nir: Add unit tests for nir_opt_comparison_pre
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitscan.h"
38 #include "util/bitset.h"
39 #include "util/macros.h"
40 #include "compiler/nir_types.h"
41 #include "compiler/shader_enums.h"
42 #include "compiler/shader_info.h"
43 #include <stdio.h>
44
45 #ifndef NDEBUG
46 #include "util/debug.h"
47 #endif /* NDEBUG */
48
49 #include "nir_opcodes.h"
50
51 #if defined(_WIN32) && !defined(snprintf)
52 #define snprintf _snprintf
53 #endif
54
55 #ifdef __cplusplus
56 extern "C" {
57 #endif
58
59 #define NIR_FALSE 0u
60 #define NIR_TRUE (~0u)
61 #define NIR_MAX_VEC_COMPONENTS 4
62 #define NIR_MAX_MATRIX_COLUMNS 4
63 typedef uint8_t nir_component_mask_t;
64
65 /** Defines a cast function
66 *
67 * This macro defines a cast function from in_type to out_type where
68 * out_type is some structure type that contains a field of type out_type.
69 *
70 * Note that you have to be a bit careful as the generated cast function
71 * destroys constness.
72 */
73 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
74 type_field, type_value) \
75 static inline out_type * \
76 name(const in_type *parent) \
77 { \
78 assert(parent && parent->type_field == type_value); \
79 return exec_node_data(out_type, parent, field); \
80 }
81
82 struct nir_function;
83 struct nir_shader;
84 struct nir_instr;
85 struct nir_builder;
86
87
88 /**
89 * Description of built-in state associated with a uniform
90 *
91 * \sa nir_variable::state_slots
92 */
93 typedef struct {
94 gl_state_index16 tokens[STATE_LENGTH];
95 int swizzle;
96 } nir_state_slot;
97
98 typedef enum {
99 nir_var_shader_in = (1 << 0),
100 nir_var_shader_out = (1 << 1),
101 nir_var_shader_temp = (1 << 2),
102 nir_var_function_temp = (1 << 3),
103 nir_var_uniform = (1 << 4),
104 nir_var_mem_ubo = (1 << 5),
105 nir_var_system_value = (1 << 6),
106 nir_var_mem_ssbo = (1 << 7),
107 nir_var_mem_shared = (1 << 8),
108 nir_var_mem_global = (1 << 9),
109 nir_var_all = ~0,
110 } nir_variable_mode;
111
112 /**
113 * Rounding modes.
114 */
115 typedef enum {
116 nir_rounding_mode_undef = 0,
117 nir_rounding_mode_rtne = 1, /* round to nearest even */
118 nir_rounding_mode_ru = 2, /* round up */
119 nir_rounding_mode_rd = 3, /* round down */
120 nir_rounding_mode_rtz = 4, /* round towards zero */
121 } nir_rounding_mode;
122
123 typedef union {
124 bool b;
125 float f32;
126 double f64;
127 int8_t i8;
128 uint8_t u8;
129 int16_t i16;
130 uint16_t u16;
131 int32_t i32;
132 uint32_t u32;
133 int64_t i64;
134 uint64_t u64;
135 } nir_const_value;
136
137 #define nir_const_value_to_array(arr, c, components, m) \
138 { \
139 for (unsigned i = 0; i < components; ++i) \
140 arr[i] = c[i].m; \
141 } while (false)
142
143 typedef struct nir_constant {
144 /**
145 * Value of the constant.
146 *
147 * The field used to back the values supplied by the constant is determined
148 * by the type associated with the \c nir_variable. Constants may be
149 * scalars, vectors, or matrices.
150 */
151 nir_const_value values[NIR_MAX_VEC_COMPONENTS];
152
153 /* we could get this from the var->type but makes clone *much* easier to
154 * not have to care about the type.
155 */
156 unsigned num_elements;
157
158 /* Array elements / Structure Fields */
159 struct nir_constant **elements;
160 } nir_constant;
161
162 /**
163 * \brief Layout qualifiers for gl_FragDepth.
164 *
165 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
166 * with a layout qualifier.
167 */
168 typedef enum {
169 nir_depth_layout_none, /**< No depth layout is specified. */
170 nir_depth_layout_any,
171 nir_depth_layout_greater,
172 nir_depth_layout_less,
173 nir_depth_layout_unchanged
174 } nir_depth_layout;
175
176 /**
177 * Enum keeping track of how a variable was declared.
178 */
179 typedef enum {
180 /**
181 * Normal declaration.
182 */
183 nir_var_declared_normally = 0,
184
185 /**
186 * Variable is implicitly generated by the compiler and should not be
187 * visible via the API.
188 */
189 nir_var_hidden,
190 } nir_var_declaration_type;
191
192 /**
193 * Either a uniform, global variable, shader input, or shader output. Based on
194 * ir_variable - it should be easy to translate between the two.
195 */
196
197 typedef struct nir_variable {
198 struct exec_node node;
199
200 /**
201 * Declared type of the variable
202 */
203 const struct glsl_type *type;
204
205 /**
206 * Declared name of the variable
207 */
208 char *name;
209
210 struct nir_variable_data {
211 /**
212 * Storage class of the variable.
213 *
214 * \sa nir_variable_mode
215 */
216 nir_variable_mode mode;
217
218 /**
219 * Is the variable read-only?
220 *
221 * This is set for variables declared as \c const, shader inputs,
222 * and uniforms.
223 */
224 unsigned read_only:1;
225 unsigned centroid:1;
226 unsigned sample:1;
227 unsigned patch:1;
228 unsigned invariant:1;
229
230 /**
231 * Can this variable be coalesced with another?
232 *
233 * This is set by nir_lower_io_to_temporaries to say that any
234 * copies involving this variable should stay put. Propagating it can
235 * duplicate the resulting load/store, which is not wanted, and may
236 * result in a load/store of the variable with an indirect offset which
237 * the backend may not be able to handle.
238 */
239 unsigned cannot_coalesce:1;
240
241 /**
242 * When separate shader programs are enabled, only input/outputs between
243 * the stages of a multi-stage separate program can be safely removed
244 * from the shader interface. Other input/outputs must remains active.
245 *
246 * This is also used to make sure xfb varyings that are unused by the
247 * fragment shader are not removed.
248 */
249 unsigned always_active_io:1;
250
251 /**
252 * Interpolation mode for shader inputs / outputs
253 *
254 * \sa glsl_interp_mode
255 */
256 unsigned interpolation:2;
257
258 /**
259 * If non-zero, then this variable may be packed along with other variables
260 * into a single varying slot, so this offset should be applied when
261 * accessing components. For example, an offset of 1 means that the x
262 * component of this variable is actually stored in component y of the
263 * location specified by \c location.
264 */
265 unsigned location_frac:2;
266
267 /**
268 * If true, this variable represents an array of scalars that should
269 * be tightly packed. In other words, consecutive array elements
270 * should be stored one component apart, rather than one slot apart.
271 */
272 unsigned compact:1;
273
274 /**
275 * Whether this is a fragment shader output implicitly initialized with
276 * the previous contents of the specified render target at the
277 * framebuffer location corresponding to this shader invocation.
278 */
279 unsigned fb_fetch_output:1;
280
281 /**
282 * Non-zero if this variable is considered bindless as defined by
283 * ARB_bindless_texture.
284 */
285 unsigned bindless:1;
286
287 /**
288 * Was an explicit binding set in the shader?
289 */
290 unsigned explicit_binding:1;
291
292 /**
293 * Was a transfer feedback buffer set in the shader?
294 */
295 unsigned explicit_xfb_buffer:1;
296
297 /**
298 * Was a transfer feedback stride set in the shader?
299 */
300 unsigned explicit_xfb_stride:1;
301
302 /**
303 * Was an explicit offset set in the shader?
304 */
305 unsigned explicit_offset:1;
306
307 /**
308 * \brief Layout qualifier for gl_FragDepth.
309 *
310 * This is not equal to \c ir_depth_layout_none if and only if this
311 * variable is \c gl_FragDepth and a layout qualifier is specified.
312 */
313 nir_depth_layout depth_layout;
314
315 /**
316 * Storage location of the base of this variable
317 *
318 * The precise meaning of this field depends on the nature of the variable.
319 *
320 * - Vertex shader input: one of the values from \c gl_vert_attrib.
321 * - Vertex shader output: one of the values from \c gl_varying_slot.
322 * - Geometry shader input: one of the values from \c gl_varying_slot.
323 * - Geometry shader output: one of the values from \c gl_varying_slot.
324 * - Fragment shader input: one of the values from \c gl_varying_slot.
325 * - Fragment shader output: one of the values from \c gl_frag_result.
326 * - Uniforms: Per-stage uniform slot number for default uniform block.
327 * - Uniforms: Index within the uniform block definition for UBO members.
328 * - Non-UBO Uniforms: uniform slot number.
329 * - Other: This field is not currently used.
330 *
331 * If the variable is a uniform, shader input, or shader output, and the
332 * slot has not been assigned, the value will be -1.
333 */
334 int location;
335
336 /**
337 * The actual location of the variable in the IR. Only valid for inputs
338 * and outputs.
339 */
340 unsigned int driver_location;
341
342 /**
343 * Vertex stream output identifier.
344 *
345 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
346 * stream of the i-th component.
347 */
348 unsigned stream;
349
350 /**
351 * output index for dual source blending.
352 */
353 int index;
354
355 /**
356 * Descriptor set binding for sampler or UBO.
357 */
358 int descriptor_set;
359
360 /**
361 * Initial binding point for a sampler or UBO.
362 *
363 * For array types, this represents the binding point for the first element.
364 */
365 int binding;
366
367 /**
368 * Location an atomic counter or transform feedback is stored at.
369 */
370 unsigned offset;
371
372 /**
373 * Transform feedback buffer.
374 */
375 unsigned xfb_buffer;
376
377 /**
378 * Transform feedback stride.
379 */
380 unsigned xfb_stride;
381
382 /**
383 * How the variable was declared. See nir_var_declaration_type.
384 *
385 * This is used to detect variables generated by the compiler, so should
386 * not be visible via the API.
387 */
388 unsigned how_declared:2;
389
390 /**
391 * ARB_shader_image_load_store qualifiers.
392 */
393 struct {
394 enum gl_access_qualifier access;
395
396 /** Image internal format if specified explicitly, otherwise GL_NONE. */
397 GLenum format;
398 } image;
399 } data;
400
401 /**
402 * Built-in state that backs this uniform
403 *
404 * Once set at variable creation, \c state_slots must remain invariant.
405 * This is because, ideally, this array would be shared by all clones of
406 * this variable in the IR tree. In other words, we'd really like for it
407 * to be a fly-weight.
408 *
409 * If the variable is not a uniform, \c num_state_slots will be zero and
410 * \c state_slots will be \c NULL.
411 */
412 /*@{*/
413 unsigned num_state_slots; /**< Number of state slots used */
414 nir_state_slot *state_slots; /**< State descriptors. */
415 /*@}*/
416
417 /**
418 * Constant expression assigned in the initializer of the variable
419 *
420 * This field should only be used temporarily by creators of NIR shaders
421 * and then lower_constant_initializers can be used to get rid of them.
422 * Most of the rest of NIR ignores this field or asserts that it's NULL.
423 */
424 nir_constant *constant_initializer;
425
426 /**
427 * For variables that are in an interface block or are an instance of an
428 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
429 *
430 * \sa ir_variable::location
431 */
432 const struct glsl_type *interface_type;
433
434 /**
435 * Description of per-member data for per-member struct variables
436 *
437 * This is used for variables which are actually an amalgamation of
438 * multiple entities such as a struct of built-in values or a struct of
439 * inputs each with their own layout specifier. This is only allowed on
440 * variables with a struct or array of array of struct type.
441 */
442 unsigned num_members;
443 struct nir_variable_data *members;
444 } nir_variable;
445
446 #define nir_foreach_variable(var, var_list) \
447 foreach_list_typed(nir_variable, var, node, var_list)
448
449 #define nir_foreach_variable_safe(var, var_list) \
450 foreach_list_typed_safe(nir_variable, var, node, var_list)
451
452 static inline bool
453 nir_variable_is_global(const nir_variable *var)
454 {
455 return var->data.mode != nir_var_function_temp;
456 }
457
458 typedef struct nir_register {
459 struct exec_node node;
460
461 unsigned num_components; /** < number of vector components */
462 unsigned num_array_elems; /** < size of array (0 for no array) */
463
464 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
465 uint8_t bit_size;
466
467 /** generic register index. */
468 unsigned index;
469
470 /** only for debug purposes, can be NULL */
471 const char *name;
472
473 /** set of nir_srcs where this register is used (read from) */
474 struct list_head uses;
475
476 /** set of nir_dests where this register is defined (written to) */
477 struct list_head defs;
478
479 /** set of nir_ifs where this register is used as a condition */
480 struct list_head if_uses;
481 } nir_register;
482
483 #define nir_foreach_register(reg, reg_list) \
484 foreach_list_typed(nir_register, reg, node, reg_list)
485 #define nir_foreach_register_safe(reg, reg_list) \
486 foreach_list_typed_safe(nir_register, reg, node, reg_list)
487
488 typedef enum PACKED {
489 nir_instr_type_alu,
490 nir_instr_type_deref,
491 nir_instr_type_call,
492 nir_instr_type_tex,
493 nir_instr_type_intrinsic,
494 nir_instr_type_load_const,
495 nir_instr_type_jump,
496 nir_instr_type_ssa_undef,
497 nir_instr_type_phi,
498 nir_instr_type_parallel_copy,
499 } nir_instr_type;
500
501 typedef struct nir_instr {
502 struct exec_node node;
503 struct nir_block *block;
504 nir_instr_type type;
505
506 /* A temporary for optimization and analysis passes to use for storing
507 * flags. For instance, DCE uses this to store the "dead/live" info.
