nir: Avoid structure initalization expressions.
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #pragma once
29
30 #include "util/hash_table.h"
31 #include "compiler/glsl/list.h"
32 #include "GL/gl.h" /* GLenum */
33 #include "util/list.h"
34 #include "util/ralloc.h"
35 #include "util/set.h"
36 #include "util/bitset.h"
37 #include "compiler/nir_types.h"
38 #include "compiler/shader_enums.h"
39 #include <stdio.h>
40
41 #include "nir_opcodes.h"
42
43 #ifdef __cplusplus
44 extern "C" {
45 #endif
46
47 struct gl_program;
48 struct gl_shader_program;
49
50 #define NIR_FALSE 0u
51 #define NIR_TRUE (~0u)
52
53 /** Defines a cast function
54 *
55 * This macro defines a cast function from in_type to out_type where
56 * out_type is some structure type that contains a field of type out_type.
57 *
58 * Note that you have to be a bit careful as the generated cast function
59 * destroys constness.
60 */
61 #define NIR_DEFINE_CAST(name, in_type, out_type, field) \
62 static inline out_type * \
63 name(const in_type *parent) \
64 { \
65 return exec_node_data(out_type, parent, field); \
66 }
67
68 struct nir_function;
69 struct nir_shader;
70 struct nir_instr;
71
72
73 /**
74 * Description of built-in state associated with a uniform
75 *
76 * \sa nir_variable::state_slots
77 */
78 typedef struct {
79 int tokens[5];
80 int swizzle;
81 } nir_state_slot;
82
83 typedef enum {
84 nir_var_shader_in = (1 << 0),
85 nir_var_shader_out = (1 << 1),
86 nir_var_global = (1 << 2),
87 nir_var_local = (1 << 3),
88 nir_var_uniform = (1 << 4),
89 nir_var_shader_storage = (1 << 5),
90 nir_var_system_value = (1 << 6),
91 nir_var_param = (1 << 7),
92 nir_var_shared = (1 << 8),
93 nir_var_all = ~0,
94 } nir_variable_mode;
95
96 /**
97 * Data stored in an nir_constant
98 */
99 union nir_constant_data {
100 unsigned u[16];
101 int i[16];
102 float f[16];
103 bool b[16];
104 double d[16];
105 };
106
107 typedef struct nir_constant {
108 /**
109 * Value of the constant.
110 *
111 * The field used to back the values supplied by the constant is determined
112 * by the type associated with the \c nir_variable. Constants may be
113 * scalars, vectors, or matrices.
114 */
115 union nir_constant_data value;
116
117 /* we could get this from the var->type but makes clone *much* easier to
118 * not have to care about the type.
119 */
120 unsigned num_elements;
121
122 /* Array elements / Structure Fields */
123 struct nir_constant **elements;
124 } nir_constant;
125
126 /**
127 * \brief Layout qualifiers for gl_FragDepth.
128 *
129 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
130 * with a layout qualifier.
131 */
132 typedef enum {
133 nir_depth_layout_none, /**< No depth layout is specified. */
134 nir_depth_layout_any,
135 nir_depth_layout_greater,
136 nir_depth_layout_less,
137 nir_depth_layout_unchanged
138 } nir_depth_layout;
139
140 /**
141 * Either a uniform, global variable, shader input, or shader output. Based on
142 * ir_variable - it should be easy to translate between the two.
143 */
144
145 typedef struct nir_variable {
146 struct exec_node node;
147
148 /**
149 * Declared type of the variable
150 */
151 const struct glsl_type *type;
152
153 /**
154 * Declared name of the variable
155 */
156 char *name;
157
158 struct nir_variable_data {
159 /**
160 * Storage class of the variable.
161 *
162 * \sa nir_variable_mode
163 */
164 nir_variable_mode mode;
165
166 /**
167 * Is the variable read-only?
168 *
169 * This is set for variables declared as \c const, shader inputs,
170 * and uniforms.
171 */
172 unsigned read_only:1;
173 unsigned centroid:1;
174 unsigned sample:1;
175 unsigned patch:1;
176 unsigned invariant:1;
177
178 /**
179 * Interpolation mode for shader inputs / outputs
180 *
181 * \sa glsl_interp_qualifier
182 */
183 unsigned interpolation:2;
184
185 /**
186 * \name ARB_fragment_coord_conventions
187 * @{
188 */
189 unsigned origin_upper_left:1;
190 unsigned pixel_center_integer:1;
191 /*@}*/
192
193 /**
194 * Was the location explicitly set in the shader?
195 *
196 * If the location is explicitly set in the shader, it \b cannot be changed
197 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
198 * no effect).
199 */
200 unsigned explicit_location:1;
201 unsigned explicit_index:1;
202
203 /**
204 * Was an initial binding explicitly set in the shader?
205 *
206 * If so, constant_initializer contains an integer nir_constant
207 * representing the initial binding point.
208 */
209 unsigned explicit_binding:1;
210
211 /**
212 * Does this variable have an initializer?
213 *
214 * This is used by the linker to cross-validiate initializers of global
215 * variables.
216 */
217 unsigned has_initializer:1;
218
219 /**
220 * If non-zero, then this variable may be packed along with other variables
221 * into a single varying slot, so this offset should be applied when
222 * accessing components. For example, an offset of 1 means that the x
223 * component of this variable is actually stored in component y of the
224 * location specified by \c location.
225 */
226 unsigned location_frac:2;
227
228 /**
229 * \brief Layout qualifier for gl_FragDepth.
230 *
231 * This is not equal to \c ir_depth_layout_none if and only if this
232 * variable is \c gl_FragDepth and a layout qualifier is specified.
233 */
234 nir_depth_layout depth_layout;
235
236 /**
237 * Storage location of the base of this variable
238 *
239 * The precise meaning of this field depends on the nature of the variable.
240 *
241 * - Vertex shader input: one of the values from \c gl_vert_attrib.
242 * - Vertex shader output: one of the values from \c gl_varying_slot.
243 * - Geometry shader input: one of the values from \c gl_varying_slot.
244 * - Geometry shader output: one of the values from \c gl_varying_slot.
245 * - Fragment shader input: one of the values from \c gl_varying_slot.
246 * - Fragment shader output: one of the values from \c gl_frag_result.
247 * - Uniforms: Per-stage uniform slot number for default uniform block.
248 * - Uniforms: Index within the uniform block definition for UBO members.
249 * - Non-UBO Uniforms: uniform slot number.
250 * - Other: This field is not currently used.
251 *
252 * If the variable is a uniform, shader input, or shader output, and the
253 * slot has not been assigned, the value will be -1.
254 */
255 int location;
256
257 /**
258 * The actual location of the variable in the IR. Only valid for inputs
259 * and outputs.
260 */
261 unsigned int driver_location;
262
263 /**
264 * output index for dual source blending.
265 */
266 int index;
267
268 /**
269 * Initial binding point for a sampler or UBO.
270 *
271 * For array types, this represents the binding point for the first element.
272 */
273 int binding;
274
275 /**
276 * Location an atomic counter is stored at.
277 */
278 unsigned offset;
279
280 /**
281 * ARB_shader_image_load_store qualifiers.
282 */
283 struct {
284 bool read_only; /**< "readonly" qualifier. */
285 bool write_only; /**< "writeonly" qualifier. */
286 bool coherent;
287 bool _volatile;
288 bool restrict_flag;
289
290 /** Image internal format if specified explicitly, otherwise GL_NONE. */
291 GLenum format;
292 } image;
293
294 /**
295 * Highest element accessed with a constant expression array index
296 *
297 * Not used for non-array variables.
298 */
299 unsigned max_array_access;
300
301 } data;
302
303 /**
304 * Built-in state that backs this uniform
305 *
306 * Once set at variable creation, \c state_slots must remain invariant.
307 * This is because, ideally, this array would be shared by all clones of
308 * this variable in the IR tree. In other words, we'd really like for it
309 * to be a fly-weight.
310 *
311 * If the variable is not a uniform, \c num_state_slots will be zero and
312 * \c state_slots will be \c NULL.
