2013 if (cursor.option == nir_cursor_before_instr ||
2014 cursor.option == nir_cursor_after_instr) {
2015 return cursor.instr->block;
2016 } else {
2017 return cursor.block;
2018 }
2019 }
2020
2021 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2022
2023 static inline nir_cursor
2024 nir_before_block(nir_block *block)
2025 {
2026 nir_cursor cursor;
2027 cursor.option = nir_cursor_before_block;
2028 cursor.block = block;
2029 return cursor;
2030 }
2031
2032 static inline nir_cursor
2033 nir_after_block(nir_block *block)
2034 {
2035 nir_cursor cursor;
2036 cursor.option = nir_cursor_after_block;
2037 cursor.block = block;
2038 return cursor;
2039 }
2040
2041 static inline nir_cursor
2042 nir_before_instr(nir_instr *instr)
2043 {
2044 nir_cursor cursor;
2045 cursor.option = nir_cursor_before_instr;
2046 cursor.instr = instr;
2047 return cursor;
2048 }
2049
2050 static inline nir_cursor
2051 nir_after_instr(nir_instr *instr)
2052 {
2053 nir_cursor cursor;
2054 cursor.option = nir_cursor_after_instr;
2055 cursor.instr = instr;
2056 return cursor;
2057 }
2058
2059 static inline nir_cursor
2060 nir_after_block_before_jump(nir_block *block)
2061 {
2062 nir_instr *last_instr = nir_block_last_instr(block);
2063 if (last_instr && last_instr->type == nir_instr_type_jump) {
2064 return nir_before_instr(last_instr);
2065 } else {
2066 return nir_after_block(block);
2067 }
2068 }
2069
2070 static inline nir_cursor
2071 nir_before_cf_node(nir_cf_node *node)
2072 {
2073 if (node->type == nir_cf_node_block)
2074 return nir_before_block(nir_cf_node_as_block(node));
2075
2076 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2077 }
2078
2079 static inline nir_cursor
2080 nir_after_cf_node(nir_cf_node *node)
2081 {
2082 if (node->type == nir_cf_node_block)
2083 return nir_after_block(nir_cf_node_as_block(node));
2084
2085 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2086 }
2087
2088 static inline nir_cursor
2089 nir_after_phis(nir_block *block)
2090 {
2091 nir_foreach_instr(instr, block) {
2092 if (instr->type != nir_instr_type_phi)
2093 return nir_before_instr(instr);
2094 }
2095 return nir_after_block(block);
2096 }
2097
2098 static inline nir_cursor
2099 nir_after_cf_node_and_phis(nir_cf_node *node)
2100 {
2101 if (node->type == nir_cf_node_block)
2102 return nir_after_block(nir_cf_node_as_block(node));
2103
2104 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2105
2106 return nir_after_phis(block);
2107 }
2108
2109 static inline nir_cursor
2110 nir_before_cf_list(struct exec_list *cf_list)
2111 {
2112 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2113 exec_list_get_head(cf_list), node);
2114 return nir_before_cf_node(first_node);
2115 }
2116
2117 static inline nir_cursor
2118 nir_after_cf_list(struct exec_list *cf_list)
2119 {
2120 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2121 exec_list_get_tail(cf_list), node);
2122 return nir_after_cf_node(last_node);
2123 }
2124
2125 /**
2126 * Insert a NIR instruction at the given cursor.
2127 *
2128 * Note: This does not update the cursor.