508 */
509 uint8_t pass_flags;
510
511 /** generic instruction index. */
512 unsigned index;
513 } nir_instr;
514
515 static inline nir_instr *
516 nir_instr_next(nir_instr *instr)
517 {
518 struct exec_node *next = exec_node_get_next(&instr->node);
519 if (exec_node_is_tail_sentinel(next))
520 return NULL;
521 else
522 return exec_node_data(nir_instr, next, node);
523 }
524
525 static inline nir_instr *
526 nir_instr_prev(nir_instr *instr)
527 {
528 struct exec_node *prev = exec_node_get_prev(&instr->node);
529 if (exec_node_is_head_sentinel(prev))
530 return NULL;
531 else
532 return exec_node_data(nir_instr, prev, node);
533 }
534
535 static inline bool
536 nir_instr_is_first(const nir_instr *instr)
537 {
538 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
539 }
540
541 static inline bool
542 nir_instr_is_last(const nir_instr *instr)
543 {
544 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
545 }
546
547 typedef struct nir_ssa_def {
548 /** for debugging only, can be NULL */
549 const char* name;
550
551 /** generic SSA definition index. */
552 unsigned index;
553
554 /** Index into the live_in and live_out bitfields */
555 unsigned live_index;
556
557 /** Instruction which produces this SSA value. */
558 nir_instr *parent_instr;
559
560 /** set of nir_instrs where this register is used (read from) */
561 struct list_head uses;
562
563 /** set of nir_ifs where this register is used as a condition */
564 struct list_head if_uses;
565
566 uint8_t num_components;
567
568 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
569 uint8_t bit_size;
570 } nir_ssa_def;
571
572 struct nir_src;
573
574 typedef struct {
575 nir_register *reg;
576 struct nir_src *indirect; /** < NULL for no indirect offset */
577 unsigned base_offset;
578
579 /* TODO use-def chain goes here */
580 } nir_reg_src;
581
582 typedef struct {
583 nir_instr *parent_instr;
584 struct list_head def_link;
585
586 nir_register *reg;
587 struct nir_src *indirect; /** < NULL for no indirect offset */
588 unsigned base_offset;
589
590 /* TODO def-use chain goes here */
591 } nir_reg_dest;
592
593 struct nir_if;
594
595 typedef struct nir_src {
596 union {
597 /** Instruction that consumes this value as a source. */
598 nir_instr *parent_instr;
599 struct nir_if *parent_if;
600 };
601
602 struct list_head use_link;
603
604 union {
605 nir_reg_src reg;
606 nir_ssa_def *ssa;
607 };
608
609 bool is_ssa;
610 } nir_src;
611
612 static inline nir_src
613 nir_src_init(void)
614 {
615 nir_src src = { { NULL } };
616 return src;
617 }
618
619 #define NIR_SRC_INIT nir_src_init()
620
621 #define nir_foreach_use(src, reg_or_ssa_def) \
622 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
623
624 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
625 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
626
627 #define nir_foreach_if_use(src, reg_or_ssa_def) \
628 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
629
630 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
631 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
632
633 typedef struct {
634 union {
635 nir_reg_dest reg;
636 nir_ssa_def ssa;
637 };
638
639 bool is_ssa;
640 } nir_dest;
641
642 static inline nir_dest
643 nir_dest_init(void)
644 {
645 nir_dest dest = { { { NULL } } };
646 return dest;
647 }
648
649 #define NIR_DEST_INIT nir_dest_init()
650
651 #define nir_foreach_def(dest, reg) \
652 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
653
654 #define nir_foreach_def_safe(dest, reg) \
655 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
656
657 static inline nir_src
658 nir_src_for_ssa(nir_ssa_def *def)
659 {
660 nir_src src = NIR_SRC_INIT;
661
662 src.is_ssa = true;
663 src.ssa = def;
664
665 return src;
666 }
667
668 static inline nir_src
669 nir_src_for_reg(nir_register *reg)
670 {
671 nir_src src = NIR_SRC_INIT;
672
673 src.is_ssa = false;
674 src.reg.reg = reg;
675 src.reg.indirect = NULL;
676 src.reg.base_offset = 0;
677
678 return src;
679 }
680
681 static inline nir_dest
682 nir_dest_for_reg(nir_register *reg)
683 {
684 nir_dest dest = NIR_DEST_INIT;
685
686 dest.reg.reg = reg;
687
688 return dest;
689 }
690
691 static inline unsigned
692 nir_src_bit_size(nir_src src)
693 {
694 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
695 }
696
697 static inline unsigned
698 nir_src_num_components(nir_src src)
699 {
700 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
701 }
702
703 static inline bool
704 nir_src_is_const(nir_src src)
705 {
706 return src.is_ssa &&
707 src.ssa->parent_instr->type == nir_instr_type_load_const;
708 }
709
710 int64_t nir_src_as_int(nir_src src);
711 uint64_t nir_src_as_uint(nir_src src);
712 bool nir_src_as_bool(nir_src src);
713 double nir_src_as_float(nir_src src);
714 int64_t nir_src_comp_as_int(nir_src src, unsigned component);
715 uint64_t nir_src_comp_as_uint(nir_src src, unsigned component);
716 bool nir_src_comp_as_bool(nir_src src, unsigned component);
717 double nir_src_comp_as_float(nir_src src, unsigned component);
718
719 static inline unsigned
720 nir_dest_bit_size(nir_dest dest)
721 {
722 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
723 }
724
725 static inline unsigned
726 nir_dest_num_components(nir_dest dest)
727 {
728 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
729 }
730
731 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
732 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
733
734 typedef struct {
735 nir_src src;
736
737 /**
738 * \name input modifiers
739 */
740 /*@{*/
741 /**
742 * For inputs interpreted as floating point, flips the sign bit. For
743 * inputs interpreted as integers, performs the two's complement negation.
744 */
745 bool negate;
746
747 /**
748 * Clears the sign bit for floating point values, and computes the integer
749 * absolute value for integers. Note that the negate modifier acts after
750 * the absolute value modifier, therefore if both are set then all inputs
751 * will become negative.
752 */
753 bool abs;
754 /*@}*/
755
756 /**
757 * For each input component, says which component of the register it is
758 * chosen from. Note that which elements of the swizzle are used and which
759 * are ignored are based on the write mask for most opcodes - for example,
760 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
761 * a swizzle of {2, x, 1, 0} where x means "don't care."
762 */
763 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
764 } nir_alu_src;
765
766 typedef struct {
767 nir_dest dest;
768
769 /**
770 * \name saturate output modifier
771 *
772 * Only valid for opcodes that output floating-point numbers. Clamps the
773 * output to between 0.0 and 1.0 inclusive.
774 */
775
776 bool saturate;
777
778 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
779 } nir_alu_dest;
780
781 /** NIR sized and unsized types
782 *
783 * The values in this enum are carefully chosen so that the sized type is
784 * just the unsized type OR the number of bits.
785 */
786 typedef enum {
787 nir_type_invalid = 0, /* Not a valid type */
788 nir_type_int = 2,
789 nir_type_uint = 4,
790 nir_type_bool = 6,
791 nir_type_float = 128,
792 nir_type_bool1 = 1 | nir_type_bool,
793 nir_type_bool32 = 32 | nir_type_bool,
794 nir_type_int1 = 1 | nir_type_int,
795 nir_type_int8 = 8 | nir_type_int,
796 nir_type_int16 = 16 | nir_type_int,
797 nir_type_int32 = 32 | nir_type_int,
798 nir_type_int64 = 64 | nir_type_int,
799 nir_type_uint1 = 1 | nir_type_uint,
800 nir_type_uint8 = 8 | nir_type_uint,
801 nir_type_uint16 = 16 | nir_type_uint,
802 nir_type_uint32 = 32 | nir_type_uint,
803 nir_type_uint64 = 64 | nir_type_uint,
804 nir_type_float16 = 16 | nir_type_float,
805 nir_type_float32 = 32 | nir_type_float,
806 nir_type_float64 = 64 | nir_type_float,
807 } nir_alu_type;
808
809 #define NIR_ALU_TYPE_SIZE_MASK 0x79
810 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
811
812 static inline unsigned
813 nir_alu_type_get_type_size(nir_alu_type type)
814 {
815 return type & NIR_ALU_TYPE_SIZE_MASK;
816 }
817
818 static inline unsigned
819 nir_alu_type_get_base_type(nir_alu_type type)
820 {
821 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
822 }
823
824 static inline nir_alu_type
825 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
826 {
827 switch (base_type) {
828 case GLSL_TYPE_BOOL:
829 return nir_type_bool1;
830 break;
831 case GLSL_TYPE_UINT:
832 return nir_type_uint32;
833 break;
834 case GLSL_TYPE_INT:
835 return nir_type_int32;
836 break;
837 case GLSL_TYPE_UINT16:
838 return nir_type_uint16;
839 break;
840 case GLSL_TYPE_INT16:
841 return nir_type_int16;
842 break;
843 case GLSL_TYPE_UINT8:
844 return nir_type_uint8;
845 case GLSL_TYPE_INT8:
846 return nir_type_int8;
847 case GLSL_TYPE_UINT64:
848 return nir_type_uint64;
849 break;
850 case GLSL_TYPE_INT64:
851 return nir_type_int64;
852 break;
853 case GLSL_TYPE_FLOAT:
854 return nir_type_float32;
855 break;
856 case GLSL_TYPE_FLOAT16:
857 return nir_type_float16;
858 break;
859 case GLSL_TYPE_DOUBLE:
860 return nir_type_float64;
861 break;
862
863 case GLSL_TYPE_SAMPLER:
864 case GLSL_TYPE_IMAGE:
865 case GLSL_TYPE_ATOMIC_UINT:
866 case GLSL_TYPE_STRUCT:
867 case GLSL_TYPE_INTERFACE:
868 case GLSL_TYPE_ARRAY:
869 case GLSL_TYPE_VOID:
870 case GLSL_TYPE_SUBROUTINE:
871 case GLSL_TYPE_FUNCTION:
872 case GLSL_TYPE_ERROR:
873 return nir_type_invalid;
874 }
875
876 unreachable("unknown type");
877 }
878
879 static inline nir_alu_type
880 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
881 {
882 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
883 }
884
885 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
886 nir_rounding_mode rnd);
887
888 static inline nir_op
889 nir_op_vec(unsigned components)
890 {
891 switch (components) {
892 case 1: return nir_op_mov;
893 case 2: return nir_op_vec2;
894 case 3: return nir_op_vec3;
895 case 4: return nir_op_vec4;
896 default: unreachable("bad component count");
897 }
898 }
899
900 typedef enum {
901 /**
902 * Operation where the first two sources are commutative.
903 *
904 * For 2-source operations, this just mathematical commutativity. Some
905 * 3-source operations, like ffma, are only commutative in the first two
906 * sources.
907 */
908 NIR_OP_IS_2SRC_COMMUTATIVE = (1 << 0),
909 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
910 } nir_op_algebraic_property;
911
912 typedef struct {
913 const char *name;
914
915 unsigned num_inputs;
916
917 /**
918 * The number of components in the output
919 *
920 * If non-zero, this is the size of the output and input sizes are
921 * explicitly given; swizzle and writemask are still in effect, but if
922 * the output component is masked out, then the input component may
923 * still be in use.
924 *
925 * If zero, the opcode acts in the standard, per-component manner; the
926 * operation is performed on each component (except the ones that are
927 * masked out) with the input being taken from the input swizzle for
928 * that component.
929 *
930 * The size of some of the inputs may be given (i.e. non-zero) even
931 * though output_size is zero; in that case, the inputs with a zero
932 * size act per-component, while the inputs with non-zero size don't.
933 */
934 unsigned output_size;
935
936 /**
937 * The type of vector that the instruction outputs. Note that the
938 * staurate modifier is only allowed on outputs with the float type.
939 */
940
941 nir_alu_type output_type;
942
943 /**
944 * The number of components in each input
945 */
946 unsigned input_sizes[NIR_MAX_VEC_COMPONENTS];
947
948 /**
949 * The type of vector that each input takes. Note that negate and
950 * absolute value are only allowed on inputs with int or float type and
951 * behave differently on the two.
952 */
953 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
954
955 nir_op_algebraic_property algebraic_properties;
956
957 /* Whether this represents a numeric conversion opcode */
958 bool is_conversion;
959 } nir_op_info;
960
961 extern const nir_op_info nir_op_infos[nir_num_opcodes];
962
963 typedef struct nir_alu_instr {
964 nir_instr instr;
965 nir_op op;
966
967 /** Indicates that this ALU instruction generates an exact value
968 *
969 * This is kind of a mixture of GLSL "precise" and "invariant" and not
970 * really equivalent to either. This indicates that the value generated by
971 * this operation is high-precision and any code transformations that touch
972 * it must ensure that the resulting value is bit-for-bit identical to the
973 * original.
974 */
975 bool exact:1;
976
977 /**
978 * Indicates that this instruction do not cause wrapping to occur, in the
979 * form of overflow or underflow.