313 */
314 /*@{*/
315 unsigned num_state_slots; /**< Number of state slots used */
316 nir_state_slot *state_slots; /**< State descriptors. */
317 /*@}*/
318
319 /**
320 * Constant expression assigned in the initializer of the variable
321 */
322 nir_constant *constant_initializer;
323
324 /**
325 * For variables that are in an interface block or are an instance of an
326 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
327 *
328 * \sa ir_variable::location
329 */
330 const struct glsl_type *interface_type;
331 } nir_variable;
332
333 #define nir_foreach_variable(var, var_list) \
334 foreach_list_typed(nir_variable, var, node, var_list)
335
336 #define nir_foreach_variable_safe(var, var_list) \
337 foreach_list_typed_safe(nir_variable, var, node, var_list)
338
339 static inline bool
340 nir_variable_is_global(const nir_variable *var)
341 {
342 return var->data.mode != nir_var_local && var->data.mode != nir_var_param;
343 }
344
345 typedef struct nir_register {
346 struct exec_node node;
347
348 unsigned num_components; /** < number of vector components */
349 unsigned num_array_elems; /** < size of array (0 for no array) */
350
351 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
352 uint8_t bit_size;
353
354 /** generic register index. */
355 unsigned index;
356
357 /** only for debug purposes, can be NULL */
358 const char *name;
359
360 /** whether this register is local (per-function) or global (per-shader) */
361 bool is_global;
362
363 /**
364 * If this flag is set to true, then accessing channels >= num_components
365 * is well-defined, and simply spills over to the next array element. This
366 * is useful for backends that can do per-component accessing, in
367 * particular scalar backends. By setting this flag and making
368 * num_components equal to 1, structures can be packed tightly into
369 * registers and then registers can be accessed per-component to get to
370 * each structure member, even if it crosses vec4 boundaries.
371 */
372 bool is_packed;
373
374 /** set of nir_src's where this register is used (read from) */
375 struct list_head uses;
376
377 /** set of nir_dest's where this register is defined (written to) */
378 struct list_head defs;
379
380 /** set of nir_if's where this register is used as a condition */
381 struct list_head if_uses;
382 } nir_register;
383
384 typedef enum {
385 nir_instr_type_alu,
386 nir_instr_type_call,
387 nir_instr_type_tex,
388 nir_instr_type_intrinsic,
389 nir_instr_type_load_const,
390 nir_instr_type_jump,
391 nir_instr_type_ssa_undef,
392 nir_instr_type_phi,
393 nir_instr_type_parallel_copy,
394 } nir_instr_type;
395
396 typedef struct nir_instr {
397 struct exec_node node;
398 nir_instr_type type;
399 struct nir_block *block;
400
401 /** generic instruction index. */
402 unsigned index;
403
404 /* A temporary for optimization and analysis passes to use for storing
405 * flags. For instance, DCE uses this to store the "dead/live" info.
406 */
407 uint8_t pass_flags;
408 } nir_instr;
409
410 static inline nir_instr *
411 nir_instr_next(nir_instr *instr)
412 {
413 struct exec_node *next = exec_node_get_next(&instr->node);
414 if (exec_node_is_tail_sentinel(next))
415 return NULL;
416 else
417 return exec_node_data(nir_instr, next, node);
418 }
419
420 static inline nir_instr *
421 nir_instr_prev(nir_instr *instr)
422 {
423 struct exec_node *prev = exec_node_get_prev(&instr->node);
424 if (exec_node_is_head_sentinel(prev))
425 return NULL;
426 else
427 return exec_node_data(nir_instr, prev, node);
428 }
429
430 static inline bool
431 nir_instr_is_first(nir_instr *instr)
432 {
433 return exec_node_is_head_sentinel(exec_node_get_prev(&instr->node));
434 }
435
436 static inline bool
437 nir_instr_is_last(nir_instr *instr)
438 {
439 return exec_node_is_tail_sentinel(exec_node_get_next(&instr->node));
440 }
441
442 typedef struct nir_ssa_def {
443 /** for debugging only, can be NULL */
444 const char* name;
445
446 /** generic SSA definition index. */
447 unsigned index;
448
449 /** Index into the live_in and live_out bitfields */
450 unsigned live_index;
451
452 nir_instr *parent_instr;
453
454 /** set of nir_instr's where this register is used (read from) */
455 struct list_head uses;
456
457 /** set of nir_if's where this register is used as a condition */
458 struct list_head if_uses;
459
460 uint8_t num_components;
461
462 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
463 uint8_t bit_size;
464 } nir_ssa_def;
465
466 struct nir_src;
467
468 typedef struct {
469 nir_register *reg;
470 struct nir_src *indirect; /** < NULL for no indirect offset */
471 unsigned base_offset;
472
473 /* TODO use-def chain goes here */
474 } nir_reg_src;
475
476 typedef struct {
477 nir_instr *parent_instr;
478 struct list_head def_link;
479
480 nir_register *reg;
481 struct nir_src *indirect; /** < NULL for no indirect offset */
482 unsigned base_offset;
483
484 /* TODO def-use chain goes here */
485 } nir_reg_dest;
486
487 struct nir_if;
488
489 typedef struct nir_src {
490 union {
491 nir_instr *parent_instr;
492 struct nir_if *parent_if;
493 };
494
495 struct list_head use_link;
496
497 union {
498 nir_reg_src reg;
499 nir_ssa_def *ssa;
500 };
501
502 bool is_ssa;
503 } nir_src;
504
505 static inline nir_src
506 nir_src_init(void)
507 {
508 nir_src src = { { NULL } };
509 return src;
510 }
511
512 #define NIR_SRC_INIT nir_src_init()
513
514 #define nir_foreach_use(reg_or_ssa_def, src) \
515 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
516
517 #define nir_foreach_use_safe(reg_or_ssa_def, src) \
518 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
519
520 #define nir_foreach_if_use(reg_or_ssa_def, src) \
521 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
522
523 #define nir_foreach_if_use_safe(reg_or_ssa_def, src) \
524 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
525
526 typedef struct {
527 union {
528 nir_reg_dest reg;
529 nir_ssa_def ssa;
530 };
531
532 bool is_ssa;
533 } nir_dest;
534
535 static inline nir_dest
536 nir_dest_init(void)
537 {
538 nir_dest dest = { { { NULL } } };
539 return dest;
540 }
541
542 #define NIR_DEST_INIT nir_dest_init()
543
544 #define nir_foreach_def(reg, dest) \
545 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
546
547 #define nir_foreach_def_safe(reg, dest) \
548 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
549
550 static inline nir_src
551 nir_src_for_ssa(nir_ssa_def *def)
552 {
553 nir_src src = NIR_SRC_INIT;
554
555 src.is_ssa = true;
556 src.ssa = def;
557
558 return src;
559 }
560
561 static inline nir_src
562 nir_src_for_reg(nir_register *reg)
563 {
564 nir_src src = NIR_SRC_INIT;
565
566 src.is_ssa = false;
567 src.reg.reg = reg;
568 src.reg.indirect = NULL;
569 src.reg.base_offset = 0;
570
571 return src;
572 }
573
574 static inline nir_dest
575 nir_dest_for_reg(nir_register *reg)
576 {
577 nir_dest dest = NIR_DEST_INIT;
578
579 dest.reg.reg = reg;
580
581 return dest;
582 }
583
584 static inline unsigned
585 nir_src_bit_size(nir_src src)
586 {
587 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
588 }
589
590 static inline unsigned
591 nir_dest_bit_size(nir_dest dest)
592 {
593 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
594 }
595
596 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
597 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
598
599 typedef struct {
600 nir_src src;
601
602 /**
603 * \name input modifiers
604 */
605 /*@{*/
606 /**
607 * For inputs interpreted as floating point, flips the sign bit. For
608 * inputs interpreted as integers, performs the two's complement negation.
609 */
610 bool negate;
611
612 /**
613 * Clears the sign bit for floating point values, and computes the integer
614 * absolute value for integers. Note that the negate modifier acts after
615 * the absolute value modifier, therefore if both are set then all inputs
616 * will become negative.
617 */
618 bool abs;
619 /*@}*/
620
621 /**
622 * For each input component, says which component of the register it is
623 * chosen from. Note that which elements of the swizzle are used and which
624 * are ignored are based on the write mask for most opcodes - for example,
625 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
626 * a swizzle of {2, x, 1, 0} where x means "don't care."
627 */
628 uint8_t swizzle[4];
629 } nir_alu_src;
630
631 typedef struct {
632 nir_dest dest;
633
634 /**
635 * \name saturate output modifier
636 *
637 * Only valid for opcodes that output floating-point numbers. Clamps the
638 * output to between 0.0 and 1.0 inclusive.
