nir: fix packing of nir_variable
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitscan.h"
38 #include "util/bitset.h"
39 #include "util/macros.h"
40 #include "compiler/nir_types.h"
41 #include "compiler/shader_enums.h"
42 #include "compiler/shader_info.h"
43 #include <stdio.h>
44
45 #ifndef NDEBUG
46 #include "util/debug.h"
47 #endif /* NDEBUG */
48
49 #include "nir_opcodes.h"
50
51 #if defined(_WIN32) && !defined(snprintf)
52 #define snprintf _snprintf
53 #endif
54
55 #ifdef __cplusplus
56 extern "C" {
57 #endif
58
59 #define NIR_FALSE 0u
60 #define NIR_TRUE (~0u)
61 #define NIR_MAX_VEC_COMPONENTS 4
62 #define NIR_MAX_MATRIX_COLUMNS 4
63 #define NIR_STREAM_PACKED (1 << 8)
64 typedef uint8_t nir_component_mask_t;
65 typedef unsigned short GLenum16;
66
67 /** Defines a cast function
68 *
69 * This macro defines a cast function from in_type to out_type where
70 * out_type is some structure type that contains a field of type out_type.
71 *
72 * Note that you have to be a bit careful as the generated cast function
73 * destroys constness.
74 */
75 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
76 type_field, type_value) \
77 static inline out_type * \
78 name(const in_type *parent) \
79 { \
80 assert(parent && parent->type_field == type_value); \
81 return exec_node_data(out_type, parent, field); \
82 }
83
84 struct nir_function;
85 struct nir_shader;
86 struct nir_instr;
87 struct nir_builder;
88
89
90 /**
91 * Description of built-in state associated with a uniform
92 *
93 * \sa nir_variable::state_slots
94 */
95 typedef struct {
96 gl_state_index16 tokens[STATE_LENGTH];
97 uint16_t swizzle;
98 } nir_state_slot;
99
100 typedef enum {
101 nir_var_shader_in = (1 << 0),
102 nir_var_shader_out = (1 << 1),
103 nir_var_shader_temp = (1 << 2),
104 nir_var_function_temp = (1 << 3),
105 nir_var_uniform = (1 << 4),
106 nir_var_mem_ubo = (1 << 5),
107 nir_var_system_value = (1 << 6),
108 nir_var_mem_ssbo = (1 << 7),
109 nir_var_mem_shared = (1 << 8),
110 nir_var_mem_global = (1 << 9),
111 nir_var_all = (1 << 10) - 1,
112 } nir_variable_mode;
113
114 /**
115 * Rounding modes.
116 */
117 typedef enum {
118 nir_rounding_mode_undef = 0,
119 nir_rounding_mode_rtne = 1, /* round to nearest even */
120 nir_rounding_mode_ru = 2, /* round up */
121 nir_rounding_mode_rd = 3, /* round down */
122 nir_rounding_mode_rtz = 4, /* round towards zero */
123 } nir_rounding_mode;
124
125 typedef union {
126 bool b;
127 float f32;
128 double f64;
129 int8_t i8;
130 uint8_t u8;
131 int16_t i16;
132 uint16_t u16;
133 int32_t i32;
134 uint32_t u32;
135 int64_t i64;
136 uint64_t u64;
137 } nir_const_value;
138
139 #define nir_const_value_to_array(arr, c, components, m) \
140 { \
141 for (unsigned i = 0; i < components; ++i) \
142 arr[i] = c[i].m; \
143 } while (false)
144
145 static inline nir_const_value
146 nir_const_value_for_raw_uint(uint64_t x, unsigned bit_size)
147 {
148 nir_const_value v;
149 memset(&v, 0, sizeof(v));
150
151 switch (bit_size) {
152 case 1: v.b = x; break;
153 case 8: v.u8 = x; break;
154 case 16: v.u16 = x; break;
155 case 32: v.u32 = x; break;
156 case 64: v.u64 = x; break;
157 default:
158 unreachable("Invalid bit size");
159 }
160
161 return v;
162 }
163
164 static inline nir_const_value
165 nir_const_value_for_int(int64_t i, unsigned bit_size)
166 {
167 nir_const_value v;
168 memset(&v, 0, sizeof(v));
169
170 assert(bit_size <= 64);
171 if (bit_size < 64) {
172 assert(i >= (-(1ll << (bit_size - 1))));
173 assert(i < (1ll << (bit_size - 1)));
174 }
175
176 return nir_const_value_for_raw_uint(i, bit_size);
177 }
178
179 static inline nir_const_value
180 nir_const_value_for_uint(uint64_t u, unsigned bit_size)
181 {
182 nir_const_value v;
183 memset(&v, 0, sizeof(v));
184
185 assert(bit_size <= 64);
186 if (bit_size < 64)
187 assert(u < (1ull << bit_size));
188
189 return nir_const_value_for_raw_uint(u, bit_size);
190 }
191
192 static inline nir_const_value
193 nir_const_value_for_bool(bool b, unsigned bit_size)
194 {
195 /* Booleans use a 0/-1 convention */
196 return nir_const_value_for_int(-(int)b, bit_size);
197 }
198
199 /* This one isn't inline because it requires half-float conversion */
200 nir_const_value nir_const_value_for_float(double b, unsigned bit_size);
201
202 static inline int64_t
203 nir_const_value_as_int(nir_const_value value, unsigned bit_size)
204 {
205 switch (bit_size) {
206 /* int1_t uses 0/-1 convention */
207 case 1: return -(int)value.b;
208 case 8: return value.i8;
209 case 16: return value.i16;
210 case 32: return value.i32;
211 case 64: return value.i64;
212 default:
213 unreachable("Invalid bit size");
214 }
215 }
216
217 static inline uint64_t
218 nir_const_value_as_uint(nir_const_value value, unsigned bit_size)
219 {
220 switch (bit_size) {
221 case 1: return value.b;
222 case 8: return value.u8;
223 case 16: return value.u16;
224 case 32: return value.u32;
225 case 64: return value.u64;
226 default:
227 unreachable("Invalid bit size");
228 }
229 }
230
231 static inline bool
232 nir_const_value_as_bool(nir_const_value value, unsigned bit_size)
233 {
234 int64_t i = nir_const_value_as_int(value, bit_size);
235
236 /* Booleans of any size use 0/-1 convention */
237 assert(i == 0 || i == -1);
238
239 return i;
240 }
241
242 /* This one isn't inline because it requires half-float conversion */
243 double nir_const_value_as_float(nir_const_value value, unsigned bit_size);
244
245 typedef struct nir_constant {
246 /**
247 * Value of the constant.
248 *
249 * The field used to back the values supplied by the constant is determined
250 * by the type associated with the \c nir_variable. Constants may be
251 * scalars, vectors, or matrices.
252 */
253 nir_const_value values[NIR_MAX_VEC_COMPONENTS];
254
255 /* we could get this from the var->type but makes clone *much* easier to
256 * not have to care about the type.
257 */
258 unsigned num_elements;
259
260 /* Array elements / Structure Fields */
261 struct nir_constant **elements;
262 } nir_constant;
263
264 /**
265 * \brief Layout qualifiers for gl_FragDepth.
266 *
267 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
268 * with a layout qualifier.