2129 */
2130 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2131
2132 static inline void
2133 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2134 {
2135 nir_instr_insert(nir_before_instr(instr), before);
2136 }
2137
2138 static inline void
2139 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2140 {
2141 nir_instr_insert(nir_after_instr(instr), after);
2142 }
2143
2144 static inline void
2145 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2146 {
2147 nir_instr_insert(nir_before_block(block), before);
2148 }
2149
2150 static inline void
2151 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2152 {
2153 nir_instr_insert(nir_after_block(block), after);
2154 }
2155
2156 static inline void
2157 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2158 {
2159 nir_instr_insert(nir_before_cf_node(node), before);
2160 }
2161
2162 static inline void
2163 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2164 {
2165 nir_instr_insert(nir_after_cf_node(node), after);
2166 }
2167
2168 static inline void
2169 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2170 {
2171 nir_instr_insert(nir_before_cf_list(list), before);
2172 }
2173
2174 static inline void
2175 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2176 {
2177 nir_instr_insert(nir_after_cf_list(list), after);
2178 }
2179
2180 void nir_instr_remove(nir_instr *instr);
2181
2182 /** @} */
2183
2184 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2185 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2186 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2187 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2188 void *state);
2189 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2190 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2191
2192 nir_const_value *nir_src_as_const_value(nir_src src);
2193 bool nir_src_is_dynamically_uniform(nir_src src);
2194 bool nir_srcs_equal(nir_src src1, nir_src src2);
2195 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2196 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2197 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2198 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2199 nir_dest new_dest);
2200
2201 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2202 unsigned num_components, unsigned bit_size,
2203 const char *name);
2204 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2205 unsigned num_components, unsigned bit_size,
2206 const char *name);
2207 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2208 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2209 nir_instr *after_me);
2210
2211 uint8_t nir_ssa_def_components_read(nir_ssa_def *def);
2212
2213 /*
2214 * finds the next basic block in source-code order, returns NULL if there is
2215 * none
2216 */
2217
2218 nir_block *nir_block_cf_tree_next(nir_block *block);
2219
2220 /* Performs the opposite of nir_block_cf_tree_next() */
2221
2222 nir_block *nir_block_cf_tree_prev(nir_block *block);
2223
2224 /* Gets the first block in a CF node in source-code order */
2225
2226 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2227
2228 /* Gets the last block in a CF node in source-code order */
2229
2230 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2231
2232 /* Gets the next block after a CF node in source-code order */
2233
2234 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2235
2236 /* Macros for loops that visit blocks in source-code order */
2237
2238 #define nir_foreach_block(block, impl) \
2239 for (nir_block *block = nir_start_block(impl); block != NULL; \
2240 block = nir_block_cf_tree_next(block))
2241
2242 #define nir_foreach_block_safe(block, impl) \
2243 for (nir_block *block = nir_start_block(impl), \
2244 *next = nir_block_cf_tree_next(block); \
2245 block != NULL; \
2246 block = next, next = nir_block_cf_tree_next(block))
2247
2248 #define nir_foreach_block_reverse(block, impl) \
2249 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2250 block = nir_block_cf_tree_prev(block))
2251
2252 #define nir_foreach_block_reverse_safe(block, impl) \
2253 for (nir_block *block = nir_impl_last_block(impl), \
2254 *prev = nir_block_cf_tree_prev(block); \
2255 block != NULL; \
2256 block = prev, prev = nir_block_cf_tree_prev(block))
2257
2258 #define nir_foreach_block_in_cf_node(block, node) \
2259 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2260 block != nir_cf_node_cf_tree_next(node); \
2261 block = nir_block_cf_tree_next(block))
2262
2263 /* If the following CF node is an if, this function returns that if.
2264 * Otherwise, it returns NULL.