639 */
640
641 bool saturate;
642
643 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
644 } nir_alu_dest;
645
646 typedef enum {
647 nir_type_invalid = 0, /* Not a valid type */
648 nir_type_float,
649 nir_type_int,
650 nir_type_uint,
651 nir_type_bool,
652 nir_type_bool32 = 32 | nir_type_bool,
653 nir_type_int8 = 8 | nir_type_int,
654 nir_type_int16 = 16 | nir_type_int,
655 nir_type_int32 = 32 | nir_type_int,
656 nir_type_int64 = 64 | nir_type_int,
657 nir_type_uint8 = 8 | nir_type_uint,
658 nir_type_uint16 = 16 | nir_type_uint,
659 nir_type_uint32 = 32 | nir_type_uint,
660 nir_type_uint64 = 64 | nir_type_uint,
661 nir_type_float16 = 16 | nir_type_float,
662 nir_type_float32 = 32 | nir_type_float,
663 nir_type_float64 = 64 | nir_type_float,
664 } nir_alu_type;
665
666 #define NIR_ALU_TYPE_SIZE_MASK 0xfffffff8
667 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x00000007
668
669 static inline unsigned
670 nir_alu_type_get_type_size(nir_alu_type type)
671 {
672 return type & NIR_ALU_TYPE_SIZE_MASK;
673 }
674
675 static inline unsigned
676 nir_alu_type_get_base_type(nir_alu_type type)
677 {
678 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
679 }
680
681 typedef enum {
682 NIR_OP_IS_COMMUTATIVE = (1 << 0),
683 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
684 } nir_op_algebraic_property;
685
686 typedef struct {
687 const char *name;
688
689 unsigned num_inputs;
690
691 /**
692 * The number of components in the output
693 *
694 * If non-zero, this is the size of the output and input sizes are
695 * explicitly given; swizzle and writemask are still in effect, but if
696 * the output component is masked out, then the input component may
697 * still be in use.
698 *
699 * If zero, the opcode acts in the standard, per-component manner; the
700 * operation is performed on each component (except the ones that are
701 * masked out) with the input being taken from the input swizzle for
702 * that component.
703 *
704 * The size of some of the inputs may be given (i.e. non-zero) even
705 * though output_size is zero; in that case, the inputs with a zero
706 * size act per-component, while the inputs with non-zero size don't.
707 */
708 unsigned output_size;
709
710 /**
711 * The type of vector that the instruction outputs. Note that the
712 * staurate modifier is only allowed on outputs with the float type.
713 */
714
715 nir_alu_type output_type;
716
717 /**
718 * The number of components in each input
719 */
720 unsigned input_sizes[4];
721
722 /**
723 * The type of vector that each input takes. Note that negate and
724 * absolute value are only allowed on inputs with int or float type and
725 * behave differently on the two.
726 */
727 nir_alu_type input_types[4];
728
729 nir_op_algebraic_property algebraic_properties;
730 } nir_op_info;
731
732 extern const nir_op_info nir_op_infos[nir_num_opcodes];
733
734 typedef struct nir_alu_instr {
735 nir_instr instr;
736 nir_op op;
737
738 /** Indicates that this ALU instruction generates an exact value
739 *
740 * This is kind of a mixture of GLSL "precise" and "invariant" and not
741 * really equivalent to either. This indicates that the value generated by
742 * this operation is high-precision and any code transformations that touch
743 * it must ensure that the resulting value is bit-for-bit identical to the
744 * original.
745 */
746 bool exact;
747
748 nir_alu_dest dest;
749 nir_alu_src src[];
750 } nir_alu_instr;
751
752 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
753 nir_alu_instr *instr);
754 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
755 nir_alu_instr *instr);
756
757 /* is this source channel used? */
758 static inline bool
759 nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel)
760 {
761 if (nir_op_infos[instr->op].input_sizes[src] > 0)
762 return channel < nir_op_infos[instr->op].input_sizes[src];
763
764 return (instr->dest.write_mask >> channel) & 1;
765 }
766
767 /*
768 * For instructions whose destinations are SSA, get the number of channels
769 * used for a source
770 */
771 static inline unsigned
772 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
773 {
774 assert(instr->dest.dest.is_ssa);
775
776 if (nir_op_infos[instr->op].input_sizes[src] > 0)
777 return nir_op_infos[instr->op].input_sizes[src];
778
779 return instr->dest.dest.ssa.num_components;
780 }
781
782 typedef enum {
783 nir_deref_type_var,
784 nir_deref_type_array,
785 nir_deref_type_struct
786 } nir_deref_type;
787
788 typedef struct nir_deref {
789 nir_deref_type deref_type;
790 struct nir_deref *child;
791 const struct glsl_type *type;
792 } nir_deref;
793
794 typedef struct {
795 nir_deref deref;
796
797 nir_variable *var;
798 } nir_deref_var;
799
800 /* This enum describes how the array is referenced. If the deref is
801 * direct then the base_offset is used. If the deref is indirect then then
802 * offset is given by base_offset + indirect. If the deref is a wildcard
803 * then the deref refers to all of the elements of the array at the same
804 * time. Wildcard dereferences are only ever allowed in copy_var
805 * intrinsics and the source and destination derefs must have matching
806 * wildcards.
807 */
808 typedef enum {
809 nir_deref_array_type_direct,
810 nir_deref_array_type_indirect,
811 nir_deref_array_type_wildcard,
812 } nir_deref_array_type;
813
814 typedef struct {
815 nir_deref deref;
816
817 nir_deref_array_type deref_array_type;
818 unsigned base_offset;
819 nir_src indirect;
820 } nir_deref_array;
821
822 typedef struct {
823 nir_deref deref;
824
825 unsigned index;
826 } nir_deref_struct;
827
828 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref)
829 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref)
830 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref)
831
832 /* Returns the last deref in the chain. */
833 static inline nir_deref *
834 nir_deref_tail(nir_deref *deref)
835 {
836 while (deref->child)
837 deref = deref->child;
838 return deref;
839 }
840
841 typedef struct {
842 nir_instr instr;
843
844 unsigned num_params;
845 nir_deref_var **params;
846 nir_deref_var *return_deref;
847
848 struct nir_function *callee;
849 } nir_call_instr;
850
851 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
852 num_variables, num_indices, idx0, idx1, idx2, flags) \
853 nir_intrinsic_##name,
854
855 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
856
857 typedef enum {
858 #include "nir_intrinsics.h"
859 nir_num_intrinsics = nir_last_intrinsic + 1
860 } nir_intrinsic_op;
861
862 #undef INTRINSIC
863 #undef LAST_INTRINSIC
864
865 #define NIR_INTRINSIC_MAX_CONST_INDEX 3
866
867 /** Represents an intrinsic
868 *
869 * An intrinsic is an instruction type for handling things that are
870 * more-or-less regular operations but don't just consume and produce SSA
871 * values like ALU operations do. Intrinsics are not for things that have
872 * special semantic meaning such as phi nodes and parallel copies.
873 * Examples of intrinsics include variable load/store operations, system
874 * value loads, and the like. Even though texturing more-or-less falls
875 * under this category, texturing is its own instruction type because
876 * trying to represent texturing with intrinsics would lead to a
877 * combinatorial explosion of intrinsic opcodes.
878 *
879 * By having a single instruction type for handling a lot of different
880 * cases, optimization passes can look for intrinsics and, for the most
881 * part, completely ignore them. Each intrinsic type also has a few
882 * possible flags that govern whether or not they can be reordered or
883 * eliminated. That way passes like dead code elimination can still work
884 * on intrisics without understanding the meaning of each.
885 *
886 * Each intrinsic has some number of constant indices, some number of
887 * variables, and some number of sources. What these sources, variables,
888 * and indices mean depends on the intrinsic and is documented with the
889 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
890 * instructions are the only types of instruction that can operate on
891 * variables.
892 */
893 typedef struct {
894 nir_instr instr;
895
896 nir_intrinsic_op intrinsic;
897
898 nir_dest dest;
899
900 /** number of components if this is a vectorized intrinsic
901 *
902 * Similarly to ALU operations, some intrinsics are vectorized.
903 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
904 * For vectorized intrinsics, the num_components field specifies the
905 * number of destination components and the number of source components
906 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
907 */
908 uint8_t num_components;
909
910 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
911
912 nir_deref_var *variables[2];
913
914 nir_src src[];
915 } nir_intrinsic_instr;
916
917 /**
918 * \name NIR intrinsics semantic flags
919 *
920 * information about what the compiler can do with the intrinsics.
921 *
922 * \sa nir_intrinsic_info::flags
923 */
924 typedef enum {
925 /**
926 * whether the intrinsic can be safely eliminated if none of its output
927 * value is not being used.
928 */
929 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
930
931 /**
932 * Whether the intrinsic can be reordered with respect to any other
933 * intrinsic, i.e. whether the only reordering dependencies of the
934 * intrinsic are due to the register reads/writes.
935 */
936 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
937 } nir_intrinsic_semantic_flag;
938
939 /**
940 * \name NIR intrinsics const-index flag
941 *
942 * Indicates the usage of a const_index slot.
943 *
944 * \sa nir_intrinsic_info::index_map
945 */
946 typedef enum {
947 /**
948 * Generally instructions that take a offset src argument, can encode
949 * a constant 'base' value which is added to the offset.