269 */
270 typedef enum {
271 nir_depth_layout_none, /**< No depth layout is specified. */
272 nir_depth_layout_any,
273 nir_depth_layout_greater,
274 nir_depth_layout_less,
275 nir_depth_layout_unchanged
276 } nir_depth_layout;
277
278 /**
279 * Enum keeping track of how a variable was declared.
280 */
281 typedef enum {
282 /**
283 * Normal declaration.
284 */
285 nir_var_declared_normally = 0,
286
287 /**
288 * Variable is implicitly generated by the compiler and should not be
289 * visible via the API.
290 */
291 nir_var_hidden,
292 } nir_var_declaration_type;
293
294 /**
295 * Either a uniform, global variable, shader input, or shader output. Based on
296 * ir_variable - it should be easy to translate between the two.
297 */
298
299 typedef struct nir_variable {
300 struct exec_node node;
301
302 /**
303 * Declared type of the variable
304 */
305 const struct glsl_type *type;
306
307 /**
308 * Declared name of the variable
309 */
310 char *name;
311
312 struct nir_variable_data {
313 /**
314 * Storage class of the variable.
315 *
316 * \sa nir_variable_mode
317 */
318 nir_variable_mode mode:10;
319
320 /**
321 * Is the variable read-only?
322 *
323 * This is set for variables declared as \c const, shader inputs,
324 * and uniforms.
325 */
326 unsigned read_only:1;
327 unsigned centroid:1;
328 unsigned sample:1;
329 unsigned patch:1;
330 unsigned invariant:1;
331
332 /**
333 * Can this variable be coalesced with another?
334 *
335 * This is set by nir_lower_io_to_temporaries to say that any
336 * copies involving this variable should stay put. Propagating it can
337 * duplicate the resulting load/store, which is not wanted, and may
338 * result in a load/store of the variable with an indirect offset which
339 * the backend may not be able to handle.
340 */
341 unsigned cannot_coalesce:1;
342
343 /**
344 * When separate shader programs are enabled, only input/outputs between
345 * the stages of a multi-stage separate program can be safely removed
346 * from the shader interface. Other input/outputs must remains active.
347 *
348 * This is also used to make sure xfb varyings that are unused by the
349 * fragment shader are not removed.
350 */
351 unsigned always_active_io:1;
352
353 /**
354 * Interpolation mode for shader inputs / outputs
355 *
356 * \sa glsl_interp_mode
357 */
358 unsigned interpolation:2;
359
360 /**
361 * If non-zero, then this variable may be packed along with other variables
362 * into a single varying slot, so this offset should be applied when
363 * accessing components. For example, an offset of 1 means that the x
364 * component of this variable is actually stored in component y of the
365 * location specified by \c location.
366 */
367 unsigned location_frac:2;
368
369 /**
370 * If true, this variable represents an array of scalars that should
371 * be tightly packed. In other words, consecutive array elements
372 * should be stored one component apart, rather than one slot apart.
373 */
374 unsigned compact:1;
375
376 /**
377 * Whether this is a fragment shader output implicitly initialized with
378 * the previous contents of the specified render target at the
379 * framebuffer location corresponding to this shader invocation.
380 */
381 unsigned fb_fetch_output:1;
382
383 /**
384 * Non-zero if this variable is considered bindless as defined by
385 * ARB_bindless_texture.
386 */
387 unsigned bindless:1;
388
389 /**
390 * Was an explicit binding set in the shader?
391 */
392 unsigned explicit_binding:1;
393
394 /**
395 * Was a transfer feedback buffer set in the shader?
396 */
397 unsigned explicit_xfb_buffer:1;
398
399 /**
400 * Was a transfer feedback stride set in the shader?
401 */
402 unsigned explicit_xfb_stride:1;
403
404 /**
405 * Was an explicit offset set in the shader?
406 */
407 unsigned explicit_offset:1;
408
409 /**
410 * How the variable was declared. See nir_var_declaration_type.
411 *
412 * This is used to detect variables generated by the compiler, so should
413 * not be visible via the API.
414 */
415 unsigned how_declared:2;
416
417 /**
418 * \brief Layout qualifier for gl_FragDepth.
419 *
420 * This is not equal to \c ir_depth_layout_none if and only if this
421 * variable is \c gl_FragDepth and a layout qualifier is specified.
422 */
423 nir_depth_layout depth_layout:3;
424
425 /**
426 * Vertex stream output identifier.
427 *
428 * For packed outputs, NIR_STREAM_PACKED is set and bits [2*i+1,2*i]
429 * indicate the stream of the i-th component.
430 */
431 unsigned stream:9;
432
433 /**
434 * output index for dual source blending.
435 */
436 unsigned index;
437
438 /**
439 * Descriptor set binding for sampler or UBO.
440 */
441 unsigned descriptor_set:5;
442
443 /**
444 * Initial binding point for a sampler or UBO.
445 *
446 * For array types, this represents the binding point for the first element.
447 */
448 unsigned binding;
449
450 /**
451 * Storage location of the base of this variable
452 *
453 * The precise meaning of this field depends on the nature of the variable.
454 *
455 * - Vertex shader input: one of the values from \c gl_vert_attrib.
456 * - Vertex shader output: one of the values from \c gl_varying_slot.
457 * - Geometry shader input: one of the values from \c gl_varying_slot.
458 * - Geometry shader output: one of the values from \c gl_varying_slot.
459 * - Fragment shader input: one of the values from \c gl_varying_slot.
460 * - Fragment shader output: one of the values from \c gl_frag_result.
461 * - Uniforms: Per-stage uniform slot number for default uniform block.
462 * - Uniforms: Index within the uniform block definition for UBO members.
463 * - Non-UBO Uniforms: uniform slot number.
464 * - Other: This field is not currently used.
465 *
466 * If the variable is a uniform, shader input, or shader output, and the
467 * slot has not been assigned, the value will be -1.
468 */
469 int location;
470
471 /**
472 * The actual location of the variable in the IR. Only valid for inputs,
473 * outputs, and uniforms (including samplers and images).
474 */
475 unsigned driver_location;
476
477 /**
478 * Location an atomic counter or transform feedback is stored at.
479 */
480 unsigned offset;
481
482 union {
483 /**
484 * ARB_shader_image_load_store qualifiers.
485 */
486 struct {
487 enum gl_access_qualifier access:8;
488
489 /** Image internal format if specified explicitly, otherwise GL_NONE. */
490 GLenum16 format;
491 } image;
492
493 struct {
494 /**
495 * Transform feedback buffer.
496 */
497 uint16_t buffer:2;
498
499 /**
500 * Transform feedback stride.
501 */
502 uint16_t stride;
503 } xfb;
504 };
505 } data;
506
507 /* Number of nir_variable_data members */
508 unsigned num_members;
509
510 /**
511 * Built-in state that backs this uniform
512 *
513 * Once set at variable creation, \c state_slots must remain invariant.
514 * This is because, ideally, this array would be shared by all clones of
515 * this variable in the IR tree. In other words, we'd really like for it
516 * to be a fly-weight.
517 *
518 * If the variable is not a uniform, \c num_state_slots will be zero and
519 * \c state_slots will be \c NULL.
520 */
521 /*@{*/
522 unsigned num_state_slots; /**< Number of state slots used */
523 nir_state_slot *state_slots; /**< State descriptors. */
524 /*@}*/
525
526 /**
527 * Constant expression assigned in the initializer of the variable
528 *
529 * This field should only be used temporarily by creators of NIR shaders
530 * and then lower_constant_initializers can be used to get rid of them.