2265 */
2266 nir_if *nir_block_get_following_if(nir_block *block);
2267
2268 nir_loop *nir_block_get_following_loop(nir_block *block);
2269
2270 void nir_index_local_regs(nir_function_impl *impl);
2271 void nir_index_global_regs(nir_shader *shader);
2272 void nir_index_ssa_defs(nir_function_impl *impl);
2273 unsigned nir_index_instrs(nir_function_impl *impl);
2274
2275 void nir_index_blocks(nir_function_impl *impl);
2276
2277 void nir_print_shader(nir_shader *shader, FILE *fp);
2278 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2279 void nir_print_instr(const nir_instr *instr, FILE *fp);
2280
2281 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2282 nir_function_impl *nir_function_impl_clone(const nir_function_impl *fi);
2283 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2284 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2285 nir_deref *nir_deref_clone(const nir_deref *deref, void *mem_ctx);
2286 nir_deref_var *nir_deref_var_clone(const nir_deref_var *deref, void *mem_ctx);
2287
2288 #ifdef DEBUG
2289 void nir_validate_shader(nir_shader *shader);
2290 void nir_metadata_set_validation_flag(nir_shader *shader);
2291 void nir_metadata_check_validation_flag(nir_shader *shader);
2292
2293 static inline bool
2294 should_clone_nir(void)
2295 {
2296 static int should_clone = -1;
2297 if (should_clone < 0)
2298 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2299
2300 return should_clone;
2301 }
2302 #else
2303 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
2304 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2305 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2306 static inline bool should_clone_nir(void) { return false; }
2307 #endif /* DEBUG */
2308
2309 #define _PASS(nir, do_pass) do { \
2310 do_pass \
2311 nir_validate_shader(nir); \
2312 if (should_clone_nir()) { \
2313 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2314 ralloc_free(nir); \
2315 nir = clone; \
2316 } \
2317 } while (0)
2318
2319 #define NIR_PASS(progress, nir, pass, ...) _PASS(nir, \
2320 nir_metadata_set_validation_flag(nir); \
2321 if (pass(nir, ##__VA_ARGS__)) { \
2322 progress = true; \
2323 nir_metadata_check_validation_flag(nir); \
2324 } \
2325 )
2326
2327 #define NIR_PASS_V(nir, pass, ...) _PASS(nir, \
2328 pass(nir, ##__VA_ARGS__); \
2329 )
2330
2331 void nir_calc_dominance_impl(nir_function_impl *impl);
2332 void nir_calc_dominance(nir_shader *shader);
2333
2334 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2335 bool nir_block_dominates(nir_block *parent, nir_block *child);
2336
2337 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2338 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2339
2340 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2341 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2342
2343 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2344 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2345
2346 int nir_gs_count_vertices(const nir_shader *shader);
2347
2348 bool nir_split_var_copies(nir_shader *shader);
2349
2350 bool nir_lower_returns_impl(nir_function_impl *impl);
2351 bool nir_lower_returns(nir_shader *shader);
2352
2353 bool nir_inline_functions(nir_shader *shader);
2354
2355 bool nir_propagate_invariant(nir_shader *shader);
2356
2357 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
2358 void nir_lower_var_copies(nir_shader *shader);
2359
2360 bool nir_lower_global_vars_to_local(nir_shader *shader);
2361
2362 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
2363
2364 bool nir_lower_locals_to_regs(nir_shader *shader);
2365
2366 void nir_lower_io_to_temporaries(nir_shader *shader,
2367 nir_function_impl *entrypoint,
2368 bool outputs, bool inputs);
2369
2370 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2371
2372 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
2373 int (*type_size)(const struct glsl_type *));
2374
2375 typedef enum {
2376 /* If set, this forces all non-flat fragment shader inputs to be
2377 * interpolated as if with the "sample" qualifier. This requires
2378 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
2379 */
2380 nir_lower_io_force_sample_interpolation = (1 << 1),
2381 } nir_lower_io_options;
2382 void nir_lower_io(nir_shader *shader,
2383 nir_variable_mode modes,
2384 int (*type_size)(const struct glsl_type *),
2385 nir_lower_io_options);
2386 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2387 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2388
2389 bool nir_is_per_vertex_io(nir_variable *var, gl_shader_stage stage);
2390
2391 void nir_lower_io_types(nir_shader *shader);
2392 void nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
2393 void nir_lower_regs_to_ssa(nir_shader *shader);
2394 bool nir_lower_vars_to_ssa(nir_shader *shader);
2395
2396 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
2397 bool nir_lower_constant_initializers(nir_shader *shader,
2398 nir_variable_mode modes);
2399
2400 void nir_move_vec_src_uses_to_dest(nir_shader *shader);
2401 bool nir_lower_vec_to_movs(nir_shader *shader);
2402 bool nir_lower_alu_to_scalar(nir_shader *shader);
2403 void nir_lower_load_const_to_scalar(nir_shader *shader);
2404
2405 bool nir_lower_phis_to_scalar(nir_shader *shader);
2406 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
2407
2408 void nir_lower_samplers(nir_shader *shader,
2409 const struct gl_shader_program *shader_program);
2410
2411 bool nir_lower_system_values(nir_shader *shader);
2412
2413 typedef struct nir_lower_tex_options {
2414 /**
2415 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2416 * sampler types a texture projector is lowered.