980 */
981 bool no_signed_wrap:1;
982 bool no_unsigned_wrap:1;
983
984 nir_alu_dest dest;
985 nir_alu_src src[];
986 } nir_alu_instr;
987
988 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
989 nir_alu_instr *instr);
990 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
991 nir_alu_instr *instr);
992
993 /* is this source channel used? */
994 static inline bool
995 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
996 unsigned channel)
997 {
998 if (nir_op_infos[instr->op].input_sizes[src] > 0)
999 return channel < nir_op_infos[instr->op].input_sizes[src];
1000
1001 return (instr->dest.write_mask >> channel) & 1;
1002 }
1003
1004 static inline nir_component_mask_t
1005 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
1006 {
1007 nir_component_mask_t read_mask = 0;
1008 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
1009 if (!nir_alu_instr_channel_used(instr, src, c))
1010 continue;
1011
1012 read_mask |= (1 << instr->src[src].swizzle[c]);
1013 }
1014 return read_mask;
1015 }
1016
1017 /*
1018 * For instructions whose destinations are SSA, get the number of channels
1019 * used for a source
1020 */
1021 static inline unsigned
1022 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
1023 {
1024 assert(instr->dest.dest.is_ssa);
1025
1026 if (nir_op_infos[instr->op].input_sizes[src] > 0)
1027 return nir_op_infos[instr->op].input_sizes[src];
1028
1029 return instr->dest.dest.ssa.num_components;
1030 }
1031
1032 bool nir_const_value_negative_equal(const nir_const_value *c1,
1033 const nir_const_value *c2,
1034 unsigned components,
1035 nir_alu_type base_type,
1036 unsigned bits);
1037
1038 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
1039 unsigned src1, unsigned src2);
1040
1041 bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
1042 const nir_alu_instr *alu2,
1043 unsigned src1, unsigned src2);
1044
1045 typedef enum {
1046 nir_deref_type_var,
1047 nir_deref_type_array,
1048 nir_deref_type_array_wildcard,
1049 nir_deref_type_ptr_as_array,
1050 nir_deref_type_struct,
1051 nir_deref_type_cast,
1052 } nir_deref_type;
1053
1054 typedef struct {
1055 nir_instr instr;
1056
1057 /** The type of this deref instruction */
1058 nir_deref_type deref_type;
1059
1060 /** The mode of the underlying variable */
1061 nir_variable_mode mode;
1062
1063 /** The dereferenced type of the resulting pointer value */
1064 const struct glsl_type *type;
1065
1066 union {
1067 /** Variable being dereferenced if deref_type is a deref_var */
1068 nir_variable *var;
1069
1070 /** Parent deref if deref_type is not deref_var */
1071 nir_src parent;
1072 };
1073
1074 /** Additional deref parameters */
1075 union {
1076 struct {
1077 nir_src index;
1078 } arr;
1079
1080 struct {
1081 unsigned index;
1082 } strct;
1083
1084 struct {
1085 unsigned ptr_stride;
1086 } cast;
1087 };
1088
1089 /** Destination to store the resulting "pointer" */
1090 nir_dest dest;
1091 } nir_deref_instr;
1092
1093 static inline nir_deref_instr *nir_src_as_deref(nir_src src);
1094
1095 static inline nir_deref_instr *
1096 nir_deref_instr_parent(const nir_deref_instr *instr)
1097 {
1098 if (instr->deref_type == nir_deref_type_var)
1099 return NULL;
1100 else
1101 return nir_src_as_deref(instr->parent);
1102 }
1103
1104 static inline nir_variable *
1105 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1106 {
1107 while (instr->deref_type != nir_deref_type_var) {
1108 if (instr->deref_type == nir_deref_type_cast)
1109 return NULL;
1110
1111 instr = nir_deref_instr_parent(instr);
1112 }
1113
1114 return instr->var;
1115 }
1116
1117 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1118 bool nir_deref_instr_has_complex_use(nir_deref_instr *instr);
1119
1120 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1121
1122 unsigned nir_deref_instr_ptr_as_array_stride(nir_deref_instr *instr);
1123
1124 typedef struct {
1125 nir_instr instr;
1126
1127 struct nir_function *callee;
1128
1129 unsigned num_params;
1130 nir_src params[];
1131 } nir_call_instr;
1132
1133 #include "nir_intrinsics.h"
1134
1135 #define NIR_INTRINSIC_MAX_CONST_INDEX 4
1136
1137 /** Represents an intrinsic
1138 *
1139 * An intrinsic is an instruction type for handling things that are
1140 * more-or-less regular operations but don't just consume and produce SSA
1141 * values like ALU operations do. Intrinsics are not for things that have
1142 * special semantic meaning such as phi nodes and parallel copies.
1143 * Examples of intrinsics include variable load/store operations, system
1144 * value loads, and the like. Even though texturing more-or-less falls
1145 * under this category, texturing is its own instruction type because
1146 * trying to represent texturing with intrinsics would lead to a
1147 * combinatorial explosion of intrinsic opcodes.
1148 *
1149 * By having a single instruction type for handling a lot of different
1150 * cases, optimization passes can look for intrinsics and, for the most
1151 * part, completely ignore them. Each intrinsic type also has a few
1152 * possible flags that govern whether or not they can be reordered or
1153 * eliminated. That way passes like dead code elimination can still work
1154 * on intrisics without understanding the meaning of each.
1155 *
1156 * Each intrinsic has some number of constant indices, some number of
1157 * variables, and some number of sources. What these sources, variables,
1158 * and indices mean depends on the intrinsic and is documented with the
1159 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1160 * instructions are the only types of instruction that can operate on
1161 * variables.
1162 */
1163 typedef struct {
1164 nir_instr instr;
1165
1166 nir_intrinsic_op intrinsic;
1167
1168 nir_dest dest;
1169
1170 /** number of components if this is a vectorized intrinsic
1171 *
1172 * Similarly to ALU operations, some intrinsics are vectorized.
1173 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1174 * For vectorized intrinsics, the num_components field specifies the
1175 * number of destination components and the number of source components
1176 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1177 */
1178 uint8_t num_components;
1179
1180 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1181
1182 nir_src src[];
1183 } nir_intrinsic_instr;
1184
1185 static inline nir_variable *
1186 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1187 {
1188 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1189 }
1190
1191 /**
1192 * \name NIR intrinsics semantic flags
1193 *
1194 * information about what the compiler can do with the intrinsics.
1195 *
1196 * \sa nir_intrinsic_info::flags
1197 */
1198 typedef enum {
1199 /**
1200 * whether the intrinsic can be safely eliminated if none of its output
1201 * value is not being used.
1202 */
1203 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1204
1205 /**
1206 * Whether the intrinsic can be reordered with respect to any other
1207 * intrinsic, i.e. whether the only reordering dependencies of the
1208 * intrinsic are due to the register reads/writes.
1209 */
1210 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1211 } nir_intrinsic_semantic_flag;
1212
1213 /**
1214 * \name NIR intrinsics const-index flag
1215 *
1216 * Indicates the usage of a const_index slot.
1217 *
1218 * \sa nir_intrinsic_info::index_map
1219 */
1220 typedef enum {
1221 /**
1222 * Generally instructions that take a offset src argument, can encode
1223 * a constant 'base' value which is added to the offset.
1224 */
1225 NIR_INTRINSIC_BASE = 1,
1226
1227 /**
1228 * For store instructions, a writemask for the store.
1229 */
1230 NIR_INTRINSIC_WRMASK,
1231
1232 /**
1233 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1234 */
1235 NIR_INTRINSIC_STREAM_ID,
1236
1237 /**
1238 * The clip-plane id for load_user_clip_plane intrinsic.
1239 */
1240 NIR_INTRINSIC_UCP_ID,
1241
1242 /**
1243 * The amount of data, starting from BASE, that this instruction may
1244 * access. This is used to provide bounds if the offset is not constant.
1245 */
1246 NIR_INTRINSIC_RANGE,
1247
1248 /**
1249 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1250 */
1251 NIR_INTRINSIC_DESC_SET,
1252
1253 /**
1254 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1255 */
1256 NIR_INTRINSIC_BINDING,
1257
1258 /**
1259 * Component offset.
1260 */
1261 NIR_INTRINSIC_COMPONENT,
1262
1263 /**
1264 * Interpolation mode (only meaningful for FS inputs).
1265 */
1266 NIR_INTRINSIC_INTERP_MODE,
1267
1268 /**
1269 * A binary nir_op to use when performing a reduction or scan operation
1270 */
1271 NIR_INTRINSIC_REDUCTION_OP,
1272
1273 /**
1274 * Cluster size for reduction operations
1275 */
1276 NIR_INTRINSIC_CLUSTER_SIZE,
1277
1278 /**
1279 * Parameter index for a load_param intrinsic
1280 */
1281 NIR_INTRINSIC_PARAM_IDX,
1282
1283 /**
1284 * Image dimensionality for image intrinsics
1285 *
1286 * One of GLSL_SAMPLER_DIM_*
1287 */
1288 NIR_INTRINSIC_IMAGE_DIM,
1289
1290 /**
1291 * Non-zero if we are accessing an array image
1292 */
1293 NIR_INTRINSIC_IMAGE_ARRAY,
1294
1295 /**
1296 * Image format for image intrinsics
1297 */
1298 NIR_INTRINSIC_FORMAT,
1299
1300 /**
1301 * Access qualifiers for image and memory access intrinsics
1302 */
1303 NIR_INTRINSIC_ACCESS,
1304
1305 /**
1306 * Alignment for offsets and addresses
1307 *
1308 * These two parameters, specify an alignment in terms of a multiplier and
1309 * an offset. The offset or address parameter X of the intrinsic is
1310 * guaranteed to satisfy the following:
1311 *
1312 * (X - align_offset) % align_mul == 0
1313 */
1314 NIR_INTRINSIC_ALIGN_MUL,
1315 NIR_INTRINSIC_ALIGN_OFFSET,
1316
1317 /**
1318 * The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic.
1319 */
1320 NIR_INTRINSIC_DESC_TYPE,
1321
1322 /**
1323 * The nir_alu_type of a uniform/input/output
1324 */
1325 NIR_INTRINSIC_TYPE,
1326
1327 /**
1328 * The swizzle mask for the instructions
1329 * SwizzleInvocationsAMD and SwizzleInvocationsMaskedAMD
1330 */
1331 NIR_INTRINSIC_SWIZZLE_MASK,
1332
1333 /* Separate source/dest access flags for copies */
1334 NIR_INTRINSIC_SRC_ACCESS = 21,
1335 NIR_INTRINSIC_DST_ACCESS = 22,
1336
1337 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1338
1339 } nir_intrinsic_index_flag;
1340
1341 #define NIR_INTRINSIC_MAX_INPUTS 5
1342
1343 typedef struct {
1344 const char *name;
1345
1346 unsigned num_srcs; /** < number of register/SSA inputs */
1347
1348 /** number of components of each input register
1349 *
1350 * If this value is 0, the number of components is given by the
1351 * num_components field of nir_intrinsic_instr. If this value is -1, the
1352 * intrinsic consumes however many components are provided and it is not
1353 * validated at all.
1354 */
1355 int src_components[NIR_INTRINSIC_MAX_INPUTS];
1356
1357 bool has_dest;
1358
1359 /** number of components of the output register
1360 *
1361 * If this value is 0, the number of components is given by the
1362 * num_components field of nir_intrinsic_instr.
1363 */
1364 unsigned dest_components;
1365
1366 /** bitfield of legal bit sizes */
1367 unsigned dest_bit_sizes;
1368
1369 /** the number of constant indices used by the intrinsic */
1370 unsigned num_indices;
1371
1372 /** indicates the usage of intr->const_index[n] */
1373 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1374
1375 /** semantic flags for calls to this intrinsic */
1376 nir_intrinsic_semantic_flag flags;
1377 } nir_intrinsic_info;
1378
1379 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1380
1381 static inline unsigned
1382 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1383 {
1384 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1385 assert(srcn < info->num_srcs);
1386 if (info->src_components[srcn] > 0)
1387 return info->src_components[srcn];
1388 else if (info->src_components[srcn] == 0)
1389 return intr->num_components;
1390 else
1391 return nir_src_num_components(intr->src[srcn]);
1392 }
1393
1394 static inline unsigned
1395 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1396 {
1397 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1398 if (!info->has_dest)
1399 return 0;
1400 else if (info->dest_components)
1401 return info->dest_components;
1402 else
1403 return intr->num_components;
1404 }
1405
1406 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1407 static inline type \
1408 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1409 { \
1410 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1411 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1412 return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1413 } \
1414 static inline void \
1415 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1416 { \
1417 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1418 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1419 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1420 }
1421
1422 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1423 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1424 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1425 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1426 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1427 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1428 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1429 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1430 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1431 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1432 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1433 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1434 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1435 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1436 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1437 INTRINSIC_IDX_ACCESSORS(src_access, SRC_ACCESS, enum gl_access_qualifier)
1438 INTRINSIC_IDX_ACCESSORS(dst_access, DST_ACCESS, enum gl_access_qualifier)
1439 INTRINSIC_IDX_ACCESSORS(format, FORMAT, unsigned)
1440 INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
1441 INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
1442 INTRINSIC_IDX_ACCESSORS(desc_type, DESC_TYPE, unsigned)
1443 INTRINSIC_IDX_ACCESSORS(type, TYPE, nir_alu_type)
1444 INTRINSIC_IDX_ACCESSORS(swizzle_mask, SWIZZLE_MASK, unsigned)
1445
1446 static inline void
1447 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1448 unsigned align_mul, unsigned align_offset)
1449 {
1450 assert(util_is_power_of_two_nonzero(align_mul));
1451 assert(align_offset < align_mul);
1452 nir_intrinsic_set_align_mul(intrin, align_mul);
1453 nir_intrinsic_set_align_offset(intrin, align_offset);
1454 }
1455
1456 /** Returns a simple alignment for a load/store intrinsic offset
1457 *
1458 * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1459 * and ALIGN_OFFSET parameters, this helper takes both into account and
1460 * provides a single simple alignment parameter. The offset X is guaranteed
1461 * to satisfy X % align == 0.
1462 */
1463 static inline unsigned
1464 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
1465 {
1466 const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1467 const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1468 assert(align_offset < align_mul);
1469 return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1470 }
1471
1472 /* Converts a image_deref_* intrinsic into a image_* one */
1473 void nir_rewrite_image_intrinsic(nir_intrinsic_instr *instr,
1474 nir_ssa_def *handle, bool bindless);
1475
1476 /* Determine if an intrinsic can be arbitrarily reordered and eliminated. */
1477 static inline bool
1478 nir_intrinsic_can_reorder(nir_intrinsic_instr *instr)
1479 {
1480 if (instr->intrinsic == nir_intrinsic_load_deref ||
1481 instr->intrinsic == nir_intrinsic_load_ssbo ||
1482 instr->intrinsic == nir_intrinsic_bindless_image_load ||
1483 instr->intrinsic == nir_intrinsic_image_deref_load ||
1484 instr->intrinsic == nir_intrinsic_image_load) {
1485 return nir_intrinsic_access(instr) & ACCESS_CAN_REORDER;
1486 } else {
1487 const nir_intrinsic_info *info =
1488 &nir_intrinsic_infos[instr->intrinsic];
1489 return (info->flags & NIR_INTRINSIC_CAN_ELIMINATE) &&
1490 (info->flags & NIR_INTRINSIC_CAN_REORDER);
1491 }
1492 }
1493
1494 /**
1495 * \group texture information
1496 *
1497 * This gives semantic information about textures which is useful to the
1498 * frontend, the backend, and lowering passes, but not the optimizer.