531 * Most of the rest of NIR ignores this field or asserts that it's NULL.
532 */
533 nir_constant *constant_initializer;
534
535 /**
536 * For variables that are in an interface block or are an instance of an
537 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
538 *
539 * \sa ir_variable::location
540 */
541 const struct glsl_type *interface_type;
542
543 /**
544 * Description of per-member data for per-member struct variables
545 *
546 * This is used for variables which are actually an amalgamation of
547 * multiple entities such as a struct of built-in values or a struct of
548 * inputs each with their own layout specifier. This is only allowed on
549 * variables with a struct or array of array of struct type.
550 */
551 struct nir_variable_data *members;
552 } nir_variable;
553
554 #define nir_foreach_variable(var, var_list) \
555 foreach_list_typed(nir_variable, var, node, var_list)
556
557 #define nir_foreach_variable_safe(var, var_list) \
558 foreach_list_typed_safe(nir_variable, var, node, var_list)
559
560 static inline bool
561 nir_variable_is_global(const nir_variable *var)
562 {
563 return var->data.mode != nir_var_function_temp;
564 }
565
566 typedef struct nir_register {
567 struct exec_node node;
568
569 unsigned num_components; /** < number of vector components */
570 unsigned num_array_elems; /** < size of array (0 for no array) */
571
572 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
573 uint8_t bit_size;
574
575 /** generic register index. */
576 unsigned index;
577
578 /** only for debug purposes, can be NULL */
579 const char *name;
580
581 /** set of nir_srcs where this register is used (read from) */
582 struct list_head uses;
583
584 /** set of nir_dests where this register is defined (written to) */
585 struct list_head defs;
586
587 /** set of nir_ifs where this register is used as a condition */
588 struct list_head if_uses;
589 } nir_register;
590
591 #define nir_foreach_register(reg, reg_list) \
592 foreach_list_typed(nir_register, reg, node, reg_list)
593 #define nir_foreach_register_safe(reg, reg_list) \
594 foreach_list_typed_safe(nir_register, reg, node, reg_list)
595
596 typedef enum PACKED {
597 nir_instr_type_alu,
598 nir_instr_type_deref,
599 nir_instr_type_call,
600 nir_instr_type_tex,
601 nir_instr_type_intrinsic,
602 nir_instr_type_load_const,
603 nir_instr_type_jump,
604 nir_instr_type_ssa_undef,
605 nir_instr_type_phi,
606 nir_instr_type_parallel_copy,
607 } nir_instr_type;
608
609 typedef struct nir_instr {
610 struct exec_node node;
611 struct nir_block *block;
612 nir_instr_type type;
613
614 /* A temporary for optimization and analysis passes to use for storing
615 * flags. For instance, DCE uses this to store the "dead/live" info.
616 */
617 uint8_t pass_flags;
618
619 /** generic instruction index. */
620 unsigned index;
621 } nir_instr;
622
623 static inline nir_instr *
624 nir_instr_next(nir_instr *instr)
625 {
626 struct exec_node *next = exec_node_get_next(&instr->node);
627 if (exec_node_is_tail_sentinel(next))
628 return NULL;
629 else
630 return exec_node_data(nir_instr, next, node);
631 }
632
633 static inline nir_instr *
634 nir_instr_prev(nir_instr *instr)
635 {
636 struct exec_node *prev = exec_node_get_prev(&instr->node);
637 if (exec_node_is_head_sentinel(prev))
638 return NULL;
639 else
640 return exec_node_data(nir_instr, prev, node);
641 }
642
643 static inline bool
644 nir_instr_is_first(const nir_instr *instr)
645 {
646 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
647 }
648
649 static inline bool
650 nir_instr_is_last(const nir_instr *instr)
651 {
652 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
653 }
654
655 typedef struct nir_ssa_def {
656 /** for debugging only, can be NULL */
657 const char* name;
658
659 /** generic SSA definition index. */
660 unsigned index;
661
662 /** Index into the live_in and live_out bitfields */
663 unsigned live_index;
664
665 /** Instruction which produces this SSA value. */
666 nir_instr *parent_instr;
667
668 /** set of nir_instrs where this register is used (read from) */
669 struct list_head uses;
670
671 /** set of nir_ifs where this register is used as a condition */
672 struct list_head if_uses;
673
674 uint8_t num_components;
675
676 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
677 uint8_t bit_size;
678 } nir_ssa_def;
679
680 struct nir_src;
681
682 typedef struct {
683 nir_register *reg;
684 struct nir_src *indirect; /** < NULL for no indirect offset */
685 unsigned base_offset;
686
687 /* TODO use-def chain goes here */
688 } nir_reg_src;
689
690 typedef struct {
691 nir_instr *parent_instr;
692 struct list_head def_link;
693
694 nir_register *reg;
695 struct nir_src *indirect; /** < NULL for no indirect offset */
696 unsigned base_offset;
697
698 /* TODO def-use chain goes here */
699 } nir_reg_dest;
700
701 struct nir_if;
702
703 typedef struct nir_src {
704 union {
705 /** Instruction that consumes this value as a source. */
706 nir_instr *parent_instr;
707 struct nir_if *parent_if;
708 };
709
710 struct list_head use_link;
711
712 union {
713 nir_reg_src reg;
714 nir_ssa_def *ssa;
715 };
716
717 bool is_ssa;
718 } nir_src;
719
720 static inline nir_src
721 nir_src_init(void)
722 {
723 nir_src src = { { NULL } };
724 return src;
725 }
726
727 #define NIR_SRC_INIT nir_src_init()
728
729 #define nir_foreach_use(src, reg_or_ssa_def) \
730 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
731
732 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
733 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
734
735 #define nir_foreach_if_use(src, reg_or_ssa_def) \
736 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
737
738 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
739 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
740
741 typedef struct {
742 union {
743 nir_reg_dest reg;
744 nir_ssa_def ssa;
745 };
746
747 bool is_ssa;
748 } nir_dest;
749
750 static inline nir_dest
751 nir_dest_init(void)
752 {
753 nir_dest dest = { { { NULL } } };
754 return dest;
755 }
756
757 #define NIR_DEST_INIT nir_dest_init()
758
759 #define nir_foreach_def(dest, reg) \
760 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
761
762 #define nir_foreach_def_safe(dest, reg) \
763 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
764
765 static inline nir_src
766 nir_src_for_ssa(nir_ssa_def *def)
767 {
768 nir_src src = NIR_SRC_INIT;
769
770 src.is_ssa = true;
771 src.ssa = def;
772
773 return src;
774 }
775
776 static inline nir_src
777 nir_src_for_reg(nir_register *reg)
778 {
779 nir_src src = NIR_SRC_INIT;
780
781 src.is_ssa = false;
782 src.reg.reg = reg;
783 src.reg.indirect = NULL;
784 src.reg.base_offset = 0;
785
786 return src;
787 }
788
789 static inline nir_dest
790 nir_dest_for_reg(nir_register *reg)
791 {
792 nir_dest dest = NIR_DEST_INIT;
793
794 dest.reg.reg = reg;
795
796 return dest;
797 }
798
799 static inline unsigned
800 nir_src_bit_size(nir_src src)
801 {
802 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
803 }
804
805 static inline unsigned
806 nir_src_num_components(nir_src src)
807 {
808 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
809 }
810
811 static inline bool
812 nir_src_is_const(nir_src src)
813 {
814 return src.is_ssa &&
815 src.ssa->parent_instr->type == nir_instr_type_load_const;
816 }
817
818 static inline unsigned
819 nir_dest_bit_size(nir_dest dest)
820 {
821 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
822 }
823
824 static inline unsigned
825 nir_dest_num_components(nir_dest dest)
826 {
827 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
828 }
829
830 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
831 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
832
833 typedef struct {
834 nir_src src;
835
836 /**
837 * \name input modifiers
838 */
839 /*@{*/
840 /**
841 * For inputs interpreted as floating point, flips the sign bit. For
842 * inputs interpreted as integers, performs the two's complement negation.