950 */
951 NIR_INTRINSIC_BASE = 1,
952
953 /**
954 * For store instructions, a writemask for the store.
955 */
956 NIR_INTRINSIC_WRMASK = 2,
957
958 /**
959 * The stream-id for GS emit_vertex/end_primitive intrinsics.
960 */
961 NIR_INTRINSIC_STREAM_ID = 3,
962
963 /**
964 * The clip-plane id for load_user_clip_plane intrinsic.
965 */
966 NIR_INTRINSIC_UCP_ID = 4,
967
968 NIR_INTRINSIC_NUM_INDEX_FLAGS,
969
970 } nir_intrinsic_index_flag;
971
972 #define NIR_INTRINSIC_MAX_INPUTS 4
973
974 typedef struct {
975 const char *name;
976
977 unsigned num_srcs; /** < number of register/SSA inputs */
978
979 /** number of components of each input register
980 *
981 * If this value is 0, the number of components is given by the
982 * num_components field of nir_intrinsic_instr.
983 */
984 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
985
986 bool has_dest;
987
988 /** number of components of the output register
989 *
990 * If this value is 0, the number of components is given by the
991 * num_components field of nir_intrinsic_instr.
992 */
993 unsigned dest_components;
994
995 /** the number of inputs/outputs that are variables */
996 unsigned num_variables;
997
998 /** the number of constant indices used by the intrinsic */
999 unsigned num_indices;
1000
1001 /** indicates the usage of intr->const_index[n] */
1002 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1003
1004 /** semantic flags for calls to this intrinsic */
1005 nir_intrinsic_semantic_flag flags;
1006 } nir_intrinsic_info;
1007
1008 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1009
1010
1011 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1012 static inline type \
1013 nir_intrinsic_##name(nir_intrinsic_instr *instr) \
1014 { \
1015 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1016 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1017 return instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1018 } \
1019 static inline void \
1020 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1021 { \
1022 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1023 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1024 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1025 }
1026
1027 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1028 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1029 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1030 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1031
1032 /**
1033 * \group texture information
1034 *
1035 * This gives semantic information about textures which is useful to the
1036 * frontend, the backend, and lowering passes, but not the optimizer.
1037 */
1038
1039 typedef enum {
1040 nir_tex_src_coord,
1041 nir_tex_src_projector,
1042 nir_tex_src_comparitor, /* shadow comparitor */
1043 nir_tex_src_offset,
1044 nir_tex_src_bias,
1045 nir_tex_src_lod,
1046 nir_tex_src_ms_index, /* MSAA sample index */
1047 nir_tex_src_ddx,
1048 nir_tex_src_ddy,
1049 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1050 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1051 nir_num_tex_src_types
1052 } nir_tex_src_type;
1053
1054 typedef struct {
1055 nir_src src;
1056 nir_tex_src_type src_type;
1057 } nir_tex_src;
1058
1059 typedef enum {
1060 nir_texop_tex, /**< Regular texture look-up */
1061 nir_texop_txb, /**< Texture look-up with LOD bias */
1062 nir_texop_txl, /**< Texture look-up with explicit LOD */
1063 nir_texop_txd, /**< Texture look-up with partial derivatvies */
1064 nir_texop_txf, /**< Texel fetch with explicit LOD */
1065 nir_texop_txf_ms, /**< Multisample texture fetch */
1066 nir_texop_txs, /**< Texture size */
1067 nir_texop_lod, /**< Texture lod query */
1068 nir_texop_tg4, /**< Texture gather */
1069 nir_texop_query_levels, /**< Texture levels query */
1070 nir_texop_texture_samples, /**< Texture samples query */
1071 nir_texop_samples_identical, /**< Query whether all samples are definitely
1072 * identical.
1073 */
1074 } nir_texop;
1075
1076 typedef struct {
1077 nir_instr instr;
1078
1079 enum glsl_sampler_dim sampler_dim;
1080 nir_alu_type dest_type;
1081
1082 nir_texop op;
1083 nir_dest dest;
1084 nir_tex_src *src;
1085 unsigned num_srcs, coord_components;
1086 bool is_array, is_shadow;
1087
1088 /**
1089 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1090 * components or the new-style shadow that outputs 1 component.
1091 */
1092 bool is_new_style_shadow;
1093
1094 /* gather component selector */
1095 unsigned component : 2;
1096
1097 /** The texture index
1098 *
1099 * If this texture instruction has a nir_tex_src_texture_offset source,
1100 * then the texture index is given by texture_index + texture_offset.
1101 */
1102 unsigned texture_index;
1103
1104 /** The size of the texture array or 0 if it's not an array */
1105 unsigned texture_array_size;
1106
1107 /** The texture deref
1108 *
1109 * If this is null, use texture_index instead.
1110 */
1111 nir_deref_var *texture;
1112
1113 /** The sampler index
1114 *
1115 * The following operations do not require a sampler and, as such, this
1116 * field should be ignored:
1117 * - nir_texop_txf
1118 * - nir_texop_txf_ms
1119 * - nir_texop_txs
1120 * - nir_texop_lod
1121 * - nir_texop_tg4
1122 * - nir_texop_query_levels
1123 * - nir_texop_texture_samples
1124 * - nir_texop_samples_identical
1125 *
1126 * If this texture instruction has a nir_tex_src_sampler_offset source,
1127 * then the sampler index is given by sampler_index + sampler_offset.
1128 */
1129 unsigned sampler_index;
1130
1131 /** The sampler deref
1132 *
1133 * If this is null, use sampler_index instead.
1134 */
1135 nir_deref_var *sampler;
1136 } nir_tex_instr;
1137
1138 static inline unsigned
1139 nir_tex_instr_dest_size(nir_tex_instr *instr)
1140 {
1141 switch (instr->op) {
1142 case nir_texop_txs: {
1143 unsigned ret;
1144 switch (instr->sampler_dim) {
1145 case GLSL_SAMPLER_DIM_1D:
1146 case GLSL_SAMPLER_DIM_BUF:
1147 ret = 1;
1148 break;
1149 case GLSL_SAMPLER_DIM_2D:
1150 case GLSL_SAMPLER_DIM_CUBE:
1151 case GLSL_SAMPLER_DIM_MS:
1152 case GLSL_SAMPLER_DIM_RECT:
1153 case GLSL_SAMPLER_DIM_EXTERNAL:
1154 ret = 2;
1155 break;
1156 case GLSL_SAMPLER_DIM_3D:
1157 ret = 3;
1158 break;
1159 default:
1160 unreachable("not reached");
1161 }
1162 if (instr->is_array)
1163 ret++;
1164 return ret;
1165 }
1166
1167 case nir_texop_lod:
1168 return 2;
1169
1170 case nir_texop_texture_samples:
1171 case nir_texop_query_levels:
1172 case nir_texop_samples_identical:
1173 return 1;
1174
1175 default:
1176 if (instr->is_shadow && instr->is_new_style_shadow)
1177 return 1;
1178
1179 return 4;
1180 }
1181 }
1182
1183 /* Returns true if this texture operation queries something about the texture
1184 * rather than actually sampling it.