1499 */
1500
1501 typedef enum {
1502 nir_tex_src_coord,
1503 nir_tex_src_projector,
1504 nir_tex_src_comparator, /* shadow comparator */
1505 nir_tex_src_offset,
1506 nir_tex_src_bias,
1507 nir_tex_src_lod,
1508 nir_tex_src_min_lod,
1509 nir_tex_src_ms_index, /* MSAA sample index */
1510 nir_tex_src_ms_mcs, /* MSAA compression value */
1511 nir_tex_src_ddx,
1512 nir_tex_src_ddy,
1513 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1514 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1515 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1516 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1517 nir_tex_src_texture_handle, /* < bindless texture handle */
1518 nir_tex_src_sampler_handle, /* < bindless sampler handle */
1519 nir_tex_src_plane, /* < selects plane for planar textures */
1520 nir_num_tex_src_types
1521 } nir_tex_src_type;
1522
1523 typedef struct {
1524 nir_src src;
1525 nir_tex_src_type src_type;
1526 } nir_tex_src;
1527
1528 typedef enum {
1529 nir_texop_tex, /**< Regular texture look-up */
1530 nir_texop_txb, /**< Texture look-up with LOD bias */
1531 nir_texop_txl, /**< Texture look-up with explicit LOD */
1532 nir_texop_txd, /**< Texture look-up with partial derivatives */
1533 nir_texop_txf, /**< Texel fetch with explicit LOD */
1534 nir_texop_txf_ms, /**< Multisample texture fetch */
1535 nir_texop_txf_ms_fb, /**< Multisample texture fetch from framebuffer */
1536 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1537 nir_texop_txs, /**< Texture size */
1538 nir_texop_lod, /**< Texture lod query */
1539 nir_texop_tg4, /**< Texture gather */
1540 nir_texop_query_levels, /**< Texture levels query */
1541 nir_texop_texture_samples, /**< Texture samples query */
1542 nir_texop_samples_identical, /**< Query whether all samples are definitely
1543 * identical.
1544 */
1545 } nir_texop;
1546
1547 typedef struct {
1548 nir_instr instr;
1549
1550 enum glsl_sampler_dim sampler_dim;
1551 nir_alu_type dest_type;
1552
1553 nir_texop op;
1554 nir_dest dest;
1555 nir_tex_src *src;
1556 unsigned num_srcs, coord_components;
1557 bool is_array, is_shadow;
1558
1559 /**
1560 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1561 * components or the new-style shadow that outputs 1 component.
1562 */
1563 bool is_new_style_shadow;
1564
1565 /* gather component selector */
1566 unsigned component : 2;
1567
1568 /* gather offsets */
1569 int8_t tg4_offsets[4][2];
1570
1571 /* True if the texture index or handle is not dynamically uniform */
1572 bool texture_non_uniform;
1573
1574 /* True if the sampler index or handle is not dynamically uniform */
1575 bool sampler_non_uniform;
1576
1577 /** The texture index
1578 *
1579 * If this texture instruction has a nir_tex_src_texture_offset source,
1580 * then the texture index is given by texture_index + texture_offset.
1581 */
1582 unsigned texture_index;
1583
1584 /** The size of the texture array or 0 if it's not an array */
1585 unsigned texture_array_size;
1586
1587 /** The sampler index
1588 *
1589 * The following operations do not require a sampler and, as such, this
1590 * field should be ignored:
1591 * - nir_texop_txf
1592 * - nir_texop_txf_ms
1593 * - nir_texop_txs
1594 * - nir_texop_lod
1595 * - nir_texop_query_levels
1596 * - nir_texop_texture_samples
1597 * - nir_texop_samples_identical
1598 *
1599 * If this texture instruction has a nir_tex_src_sampler_offset source,
1600 * then the sampler index is given by sampler_index + sampler_offset.
1601 */
1602 unsigned sampler_index;
1603 } nir_tex_instr;
1604
1605 static inline unsigned
1606 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1607 {
1608 switch (instr->op) {
1609 case nir_texop_txs: {
1610 unsigned ret;
1611 switch (instr->sampler_dim) {
1612 case GLSL_SAMPLER_DIM_1D:
1613 case GLSL_SAMPLER_DIM_BUF:
1614 ret = 1;
1615 break;
1616 case GLSL_SAMPLER_DIM_2D:
1617 case GLSL_SAMPLER_DIM_CUBE:
1618 case GLSL_SAMPLER_DIM_MS:
1619 case GLSL_SAMPLER_DIM_RECT:
1620 case GLSL_SAMPLER_DIM_EXTERNAL:
1621 case GLSL_SAMPLER_DIM_SUBPASS:
1622 ret = 2;
1623 break;
1624 case GLSL_SAMPLER_DIM_3D:
1625 ret = 3;
1626 break;
1627 default:
1628 unreachable("not reached");
1629 }
1630 if (instr->is_array)
1631 ret++;
1632 return ret;
1633 }
1634
1635 case nir_texop_lod:
1636 return 2;
1637
1638 case nir_texop_texture_samples:
1639 case nir_texop_query_levels:
1640 case nir_texop_samples_identical:
1641 return 1;
1642
1643 default:
1644 if (instr->is_shadow && instr->is_new_style_shadow)
1645 return 1;
1646
1647 return 4;
1648 }
1649 }
1650
1651 /* Returns true if this texture operation queries something about the texture
1652 * rather than actually sampling it.
1653 */
1654 static inline bool
1655 nir_tex_instr_is_query(const nir_tex_instr *instr)
1656 {
1657 switch (instr->op) {
1658 case nir_texop_txs:
1659 case nir_texop_lod:
1660 case nir_texop_texture_samples:
1661 case nir_texop_query_levels:
1662 case nir_texop_txf_ms_mcs:
1663 return true;
1664 case nir_texop_tex:
1665 case nir_texop_txb:
1666 case nir_texop_txl:
1667 case nir_texop_txd:
1668 case nir_texop_txf:
1669 case nir_texop_txf_ms:
1670 case nir_texop_txf_ms_fb:
1671 case nir_texop_tg4:
1672 return false;
1673 default:
1674 unreachable("Invalid texture opcode");
1675 }
1676 }
1677
1678 static inline bool
1679 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1680 {
1681 switch (instr->op) {
1682 case nir_op_flt:
1683 case nir_op_fge:
1684 case nir_op_feq:
1685 case nir_op_fne:
1686 case nir_op_ilt:
1687 case nir_op_ult:
1688 case nir_op_ige:
1689 case nir_op_uge:
1690 case nir_op_ieq:
1691 case nir_op_ine:
1692 case nir_op_i2b1:
1693 case nir_op_f2b1:
1694 case nir_op_inot:
1695 return true;
1696 default:
1697 return false;
1698 }
1699 }
1700
1701 static inline nir_alu_type
1702 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1703 {
1704 switch (instr->src[src].src_type) {
1705 case nir_tex_src_coord:
1706 switch (instr->op) {
1707 case nir_texop_txf:
1708 case nir_texop_txf_ms:
1709 case nir_texop_txf_ms_fb:
1710 case nir_texop_txf_ms_mcs:
1711 case nir_texop_samples_identical:
1712 return nir_type_int;
1713
1714 default:
1715 return nir_type_float;
1716 }
1717
1718 case nir_tex_src_lod:
1719 switch (instr->op) {
1720 case nir_texop_txs:
1721 case nir_texop_txf:
1722 return nir_type_int;
1723
1724 default:
1725 return nir_type_float;
1726 }
1727
1728 case nir_tex_src_projector:
1729 case nir_tex_src_comparator:
1730 case nir_tex_src_bias:
1731 case nir_tex_src_ddx:
1732 case nir_tex_src_ddy:
1733 return nir_type_float;
1734
1735 case nir_tex_src_offset:
1736 case nir_tex_src_ms_index:
1737 case nir_tex_src_texture_offset:
1738 case nir_tex_src_sampler_offset:
1739 return nir_type_int;
1740
1741 default:
1742 unreachable("Invalid texture source type");
1743 }
1744 }
1745
1746 static inline unsigned
1747 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1748 {
1749 if (instr->src[src].src_type == nir_tex_src_coord)
1750 return instr->coord_components;
1751
1752 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1753 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1754 return 4;
1755
1756 if (instr->src[src].src_type == nir_tex_src_ddx ||
1757 instr->src[src].src_type == nir_tex_src_ddy) {
1758 if (instr->is_array)
1759 return instr->coord_components - 1;
1760 else
1761 return instr->coord_components;
1762 }
1763
1764 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1765 * the offset, since a cube maps to a single face.
1766 */
1767 if (instr->src[src].src_type == nir_tex_src_offset) {
1768 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1769 return 2;
1770 else if (instr->is_array)
1771 return instr->coord_components - 1;
1772 else
1773 return instr->coord_components;
1774 }
1775
1776 return 1;
1777 }
1778
1779 static inline int
1780 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1781 {
1782 for (unsigned i = 0; i < instr->num_srcs; i++)
1783 if (instr->src[i].src_type == type)
1784 return (int) i;
1785
1786 return -1;
1787 }
1788
1789 void nir_tex_instr_add_src(nir_tex_instr *tex,
1790 nir_tex_src_type src_type,
1791 nir_src src);
1792
1793 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1794
1795 bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
1796
1797 typedef struct {
1798 nir_instr instr;
1799
1800 nir_ssa_def def;
1801
1802 nir_const_value value[];
1803 } nir_load_const_instr;
1804
1805 #define nir_const_load_to_arr(arr, l, m) \
1806 { \
1807 nir_const_value_to_array(arr, l->value, l->def.num_components, m); \
1808 } while (false);
1809
1810 typedef enum {
1811 nir_jump_return,
1812 nir_jump_break,
1813 nir_jump_continue,
1814 } nir_jump_type;
1815
1816 typedef struct {
1817 nir_instr instr;
1818 nir_jump_type type;
1819 } nir_jump_instr;
1820
1821 /* creates a new SSA variable in an undefined state */
1822
1823 typedef struct {
1824 nir_instr instr;
1825 nir_ssa_def def;
1826 } nir_ssa_undef_instr;
1827
1828 typedef struct {
1829 struct exec_node node;
1830
1831 /* The predecessor block corresponding to this source */
1832 struct nir_block *pred;
1833
1834 nir_src src;
1835 } nir_phi_src;
1836
1837 #define nir_foreach_phi_src(phi_src, phi) \
1838 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1839 #define nir_foreach_phi_src_safe(phi_src, phi) \
1840 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1841
1842 typedef struct {
1843 nir_instr instr;
1844
1845 struct exec_list srcs; /** < list of nir_phi_src */
1846
1847 nir_dest dest;
1848 } nir_phi_instr;
1849
1850 typedef struct {
1851 struct exec_node node;
1852 nir_src src;
1853 nir_dest dest;
1854 } nir_parallel_copy_entry;
1855
1856 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1857 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1858
1859 typedef struct {
1860 nir_instr instr;
1861
1862 /* A list of nir_parallel_copy_entrys. The sources of all of the
1863 * entries are copied to the corresponding destinations "in parallel".
1864 * In other words, if we have two entries: a -> b and b -> a, the values
1865 * get swapped.
1866 */
1867 struct exec_list entries;
1868 } nir_parallel_copy_instr;
1869
1870 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1871 type, nir_instr_type_alu)
1872 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
1873 type, nir_instr_type_deref)
1874 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1875 type, nir_instr_type_call)
1876 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1877 type, nir_instr_type_jump)
1878 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1879 type, nir_instr_type_tex)
1880 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1881 type, nir_instr_type_intrinsic)
1882 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1883 type, nir_instr_type_load_const)
1884 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1885 type, nir_instr_type_ssa_undef)
1886 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1887 type, nir_instr_type_phi)
1888 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1889 nir_parallel_copy_instr, instr,
1890 type, nir_instr_type_parallel_copy)
1891
1892 /*
1893 * Control flow
1894 *
1895 * Control flow consists of a tree of control flow nodes, which include
1896 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1897 * instructions that always run start-to-finish. Each basic block also keeps
1898 * track of its successors (blocks which may run immediately after the current
1899 * block) and predecessors (blocks which could have run immediately before the
1900 * current block). Each function also has a start block and an end block which
1901 * all return statements point to (which is always empty). Together, all the
1902 * blocks with their predecessors and successors make up the control flow
1903 * graph (CFG) of the function. There are helpers that modify the tree of
1904 * control flow nodes while modifying the CFG appropriately; these should be
1905 * used instead of modifying the tree directly.
1906 */
1907
1908 typedef enum {
1909 nir_cf_node_block,
1910 nir_cf_node_if,
1911 nir_cf_node_loop,
1912 nir_cf_node_function
1913 } nir_cf_node_type;
1914
1915 typedef struct nir_cf_node {
1916 struct exec_node node;
1917 nir_cf_node_type type;
1918 struct nir_cf_node *parent;
1919 } nir_cf_node;
1920
1921 typedef struct nir_block {
1922 nir_cf_node cf_node;
1923
1924 struct exec_list instr_list; /** < list of nir_instr */
1925
1926 /** generic block index; generated by nir_index_blocks */
1927 unsigned index;
1928
1929 /*
1930 * Each block can only have up to 2 successors, so we put them in a simple
1931 * array - no need for anything more complicated.
1932 */
1933 struct nir_block *successors[2];
1934
1935 /* Set of nir_block predecessors in the CFG */
1936 struct set *predecessors;
1937
1938 /*
1939 * this node's immediate dominator in the dominance tree - set to NULL for
1940 * the start block.
1941 */
1942 struct nir_block *imm_dom;
1943
1944 /* This node's children in the dominance tree */
1945 unsigned num_dom_children;
1946 struct nir_block **dom_children;
1947
1948 /* Set of nir_blocks on the dominance frontier of this block */
1949 struct set *dom_frontier;
1950
1951 /*
1952 * These two indices have the property that dom_{pre,post}_index for each
1953 * child of this block in the dominance tree will always be between
1954 * dom_pre_index and dom_post_index for this block, which makes testing if
1955 * a given block is dominated by another block an O(1) operation.