843 */
844 bool negate;
845
846 /**
847 * Clears the sign bit for floating point values, and computes the integer
848 * absolute value for integers. Note that the negate modifier acts after
849 * the absolute value modifier, therefore if both are set then all inputs
850 * will become negative.
851 */
852 bool abs;
853 /*@}*/
854
855 /**
856 * For each input component, says which component of the register it is
857 * chosen from. Note that which elements of the swizzle are used and which
858 * are ignored are based on the write mask for most opcodes - for example,
859 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
860 * a swizzle of {2, x, 1, 0} where x means "don't care."
861 */
862 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
863 } nir_alu_src;
864
865 typedef struct {
866 nir_dest dest;
867
868 /**
869 * \name saturate output modifier
870 *
871 * Only valid for opcodes that output floating-point numbers. Clamps the
872 * output to between 0.0 and 1.0 inclusive.
873 */
874
875 bool saturate;
876
877 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
878 } nir_alu_dest;
879
880 /** NIR sized and unsized types
881 *
882 * The values in this enum are carefully chosen so that the sized type is
883 * just the unsized type OR the number of bits.
884 */
885 typedef enum {
886 nir_type_invalid = 0, /* Not a valid type */
887 nir_type_int = 2,
888 nir_type_uint = 4,
889 nir_type_bool = 6,
890 nir_type_float = 128,
891 nir_type_bool1 = 1 | nir_type_bool,
892 nir_type_bool32 = 32 | nir_type_bool,
893 nir_type_int1 = 1 | nir_type_int,
894 nir_type_int8 = 8 | nir_type_int,
895 nir_type_int16 = 16 | nir_type_int,
896 nir_type_int32 = 32 | nir_type_int,
897 nir_type_int64 = 64 | nir_type_int,
898 nir_type_uint1 = 1 | nir_type_uint,
899 nir_type_uint8 = 8 | nir_type_uint,
900 nir_type_uint16 = 16 | nir_type_uint,
901 nir_type_uint32 = 32 | nir_type_uint,
902 nir_type_uint64 = 64 | nir_type_uint,
903 nir_type_float16 = 16 | nir_type_float,
904 nir_type_float32 = 32 | nir_type_float,
905 nir_type_float64 = 64 | nir_type_float,
906 } nir_alu_type;
907
908 #define NIR_ALU_TYPE_SIZE_MASK 0x79
909 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
910
911 static inline unsigned
912 nir_alu_type_get_type_size(nir_alu_type type)
913 {
914 return type & NIR_ALU_TYPE_SIZE_MASK;
915 }
916
917 static inline unsigned
918 nir_alu_type_get_base_type(nir_alu_type type)
919 {
920 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
921 }
922
923 static inline nir_alu_type
924 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
925 {
926 switch (base_type) {
927 case GLSL_TYPE_BOOL:
928 return nir_type_bool1;
929 break;
930 case GLSL_TYPE_UINT:
931 return nir_type_uint32;
932 break;
933 case GLSL_TYPE_INT:
934 return nir_type_int32;
935 break;
936 case GLSL_TYPE_UINT16:
937 return nir_type_uint16;
938 break;
939 case GLSL_TYPE_INT16:
940 return nir_type_int16;
941 break;
942 case GLSL_TYPE_UINT8:
943 return nir_type_uint8;
944 case GLSL_TYPE_INT8:
945 return nir_type_int8;
946 case GLSL_TYPE_UINT64:
947 return nir_type_uint64;
948 break;
949 case GLSL_TYPE_INT64:
950 return nir_type_int64;
951 break;
952 case GLSL_TYPE_FLOAT:
953 return nir_type_float32;
954 break;
955 case GLSL_TYPE_FLOAT16:
956 return nir_type_float16;
957 break;
958 case GLSL_TYPE_DOUBLE:
959 return nir_type_float64;
960 break;
961
962 case GLSL_TYPE_SAMPLER:
963 case GLSL_TYPE_IMAGE:
964 case GLSL_TYPE_ATOMIC_UINT:
965 case GLSL_TYPE_STRUCT:
966 case GLSL_TYPE_INTERFACE:
967 case GLSL_TYPE_ARRAY:
968 case GLSL_TYPE_VOID:
969 case GLSL_TYPE_SUBROUTINE:
970 case GLSL_TYPE_FUNCTION:
971 case GLSL_TYPE_ERROR:
972 return nir_type_invalid;
973 }
974
975 unreachable("unknown type");
976 }
977
978 static inline nir_alu_type
979 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
980 {
981 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
982 }
983
984 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
985 nir_rounding_mode rnd);
986
987 static inline nir_op
988 nir_op_vec(unsigned components)
989 {
990 switch (components) {
991 case 1: return nir_op_mov;
992 case 2: return nir_op_vec2;
993 case 3: return nir_op_vec3;
994 case 4: return nir_op_vec4;
995 default: unreachable("bad component count");
996 }
997 }
998
999 static inline bool
1000 nir_is_float_control_signed_zero_inf_nan_preserve(unsigned execution_mode, unsigned bit_size)
1001 {
1002 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16) ||
1003 (32 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32) ||
1004 (64 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
1005 }
1006
1007 static inline bool
1008 nir_is_denorm_flush_to_zero(unsigned execution_mode, unsigned bit_size)
1009 {
1010 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16) ||
1011 (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32) ||
1012 (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
1013 }
1014
1015 static inline bool
1016 nir_is_denorm_preserve(unsigned execution_mode, unsigned bit_size)
1017 {
1018 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP16) ||
1019 (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP32) ||
1020 (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP64);
1021 }
1022
1023 static inline bool
1024 nir_is_rounding_mode_rtne(unsigned execution_mode, unsigned bit_size)
1025 {
1026 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
1027 (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
1028 (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
1029 }
1030
1031 static inline bool
1032 nir_is_rounding_mode_rtz(unsigned execution_mode, unsigned bit_size)
1033 {
1034 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
1035 (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
1036 (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
1037 }
1038
1039 static inline bool
1040 nir_has_any_rounding_mode_rtz(unsigned execution_mode)
1041 {
1042 return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
1043 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
1044 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
1045 }
1046
1047 static inline bool
1048 nir_has_any_rounding_mode_rtne(unsigned execution_mode)
1049 {
1050 return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
1051 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
1052 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
1053 }
1054
1055 static inline nir_rounding_mode
1056 nir_get_rounding_mode_from_float_controls(unsigned execution_mode,
1057 nir_alu_type type)
1058 {
1059 if (nir_alu_type_get_base_type(type) != nir_type_float)
1060 return nir_rounding_mode_undef;
1061
1062 unsigned bit_size = nir_alu_type_get_type_size(type);
1063
1064 if (nir_is_rounding_mode_rtz(execution_mode, bit_size))
1065 return nir_rounding_mode_rtz;
1066 if (nir_is_rounding_mode_rtne(execution_mode, bit_size))
1067 return nir_rounding_mode_rtne;
1068 return nir_rounding_mode_undef;
1069 }
1070
1071 static inline bool
1072 nir_has_any_rounding_mode_enabled(unsigned execution_mode)
1073 {
1074 bool result =
1075 nir_has_any_rounding_mode_rtne(execution_mode) ||
1076 nir_has_any_rounding_mode_rtz(execution_mode);
1077 return result;
1078 }
1079
1080 typedef enum {
1081 /**
1082 * Operation where the first two sources are commutative.