1185 */
1186 static inline bool
1187 nir_tex_instr_is_query(nir_tex_instr *instr)
1188 {
1189 switch (instr->op) {
1190 case nir_texop_txs:
1191 case nir_texop_lod:
1192 case nir_texop_texture_samples:
1193 case nir_texop_query_levels:
1194 return true;
1195 case nir_texop_tex:
1196 case nir_texop_txb:
1197 case nir_texop_txl:
1198 case nir_texop_txd:
1199 case nir_texop_txf:
1200 case nir_texop_txf_ms:
1201 case nir_texop_tg4:
1202 return false;
1203 default:
1204 unreachable("Invalid texture opcode");
1205 }
1206 }
1207
1208 static inline unsigned
1209 nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src)
1210 {
1211 if (instr->src[src].src_type == nir_tex_src_coord)
1212 return instr->coord_components;
1213
1214
1215 if (instr->src[src].src_type == nir_tex_src_offset ||
1216 instr->src[src].src_type == nir_tex_src_ddx ||
1217 instr->src[src].src_type == nir_tex_src_ddy) {
1218 if (instr->is_array)
1219 return instr->coord_components - 1;
1220 else
1221 return instr->coord_components;
1222 }
1223
1224 return 1;
1225 }
1226
1227 static inline int
1228 nir_tex_instr_src_index(nir_tex_instr *instr, nir_tex_src_type type)
1229 {
1230 for (unsigned i = 0; i < instr->num_srcs; i++)
1231 if (instr->src[i].src_type == type)
1232 return (int) i;
1233
1234 return -1;
1235 }
1236
1237 typedef struct {
1238 union {
1239 float f32[4];
1240 double f64[4];
1241 int32_t i32[4];
1242 uint32_t u32[4];
1243 int64_t i64[4];
1244 uint64_t u64[4];
1245 };
1246 } nir_const_value;
1247
1248 typedef struct {
1249 nir_instr instr;
1250
1251 nir_const_value value;
1252
1253 nir_ssa_def def;
1254 } nir_load_const_instr;
1255
1256 typedef enum {
1257 nir_jump_return,
1258 nir_jump_break,
1259 nir_jump_continue,
1260 } nir_jump_type;
1261
1262 typedef struct {
1263 nir_instr instr;
1264 nir_jump_type type;
1265 } nir_jump_instr;
1266
1267 /* creates a new SSA variable in an undefined state */
1268
1269 typedef struct {
1270 nir_instr instr;
1271 nir_ssa_def def;
1272 } nir_ssa_undef_instr;
1273
1274 typedef struct {
1275 struct exec_node node;
1276
1277 /* The predecessor block corresponding to this source */
1278 struct nir_block *pred;
1279
1280 nir_src src;
1281 } nir_phi_src;
1282
1283 #define nir_foreach_phi_src(phi, entry) \
1284 foreach_list_typed(nir_phi_src, entry, node, &(phi)->srcs)
1285 #define nir_foreach_phi_src_safe(phi, entry) \
1286 foreach_list_typed_safe(nir_phi_src, entry, node, &(phi)->srcs)
1287
1288 typedef struct {
1289 nir_instr instr;
1290
1291 struct exec_list srcs; /** < list of nir_phi_src */
1292
1293 nir_dest dest;
1294 } nir_phi_instr;
1295
1296 typedef struct {
1297 struct exec_node node;
1298 nir_src src;
1299 nir_dest dest;
1300 } nir_parallel_copy_entry;
1301
1302 #define nir_foreach_parallel_copy_entry(pcopy, entry) \
1303 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1304
1305 typedef struct {
1306 nir_instr instr;
1307
1308 /* A list of nir_parallel_copy_entry's. The sources of all of the
1309 * entries are copied to the corresponding destinations "in parallel".
1310 * In other words, if we have two entries: a -> b and b -> a, the values
1311 * get swapped.
1312 */
1313 struct exec_list entries;
1314 } nir_parallel_copy_instr;
1315
1316 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr)
1317 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr)
1318 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr)
1319 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr)
1320 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr)
1321 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr)
1322 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr)
1323 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr)
1324 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1325 nir_parallel_copy_instr, instr)
1326
1327 /*
1328 * Control flow
1329 *
1330 * Control flow consists of a tree of control flow nodes, which include
1331 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1332 * instructions that always run start-to-finish. Each basic block also keeps
1333 * track of its successors (blocks which may run immediately after the current
1334 * block) and predecessors (blocks which could have run immediately before the
1335 * current block). Each function also has a start block and an end block which
1336 * all return statements point to (which is always empty). Together, all the
1337 * blocks with their predecessors and successors make up the control flow
1338 * graph (CFG) of the function. There are helpers that modify the tree of
1339 * control flow nodes while modifying the CFG appropriately; these should be
1340 * used instead of modifying the tree directly.
1341 */
1342
1343 typedef enum {
1344 nir_cf_node_block,
1345 nir_cf_node_if,
1346 nir_cf_node_loop,
1347 nir_cf_node_function
1348 } nir_cf_node_type;
1349
1350 typedef struct nir_cf_node {
1351 struct exec_node node;
1352 nir_cf_node_type type;
1353 struct nir_cf_node *parent;
1354 } nir_cf_node;
1355
1356 typedef struct nir_block {
1357 nir_cf_node cf_node;
1358
1359 struct exec_list instr_list; /** < list of nir_instr */
1360
1361 /** generic block index; generated by nir_index_blocks */
1362 unsigned index;
1363
1364 /*
1365 * Each block can only have up to 2 successors, so we put them in a simple
1366 * array - no need for anything more complicated.
1367 */
1368 struct nir_block *successors[2];
1369
1370 /* Set of nir_block predecessors in the CFG */
1371 struct set *predecessors;
1372
1373 /*
1374 * this node's immediate dominator in the dominance tree - set to NULL for
1375 * the start block.
1376 */
1377 struct nir_block *imm_dom;
1378
1379 /* This node's children in the dominance tree */
1380 unsigned num_dom_children;
1381 struct nir_block **dom_children;
1382
1383 /* Set of nir_block's on the dominance frontier of this block */
1384 struct set *dom_frontier;
1385
1386 /*
1387 * These two indices have the property that dom_{pre,post}_index for each
1388 * child of this block in the dominance tree will always be between
1389 * dom_pre_index and dom_post_index for this block, which makes testing if
1390 * a given block is dominated by another block an O(1) operation.
1391 */
1392 unsigned dom_pre_index, dom_post_index;
1393
1394 /* live in and out for this block; used for liveness analysis */
1395 BITSET_WORD *live_in;
1396 BITSET_WORD *live_out;
1397 } nir_block;
1398
1399 static inline nir_instr *
1400 nir_block_first_instr(nir_block *block)
1401 {
1402 struct exec_node *head = exec_list_get_head(&block->instr_list);
1403 return exec_node_data(nir_instr, head, node);
1404 }
1405
1406 static inline nir_instr *
1407 nir_block_last_instr(nir_block *block)
1408 {
1409 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1410 return exec_node_data(nir_instr, tail, node);
1411 }
1412
1413 #define nir_foreach_instr(block, instr) \
1414 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1415 #define nir_foreach_instr_reverse(block, instr) \
1416 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1417 #define nir_foreach_instr_safe(block, instr) \
1418 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1419 #define nir_foreach_instr_reverse_safe(block, instr) \
1420 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1421
1422 typedef struct nir_if {
1423 nir_cf_node cf_node;
1424 nir_src condition;
1425
1426 struct exec_list then_list; /** < list of nir_cf_node */
1427 struct exec_list else_list; /** < list of nir_cf_node */
1428 } nir_if;
1429
1430 static inline nir_cf_node *
1431 nir_if_first_then_node(nir_if *if_stmt)
1432 {
1433 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1434 return exec_node_data(nir_cf_node, head, node);
1435 }
1436
1437 static inline nir_cf_node *
1438 nir_if_last_then_node(nir_if *if_stmt)
1439 {
1440 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1441 return exec_node_data(nir_cf_node, tail, node);
1442 }
1443
1444 static inline nir_cf_node *
1445 nir_if_first_else_node(nir_if *if_stmt)
1446 {
1447 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1448 return exec_node_data(nir_cf_node, head, node);
1449 }
1450
1451 static inline nir_cf_node *
1452 nir_if_last_else_node(nir_if *if_stmt)
1453 {
1454 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1455 return exec_node_data(nir_cf_node, tail, node);
1456 }
1457
1458 typedef struct {
1459 nir_cf_node cf_node;
1460
1461 struct exec_list body; /** < list of nir_cf_node */
1462 } nir_loop;
1463
1464 static inline nir_cf_node *
1465 nir_loop_first_cf_node(nir_loop *loop)
1466 {
1467 return exec_node_data(nir_cf_node, exec_list_get_head(&loop->body), node);
1468 }
1469
1470 static inline nir_cf_node *
1471 nir_loop_last_cf_node(nir_loop *loop)
1472 {
1473 return exec_node_data(nir_cf_node, exec_list_get_tail(&loop->body), node);
1474 }
1475
1476 /**
1477 * Various bits of metadata that can may be created or required by
1478 * optimization and analysis passes
1479 */
1480 typedef enum {
1481 nir_metadata_none = 0x0,
1482 nir_metadata_block_index = 0x1,
1483 nir_metadata_dominance = 0x2,
1484 nir_metadata_live_ssa_defs = 0x4,
1485 nir_metadata_not_properly_reset = 0x8,
1486 } nir_metadata;
1487
1488 typedef struct {
1489 nir_cf_node cf_node;
1490
1491 /** pointer to the function of which this is an implementation */
1492 struct nir_function *function;
1493
1494 struct exec_list body; /** < list of nir_cf_node */
1495
1496 nir_block *end_block;
1497
1498 /** list for all local variables in the function */
1499 struct exec_list locals;
1500
1501 /** array of variables used as parameters */
1502 unsigned num_params;
1503 nir_variable **params;
1504
1505 /** variable used to hold the result of the function */
1506 nir_variable *return_var;
1507
1508 /** list of local registers in the function */
1509 struct exec_list registers;
1510
1511 /** next available local register index */
1512 unsigned reg_alloc;
1513
1514 /** next available SSA value index */
1515 unsigned ssa_alloc;
1516
1517 /* total number of basic blocks, only valid when block_index_dirty = false */
1518 unsigned num_blocks;
1519
1520 nir_metadata valid_metadata;
1521 } nir_function_impl;
1522
1523 static inline nir_block *
1524 nir_start_block(nir_function_impl *impl)
1525 {
1526 return (nir_block *) exec_list_get_head(&impl->body);
1527 }
1528
1529 static inline nir_cf_node *
1530 nir_cf_node_next(nir_cf_node *node)
1531 {
1532 struct exec_node *next = exec_node_get_next(&node->node);
1533 if (exec_node_is_tail_sentinel(next))
1534 return NULL;
1535 else
1536 return exec_node_data(nir_cf_node, next, node);
1537 }
1538
1539 static inline nir_cf_node *
1540 nir_cf_node_prev(nir_cf_node *node)
1541 {
1542 struct exec_node *prev = exec_node_get_prev(&node->node);
1543 if (exec_node_is_head_sentinel(prev))
1544 return NULL;
1545 else
1546 return exec_node_data(nir_cf_node, prev, node);
1547 }
1548
1549 static inline bool
1550 nir_cf_node_is_first(const nir_cf_node *node)
1551 {
1552 return exec_node_is_head_sentinel(node->node.prev);
1553 }
1554
1555 static inline bool
1556 nir_cf_node_is_last(const nir_cf_node *node)
1557 {
1558 return exec_node_is_tail_sentinel(node->node.next);
1559 }
1560
1561 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node)
1562 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node)
1563 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node)
1564 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node, nir_function_impl, cf_node)
1565
1566 typedef enum {
1567 nir_parameter_in,
1568 nir_parameter_out,
1569 nir_parameter_inout,
1570 } nir_parameter_type;
1571
1572 typedef struct {
1573 nir_parameter_type param_type;
1574 const struct glsl_type *type;
1575 } nir_parameter;
1576
1577 typedef struct nir_function {
1578 struct exec_node node;
1579
1580 const char *name;
1581 struct nir_shader *shader;
1582
1583 unsigned num_params;
1584 nir_parameter *params;
1585 const struct glsl_type *return_type;
1586
1587 /** The implementation of this function.