2417 */
2418 unsigned lower_txp;
2419
2420 /**
2421 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
2422 */
2423 bool lower_txf_offset;
2424
2425 /**
2426 * If true, lower away nir_tex_src_offset for all rect textures.
2427 */
2428 bool lower_rect_offset;
2429
2430 /**
2431 * If true, lower rect textures to 2D, using txs to fetch the
2432 * texture dimensions and dividing the texture coords by the
2433 * texture dims to normalize.
2434 */
2435 bool lower_rect;
2436
2437 /**
2438 * If true, convert yuv to rgb.
2439 */
2440 unsigned lower_y_uv_external;
2441 unsigned lower_y_u_v_external;
2442 unsigned lower_yx_xuxv_external;
2443
2444 /**
2445 * To emulate certain texture wrap modes, this can be used
2446 * to saturate the specified tex coord to [0.0, 1.0]. The
2447 * bits are according to sampler #, ie. if, for example:
2448 *
2449 * (conf->saturate_s & (1 << n))
2450 *
2451 * is true, then the s coord for sampler n is saturated.
2452 *
2453 * Note that clamping must happen *after* projector lowering
2454 * so any projected texture sample instruction with a clamped
2455 * coordinate gets automatically lowered, regardless of the
2456 * 'lower_txp' setting.
2457 */
2458 unsigned saturate_s;
2459 unsigned saturate_t;
2460 unsigned saturate_r;
2461
2462 /* Bitmask of textures that need swizzling.
2463 *
2464 * If (swizzle_result & (1 << texture_index)), then the swizzle in
2465 * swizzles[texture_index] is applied to the result of the texturing
2466 * operation.
2467 */
2468 unsigned swizzle_result;
2469
2470 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
2471 * while 4 and 5 represent 0 and 1 respectively.
2472 */
2473 uint8_t swizzles[32][4];
2474
2475 /**
2476 * Bitmap of textures that need srgb to linear conversion. If
2477 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
2478 * of the texture are lowered to linear.
2479 */
2480 unsigned lower_srgb;
2481
2482 /**
2483 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
2484 */
2485 bool lower_txd_cube_map;
2486
2487 /**
2488 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
2489 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
2490 * with lower_txd_cube_map.
2491 */
2492 bool lower_txd_shadow;
2493 } nir_lower_tex_options;
2494
2495 bool nir_lower_tex(nir_shader *shader,
2496 const nir_lower_tex_options *options);
2497
2498 bool nir_lower_idiv(nir_shader *shader);
2499
2500 void nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
2501 void nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
2502 void nir_lower_clip_cull_distance_arrays(nir_shader *nir);
2503
2504 void nir_lower_two_sided_color(nir_shader *shader);
2505
2506 void nir_lower_clamp_color_outputs(nir_shader *shader);
2507
2508 void nir_lower_passthrough_edgeflags(nir_shader *shader);
2509 void nir_lower_tes_patch_vertices(nir_shader *tes, unsigned patch_vertices);
2510
2511 typedef struct nir_lower_wpos_ytransform_options {
2512 int state_tokens[5];
2513 bool fs_coord_origin_upper_left :1;
2514 bool fs_coord_origin_lower_left :1;
2515 bool fs_coord_pixel_center_integer :1;
2516 bool fs_coord_pixel_center_half_integer :1;
2517 } nir_lower_wpos_ytransform_options;
2518
2519 bool nir_lower_wpos_ytransform(nir_shader *shader,
2520 const nir_lower_wpos_ytransform_options *options);
2521 bool nir_lower_wpos_center(nir_shader *shader);
2522
2523 typedef struct nir_lower_drawpixels_options {
2524 int texcoord_state_tokens[5];
2525 int scale_state_tokens[5];
2526 int bias_state_tokens[5];
2527 unsigned drawpix_sampler;