1083 *
1084 * For 2-source operations, this just mathematical commutativity. Some
1085 * 3-source operations, like ffma, are only commutative in the first two
1086 * sources.
1087 */
1088 NIR_OP_IS_2SRC_COMMUTATIVE = (1 << 0),
1089 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
1090 } nir_op_algebraic_property;
1091
1092 typedef struct {
1093 const char *name;
1094
1095 unsigned num_inputs;
1096
1097 /**
1098 * The number of components in the output
1099 *
1100 * If non-zero, this is the size of the output and input sizes are
1101 * explicitly given; swizzle and writemask are still in effect, but if
1102 * the output component is masked out, then the input component may
1103 * still be in use.
1104 *
1105 * If zero, the opcode acts in the standard, per-component manner; the
1106 * operation is performed on each component (except the ones that are
1107 * masked out) with the input being taken from the input swizzle for
1108 * that component.
1109 *
1110 * The size of some of the inputs may be given (i.e. non-zero) even
1111 * though output_size is zero; in that case, the inputs with a zero
1112 * size act per-component, while the inputs with non-zero size don't.
1113 */
1114 unsigned output_size;
1115
1116 /**
1117 * The type of vector that the instruction outputs. Note that the
1118 * staurate modifier is only allowed on outputs with the float type.
1119 */
1120
1121 nir_alu_type output_type;
1122
1123 /**
1124 * The number of components in each input
1125 */
1126 unsigned input_sizes[NIR_MAX_VEC_COMPONENTS];
1127
1128 /**
1129 * The type of vector that each input takes. Note that negate and
1130 * absolute value are only allowed on inputs with int or float type and
1131 * behave differently on the two.
1132 */
1133 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
1134
1135 nir_op_algebraic_property algebraic_properties;
1136
1137 /* Whether this represents a numeric conversion opcode */
1138 bool is_conversion;
1139 } nir_op_info;
1140
1141 extern const nir_op_info nir_op_infos[nir_num_opcodes];
1142
1143 typedef struct nir_alu_instr {
1144 nir_instr instr;
1145 nir_op op;
1146
1147 /** Indicates that this ALU instruction generates an exact value
1148 *
1149 * This is kind of a mixture of GLSL "precise" and "invariant" and not
1150 * really equivalent to either. This indicates that the value generated by
1151 * this operation is high-precision and any code transformations that touch
1152 * it must ensure that the resulting value is bit-for-bit identical to the
1153 * original.
1154 */
1155 bool exact:1;
1156
1157 /**
1158 * Indicates that this instruction do not cause wrapping to occur, in the
1159 * form of overflow or underflow.
1160 */
1161 bool no_signed_wrap:1;
1162 bool no_unsigned_wrap:1;
1163
1164 nir_alu_dest dest;
1165 nir_alu_src src[];
1166 } nir_alu_instr;
1167
1168 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
1169 nir_alu_instr *instr);
1170 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
1171 nir_alu_instr *instr);
1172
1173 /* is this source channel used? */
1174 static inline bool
1175 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
1176 unsigned channel)
1177 {
1178 if (nir_op_infos[instr->op].input_sizes[src] > 0)
1179 return channel < nir_op_infos[instr->op].input_sizes[src];
1180
1181 return (instr->dest.write_mask >> channel) & 1;
1182 }
1183
1184 static inline nir_component_mask_t
1185 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
1186 {
1187 nir_component_mask_t read_mask = 0;
1188 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
1189 if (!nir_alu_instr_channel_used(instr, src, c))
1190 continue;
1191
1192 read_mask |= (1 << instr->src[src].swizzle[c]);
1193 }
1194 return read_mask;
1195 }
1196
1197 /**
1198 * Get the number of channels used for a source
1199 */
1200 static inline unsigned
1201 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
1202 {
1203 if (nir_op_infos[instr->op].input_sizes[src] > 0)
1204 return nir_op_infos[instr->op].input_sizes[src];
1205
1206 return nir_dest_num_components(instr->dest.dest);
1207 }
1208
1209 static inline bool
1210 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1211 {
1212 switch (instr->op) {
1213 case nir_op_flt:
1214 case nir_op_fge:
1215 case nir_op_feq:
1216 case nir_op_fne:
1217 case nir_op_ilt:
1218 case nir_op_ult:
1219 case nir_op_ige:
1220 case nir_op_uge:
1221 case nir_op_ieq:
1222 case nir_op_ine:
1223 case nir_op_i2b1:
1224 case nir_op_f2b1:
1225 case nir_op_inot:
1226 return true;
1227 default:
1228 return false;
1229 }
1230 }
1231
1232 bool nir_const_value_negative_equal(nir_const_value c1, nir_const_value c2,
1233 nir_alu_type full_type);
1234
1235 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
1236 unsigned src1, unsigned src2);
1237
1238 bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
1239 const nir_alu_instr *alu2,
1240 unsigned src1, unsigned src2);
1241
1242 typedef enum {
1243 nir_deref_type_var,
1244 nir_deref_type_array,
1245 nir_deref_type_array_wildcard,
1246 nir_deref_type_ptr_as_array,
1247 nir_deref_type_struct,
1248 nir_deref_type_cast,
1249 } nir_deref_type;
1250
1251 typedef struct {
1252 nir_instr instr;
1253
1254 /** The type of this deref instruction */
1255 nir_deref_type deref_type;
1256
1257 /** The mode of the underlying variable */
1258 nir_variable_mode mode;
1259
1260 /** The dereferenced type of the resulting pointer value */
1261 const struct glsl_type *type;
1262
1263 union {
1264 /** Variable being dereferenced if deref_type is a deref_var */
1265 nir_variable *var;
1266
1267 /** Parent deref if deref_type is not deref_var */
1268 nir_src parent;
1269 };
1270
1271 /** Additional deref parameters */
1272 union {
1273 struct {
1274 nir_src index;
1275 } arr;
1276
1277 struct {
1278 unsigned index;
1279 } strct;
1280
1281 struct {
1282 unsigned ptr_stride;
1283 } cast;
1284 };
1285
1286 /** Destination to store the resulting "pointer" */
1287 nir_dest dest;
1288 } nir_deref_instr;
1289
1290 static inline nir_deref_instr *nir_src_as_deref(nir_src src);
1291
1292 static inline nir_deref_instr *
1293 nir_deref_instr_parent(const nir_deref_instr *instr)
1294 {
1295 if (instr->deref_type == nir_deref_type_var)
1296 return NULL;
1297 else
1298 return nir_src_as_deref(instr->parent);
1299 }
1300
1301 static inline nir_variable *
1302 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1303 {
1304 while (instr->deref_type != nir_deref_type_var) {
1305 if (instr->deref_type == nir_deref_type_cast)
1306 return NULL;
1307
1308 instr = nir_deref_instr_parent(instr);
1309 }
1310
1311 return instr->var;
1312 }
1313
1314 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1315 bool nir_deref_instr_is_known_out_of_bounds(nir_deref_instr *instr);
1316 bool nir_deref_instr_has_complex_use(nir_deref_instr *instr);
1317
1318 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1319
1320 unsigned nir_deref_instr_ptr_as_array_stride(nir_deref_instr *instr);
1321
1322 typedef struct {
1323 nir_instr instr;
1324
1325 struct nir_function *callee;
1326
1327 unsigned num_params;
1328 nir_src params[];
1329 } nir_call_instr;
1330
1331 #include "nir_intrinsics.h"
1332
1333 #define NIR_INTRINSIC_MAX_CONST_INDEX 4
1334
1335 /** Represents an intrinsic
1336 *
1337 * An intrinsic is an instruction type for handling things that are
1338 * more-or-less regular operations but don't just consume and produce SSA
1339 * values like ALU operations do. Intrinsics are not for things that have
1340 * special semantic meaning such as phi nodes and parallel copies.