1588 *
1589 * If the function is only declared and not implemented, this is NULL.
1590 */
1591 nir_function_impl *impl;
1592 } nir_function;
1593
1594 typedef struct nir_shader_compiler_options {
1595 bool lower_fdiv;
1596 bool lower_ffma;
1597 bool lower_flrp;
1598 bool lower_fpow;
1599 bool lower_fsat;
1600 bool lower_fsqrt;
1601 bool lower_fmod;
1602 bool lower_bitfield_extract;
1603 bool lower_bitfield_insert;
1604 bool lower_uadd_carry;
1605 bool lower_usub_borrow;
1606 /** lowers fneg and ineg to fsub and isub. */
1607 bool lower_negate;
1608 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1609 bool lower_sub;
1610
1611 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1612 bool lower_scmp;
1613
1614 /* Does the native fdot instruction replicate its result for four
1615 * components? If so, then opt_algebraic_late will turn all fdotN
1616 * instructions into fdot_replicatedN instructions.
1617 */
1618 bool fdot_replicates;
1619
1620 /** lowers ffract to fsub+ffloor: */
1621 bool lower_ffract;
1622
1623 bool lower_pack_half_2x16;
1624 bool lower_pack_unorm_2x16;
1625 bool lower_pack_snorm_2x16;
1626 bool lower_pack_unorm_4x8;
1627 bool lower_pack_snorm_4x8;
1628 bool lower_unpack_half_2x16;
1629 bool lower_unpack_unorm_2x16;
1630 bool lower_unpack_snorm_2x16;
1631 bool lower_unpack_unorm_4x8;
1632 bool lower_unpack_snorm_4x8;
1633
1634 bool lower_extract_byte;
1635 bool lower_extract_word;
1636
1637 /**
1638 * Does the driver support real 32-bit integers? (Otherwise, integers
1639 * are simulated by floats.)
1640 */
1641 bool native_integers;
1642
1643 /* Indicates that the driver only has zero-based vertex id */
1644 bool vertex_id_zero_based;
1645 } nir_shader_compiler_options;
1646
1647 typedef struct nir_shader_info {
1648 const char *name;
1649
1650 /* Descriptive name provided by the client; may be NULL */
1651 const char *label;
1652
1653 /* Number of textures used by this shader */
1654 unsigned num_textures;
1655 /* Number of uniform buffers used by this shader */
1656 unsigned num_ubos;
1657 /* Number of atomic buffers used by this shader */
1658 unsigned num_abos;
1659 /* Number of shader storage buffers used by this shader */
1660 unsigned num_ssbos;
1661 /* Number of images used by this shader */
1662 unsigned num_images;
1663
1664 /* Which inputs are actually read */
1665 uint64_t inputs_read;
1666 /* Which outputs are actually written */
1667 uint64_t outputs_written;
1668 /* Which system values are actually read */
1669 uint64_t system_values_read;
1670
1671 /* Which patch inputs are actually read */
1672 uint32_t patch_inputs_read;
1673 /* Which patch outputs are actually written */
1674 uint32_t patch_outputs_written;
1675
1676 /* Whether or not this shader ever uses textureGather() */
1677 bool uses_texture_gather;
1678
1679 /* Whether or not this shader uses the gl_ClipDistance output */
1680 bool uses_clip_distance_out;
1681
1682 /* Whether or not separate shader objects were used */
1683 bool separate_shader;
1684
1685 /** Was this shader linked with any transform feedback varyings? */
1686 bool has_transform_feedback_varyings;
1687
1688 union {
1689 struct {
1690 /** The number of vertices recieves per input primitive */
1691 unsigned vertices_in;
1692
1693 /** The output primitive type (GL enum value) */
1694 unsigned output_primitive;
1695
1696 /** The maximum number of vertices the geometry shader might write. */
1697 unsigned vertices_out;
1698
1699 /** 1 .. MAX_GEOMETRY_SHADER_INVOCATIONS */
1700 unsigned invocations;
1701
1702 /** Whether or not this shader uses EndPrimitive */
1703 bool uses_end_primitive;
1704
1705 /** Whether or not this shader uses non-zero streams */
1706 bool uses_streams;
1707 } gs;
1708
1709 struct {
1710 bool uses_discard;
1711
1712 /**
1713 * Whether early fragment tests are enabled as defined by
1714 * ARB_shader_image_load_store.
1715 */
1716 bool early_fragment_tests;
1717
1718 /** gl_FragDepth layout for ARB_conservative_depth. */
1719 enum gl_frag_depth_layout depth_layout;
1720 } fs;
1721
1722 struct {
1723 unsigned local_size[3];
1724 } cs;
1725
1726 struct {
1727 /** The number of vertices in the TCS output patch. */
1728 unsigned vertices_out;
1729 } tcs;
1730 };
1731 } nir_shader_info;
1732
1733 typedef struct nir_shader {
1734 /** list of uniforms (nir_variable) */
1735 struct exec_list uniforms;
1736
1737 /** list of inputs (nir_variable) */
1738 struct exec_list inputs;
1739
1740 /** list of outputs (nir_variable) */
1741 struct exec_list outputs;
1742
1743 /** list of shared compute variables (nir_variable) */
1744 struct exec_list shared;
1745
1746 /** Set of driver-specific options for the shader.
1747 *
1748 * The memory for the options is expected to be kept in a single static
1749 * copy by the driver.