2528 unsigned pixelmap_sampler;
2529 bool pixel_maps :1;
2530 bool scale_and_bias :1;
2531 } nir_lower_drawpixels_options;
2532
2533 void nir_lower_drawpixels(nir_shader *shader,
2534 const nir_lower_drawpixels_options *options);
2535
2536 typedef struct nir_lower_bitmap_options {
2537 unsigned sampler;
2538 bool swizzle_xxxx;
2539 } nir_lower_bitmap_options;
2540
2541 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
2542
2543 void nir_lower_atomics(nir_shader *shader,
2544 const struct gl_shader_program *shader_program);
2545 void nir_lower_to_source_mods(nir_shader *shader);
2546
2547 bool nir_lower_gs_intrinsics(nir_shader *shader);
2548
2549 typedef enum {
2550 nir_lower_imul64 = (1 << 0),
2551 nir_lower_isign64 = (1 << 1),
2552 /** Lower all int64 modulus and division opcodes */
2553 nir_lower_divmod64 = (1 << 2),
2554 } nir_lower_int64_options;
2555
2556 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
2557
2558 typedef enum {
2559 nir_lower_drcp = (1 << 0),
2560 nir_lower_dsqrt = (1 << 1),
2561 nir_lower_drsq = (1 << 2),
2562 nir_lower_dtrunc = (1 << 3),
2563 nir_lower_dfloor = (1 << 4),
2564 nir_lower_dceil = (1 << 5),
2565 nir_lower_dfract = (1 << 6),
2566 nir_lower_dround_even = (1 << 7),
2567 nir_lower_dmod = (1 << 8)
2568 } nir_lower_doubles_options;
2569
2570 bool nir_lower_doubles(nir_shader *shader, nir_lower_doubles_options options);
2571 bool nir_lower_64bit_pack(nir_shader *shader);
2572
2573 bool nir_normalize_cubemap_coords(nir_shader *shader);
2574
2575 void nir_live_ssa_defs_impl(nir_function_impl *impl);
2576
2577 void nir_loop_analyze_impl(nir_function_impl *impl,
2578 nir_variable_mode indirect_mask);
2579
2580 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
2581
2582 bool nir_repair_ssa_impl(nir_function_impl *impl);
2583 bool nir_repair_ssa(nir_shader *shader);
2584
2585 void nir_convert_loop_to_lcssa(nir_loop *loop);
2586
2587 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
2588 * registers. If false, convert all values (even those not involved in a phi
2589 * node) to registers.
2590 */
2591 void nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
2592
2593 bool nir_lower_phis_to_regs_block(nir_block *block);
2594 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
2595
2596 bool nir_opt_algebraic(nir_shader *shader);
2597 bool nir_opt_algebraic_late(nir_shader *shader);
2598 bool nir_opt_constant_folding(nir_shader *shader);
2599
2600 bool nir_opt_global_to_local(nir_shader *shader);
2601
2602 bool nir_copy_prop(nir_shader *shader);
2603
2604 bool nir_opt_copy_prop_vars(nir_shader *shader);
2605
2606 bool nir_opt_cse(nir_shader *shader);
2607
2608 bool nir_opt_dce(nir_shader *shader);
2609
2610 bool nir_opt_dead_cf(nir_shader *shader);
2611
2612 bool nir_opt_gcm(nir_shader *shader, bool value_number);
2613
2614 bool nir_opt_if(nir_shader *shader);
2615
2616 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
2617
2618 bool nir_opt_move_comparisons(nir_shader *shader);
2619
2620 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit);
2621
2622 bool nir_opt_remove_phis(nir_shader *shader);
2623
2624 bool nir_opt_trivial_continues(nir_shader *shader);
2625
2626 bool nir_opt_undef(nir_shader *shader);
2627
2628 bool nir_opt_conditional_discard(nir_shader *shader);
2629
2630 void nir_sweep(nir_shader *shader);
2631
2632 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
2633 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
2634
2635 #ifdef __cplusplus
2636 } /* extern "C" */
2637 #endif
2638
2639 #endif /* NIR_H */