1341 * Examples of intrinsics include variable load/store operations, system
1342 * value loads, and the like. Even though texturing more-or-less falls
1343 * under this category, texturing is its own instruction type because
1344 * trying to represent texturing with intrinsics would lead to a
1345 * combinatorial explosion of intrinsic opcodes.
1346 *
1347 * By having a single instruction type for handling a lot of different
1348 * cases, optimization passes can look for intrinsics and, for the most
1349 * part, completely ignore them. Each intrinsic type also has a few
1350 * possible flags that govern whether or not they can be reordered or
1351 * eliminated. That way passes like dead code elimination can still work
1352 * on intrisics without understanding the meaning of each.
1353 *
1354 * Each intrinsic has some number of constant indices, some number of
1355 * variables, and some number of sources. What these sources, variables,
1356 * and indices mean depends on the intrinsic and is documented with the
1357 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1358 * instructions are the only types of instruction that can operate on
1359 * variables.
1360 */
1361 typedef struct {
1362 nir_instr instr;
1363
1364 nir_intrinsic_op intrinsic;
1365
1366 nir_dest dest;
1367
1368 /** number of components if this is a vectorized intrinsic
1369 *
1370 * Similarly to ALU operations, some intrinsics are vectorized.
1371 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1372 * For vectorized intrinsics, the num_components field specifies the
1373 * number of destination components and the number of source components
1374 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1375 */
1376 uint8_t num_components;
1377
1378 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1379
1380 nir_src src[];
1381 } nir_intrinsic_instr;
1382
1383 static inline nir_variable *
1384 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1385 {
1386 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1387 }
1388
1389 typedef enum {
1390 /* Memory ordering. */
1391 NIR_MEMORY_ACQUIRE = 1 << 0,
1392 NIR_MEMORY_RELEASE = 1 << 1,
1393
1394 /* Memory visibility operations. */
1395 NIR_MEMORY_MAKE_AVAILABLE = 1 << 3,
1396 NIR_MEMORY_MAKE_VISIBLE = 1 << 4,
1397 } nir_memory_semantics;
1398
1399 typedef enum {
1400 NIR_SCOPE_DEVICE,
1401 NIR_SCOPE_QUEUE_FAMILY,
1402 NIR_SCOPE_WORKGROUP,
1403 NIR_SCOPE_SUBGROUP,
1404 NIR_SCOPE_INVOCATION,
1405 } nir_scope;
1406
1407 /**
1408 * \name NIR intrinsics semantic flags
1409 *
1410 * information about what the compiler can do with the intrinsics.
1411 *
1412 * \sa nir_intrinsic_info::flags
1413 */
1414 typedef enum {
1415 /**
1416 * whether the intrinsic can be safely eliminated if none of its output
1417 * value is not being used.
1418 */
1419 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1420
1421 /**
1422 * Whether the intrinsic can be reordered with respect to any other
1423 * intrinsic, i.e. whether the only reordering dependencies of the
1424 * intrinsic are due to the register reads/writes.
1425 */
1426 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1427 } nir_intrinsic_semantic_flag;
1428
1429 /**
1430 * \name NIR intrinsics const-index flag
1431 *
1432 * Indicates the usage of a const_index slot.
1433 *
1434 * \sa nir_intrinsic_info::index_map
1435 */
1436 typedef enum {
1437 /**
1438 * Generally instructions that take a offset src argument, can encode
1439 * a constant 'base' value which is added to the offset.
1440 */
1441 NIR_INTRINSIC_BASE = 1,
1442
1443 /**
1444 * For store instructions, a writemask for the store.
1445 */
1446 NIR_INTRINSIC_WRMASK,
1447
1448 /**
1449 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1450 */
1451 NIR_INTRINSIC_STREAM_ID,
1452
1453 /**
1454 * The clip-plane id for load_user_clip_plane intrinsic.
1455 */
1456 NIR_INTRINSIC_UCP_ID,
1457
1458 /**
1459 * The amount of data, starting from BASE, that this instruction may
1460 * access. This is used to provide bounds if the offset is not constant.
1461 */
1462 NIR_INTRINSIC_RANGE,
1463
1464 /**
1465 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1466 */
1467 NIR_INTRINSIC_DESC_SET,
1468
1469 /**
1470 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1471 */
1472 NIR_INTRINSIC_BINDING,
1473
1474 /**
1475 * Component offset.
1476 */
1477 NIR_INTRINSIC_COMPONENT,
1478
1479 /**
1480 * Interpolation mode (only meaningful for FS inputs).
1481 */
1482 NIR_INTRINSIC_INTERP_MODE,
1483
1484 /**
1485 * A binary nir_op to use when performing a reduction or scan operation
1486 */
1487 NIR_INTRINSIC_REDUCTION_OP,
1488
1489 /**
1490 * Cluster size for reduction operations
1491 */
1492 NIR_INTRINSIC_CLUSTER_SIZE,
1493
1494 /**
1495 * Parameter index for a load_param intrinsic
1496 */
1497 NIR_INTRINSIC_PARAM_IDX,
1498
1499 /**
1500 * Image dimensionality for image intrinsics
1501 *
1502 * One of GLSL_SAMPLER_DIM_*
1503 */
1504 NIR_INTRINSIC_IMAGE_DIM,
1505
1506 /**
1507 * Non-zero if we are accessing an array image
1508 */
1509 NIR_INTRINSIC_IMAGE_ARRAY,
1510
1511 /**
1512 * Image format for image intrinsics
1513 */
1514 NIR_INTRINSIC_FORMAT,
1515
1516 /**
1517 * Access qualifiers for image and memory access intrinsics
1518 */
1519 NIR_INTRINSIC_ACCESS,
1520
1521 /**
1522 * Alignment for offsets and addresses
1523 *
1524 * These two parameters, specify an alignment in terms of a multiplier and
1525 * an offset. The offset or address parameter X of the intrinsic is
1526 * guaranteed to satisfy the following:
1527 *
1528 * (X - align_offset) % align_mul == 0
1529 */
1530 NIR_INTRINSIC_ALIGN_MUL,
1531 NIR_INTRINSIC_ALIGN_OFFSET,
1532
1533 /**
1534 * The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic.