1750 */
1751 const struct nir_shader_compiler_options *options;
1752
1753 /** Various bits of compile-time information about a given shader */
1754 struct nir_shader_info info;
1755
1756 /** list of global variables in the shader (nir_variable) */
1757 struct exec_list globals;
1758
1759 /** list of system value variables in the shader (nir_variable) */
1760 struct exec_list system_values;
1761
1762 struct exec_list functions; /** < list of nir_function */
1763
1764 /** list of global register in the shader */
1765 struct exec_list registers;
1766
1767 /** next available global register index */
1768 unsigned reg_alloc;
1769
1770 /**
1771 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1772 * access plus one
1773 */
1774 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
1775
1776 /** The shader stage, such as MESA_SHADER_VERTEX. */
1777 gl_shader_stage stage;
1778 } nir_shader;
1779
1780 static inline nir_function *
1781 nir_shader_get_entrypoint(nir_shader *shader)
1782 {
1783 assert(exec_list_length(&shader->functions) == 1);
1784 struct exec_node *func_node = exec_list_get_head(&shader->functions);
1785 nir_function *func = exec_node_data(nir_function, func_node, node);
1786 assert(func->return_type == glsl_void_type());
1787 assert(func->num_params == 0);
1788 return func;
1789 }
1790
1791 #define nir_foreach_function(shader, func) \
1792 foreach_list_typed(nir_function, func, node, &(shader)->functions)
1793
1794 nir_shader *nir_shader_create(void *mem_ctx,
1795 gl_shader_stage stage,
1796 const nir_shader_compiler_options *options);
1797
1798 /** creates a register, including assigning it an index and adding it to the list */
1799 nir_register *nir_global_reg_create(nir_shader *shader);
1800
1801 nir_register *nir_local_reg_create(nir_function_impl *impl);
1802
1803 void nir_reg_remove(nir_register *reg);
1804
1805 /** Adds a variable to the appropreate list in nir_shader */
1806 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
1807
1808 static inline void
1809 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
1810 {
1811 assert(var->data.mode == nir_var_local);
1812 exec_list_push_tail(&impl->locals, &var->node);
1813 }
1814
1815 /** creates a variable, sets a few defaults, and adds it to the list */
1816 nir_variable *nir_variable_create(nir_shader *shader,
1817 nir_variable_mode mode,
1818 const struct glsl_type *type,
1819 const char *name);
1820 /** creates a local variable and adds it to the list */
1821 nir_variable *nir_local_variable_create(nir_function_impl *impl,
1822 const struct glsl_type *type,
1823 const char *name);
1824
1825 /** creates a function and adds it to the shader's list of functions */
1826 nir_function *nir_function_create(nir_shader *shader, const char *name);
1827
1828 nir_function_impl *nir_function_impl_create(nir_function *func);
1829 /** creates a function_impl that isn't tied to any particular function */
1830 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
1831
1832 nir_block *nir_block_create(nir_shader *shader);
1833 nir_if *nir_if_create(nir_shader *shader);
1834 nir_loop *nir_loop_create(nir_shader *shader);
1835
1836 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1837
1838 /** requests that the given pieces of metadata be generated */
1839 void nir_metadata_require(nir_function_impl *impl, nir_metadata required);
1840 /** dirties all but the preserved metadata */
1841 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1842
1843 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1844 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
1845
1846 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
1847
1848 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
1849 unsigned num_components,
1850 unsigned bit_size);
1851
1852 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
1853 nir_intrinsic_op op);
1854
1855 nir_call_instr *nir_call_instr_create(nir_shader *shader,
1856 nir_function *callee);
1857
1858 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
1859
1860 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
1861
1862 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
1863
1864 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
1865 unsigned num_components,
1866 unsigned bit_size);
1867
1868 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1869 nir_deref_array *nir_deref_array_create(void *mem_ctx);
1870 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
1871
1872 nir_deref *nir_copy_deref(void *mem_ctx, nir_deref *deref);
1873
1874 nir_load_const_instr *
1875 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
1876
1877 /**
1878 * NIR Cursors and Instruction Insertion API
1879 * @{
1880 *
1881 * A tiny struct representing a point to insert/extract instructions or
1882 * control flow nodes. Helps reduce the combinatorial explosion of possible
1883 * points to insert/extract.
1884 *
1885 * \sa nir_control_flow.h
1886 */
1887 typedef enum {
1888 nir_cursor_before_block,
1889 nir_cursor_after_block,
1890 nir_cursor_before_instr,
1891 nir_cursor_after_instr,
1892 } nir_cursor_option;
1893
1894 typedef struct {
1895 nir_cursor_option option;
1896 union {
1897 nir_block *block;
1898 nir_instr *instr;
1899 };
1900 } nir_cursor;
1901
1902 static inline nir_block *
1903 nir_cursor_current_block(nir_cursor cursor)
1904 {
1905 if (cursor.option == nir_cursor_before_instr ||
1906 cursor.option == nir_cursor_after_instr) {
1907 return cursor.instr->block;
1908 } else {
1909 return cursor.block;
1910 }
1911 }
1912
1913 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
1914
1915 static inline nir_cursor
1916 nir_before_block(nir_block *block)
1917 {
1918 nir_cursor cursor;
1919 cursor.option = nir_cursor_before_block;
1920 cursor.block = block;
1921 return cursor;
1922 }
1923
1924 static inline nir_cursor
1925 nir_after_block(nir_block *block)
1926 {
1927 nir_cursor cursor;
1928 cursor.option = nir_cursor_after_block;
1929 cursor.block = block;
1930 return cursor;
1931 }
1932
1933 static inline nir_cursor
1934 nir_before_instr(nir_instr *instr)
1935 {
1936 nir_cursor cursor;
1937 cursor.option = nir_cursor_before_instr;
1938 cursor.instr = instr;
1939 return cursor;
1940 }
1941
1942 static inline nir_cursor
1943 nir_after_instr(nir_instr *instr)
1944 {
1945 nir_cursor cursor;
1946 cursor.option = nir_cursor_after_instr;
1947 cursor.instr = instr;
1948 return cursor;
1949 }
1950
1951 static inline nir_cursor
1952 nir_after_block_before_jump(nir_block *block)
1953 {
1954 nir_instr *last_instr = nir_block_last_instr(block);
1955 if (last_instr && last_instr->type == nir_instr_type_jump) {
1956 return nir_before_instr(last_instr);
1957 } else {
1958 return nir_after_block(block);
1959 }
1960 }
1961
1962 static inline nir_cursor
1963 nir_before_cf_node(nir_cf_node *node)
1964 {
1965 if (node->type == nir_cf_node_block)
1966 return nir_before_block(nir_cf_node_as_block(node));
1967
1968 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
1969 }
1970
1971 static inline nir_cursor
1972 nir_after_cf_node(nir_cf_node *node)
1973 {
1974 if (node->type == nir_cf_node_block)
1975 return nir_after_block(nir_cf_node_as_block(node));
1976
1977 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
1978 }
1979
1980 static inline nir_cursor
1981 nir_after_cf_node_and_phis(nir_cf_node *node)
1982 {
1983 if (node->type == nir_cf_node_block)
1984 return nir_after_block(nir_cf_node_as_block(node));
1985
1986 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
1987 assert(block->cf_node.type == nir_cf_node_block);
1988
1989 nir_foreach_instr(block, instr) {
1990 if (instr->type != nir_instr_type_phi)
1991 return nir_before_instr(instr);
1992 }
1993 return nir_after_block(block);
1994 }
1995
1996 static inline nir_cursor
1997 nir_before_cf_list(struct exec_list *cf_list)
1998 {
1999 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2000 exec_list_get_head(cf_list), node);
2001 return nir_before_cf_node(first_node);
2002 }
2003
2004 static inline nir_cursor
2005 nir_after_cf_list(struct exec_list *cf_list)
2006 {
2007 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2008 exec_list_get_tail(cf_list), node);
2009 return nir_after_cf_node(last_node);
2010 }
2011
2012 /**
2013 * Insert a NIR instruction at the given cursor.
2014 *
2015 * Note: This does not update the cursor.
2016 */
2017 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2018
2019 static inline void
2020 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2021 {
2022 nir_instr_insert(nir_before_instr(instr), before);
2023 }
2024
2025 static inline void
2026 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2027 {
2028 nir_instr_insert(nir_after_instr(instr), after);
2029 }
2030
2031 static inline void
2032 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2033 {
2034 nir_instr_insert(nir_before_block(block), before);
2035 }
2036
2037 static inline void
2038 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2039 {
2040 nir_instr_insert(nir_after_block(block), after);
2041 }
2042
2043 static inline void
2044 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2045 {
2046 nir_instr_insert(nir_before_cf_node(node), before);
2047 }
2048
2049 static inline void
2050 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2051 {
2052 nir_instr_insert(nir_after_cf_node(node), after);
2053 }
2054
2055 static inline void
2056 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2057 {
2058 nir_instr_insert(nir_before_cf_list(list), before);
2059 }
2060
2061 static inline void
2062 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2063 {
2064 nir_instr_insert(nir_after_cf_list(list), after);
2065 }
2066
2067 void nir_instr_remove(nir_instr *instr);
2068
2069 /** @} */
2070
2071 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2072 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2073 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2074 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2075 void *state);
2076 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2077 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2078
2079 nir_const_value *nir_src_as_const_value(nir_src src);
2080 bool nir_src_is_dynamically_uniform(nir_src src);
2081 bool nir_srcs_equal(nir_src src1, nir_src src2);
2082 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2083 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2084 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2085 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2086 nir_dest new_dest);
2087
2088 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2089 unsigned num_components, unsigned bit_size,
2090 const char *name);
2091 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2092 unsigned num_components, unsigned bit_size,
2093 const char *name);
2094 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2095 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2096 nir_instr *after_me);
2097
2098 /* visits basic blocks in source-code order */
2099 typedef bool (*nir_foreach_block_cb)(nir_block *block, void *state);
2100 bool nir_foreach_block(nir_function_impl *impl, nir_foreach_block_cb cb,
2101 void *state);
2102 bool nir_foreach_block_reverse(nir_function_impl *impl, nir_foreach_block_cb cb,
2103 void *state);
2104 bool nir_foreach_block_in_cf_node(nir_cf_node *node, nir_foreach_block_cb cb,
2105 void *state);
2106
2107 /* If the following CF node is an if, this function returns that if.