1956 */
1957 unsigned dom_pre_index, dom_post_index;
1958
1959 /* live in and out for this block; used for liveness analysis */
1960 BITSET_WORD *live_in;
1961 BITSET_WORD *live_out;
1962 } nir_block;
1963
1964 static inline nir_instr *
1965 nir_block_first_instr(nir_block *block)
1966 {
1967 struct exec_node *head = exec_list_get_head(&block->instr_list);
1968 return exec_node_data(nir_instr, head, node);
1969 }
1970
1971 static inline nir_instr *
1972 nir_block_last_instr(nir_block *block)
1973 {
1974 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1975 return exec_node_data(nir_instr, tail, node);
1976 }
1977
1978 static inline bool
1979 nir_block_ends_in_jump(nir_block *block)
1980 {
1981 return !exec_list_is_empty(&block->instr_list) &&
1982 nir_block_last_instr(block)->type == nir_instr_type_jump;
1983 }
1984
1985 #define nir_foreach_instr(instr, block) \
1986 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1987 #define nir_foreach_instr_reverse(instr, block) \
1988 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1989 #define nir_foreach_instr_safe(instr, block) \
1990 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1991 #define nir_foreach_instr_reverse_safe(instr, block) \
1992 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1993
1994 typedef enum {
1995 nir_selection_control_none = 0x0,
1996 nir_selection_control_flatten = 0x1,
1997 nir_selection_control_dont_flatten = 0x2,
1998 } nir_selection_control;
1999
2000 typedef struct nir_if {
2001 nir_cf_node cf_node;
2002 nir_src condition;
2003 nir_selection_control control;
2004
2005 struct exec_list then_list; /** < list of nir_cf_node */
2006 struct exec_list else_list; /** < list of nir_cf_node */
2007 } nir_if;
2008
2009 typedef struct {
2010 nir_if *nif;
2011
2012 /** Instruction that generates nif::condition. */
2013 nir_instr *conditional_instr;
2014
2015 /** Block within ::nif that has the break instruction. */
2016 nir_block *break_block;
2017
2018 /** Last block for the then- or else-path that does not contain the break. */
2019 nir_block *continue_from_block;
2020
2021 /** True when ::break_block is in the else-path of ::nif. */
2022 bool continue_from_then;
2023 bool induction_rhs;
2024
2025 /* This is true if the terminators exact trip count is unknown. For
2026 * example:
2027 *
2028 * for (int i = 0; i < imin(x, 4); i++)
2029 * ...
2030 *
2031 * Here loop analysis would have set a max_trip_count of 4 however we dont
2032 * know for sure that this is the exact trip count.
2033 */
2034 bool exact_trip_count_unknown;
2035
2036 struct list_head loop_terminator_link;
2037 } nir_loop_terminator;
2038
2039 typedef struct {
2040 /* Estimated cost (in number of instructions) of the loop */
2041 unsigned instr_cost;
2042
2043 /* Guessed trip count based on array indexing */
2044 unsigned guessed_trip_count;
2045
2046 /* Maximum number of times the loop is run (if known) */
2047 unsigned max_trip_count;
2048
2049 /* Do we know the exact number of times the loop will be run */
2050 bool exact_trip_count_known;
2051
2052 /* Unroll the loop regardless of its size */
2053 bool force_unroll;
2054
2055 /* Does the loop contain complex loop terminators, continues or other
2056 * complex behaviours? If this is true we can't rely on
2057 * loop_terminator_list to be complete or accurate.
2058 */
2059 bool complex_loop;
2060
2061 nir_loop_terminator *limiting_terminator;
2062
2063 /* A list of loop_terminators terminating this loop. */
2064 struct list_head loop_terminator_list;
2065 } nir_loop_info;
2066
2067 typedef enum {
2068 nir_loop_control_none = 0x0,
2069 nir_loop_control_unroll = 0x1,
2070 nir_loop_control_dont_unroll = 0x2,
2071 } nir_loop_control;
2072
2073 typedef struct {
2074 nir_cf_node cf_node;
2075
2076 struct exec_list body; /** < list of nir_cf_node */
2077
2078 nir_loop_info *info;
2079 nir_loop_control control;
2080 bool partially_unrolled;
2081 } nir_loop;
2082
2083 /**
2084 * Various bits of metadata that can may be created or required by
2085 * optimization and analysis passes
2086 */
2087 typedef enum {
2088 nir_metadata_none = 0x0,
2089 nir_metadata_block_index = 0x1,
2090 nir_metadata_dominance = 0x2,
2091 nir_metadata_live_ssa_defs = 0x4,
2092 nir_metadata_not_properly_reset = 0x8,
2093 nir_metadata_loop_analysis = 0x10,
2094 } nir_metadata;
2095
2096 typedef struct {
2097 nir_cf_node cf_node;
2098
2099 /** pointer to the function of which this is an implementation */
2100 struct nir_function *function;
2101
2102 struct exec_list body; /** < list of nir_cf_node */
2103
2104 nir_block *end_block;
2105
2106 /** list for all local variables in the function */
2107 struct exec_list locals;
2108
2109 /** list of local registers in the function */
2110 struct exec_list registers;
2111
2112 /** next available local register index */
2113 unsigned reg_alloc;
2114
2115 /** next available SSA value index */
2116 unsigned ssa_alloc;
2117
2118 /* total number of basic blocks, only valid when block_index_dirty = false */
2119 unsigned num_blocks;
2120
2121 nir_metadata valid_metadata;
2122 } nir_function_impl;
2123
2124 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2125 nir_start_block(nir_function_impl *impl)
2126 {
2127 return (nir_block *) impl->body.head_sentinel.next;
2128 }
2129
2130 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2131 nir_impl_last_block(nir_function_impl *impl)
2132 {
2133 return (nir_block *) impl->body.tail_sentinel.prev;
2134 }
2135
2136 static inline nir_cf_node *
2137 nir_cf_node_next(nir_cf_node *node)
2138 {
2139 struct exec_node *next = exec_node_get_next(&node->node);
2140 if (exec_node_is_tail_sentinel(next))
2141 return NULL;
2142 else
2143 return exec_node_data(nir_cf_node, next, node);
2144 }
2145
2146 static inline nir_cf_node *
2147 nir_cf_node_prev(nir_cf_node *node)
2148 {
2149 struct exec_node *prev = exec_node_get_prev(&node->node);
2150 if (exec_node_is_head_sentinel(prev))
2151 return NULL;
2152 else
2153 return exec_node_data(nir_cf_node, prev, node);
2154 }
2155
2156 static inline bool
2157 nir_cf_node_is_first(const nir_cf_node *node)
2158 {
2159 return exec_node_is_head_sentinel(node->node.prev);
2160 }
2161
2162 static inline bool
2163 nir_cf_node_is_last(const nir_cf_node *node)
2164 {
2165 return exec_node_is_tail_sentinel(node->node.next);
2166 }
2167
2168 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
2169 type, nir_cf_node_block)
2170 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
2171 type, nir_cf_node_if)
2172 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
2173 type, nir_cf_node_loop)
2174 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
2175 nir_function_impl, cf_node, type, nir_cf_node_function)
2176
2177 static inline nir_block *
2178 nir_if_first_then_block(nir_if *if_stmt)
2179 {
2180 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
2181 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2182 }
2183
2184 static inline nir_block *
2185 nir_if_last_then_block(nir_if *if_stmt)
2186 {
2187 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
2188 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2189 }
2190
2191 static inline nir_block *
2192 nir_if_first_else_block(nir_if *if_stmt)
2193 {
2194 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
2195 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2196 }
2197
2198 static inline nir_block *
2199 nir_if_last_else_block(nir_if *if_stmt)
2200 {
2201 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
2202 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2203 }
2204
2205 static inline nir_block *
2206 nir_loop_first_block(nir_loop *loop)
2207 {
2208 struct exec_node *head = exec_list_get_head(&loop->body);
2209 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2210 }
2211
2212 static inline nir_block *
2213 nir_loop_last_block(nir_loop *loop)
2214 {
2215 struct exec_node *tail = exec_list_get_tail(&loop->body);
2216 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2217 }
2218
2219 /**
2220 * Return true if this list of cf_nodes contains a single empty block.
2221 */
2222 static inline bool
2223 nir_cf_list_is_empty_block(struct exec_list *cf_list)
2224 {
2225 if (exec_list_is_singular(cf_list)) {
2226 struct exec_node *head = exec_list_get_head(cf_list);
2227 nir_block *block =
2228 nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2229 return exec_list_is_empty(&block->instr_list);
2230 }
2231 return false;
2232 }
2233
2234 typedef struct {
2235 uint8_t num_components;
2236 uint8_t bit_size;
2237 } nir_parameter;
2238
2239 typedef struct nir_function {
2240 struct exec_node node;
2241
2242 const char *name;
2243 struct nir_shader *shader;
2244
2245 unsigned num_params;
2246 nir_parameter *params;
2247
2248 /** The implementation of this function.
2249 *
2250 * If the function is only declared and not implemented, this is NULL.
2251 */
2252 nir_function_impl *impl;
2253
2254 bool is_entrypoint;
2255 } nir_function;
2256
2257 typedef enum {
2258 nir_lower_imul64 = (1 << 0),
2259 nir_lower_isign64 = (1 << 1),
2260 /** Lower all int64 modulus and division opcodes */
2261 nir_lower_divmod64 = (1 << 2),
2262 /** Lower all 64-bit umul_high and imul_high opcodes */
2263 nir_lower_imul_high64 = (1 << 3),
2264 nir_lower_mov64 = (1 << 4),
2265 nir_lower_icmp64 = (1 << 5),
2266 nir_lower_iadd64 = (1 << 6),
2267 nir_lower_iabs64 = (1 << 7),
2268 nir_lower_ineg64 = (1 << 8),
2269 nir_lower_logic64 = (1 << 9),
2270 nir_lower_minmax64 = (1 << 10),
2271 nir_lower_shift64 = (1 << 11),
2272 nir_lower_imul_2x32_64 = (1 << 12),
2273 } nir_lower_int64_options;
2274
2275 typedef enum {
2276 nir_lower_drcp = (1 << 0),
2277 nir_lower_dsqrt = (1 << 1),
2278 nir_lower_drsq = (1 << 2),
2279 nir_lower_dtrunc = (1 << 3),
2280 nir_lower_dfloor = (1 << 4),
2281 nir_lower_dceil = (1 << 5),
2282 nir_lower_dfract = (1 << 6),
2283 nir_lower_dround_even = (1 << 7),
2284 nir_lower_dmod = (1 << 8),
2285 nir_lower_fp64_full_software = (1 << 9),
2286 } nir_lower_doubles_options;
2287
2288 typedef struct nir_shader_compiler_options {
2289 bool lower_fdiv;
2290 bool lower_ffma;
2291 bool fuse_ffma;
2292 bool lower_flrp16;
2293 bool lower_flrp32;
2294 /** Lowers flrp when it does not support doubles */
2295 bool lower_flrp64;
2296 bool lower_fpow;
2297 bool lower_fsat;
2298 bool lower_fsqrt;
2299 bool lower_fmod;
2300 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2301 bool lower_bitfield_extract;
2302 /** Lowers ibitfield_extract/ubitfield_extract to compares, shifts. */
2303 bool lower_bitfield_extract_to_shifts;
2304 /** Lowers bitfield_insert to bfi/bfm */
2305 bool lower_bitfield_insert;
2306 /** Lowers bitfield_insert to compares, and shifts. */
2307 bool lower_bitfield_insert_to_shifts;
2308 /** Lowers bitfield_insert to bfm/bitfield_select. */
2309 bool lower_bitfield_insert_to_bitfield_select;
2310 /** Lowers bitfield_reverse to shifts. */
2311 bool lower_bitfield_reverse;
2312 /** Lowers bit_count to shifts. */
2313 bool lower_bit_count;
2314 /** Lowers ifind_msb to compare and ufind_msb */
2315 bool lower_ifind_msb;
2316 /** Lowers find_lsb to ufind_msb and logic ops */
2317 bool lower_find_lsb;
2318 bool lower_uadd_carry;
2319 bool lower_usub_borrow;
2320 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2321 bool lower_mul_high;
2322 /** lowers fneg and ineg to fsub and isub. */
2323 bool lower_negate;
2324 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2325 bool lower_sub;
2326
2327 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2328 bool lower_scmp;
2329
2330 /** enables rules to lower idiv by power-of-two: */
2331 bool lower_idiv;
2332
2333 /** enable rules to avoid bit shifts */
2334 bool lower_bitshift;
2335
2336 /** enables rules to lower isign to imin+imax */
2337 bool lower_isign;
2338
2339 /** enables rules to lower fsign to fsub and flt */
2340 bool lower_fsign;
2341
2342 /* Does the native fdot instruction replicate its result for four
2343 * components? If so, then opt_algebraic_late will turn all fdotN
2344 * instructions into fdot_replicatedN instructions.
2345 */
2346 bool fdot_replicates;
2347
2348 /** lowers ffloor to fsub+ffract: */
2349 bool lower_ffloor;
2350
2351 /** lowers ffract to fsub+ffloor: */
2352 bool lower_ffract;
2353
2354 /** lowers fceil to fneg+ffloor+fneg: */
2355 bool lower_fceil;
2356
2357 bool lower_ftrunc;
2358
2359 bool lower_ldexp;
2360
2361 bool lower_pack_half_2x16;
2362 bool lower_pack_unorm_2x16;
2363 bool lower_pack_snorm_2x16;
2364 bool lower_pack_unorm_4x8;
2365 bool lower_pack_snorm_4x8;
2366 bool lower_unpack_half_2x16;
2367 bool lower_unpack_unorm_2x16;
2368 bool lower_unpack_snorm_2x16;
2369 bool lower_unpack_unorm_4x8;
2370 bool lower_unpack_snorm_4x8;
2371
2372 bool lower_extract_byte;
2373 bool lower_extract_word;
2374
2375 bool lower_all_io_to_temps;
2376 bool lower_all_io_to_elements;
2377
2378 /* Indicates that the driver only has zero-based vertex id */
2379 bool vertex_id_zero_based;
2380
2381 /**
2382 * If enabled, gl_BaseVertex will be lowered as:
2383 * is_indexed_draw (~0/0) & firstvertex
2384 */
2385 bool lower_base_vertex;
2386
2387 /**
2388 * If enabled, gl_HelperInvocation will be lowered as:
2389 *
2390 * !((1 << sample_id) & sample_mask_in))
2391 *
2392 * This depends on some possibly hw implementation details, which may
2393 * not be true for all hw. In particular that the FS is only executed
2394 * for covered samples or for helper invocations. So, do not blindly
2395 * enable this option.