1535 */
1536 NIR_INTRINSIC_DESC_TYPE,
1537
1538 /**
1539 * The nir_alu_type of a uniform/input/output
1540 */
1541 NIR_INTRINSIC_TYPE,
1542
1543 /**
1544 * The swizzle mask for the instructions
1545 * SwizzleInvocationsAMD and SwizzleInvocationsMaskedAMD
1546 */
1547 NIR_INTRINSIC_SWIZZLE_MASK,
1548
1549 /* Separate source/dest access flags for copies */
1550 NIR_INTRINSIC_SRC_ACCESS,
1551 NIR_INTRINSIC_DST_ACCESS,
1552
1553 /* Driver location for nir_load_patch_location_ir3 */
1554 NIR_INTRINSIC_DRIVER_LOCATION,
1555
1556 /**
1557 * Mask of nir_memory_semantics, includes ordering and visibility.
1558 */
1559 NIR_INTRINSIC_MEMORY_SEMANTICS,
1560
1561 /**
1562 * Mask of nir_variable_modes affected by the memory operation.
1563 */
1564 NIR_INTRINSIC_MEMORY_MODES,
1565
1566 /**
1567 * Value of nir_scope.
1568 */
1569 NIR_INTRINSIC_MEMORY_SCOPE,
1570
1571 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1572
1573 } nir_intrinsic_index_flag;
1574
1575 #define NIR_INTRINSIC_MAX_INPUTS 5
1576
1577 typedef struct {
1578 const char *name;
1579
1580 unsigned num_srcs; /** < number of register/SSA inputs */
1581
1582 /** number of components of each input register
1583 *
1584 * If this value is 0, the number of components is given by the
1585 * num_components field of nir_intrinsic_instr. If this value is -1, the
1586 * intrinsic consumes however many components are provided and it is not
1587 * validated at all.
1588 */
1589 int src_components[NIR_INTRINSIC_MAX_INPUTS];
1590
1591 bool has_dest;
1592
1593 /** number of components of the output register
1594 *
1595 * If this value is 0, the number of components is given by the
1596 * num_components field of nir_intrinsic_instr.
1597 */
1598 unsigned dest_components;
1599
1600 /** bitfield of legal bit sizes */
1601 unsigned dest_bit_sizes;
1602
1603 /** the number of constant indices used by the intrinsic */
1604 unsigned num_indices;
1605
1606 /** indicates the usage of intr->const_index[n] */
1607 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1608
1609 /** semantic flags for calls to this intrinsic */
1610 nir_intrinsic_semantic_flag flags;
1611 } nir_intrinsic_info;
1612
1613 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1614
1615 static inline unsigned
1616 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1617 {
1618 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1619 assert(srcn < info->num_srcs);
1620 if (info->src_components[srcn] > 0)
1621 return info->src_components[srcn];
1622 else if (info->src_components[srcn] == 0)
1623 return intr->num_components;
1624 else
1625 return nir_src_num_components(intr->src[srcn]);
1626 }
1627
1628 static inline unsigned
1629 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1630 {
1631 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1632 if (!info->has_dest)
1633 return 0;
1634 else if (info->dest_components)
1635 return info->dest_components;
1636 else
1637 return intr->num_components;
1638 }
1639
1640 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1641 static inline type \
1642 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1643 { \
1644 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1645 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1646 return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1647 } \
1648 static inline void \
1649 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1650 { \
1651 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1652 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1653 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1654 }
1655
1656 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1657 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1658 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1659 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1660 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1661 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1662 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1663 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1664 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1665 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1666 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1667 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1668 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1669 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1670 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1671 INTRINSIC_IDX_ACCESSORS(src_access, SRC_ACCESS, enum gl_access_qualifier)
1672 INTRINSIC_IDX_ACCESSORS(dst_access, DST_ACCESS, enum gl_access_qualifier)
1673 INTRINSIC_IDX_ACCESSORS(format, FORMAT, unsigned)
1674 INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
1675 INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
1676 INTRINSIC_IDX_ACCESSORS(desc_type, DESC_TYPE, unsigned)
1677 INTRINSIC_IDX_ACCESSORS(type, TYPE, nir_alu_type)
1678 INTRINSIC_IDX_ACCESSORS(swizzle_mask, SWIZZLE_MASK, unsigned)
1679 INTRINSIC_IDX_ACCESSORS(driver_location, DRIVER_LOCATION, unsigned)
1680 INTRINSIC_IDX_ACCESSORS(memory_semantics, MEMORY_SEMANTICS, nir_memory_semantics)
1681 INTRINSIC_IDX_ACCESSORS(memory_modes, MEMORY_MODES, nir_variable_mode)
1682 INTRINSIC_IDX_ACCESSORS(memory_scope, MEMORY_SCOPE, nir_scope)
1683
1684 static inline void
1685 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1686 unsigned align_mul, unsigned align_offset)
1687 {
1688 assert(util_is_power_of_two_nonzero(align_mul));
1689 assert(align_offset < align_mul);
1690 nir_intrinsic_set_align_mul(intrin, align_mul);
1691 nir_intrinsic_set_align_offset(intrin, align_offset);
1692 }
1693
1694 /** Returns a simple alignment for a load/store intrinsic offset
1695 *
1696 * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1697 * and ALIGN_OFFSET parameters, this helper takes both into account and
1698 * provides a single simple alignment parameter. The offset X is guaranteed
1699 * to satisfy X % align == 0.
1700 */
1701 static inline unsigned
1702 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
1703 {
1704 const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1705 const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1706 assert(align_offset < align_mul);
1707 return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1708 }
1709
1710 /* Converts a image_deref_* intrinsic into a image_* one */
1711 void nir_rewrite_image_intrinsic(nir_intrinsic_instr *instr,
1712 nir_ssa_def *handle, bool bindless);
1713
1714 /* Determine if an intrinsic can be arbitrarily reordered and eliminated. */
1715 static inline bool
1716 nir_intrinsic_can_reorder(nir_intrinsic_instr *instr)
1717 {
1718 if (instr->intrinsic == nir_intrinsic_load_deref ||
1719 instr->intrinsic == nir_intrinsic_load_ssbo ||
1720 instr->intrinsic == nir_intrinsic_bindless_image_load ||
1721 instr->intrinsic == nir_intrinsic_image_deref_load ||
1722 instr->intrinsic == nir_intrinsic_image_load) {
1723 return nir_intrinsic_access(instr) & ACCESS_CAN_REORDER;
1724 } else {
1725 const nir_intrinsic_info *info =
1726 &nir_intrinsic_infos[instr->intrinsic];
1727 return (info->flags & NIR_INTRINSIC_CAN_ELIMINATE) &&
1728 (info->flags & NIR_INTRINSIC_CAN_REORDER);
1729 }
1730 }
1731
1732 /**
1733 * \group texture information
1734 *
1735 * This gives semantic information about textures which is useful to the
1736 * frontend, the backend, and lowering passes, but not the optimizer.