2108 * Otherwise, it returns NULL.
2109 */
2110 nir_if *nir_block_get_following_if(nir_block *block);
2111
2112 nir_loop *nir_block_get_following_loop(nir_block *block);
2113
2114 void nir_index_local_regs(nir_function_impl *impl);
2115 void nir_index_global_regs(nir_shader *shader);
2116 void nir_index_ssa_defs(nir_function_impl *impl);
2117 unsigned nir_index_instrs(nir_function_impl *impl);
2118
2119 void nir_index_blocks(nir_function_impl *impl);
2120
2121 void nir_print_shader(nir_shader *shader, FILE *fp);
2122 void nir_print_instr(const nir_instr *instr, FILE *fp);
2123
2124 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2125 nir_function_impl *nir_function_impl_clone(const nir_function_impl *fi);
2126 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2127 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2128
2129 #ifdef DEBUG
2130 void nir_validate_shader(nir_shader *shader);
2131 void nir_metadata_set_validation_flag(nir_shader *shader);
2132 void nir_metadata_check_validation_flag(nir_shader *shader);
2133
2134 #include "util/debug.h"
2135 static inline bool
2136 should_clone_nir(void)
2137 {
2138 static int should_clone = -1;
2139 if (should_clone < 0)
2140 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2141
2142 return should_clone;
2143 }
2144 #else
2145 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
2146 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2147 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2148 static inline bool should_clone_nir(void) { return false; }
2149 #endif /* DEBUG */
2150
2151 #define _PASS(nir, do_pass) do { \
2152 do_pass \
2153 nir_validate_shader(nir); \
2154 if (should_clone_nir()) { \
2155 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2156 ralloc_free(nir); \
2157 nir = clone; \
2158 } \
2159 } while (0)
2160
2161 #define NIR_PASS(progress, nir, pass, ...) _PASS(nir, \
2162 nir_metadata_set_validation_flag(nir); \
2163 if (pass(nir, ##__VA_ARGS__)) { \
2164 progress = true; \
2165 nir_metadata_check_validation_flag(nir); \
2166 } \
2167 )
2168
2169 #define NIR_PASS_V(nir, pass, ...) _PASS(nir, \
2170 pass(nir, ##__VA_ARGS__); \
2171 )
2172
2173 void nir_calc_dominance_impl(nir_function_impl *impl);
2174 void nir_calc_dominance(nir_shader *shader);
2175
2176 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2177 bool nir_block_dominates(nir_block *parent, nir_block *child);
2178
2179 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2180 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2181
2182 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2183 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2184
2185 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2186 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2187
2188 int nir_gs_count_vertices(const nir_shader *shader);
2189
2190 bool nir_split_var_copies(nir_shader *shader);
2191
2192 bool nir_lower_returns_impl(nir_function_impl *impl);
2193 bool nir_lower_returns(nir_shader *shader);
2194
2195 bool nir_inline_functions(nir_shader *shader);
2196
2197 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, void *mem_ctx);
2198 void nir_lower_var_copies(nir_shader *shader);
2199
2200 bool nir_lower_global_vars_to_local(nir_shader *shader);
2201
2202 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
2203
2204 bool nir_lower_locals_to_regs(nir_shader *shader);
2205
2206 void nir_lower_outputs_to_temporaries(nir_shader *shader,
2207 nir_function *entrypoint);
2208 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2209
2210 void nir_assign_var_locations(struct exec_list *var_list,
2211 unsigned *size,
2212 int (*type_size)(const struct glsl_type *));
2213
2214 void nir_lower_io(nir_shader *shader,
2215 nir_variable_mode modes,
2216 int (*type_size)(const struct glsl_type *));
2217 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2218 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2219
2220 void nir_lower_vars_to_ssa(nir_shader *shader);
2221
2222 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
2223
2224 void nir_move_vec_src_uses_to_dest(nir_shader *shader);
2225 bool nir_lower_vec_to_movs(nir_shader *shader);
2226 void nir_lower_alu_to_scalar(nir_shader *shader);
2227 void nir_lower_load_const_to_scalar(nir_shader *shader);
2228
2229 void nir_lower_phis_to_scalar(nir_shader *shader);
2230
2231 void nir_lower_samplers(nir_shader *shader,
2232 const struct gl_shader_program *shader_program);
2233
2234 bool nir_lower_system_values(nir_shader *shader);
2235
2236 typedef struct nir_lower_tex_options {
2237 /**
2238 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2239 * sampler types a texture projector is lowered.
2240 */
2241 unsigned lower_txp;
2242
2243 /**
2244 * If true, lower rect textures to 2D, using txs to fetch the
2245 * texture dimensions and dividing the texture coords by the
2246 * texture dims to normalize.
2247 */
2248 bool lower_rect;
2249
2250 /**
2251 * To emulate certain texture wrap modes, this can be used
2252 * to saturate the specified tex coord to [0.0, 1.0]. The
2253 * bits are according to sampler #, ie. if, for example:
2254 *
2255 * (conf->saturate_s & (1 << n))
2256 *
2257 * is true, then the s coord for sampler n is saturated.
2258 *
2259 * Note that clamping must happen *after* projector lowering
2260 * so any projected texture sample instruction with a clamped
2261 * coordinate gets automatically lowered, regardless of the
2262 * 'lower_txp' setting.
2263 */
2264 unsigned saturate_s;
2265 unsigned saturate_t;
2266 unsigned saturate_r;
2267
2268 /* Bitmask of textures that need swizzling.
2269 *
2270 * If (swizzle_result & (1 << texture_index)), then the swizzle in
2271 * swizzles[texture_index] is applied to the result of the texturing
2272 * operation.
2273 */
2274 unsigned swizzle_result;
2275
2276 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
2277 * while 4 and 5 represent 0 and 1 respectively.
2278 */
2279 uint8_t swizzles[32][4];
2280 } nir_lower_tex_options;
2281
2282 bool nir_lower_tex(nir_shader *shader,
2283 const nir_lower_tex_options *options);
2284
2285 void nir_lower_idiv(nir_shader *shader);
2286
2287 void nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
2288 void nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
2289
2290 void nir_lower_two_sided_color(nir_shader *shader);
2291
2292 void nir_lower_atomics(nir_shader *shader,
2293 const struct gl_shader_program *shader_program);
2294 void nir_lower_to_source_mods(nir_shader *shader);
2295
2296 bool nir_lower_gs_intrinsics(nir_shader *shader);
2297
2298 void nir_lower_double_pack(nir_shader *shader);
2299
2300 bool nir_normalize_cubemap_coords(nir_shader *shader);
2301
2302 void nir_live_ssa_defs_impl(nir_function_impl *impl);
2303 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
2304
2305 void nir_convert_to_ssa_impl(nir_function_impl *impl);
2306 void nir_convert_to_ssa(nir_shader *shader);
2307
2308 bool nir_repair_ssa_impl(nir_function_impl *impl);
2309 bool nir_repair_ssa(nir_shader *shader);
2310
2311 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
2312 * registers. If false, convert all values (even those not involved in a phi
2313 * node) to registers.
2314 */
2315 void nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
2316
2317 bool nir_opt_algebraic(nir_shader *shader);
2318 bool nir_opt_algebraic_late(nir_shader *shader);
2319 bool nir_opt_constant_folding(nir_shader *shader);
2320
2321 bool nir_opt_global_to_local(nir_shader *shader);
2322
2323 bool nir_copy_prop(nir_shader *shader);
2324
2325 bool nir_opt_cse(nir_shader *shader);
2326
2327 bool nir_opt_dce(nir_shader *shader);
2328
2329 bool nir_opt_dead_cf(nir_shader *shader);
2330
2331 void nir_opt_gcm(nir_shader *shader);
2332
2333 bool nir_opt_peephole_select(nir_shader *shader);
2334
2335 bool nir_opt_remove_phis(nir_shader *shader);
2336
2337 bool nir_opt_undef(nir_shader *shader);
2338
2339 void nir_sweep(nir_shader *shader);
2340
2341 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
2342 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
2343
2344 #ifdef __cplusplus
2345 } /* extern "C" */
2346 #endif