2396 *
2397 * Note: See also issue #22 in ARB_shader_image_load_store
2398 */
2399 bool lower_helper_invocation;
2400
2401 /**
2402 * Convert gl_SampleMaskIn to gl_HelperInvocation as follows:
2403 *
2404 * gl_SampleMaskIn == 0 ---> gl_HelperInvocation
2405 * gl_SampleMaskIn != 0 ---> !gl_HelperInvocation
2406 */
2407 bool optimize_sample_mask_in;
2408
2409 bool lower_cs_local_index_from_id;
2410 bool lower_cs_local_id_from_index;
2411
2412 bool lower_device_index_to_zero;
2413
2414 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
2415 bool lower_wpos_pntc;
2416
2417 bool lower_hadd;
2418 bool lower_add_sat;
2419
2420 /**
2421 * Should IO be re-vectorized? Some scalar ISAs still operate on vec4's
2422 * for IO purposes and would prefer loads/stores be vectorized.
2423 */
2424 bool vectorize_io;
2425
2426 /**
2427 * Should nir_lower_io() create load_interpolated_input intrinsics?
2428 *
2429 * If not, it generates regular load_input intrinsics and interpolation
2430 * information must be inferred from the list of input nir_variables.
2431 */
2432 bool use_interpolated_input_intrinsics;
2433
2434 /* Lowers when 32x32->64 bit multiplication is not supported */
2435 bool lower_mul_2x32_64;
2436
2437 /* Lowers when rotate instruction is not supported */
2438 bool lower_rotate;
2439
2440 unsigned max_unroll_iterations;
2441
2442 nir_lower_int64_options lower_int64_options;
2443 nir_lower_doubles_options lower_doubles_options;
2444 } nir_shader_compiler_options;
2445
2446 typedef struct nir_shader {
2447 /** list of uniforms (nir_variable) */
2448 struct exec_list uniforms;
2449
2450 /** list of inputs (nir_variable) */
2451 struct exec_list inputs;
2452
2453 /** list of outputs (nir_variable) */
2454 struct exec_list outputs;
2455
2456 /** list of shared compute variables (nir_variable) */
2457 struct exec_list shared;
2458
2459 /** Set of driver-specific options for the shader.
2460 *
2461 * The memory for the options is expected to be kept in a single static
2462 * copy by the driver.
2463 */
2464 const struct nir_shader_compiler_options *options;
2465
2466 /** Various bits of compile-time information about a given shader */
2467 struct shader_info info;
2468
2469 /** list of global variables in the shader (nir_variable) */
2470 struct exec_list globals;
2471
2472 /** list of system value variables in the shader (nir_variable) */
2473 struct exec_list system_values;
2474
2475 struct exec_list functions; /** < list of nir_function */
2476
2477 /**
2478 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2479 * access plus one
2480 */
2481 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2482
2483 /** Size in bytes of required scratch space */
2484 unsigned scratch_size;
2485
2486 /** Constant data associated with this shader.
2487 *
2488 * Constant data is loaded through load_constant intrinsics. See also
2489 * nir_opt_large_constants.
2490 */
2491 void *constant_data;
2492 unsigned constant_data_size;
2493 } nir_shader;
2494
2495 #define nir_foreach_function(func, shader) \
2496 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2497
2498 static inline nir_function_impl *
2499 nir_shader_get_entrypoint(nir_shader *shader)
2500 {
2501 nir_function *func = NULL;
2502
2503 nir_foreach_function(function, shader) {
2504 assert(func == NULL);
2505 if (function->is_entrypoint) {
2506 func = function;
2507 #ifndef NDEBUG
2508 break;
2509 #endif
2510 }
2511 }
2512
2513 if (!func)
2514 return NULL;
2515
2516 assert(func->num_params == 0);
2517 assert(func->impl);
2518 return func->impl;
2519 }
2520
2521 nir_shader *nir_shader_create(void *mem_ctx,
2522 gl_shader_stage stage,
2523 const nir_shader_compiler_options *options,
2524 shader_info *si);
2525
2526 nir_register *nir_local_reg_create(nir_function_impl *impl);
2527
2528 void nir_reg_remove(nir_register *reg);
2529
2530 /** Adds a variable to the appropriate list in nir_shader */
2531 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2532
2533 static inline void
2534 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2535 {
2536 assert(var->data.mode == nir_var_function_temp);
2537 exec_list_push_tail(&impl->locals, &var->node);
2538 }
2539
2540 /** creates a variable, sets a few defaults, and adds it to the list */
2541 nir_variable *nir_variable_create(nir_shader *shader,
2542 nir_variable_mode mode,
2543 const struct glsl_type *type,
2544 const char *name);
2545 /** creates a local variable and adds it to the list */
2546 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2547 const struct glsl_type *type,
2548 const char *name);
2549
2550 /** creates a function and adds it to the shader's list of functions */
2551 nir_function *nir_function_create(nir_shader *shader, const char *name);
2552
2553 nir_function_impl *nir_function_impl_create(nir_function *func);
2554 /** creates a function_impl that isn't tied to any particular function */
2555 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2556
2557 nir_block *nir_block_create(nir_shader *shader);
2558 nir_if *nir_if_create(nir_shader *shader);
2559 nir_loop *nir_loop_create(nir_shader *shader);
2560
2561 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2562
2563 /** requests that the given pieces of metadata be generated */
2564 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2565 /** dirties all but the preserved metadata */
2566 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2567
2568 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2569 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2570
2571 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2572 nir_deref_type deref_type);
2573
2574 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2575
2576 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2577 unsigned num_components,
2578 unsigned bit_size);
2579
2580 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2581 nir_intrinsic_op op);
2582
2583 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2584 nir_function *callee);
2585
2586 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2587
2588 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2589
2590 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2591
2592 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2593 unsigned num_components,
2594 unsigned bit_size);
2595
2596 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2597
2598 /**
2599 * NIR Cursors and Instruction Insertion API
2600 * @{
2601 *
2602 * A tiny struct representing a point to insert/extract instructions or
2603 * control flow nodes. Helps reduce the combinatorial explosion of possible
2604 * points to insert/extract.
2605 *
2606 * \sa nir_control_flow.h
2607 */
2608 typedef enum {
2609 nir_cursor_before_block,
2610 nir_cursor_after_block,
2611 nir_cursor_before_instr,
2612 nir_cursor_after_instr,
2613 } nir_cursor_option;
2614
2615 typedef struct {
2616 nir_cursor_option option;
2617 union {
2618 nir_block *block;
2619 nir_instr *instr;
2620 };
2621 } nir_cursor;
2622
2623 static inline nir_block *
2624 nir_cursor_current_block(nir_cursor cursor)
2625 {
2626 if (cursor.option == nir_cursor_before_instr ||
2627 cursor.option == nir_cursor_after_instr) {
2628 return cursor.instr->block;
2629 } else {
2630 return cursor.block;
2631 }
2632 }
2633
2634 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2635
2636 static inline nir_cursor
2637 nir_before_block(nir_block *block)
2638 {
2639 nir_cursor cursor;
2640 cursor.option = nir_cursor_before_block;
2641 cursor.block = block;
2642 return cursor;
2643 }
2644
2645 static inline nir_cursor
2646 nir_after_block(nir_block *block)
2647 {
2648 nir_cursor cursor;
2649 cursor.option = nir_cursor_after_block;
2650 cursor.block = block;
2651 return cursor;
2652 }
2653
2654 static inline nir_cursor
2655 nir_before_instr(nir_instr *instr)
2656 {
2657 nir_cursor cursor;
2658 cursor.option = nir_cursor_before_instr;
2659 cursor.instr = instr;
2660 return cursor;
2661 }
2662
2663 static inline nir_cursor
2664 nir_after_instr(nir_instr *instr)
2665 {
2666 nir_cursor cursor;
2667 cursor.option = nir_cursor_after_instr;
2668 cursor.instr = instr;
2669 return cursor;
2670 }
2671
2672 static inline nir_cursor
2673 nir_after_block_before_jump(nir_block *block)
2674 {
2675 nir_instr *last_instr = nir_block_last_instr(block);
2676 if (last_instr && last_instr->type == nir_instr_type_jump) {
2677 return nir_before_instr(last_instr);
2678 } else {
2679 return nir_after_block(block);
2680 }
2681 }
2682
2683 static inline nir_cursor
2684 nir_before_src(nir_src *src, bool is_if_condition)
2685 {
2686 if (is_if_condition) {
2687 nir_block *prev_block =
2688 nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
2689 assert(!nir_block_ends_in_jump(prev_block));
2690 return nir_after_block(prev_block);
2691 } else if (src->parent_instr->type == nir_instr_type_phi) {
2692 #ifndef NDEBUG
2693 nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
2694 bool found = false;
2695 nir_foreach_phi_src(phi_src, cond_phi) {
2696 if (phi_src->src.ssa == src->ssa) {
2697 found = true;
2698 break;
2699 }
2700 }
2701 assert(found);
2702 #endif
2703 /* The LIST_ENTRY macro is a generic container-of macro, it just happens
2704 * to have a more specific name.
2705 */
2706 nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
2707 return nir_after_block_before_jump(phi_src->pred);
2708 } else {
2709 return nir_before_instr(src->parent_instr);
2710 }
2711 }
2712
2713 static inline nir_cursor
2714 nir_before_cf_node(nir_cf_node *node)
2715 {
2716 if (node->type == nir_cf_node_block)
2717 return nir_before_block(nir_cf_node_as_block(node));
2718
2719 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2720 }
2721
2722 static inline nir_cursor
2723 nir_after_cf_node(nir_cf_node *node)
2724 {
2725 if (node->type == nir_cf_node_block)
2726 return nir_after_block(nir_cf_node_as_block(node));
2727
2728 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2729 }
2730
2731 static inline nir_cursor
2732 nir_after_phis(nir_block *block)
2733 {
2734 nir_foreach_instr(instr, block) {
2735 if (instr->type != nir_instr_type_phi)
2736 return nir_before_instr(instr);
2737 }
2738 return nir_after_block(block);
2739 }
2740
2741 static inline nir_cursor
2742 nir_after_cf_node_and_phis(nir_cf_node *node)
2743 {
2744 if (node->type == nir_cf_node_block)
2745 return nir_after_block(nir_cf_node_as_block(node));
2746
2747 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2748
2749 return nir_after_phis(block);
2750 }
2751
2752 static inline nir_cursor
2753 nir_before_cf_list(struct exec_list *cf_list)
2754 {
2755 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2756 exec_list_get_head(cf_list), node);
2757 return nir_before_cf_node(first_node);
2758 }
2759
2760 static inline nir_cursor
2761 nir_after_cf_list(struct exec_list *cf_list)
2762 {
2763 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2764 exec_list_get_tail(cf_list), node);
2765 return nir_after_cf_node(last_node);
2766 }
2767
2768 /**
2769 * Insert a NIR instruction at the given cursor.
2770 *
2771 * Note: This does not update the cursor.
2772 */
2773 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2774
2775 static inline void
2776 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2777 {
2778 nir_instr_insert(nir_before_instr(instr), before);
2779 }
2780
2781 static inline void
2782 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2783 {
2784 nir_instr_insert(nir_after_instr(instr), after);
2785 }
2786
2787 static inline void
2788 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2789 {
2790 nir_instr_insert(nir_before_block(block), before);
2791 }
2792
2793 static inline void
2794 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2795 {
2796 nir_instr_insert(nir_after_block(block), after);
2797 }
2798
2799 static inline void
2800 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2801 {
2802 nir_instr_insert(nir_before_cf_node(node), before);
2803 }
2804
2805 static inline void
2806 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2807 {
2808 nir_instr_insert(nir_after_cf_node(node), after);
2809 }
2810
2811 static inline void
2812 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2813 {
2814 nir_instr_insert(nir_before_cf_list(list), before);
2815 }
2816
2817 static inline void
2818 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2819 {
2820 nir_instr_insert(nir_after_cf_list(list), after);
2821 }
2822
2823 void nir_instr_remove_v(nir_instr *instr);
2824
2825 static inline nir_cursor
2826 nir_instr_remove(nir_instr *instr)
2827 {
2828 nir_cursor cursor;
2829 nir_instr *prev = nir_instr_prev(instr);
2830 if (prev) {
2831 cursor = nir_after_instr(prev);
2832 } else {
2833 cursor = nir_before_block(instr->block);
2834 }
2835 nir_instr_remove_v(instr);
2836 return cursor;
2837 }
2838
2839 /** @} */
2840
2841 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2842 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2843 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2844 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2845 void *state);
2846 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2847 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2848
2849 nir_const_value *nir_src_as_const_value(nir_src src);
2850
2851 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
2852 static inline c_type * \
2853 nir_src_as_ ## name (nir_src src) \
2854 { \
2855 return src.is_ssa && src.ssa->parent_instr->type == type_enum \
2856 ? cast_macro(src.ssa->parent_instr) : NULL; \
2857 }
2858
2859 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
2860 NIR_SRC_AS_(intrinsic, nir_intrinsic_instr,
2861 nir_instr_type_intrinsic, nir_instr_as_intrinsic)
2862 NIR_SRC_AS_(deref, nir_deref_instr, nir_instr_type_deref, nir_instr_as_deref)
2863
2864 bool nir_src_is_dynamically_uniform(nir_src src);
2865 bool nir_srcs_equal(nir_src src1, nir_src src2);
2866 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2867 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2868 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2869 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2870 nir_dest new_dest);
2871
2872 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2873 unsigned num_components, unsigned bit_size,
2874 const char *name);
2875 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2876 unsigned num_components, unsigned bit_size,
2877 const char *name);
2878 static inline void
2879 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
2880 const struct glsl_type *type,
2881 const char *name)
2882 {
2883 assert(glsl_type_is_vector_or_scalar(type));
2884 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
2885 glsl_get_bit_size(type), name);
2886 }
2887 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2888 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2889 nir_instr *after_me);
2890
2891 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
2892
2893 /*
2894 * finds the next basic block in source-code order, returns NULL if there is
2895 * none
2896 */
2897
2898 nir_block *nir_block_cf_tree_next(nir_block *block);
2899
2900 /* Performs the opposite of nir_block_cf_tree_next() */
2901
2902 nir_block *nir_block_cf_tree_prev(nir_block *block);
2903
2904 /* Gets the first block in a CF node in source-code order */
2905
2906 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2907
2908 /* Gets the last block in a CF node in source-code order */
2909
2910 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2911
2912 /* Gets the next block after a CF node in source-code order */
2913
2914 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2915
2916 /* Macros for loops that visit blocks in source-code order */
2917
2918 #define nir_foreach_block(block, impl) \
2919 for (nir_block *block = nir_start_block(impl); block != NULL; \
2920 block = nir_block_cf_tree_next(block))
2921
2922 #define nir_foreach_block_safe(block, impl) \
2923 for (nir_block *block = nir_start_block(impl), \
2924 *next = nir_block_cf_tree_next(block); \
2925 block != NULL; \
2926 block = next, next = nir_block_cf_tree_next(block))
2927
2928 #define nir_foreach_block_reverse(block, impl) \
2929 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2930 block = nir_block_cf_tree_prev(block))
2931
2932 #define nir_foreach_block_reverse_safe(block, impl) \
2933 for (nir_block *block = nir_impl_last_block(impl), \
2934 *prev = nir_block_cf_tree_prev(block); \
2935 block != NULL; \
2936 block = prev, prev = nir_block_cf_tree_prev(block))
2937
2938 #define nir_foreach_block_in_cf_node(block, node) \
2939 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2940 block != nir_cf_node_cf_tree_next(node); \
2941 block = nir_block_cf_tree_next(block))
2942
2943 /* If the following CF node is an if, this function returns that if.
2944 * Otherwise, it returns NULL.
2945 */
2946 nir_if *nir_block_get_following_if(nir_block *block);
2947
2948 nir_loop *nir_block_get_following_loop(nir_block *block);
2949
2950 void nir_index_local_regs(nir_function_impl *impl);
2951 void nir_index_ssa_defs(nir_function_impl *impl);
2952 unsigned nir_index_instrs(nir_function_impl *impl);
2953
2954 void nir_index_blocks(nir_function_impl *impl);
2955
2956 void nir_print_shader(nir_shader *shader, FILE *fp);
2957 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2958 void nir_print_instr(const nir_instr *instr, FILE *fp);
2959 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
2960
2961 /** Shallow clone of a single ALU instruction. */
2962 nir_alu_instr *nir_alu_instr_clone(nir_shader *s, const nir_alu_instr *orig);
2963
2964 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2965 nir_function_impl *nir_function_impl_clone(nir_shader *shader,
2966 const nir_function_impl *fi);
2967 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2968 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2969
2970 void nir_shader_replace(nir_shader *dest, nir_shader *src);
2971
2972 void nir_shader_serialize_deserialize(nir_shader *s);
2973
2974 #ifndef NDEBUG
2975 void nir_validate_shader(nir_shader *shader, const char *when);
2976 void nir_metadata_set_validation_flag(nir_shader *shader);
2977 void nir_metadata_check_validation_flag(nir_shader *shader);
2978
2979 static inline bool
2980 should_skip_nir(const char *name)
2981 {
2982 static const char *list = NULL;
2983 if (!list) {
2984 /* Comma separated list of names to skip. */
2985 list = getenv("NIR_SKIP");
2986 if (!list)
2987 list = "";
2988 }
2989
2990 if (!list[0])
2991 return false;
2992
2993 return comma_separated_list_contains(list, name);
2994 }
2995
2996 static inline bool
2997 should_clone_nir(void)
2998 {
2999 static int should_clone = -1;
3000 if (should_clone < 0)
3001 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
3002
3003 return should_clone;
3004 }
3005
3006 static inline bool
3007 should_serialize_deserialize_nir(void)
3008 {
3009 static int test_serialize = -1;
3010 if (test_serialize < 0)
3011 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
3012
3013 return test_serialize;
3014 }
3015
3016 static inline bool
3017 should_print_nir(void)
3018 {
3019 static int should_print = -1;
3020 if (should_print < 0)
3021 should_print = env_var_as_boolean("NIR_PRINT", false);
3022
3023 return should_print;
3024 }
3025 #else
3026 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
3027 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
3028 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
3029 static inline bool should_skip_nir(UNUSED const char *pass_name) { return false; }
3030 static inline bool should_clone_nir(void) { return false; }
3031 static inline bool should_serialize_deserialize_nir(void) { return false; }
3032 static inline bool should_print_nir(void) { return false; }
3033 #endif /* NDEBUG */
3034
3035 #define _PASS(pass, nir, do_pass) do { \
3036 if (should_skip_nir(#pass)) { \
3037 printf("skipping %s\n", #pass); \
3038 break; \
3039 } \
3040 do_pass \
3041 nir_validate_shader(nir, "after " #pass); \
3042 if (should_clone_nir()) { \
3043 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
3044 nir_shader_replace(nir, clone); \
3045 } \
3046 if (should_serialize_deserialize_nir()) { \
3047 nir_shader_serialize_deserialize(nir); \
3048 } \
3049 } while (0)
3050
3051 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, \
3052 nir_metadata_set_validation_flag(nir); \
3053 if (should_print_nir()) \
3054 printf("%s\n", #pass); \
3055 if (pass(nir, ##__VA_ARGS__)) { \
3056 progress = true; \
3057 if (should_print_nir()) \
3058 nir_print_shader(nir, stdout); \
3059 nir_metadata_check_validation_flag(nir); \
3060 } \
3061 )
3062
3063 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, \
3064 if (should_print_nir()) \
3065 printf("%s\n", #pass); \
3066 pass(nir, ##__VA_ARGS__); \
3067 if (should_print_nir()) \
3068 nir_print_shader(nir, stdout); \
3069 )
3070
3071 #define NIR_SKIP(name) should_skip_nir(#name)
3072
3073 void nir_calc_dominance_impl(nir_function_impl *impl);
3074 void nir_calc_dominance(nir_shader *shader);
3075
3076 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
3077 bool nir_block_dominates(nir_block *parent, nir_block *child);
3078
3079 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
3080 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
3081
3082 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
3083 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
3084
3085 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
3086 void nir_dump_cfg(nir_shader *shader, FILE *fp);
3087
3088 int nir_gs_count_vertices(const nir_shader *shader);
3089
3090 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
3091 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
3092 bool nir_split_var_copies(nir_shader *shader);
3093 bool nir_split_per_member_structs(nir_shader *shader);
3094 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
3095
3096 bool nir_lower_returns_impl(nir_function_impl *impl);
3097 bool nir_lower_returns(nir_shader *shader);
3098
3099 void nir_inline_function_impl(struct nir_builder *b,
3100 const nir_function_impl *impl,
3101 nir_ssa_def **params);
3102 bool nir_inline_functions(nir_shader *shader);
3103
3104 bool nir_propagate_invariant(nir_shader *shader);
3105
3106 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
3107 void nir_lower_deref_copy_instr(struct nir_builder *b,
3108 nir_intrinsic_instr *copy);
3109 bool nir_lower_var_copies(nir_shader *shader);
3110
3111 void nir_fixup_deref_modes(nir_shader *shader);
3112
3113 bool nir_lower_global_vars_to_local(nir_shader *shader);
3114
3115 typedef enum {
3116 nir_lower_direct_array_deref_of_vec_load = (1 << 0),
3117 nir_lower_indirect_array_deref_of_vec_load = (1 << 1),
3118 nir_lower_direct_array_deref_of_vec_store = (1 << 2),
3119 nir_lower_indirect_array_deref_of_vec_store = (1 << 3),
3120 } nir_lower_array_deref_of_vec_options;
3121
3122 bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
3123 nir_lower_array_deref_of_vec_options options);
3124
3125 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
3126
3127 bool nir_lower_locals_to_regs(nir_shader *shader);
3128
3129 void nir_lower_io_to_temporaries(nir_shader *shader,
3130 nir_function_impl *entrypoint,
3131 bool outputs, bool inputs);
3132
3133 bool nir_lower_vars_to_scratch(nir_shader *shader,
3134 nir_variable_mode modes,
3135 int size_threshold,
3136 glsl_type_size_align_func size_align);
3137
3138 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
3139
3140 void nir_gather_ssa_types(nir_function_impl *impl,
3141 BITSET_WORD *float_types,
3142 BITSET_WORD *int_types);
3143
3144 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
3145 int (*type_size)(const struct glsl_type *, bool));
3146
3147 /* Some helpers to do very simple linking */
3148 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
3149 bool nir_remove_unused_io_vars(nir_shader *shader, struct exec_list *var_list,
3150 uint64_t *used_by_other_stage,
3151 uint64_t *used_by_other_stage_patches);
3152 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
3153 bool default_to_smooth_interp);
3154 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
3155 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
3156
3157
3158 void nir_assign_io_var_locations(struct exec_list *var_list,
3159 unsigned *size,
3160 gl_shader_stage stage);
3161
3162 typedef enum {
3163 /* If set, this forces all non-flat fragment shader inputs to be
3164 * interpolated as if with the "sample" qualifier. This requires
3165 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
3166 */
3167 nir_lower_io_force_sample_interpolation = (1 << 1),
3168 } nir_lower_io_options;
3169 bool nir_lower_io(nir_shader *shader,
3170 nir_variable_mode modes,
3171 int (*type_size)(const struct glsl_type *, bool),
3172 nir_lower_io_options);
3173
3174 bool nir_io_add_const_offset_to_base(nir_shader *nir, nir_variable_mode mode);
3175
3176 typedef enum {
3177 /**
3178 * An address format which is a simple 32-bit global GPU address.
3179 */
3180 nir_address_format_32bit_global,
3181
3182 /**
3183 * An address format which is a simple 64-bit global GPU address.
3184 */
3185 nir_address_format_64bit_global,
3186
3187 /**
3188 * An address format which is a bounds-checked 64-bit global GPU address.
3189 *
3190 * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
3191 * address stored with the low bits in .x and high bits in .y, .z is a
3192 * size, and .w is an offset. When the final I/O operation is lowered, .w
3193 * is checked against .z and the operation is predicated on the result.
3194 */
3195 nir_address_format_64bit_bounded_global,
3196
3197 /**
3198 * An address format which is comprised of a vec2 where the first
3199 * component is a buffer index and the second is an offset.
3200 */
3201 nir_address_format_32bit_index_offset,
3202
3203 /**
3204 * An address format which is a simple 32-bit offset.
3205 */
3206 nir_address_format_32bit_offset,
3207
3208 /**
3209 * An address format representing a purely logical addressing model. In
3210 * this model, all deref chains must be complete from the dereference
3211 * operation to the variable. Cast derefs are not allowed. These
3212 * addresses will be 32-bit scalars but the format is immaterial because
3213 * you can always chase the chain.
3214 */
3215 nir_address_format_logical,
3216 } nir_address_format;
3217
3218 static inline unsigned
3219 nir_address_format_bit_size(nir_address_format addr_format)
3220 {
3221 switch (addr_format) {
3222 case nir_address_format_32bit_global: return 32;
3223 case nir_address_format_64bit_global: return 64;
3224 case nir_address_format_64bit_bounded_global: return 32;
3225 case nir_address_format_32bit_index_offset: return 32;
3226 case nir_address_format_32bit_offset: return 32;
3227 case nir_address_format_logical: return 32;
3228 }
3229 unreachable("Invalid address format");
3230 }
3231
3232 static inline unsigned
3233 nir_address_format_num_components(nir_address_format addr_format)
3234 {
3235 switch (addr_format) {
3236 case nir_address_format_32bit_global: return 1;
3237 case nir_address_format_64bit_global: return 1;
3238 case nir_address_format_64bit_bounded_global: return 4;
3239 case nir_address_format_32bit_index_offset: return 2;
3240 case nir_address_format_32bit_offset: return 1;
3241 case nir_address_format_logical: return 1;
3242 }
3243 unreachable("Invalid address format");
3244 }
3245
3246 static inline const struct glsl_type *
3247 nir_address_format_to_glsl_type(nir_address_format addr_format)
3248 {
3249 unsigned bit_size = nir_address_format_bit_size(addr_format);
3250 assert(bit_size == 32 || bit_size == 64);
3251 return glsl_vector_type(bit_size == 32 ? GLSL_TYPE_UINT : GLSL_TYPE_UINT64,
3252 nir_address_format_num_components(addr_format));
3253 }
3254
3255 const nir_const_value *nir_address_format_null_value(nir_address_format addr_format);
3256
3257 nir_ssa_def *nir_build_addr_ieq(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
3258 nir_address_format addr_format);
3259
3260 nir_ssa_def *nir_build_addr_isub(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
3261 nir_address_format addr_format);
3262
3263 nir_ssa_def * nir_explicit_io_address_from_deref(struct nir_builder *b,
3264 nir_deref_instr *deref,
3265 nir_ssa_def *base_addr,
3266 nir_address_format addr_format);
3267 void nir_lower_explicit_io_instr(struct nir_builder *b,
3268 nir_intrinsic_instr *io_instr,
3269 nir_ssa_def *addr,
3270 nir_address_format addr_format);
3271
3272 bool nir_lower_explicit_io(nir_shader *shader,
3273 nir_variable_mode modes,
3274 nir_address_format);
3275
3276 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
3277 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
3278
3279 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
3280
3281 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
3282 bool nir_lower_regs_to_ssa(nir_shader *shader);
3283 bool nir_lower_vars_to_ssa(nir_shader *shader);
3284
3285 bool nir_remove_dead_derefs(nir_shader *shader);
3286 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
3287 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
3288 bool nir_lower_constant_initializers(nir_shader *shader,
3289 nir_variable_mode modes);
3290
3291 bool nir_move_load_const(nir_shader *shader);
3292 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
3293 bool nir_lower_vec_to_movs(nir_shader *shader);
3294 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
3295 bool alpha_to_one);
3296 bool nir_lower_alu(nir_shader *shader);
3297
3298 bool nir_lower_flrp(nir_shader *shader, unsigned lowering_mask,
3299 bool always_precise, bool have_ffma);
3300
3301 bool nir_lower_alu_to_scalar(nir_shader *shader, BITSET_WORD *lower_set);
3302 bool nir_lower_bool_to_float(nir_shader *shader);
3303 bool nir_lower_bool_to_int32(nir_shader *shader);
3304 bool nir_lower_int_to_float(nir_shader *shader);
3305 bool nir_lower_load_const_to_scalar(nir_shader *shader);
3306 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
3307 bool nir_lower_phis_to_scalar(nir_shader *shader);
3308 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
3309 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
3310 bool outputs_only);
3311 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
3312 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
3313 bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
3314
3315 void nir_lower_fragcoord_wtrans(nir_shader *shader);
3316 void nir_lower_viewport_transform(nir_shader *shader);
3317 bool nir_lower_uniforms_to_ubo(nir_shader *shader, int multiplier);
3318
3319 typedef struct nir_lower_subgroups_options {
3320 uint8_t subgroup_size;
3321 uint8_t ballot_bit_size;
3322 bool lower_to_scalar:1;
3323 bool lower_vote_trivial:1;
3324 bool lower_vote_eq_to_ballot:1;
3325 bool lower_subgroup_masks:1;
3326 bool lower_shuffle:1;
3327 bool lower_shuffle_to_32bit:1;
3328 bool lower_quad:1;
3329 } nir_lower_subgroups_options;
3330
3331 bool nir_lower_subgroups(nir_shader *shader,
3332 const nir_lower_subgroups_options *options);
3333
3334 bool nir_lower_system_values(nir_shader *shader);
3335
3336 enum PACKED nir_lower_tex_packing {
3337 nir_lower_tex_packing_none = 0,
3338 /* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
3339 * or unsigned ints based on the sampler type
3340 */
3341 nir_lower_tex_packing_16,
3342 /* The sampler returns 1 32-bit word of 4x8 unorm */
3343 nir_lower_tex_packing_8,
3344 };
3345
3346 typedef struct nir_lower_tex_options {
3347 /**
3348 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
3349 * sampler types a texture projector is lowered.
3350 */
3351 unsigned lower_txp;
3352
3353 /**
3354 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
3355 */
3356 bool lower_txf_offset;
3357
3358 /**
3359 * If true, lower away nir_tex_src_offset for all rect textures.
3360 */
3361 bool lower_rect_offset;
3362
3363 /**
3364 * If true, lower rect textures to 2D, using txs to fetch the
3365 * texture dimensions and dividing the texture coords by the
3366 * texture dims to normalize.
3367 */
3368 bool lower_rect;
3369
3370 /**
3371 * If true, convert yuv to rgb.
3372 */
3373 unsigned lower_y_uv_external;
3374 unsigned lower_y_u_v_external;
3375 unsigned lower_yx_xuxv_external;
3376 unsigned lower_xy_uxvx_external;
3377 unsigned lower_ayuv_external;
3378 unsigned lower_xyuv_external;
3379
3380 /**
3381 * To emulate certain texture wrap modes, this can be used
3382 * to saturate the specified tex coord to [0.0, 1.0]. The
3383 * bits are according to sampler #, ie. if, for example:
3384 *
3385 * (conf->saturate_s & (1 << n))
3386 *
3387 * is true, then the s coord for sampler n is saturated.
3388 *
3389 * Note that clamping must happen *after* projector lowering
3390 * so any projected texture sample instruction with a clamped
3391 * coordinate gets automatically lowered, regardless of the
3392 * 'lower_txp' setting.
3393 */
3394 unsigned saturate_s;
3395 unsigned saturate_t;
3396 unsigned saturate_r;
3397
3398 /* Bitmask of textures that need swizzling.
3399 *
3400 * If (swizzle_result & (1 << texture_index)), then the swizzle in
3401 * swizzles[texture_index] is applied to the result of the texturing
3402 * operation.
3403 */
3404 unsigned swizzle_result;
3405
3406 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
3407 * while 4 and 5 represent 0 and 1 respectively.
3408 */
3409 uint8_t swizzles[32][4];
3410
3411 /* Can be used to scale sampled values in range required by the format. */
3412 float scale_factors[32];
3413
3414 /**
3415 * Bitmap of textures that need srgb to linear conversion. If
3416 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
3417 * of the texture are lowered to linear.
3418 */
3419 unsigned lower_srgb;
3420
3421 /**
3422 * If true, lower nir_texop_tex on shaders that doesn't support implicit
3423 * LODs to nir_texop_txl.
3424 */
3425 bool lower_tex_without_implicit_lod;
3426
3427 /**
3428 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
3429 */
3430 bool lower_txd_cube_map;
3431
3432 /**
3433 * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
3434 */
3435 bool lower_txd_3d;
3436
3437 /**
3438 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
3439 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
3440 * with lower_txd_cube_map.
3441 */
3442 bool lower_txd_shadow;
3443
3444 /**
3445 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
3446 * Implies lower_txd_cube_map and lower_txd_shadow.
3447 */
3448 bool lower_txd;
3449
3450 /**
3451 * If true, lower nir_texop_txb that try to use shadow compare and min_lod
3452 * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
3453 */
3454 bool lower_txb_shadow_clamp;
3455
3456 /**
3457 * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
3458 * with nir_texop_txl. This includes cube maps.
3459 */
3460 bool lower_txd_shadow_clamp;
3461
3462 /**
3463 * If true, lower nir_texop_txd on when it uses both offset and min_lod
3464 * with nir_texop_txl. This includes cube maps.
3465 */
3466 bool lower_txd_offset_clamp;
3467
3468 /**
3469 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3470 * sampler is bindless.
3471 */
3472 bool lower_txd_clamp_bindless_sampler;
3473
3474 /**
3475 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3476 * sampler index is not statically determinable to be less than 16.
3477 */
3478 bool lower_txd_clamp_if_sampler_index_not_lt_16;
3479
3480 /**
3481 * If true, lower nir_texop_txs with a non-0-lod into nir_texop_txs with
3482 * 0-lod followed by a nir_ishr.
3483 */
3484 bool lower_txs_lod;
3485
3486 /**
3487 * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
3488 * mixed-up tg4 locations.
3489 */
3490 bool lower_tg4_broadcom_swizzle;
3491
3492 /**
3493 * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
3494 */
3495 bool lower_tg4_offsets;
3496
3497 enum nir_lower_tex_packing lower_tex_packing[32];
3498 } nir_lower_tex_options;
3499
3500 bool nir_lower_tex(nir_shader *shader,
3501 const nir_lower_tex_options *options);
3502
3503 enum nir_lower_non_uniform_access_type {
3504 nir_lower_non_uniform_ubo_access = (1 << 0),
3505 nir_lower_non_uniform_ssbo_access = (1 << 1),
3506 nir_lower_non_uniform_texture_access = (1 << 2),
3507 nir_lower_non_uniform_image_access = (1 << 3),
3508 };
3509
3510 bool nir_lower_non_uniform_access(nir_shader *shader,
3511 enum nir_lower_non_uniform_access_type);
3512
3513 bool nir_lower_idiv(nir_shader *shader);
3514
3515 bool nir_lower_input_attachments(nir_shader *shader, bool use_fragcoord_sysval);
3516
3517 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables, bool use_vars);
3518 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
3519 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
3520
3521 bool nir_lower_frexp(nir_shader *nir);
3522
3523 void nir_lower_two_sided_color(nir_shader *shader);
3524
3525 bool nir_lower_clamp_color_outputs(nir_shader *shader);
3526
3527 void nir_lower_passthrough_edgeflags(nir_shader *shader);
3528 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
3529 const gl_state_index16 *uniform_state_tokens);
3530
3531 typedef struct nir_lower_wpos_ytransform_options {
3532 gl_state_index16 state_tokens[STATE_LENGTH];
3533 bool fs_coord_origin_upper_left :1;
3534 bool fs_coord_origin_lower_left :1;
3535 bool fs_coord_pixel_center_integer :1;
3536 bool fs_coord_pixel_center_half_integer :1;
3537 } nir_lower_wpos_ytransform_options;
3538
3539 bool nir_lower_wpos_ytransform(nir_shader *shader,
3540 const nir_lower_wpos_ytransform_options *options);
3541 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
3542
3543 bool nir_lower_fb_read(nir_shader *shader);
3544
3545 typedef struct nir_lower_drawpixels_options {
3546 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
3547 gl_state_index16 scale_state_tokens[STATE_LENGTH];
3548 gl_state_index16 bias_state_tokens[STATE_LENGTH];
3549 unsigned drawpix_sampler;
3550 unsigned pixelmap_sampler;
3551 bool pixel_maps :1;
3552 bool scale_and_bias :1;
3553 } nir_lower_drawpixels_options;
3554
3555 void nir_lower_drawpixels(nir_shader *shader,
3556 const nir_lower_drawpixels_options *options);
3557
3558 typedef struct nir_lower_bitmap_options {
3559 unsigned sampler;
3560 bool swizzle_xxxx;
3561 } nir_lower_bitmap_options;
3562
3563 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
3564
3565 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
3566
3567 typedef enum {
3568 nir_lower_int_source_mods = 1 << 0,
3569 nir_lower_float_source_mods = 1 << 1,
3570 nir_lower_triop_abs = 1 << 2,
3571 nir_lower_all_source_mods = (1 << 3) - 1
3572 } nir_lower_to_source_mods_flags;
3573
3574
3575 bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
3576
3577 bool nir_lower_gs_intrinsics(nir_shader *shader);
3578
3579 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
3580
3581 bool nir_lower_bit_size(nir_shader *shader,
3582 nir_lower_bit_size_callback callback,
3583 void *callback_data);
3584
3585 nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
3586 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
3587
3588 nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
3589 bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
3590 nir_lower_doubles_options options);
3591 bool nir_lower_pack(nir_shader *shader);
3592
3593 typedef enum {
3594 nir_lower_interpolation_at_sample = (1 << 1),
3595 nir_lower_interpolation_at_offset = (1 << 2),
3596 nir_lower_interpolation_centroid = (1 << 3),
3597 nir_lower_interpolation_pixel = (1 << 4),
3598 nir_lower_interpolation_sample = (1 << 5),
3599 } nir_lower_interpolation_options;
3600
3601 bool nir_lower_interpolation(nir_shader *shader,
3602 nir_lower_interpolation_options options);
3603
3604 bool nir_normalize_cubemap_coords(nir_shader *shader);
3605
3606 void nir_live_ssa_defs_impl(nir_function_impl *impl);
3607
3608 void nir_loop_analyze_impl(nir_function_impl *impl,
3609 nir_variable_mode indirect_mask);
3610
3611 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
3612
3613 bool nir_repair_ssa_impl(nir_function_impl *impl);
3614 bool nir_repair_ssa(nir_shader *shader);
3615
3616 void nir_convert_loop_to_lcssa(nir_loop *loop);
3617
3618 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
3619 * registers. If false, convert all values (even those not involved in a phi
3620 * node) to registers.
3621 */
3622 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
3623
3624 bool nir_lower_phis_to_regs_block(nir_block *block);
3625 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
3626 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
3627
3628 /* This is here for unit tests. */
3629 bool nir_opt_comparison_pre_impl(nir_function_impl *impl);
3630
3631 bool nir_opt_comparison_pre(nir_shader *shader);
3632
3633 bool nir_opt_algebraic(nir_shader *shader);
3634 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
3635 bool nir_opt_algebraic_late(nir_shader *shader);
3636 bool nir_opt_constant_folding(nir_shader *shader);
3637
3638 bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
3639
3640 bool nir_copy_prop(nir_shader *shader);
3641
3642 bool nir_opt_copy_prop_vars(nir_shader *shader);
3643
3644 bool nir_opt_cse(nir_shader *shader);
3645
3646 bool nir_opt_dce(nir_shader *shader);
3647
3648 bool nir_opt_dead_cf(nir_shader *shader);
3649
3650 bool nir_opt_dead_write_vars(nir_shader *shader);
3651
3652 bool nir_opt_deref_impl(nir_function_impl *impl);
3653 bool nir_opt_deref(nir_shader *shader);
3654
3655 bool nir_opt_find_array_copies(nir_shader *shader);
3656
3657 bool nir_opt_gcm(nir_shader *shader, bool value_number);
3658
3659 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
3660
3661 bool nir_opt_if(nir_shader *shader, bool aggressive_last_continue);
3662
3663 bool nir_opt_intrinsics(nir_shader *shader);
3664
3665 bool nir_opt_large_constants(nir_shader *shader,
3666 glsl_type_size_align_func size_align,
3667 unsigned threshold);
3668
3669 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
3670
3671 bool nir_opt_move_comparisons(nir_shader *shader);
3672
3673 bool nir_opt_move_load_ubo(nir_shader *shader);
3674
3675 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
3676 bool indirect_load_ok, bool expensive_alu_ok);
3677
3678 bool nir_opt_rematerialize_compares(nir_shader *shader);
3679
3680 bool nir_opt_remove_phis(nir_shader *shader);
3681
3682 bool nir_opt_shrink_load(nir_shader *shader);
3683
3684 bool nir_opt_trivial_continues(nir_shader *shader);
3685
3686 bool nir_opt_undef(nir_shader *shader);
3687
3688 bool nir_opt_vectorize(nir_shader *shader);
3689
3690 bool nir_opt_conditional_discard(nir_shader *shader);
3691
3692 void nir_strip(nir_shader *shader);
3693
3694 void nir_sweep(nir_shader *shader);
3695
3696 void nir_remap_dual_slot_attributes(nir_shader *shader,
3697 uint64_t *dual_slot_inputs);
3698 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
3699
3700 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
3701 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
3702
3703 bool nir_lower_sincos(nir_shader *shader);
3704
3705 static inline bool
3706 nir_variable_is_in_ubo(const nir_variable *var)
3707 {
3708 return (var->data.mode == nir_var_mem_ubo &&
3709 var->interface_type != NULL);
3710 }
3711
3712 static inline bool
3713 nir_variable_is_in_ssbo(const nir_variable *var)
3714 {
3715 return (var->data.mode == nir_var_mem_ssbo &&
3716 var->interface_type != NULL);
3717 }
3718
3719 static inline bool
3720 nir_variable_is_in_block(const nir_variable *var)
3721 {
3722 return nir_variable_is_in_ubo(var) || nir_variable_is_in_ssbo(var);
3723 }
3724
3725 #ifdef __cplusplus
3726 } /* extern "C" */
3727 #endif
3728
3729 #endif /* NIR_H */