1737 */
1738
1739 typedef enum {
1740 nir_tex_src_coord,
1741 nir_tex_src_projector,
1742 nir_tex_src_comparator, /* shadow comparator */
1743 nir_tex_src_offset,
1744 nir_tex_src_bias,
1745 nir_tex_src_lod,
1746 nir_tex_src_min_lod,
1747 nir_tex_src_ms_index, /* MSAA sample index */
1748 nir_tex_src_ms_mcs, /* MSAA compression value */
1749 nir_tex_src_ddx,
1750 nir_tex_src_ddy,
1751 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1752 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1753 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1754 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1755 nir_tex_src_texture_handle, /* < bindless texture handle */
1756 nir_tex_src_sampler_handle, /* < bindless sampler handle */
1757 nir_tex_src_plane, /* < selects plane for planar textures */
1758 nir_num_tex_src_types
1759 } nir_tex_src_type;
1760
1761 typedef struct {
1762 nir_src src;
1763 nir_tex_src_type src_type;
1764 } nir_tex_src;
1765
1766 typedef enum {
1767 nir_texop_tex, /**< Regular texture look-up */
1768 nir_texop_txb, /**< Texture look-up with LOD bias */
1769 nir_texop_txl, /**< Texture look-up with explicit LOD */
1770 nir_texop_txd, /**< Texture look-up with partial derivatives */
1771 nir_texop_txf, /**< Texel fetch with explicit LOD */
1772 nir_texop_txf_ms, /**< Multisample texture fetch */
1773 nir_texop_txf_ms_fb, /**< Multisample texture fetch from framebuffer */
1774 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1775 nir_texop_txs, /**< Texture size */
1776 nir_texop_lod, /**< Texture lod query */
1777 nir_texop_tg4, /**< Texture gather */
1778 nir_texop_query_levels, /**< Texture levels query */
1779 nir_texop_texture_samples, /**< Texture samples query */
1780 nir_texop_samples_identical, /**< Query whether all samples are definitely
1781 * identical.
1782 */
1783 nir_texop_tex_prefetch, /**< Regular texture look-up, eligible for pre-dispatch */
1784 } nir_texop;
1785
1786 typedef struct {
1787 nir_instr instr;
1788
1789 enum glsl_sampler_dim sampler_dim;
1790 nir_alu_type dest_type;
1791
1792 nir_texop op;
1793 nir_dest dest;
1794 nir_tex_src *src;
1795 unsigned num_srcs, coord_components;
1796 bool is_array, is_shadow;
1797
1798 /**
1799 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1800 * components or the new-style shadow that outputs 1 component.
1801 */
1802 bool is_new_style_shadow;
1803
1804 /* gather component selector */
1805 unsigned component : 2;
1806
1807 /* gather offsets */
1808 int8_t tg4_offsets[4][2];
1809
1810 /* True if the texture index or handle is not dynamically uniform */
1811 bool texture_non_uniform;
1812
1813 /* True if the sampler index or handle is not dynamically uniform */
1814 bool sampler_non_uniform;
1815
1816 /** The texture index
1817 *
1818 * If this texture instruction has a nir_tex_src_texture_offset source,
1819 * then the texture index is given by texture_index + texture_offset.
1820 */
1821 unsigned texture_index;
1822
1823 /** The size of the texture array or 0 if it's not an array */
1824 unsigned texture_array_size;
1825
1826 /** The sampler index
1827 *
1828 * The following operations do not require a sampler and, as such, this
1829 * field should be ignored:
1830 * - nir_texop_txf
1831 * - nir_texop_txf_ms
1832 * - nir_texop_txs
1833 * - nir_texop_lod
1834 * - nir_texop_query_levels
1835 * - nir_texop_texture_samples
1836 * - nir_texop_samples_identical
1837 *
1838 * If this texture instruction has a nir_tex_src_sampler_offset source,
1839 * then the sampler index is given by sampler_index + sampler_offset.
1840 */
1841 unsigned sampler_index;
1842 } nir_tex_instr;
1843
1844 static inline unsigned
1845 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1846 {
1847 switch (instr->op) {
1848 case nir_texop_txs: {
1849 unsigned ret;
1850 switch (instr->sampler_dim) {
1851 case GLSL_SAMPLER_DIM_1D:
1852 case GLSL_SAMPLER_DIM_BUF:
1853 ret = 1;
1854 break;
1855 case GLSL_SAMPLER_DIM_2D:
1856 case GLSL_SAMPLER_DIM_CUBE:
1857 case GLSL_SAMPLER_DIM_MS:
1858 case GLSL_SAMPLER_DIM_RECT:
1859 case GLSL_SAMPLER_DIM_EXTERNAL:
1860 case GLSL_SAMPLER_DIM_SUBPASS:
1861 ret = 2;
1862 break;
1863 case GLSL_SAMPLER_DIM_3D:
1864 ret = 3;
1865 break;
1866 default:
1867 unreachable("not reached");
1868 }
1869 if (instr->is_array)
1870 ret++;
1871 return ret;
1872 }
1873
1874 case nir_texop_lod:
1875 return 2;
1876
1877 case nir_texop_texture_samples:
1878 case nir_texop_query_levels:
1879 case nir_texop_samples_identical:
1880 return 1;
1881
1882 default:
1883 if (instr->is_shadow && instr->is_new_style_shadow)
1884 return 1;
1885
1886 return 4;
1887 }
1888 }
1889
1890 /* Returns true if this texture operation queries something about the texture
1891 * rather than actually sampling it.
1892 */
1893 static inline bool
1894 nir_tex_instr_is_query(const nir_tex_instr *instr)
1895 {
1896 switch (instr->op) {
1897 case nir_texop_txs:
1898 case nir_texop_lod:
1899 case nir_texop_texture_samples:
1900 case nir_texop_query_levels:
1901 case nir_texop_txf_ms_mcs:
1902 return true;
1903 case nir_texop_tex:
1904 case nir_texop_txb:
1905 case nir_texop_txl:
1906 case nir_texop_txd:
1907 case nir_texop_txf:
1908 case nir_texop_txf_ms:
1909 case nir_texop_txf_ms_fb:
1910 case nir_texop_tg4:
1911 return false;
1912 default:
1913 unreachable("Invalid texture opcode");
1914 }
1915 }
1916
1917 static inline bool
1918 nir_tex_instr_has_implicit_derivative(const nir_tex_instr *instr)
1919 {
1920 switch (instr->op) {
1921 case nir_texop_tex:
1922 case nir_texop_txb:
1923 case nir_texop_lod:
1924 return true;
1925 default:
1926 return false;
1927 }
1928 }
1929
1930 static inline nir_alu_type
1931 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1932 {
1933 switch (instr->src[src].src_type) {
1934 case nir_tex_src_coord:
1935 switch (instr->op) {
1936 case nir_texop_txf:
1937 case nir_texop_txf_ms:
1938 case nir_texop_txf_ms_fb:
1939 case nir_texop_txf_ms_mcs:
1940 case nir_texop_samples_identical:
1941 return nir_type_int;
1942
1943 default:
1944 return nir_type_float;
1945 }
1946
1947 case nir_tex_src_lod:
1948 switch (instr->op) {
1949 case nir_texop_txs:
1950 case nir_texop_txf:
1951 return nir_type_int;
1952
1953 default:
1954 return nir_type_float;
1955 }
1956
1957 case nir_tex_src_projector:
1958 case nir_tex_src_comparator:
1959 case nir_tex_src_bias:
1960 case nir_tex_src_min_lod:
1961 case nir_tex_src_ddx:
1962 case nir_tex_src_ddy:
1963 return nir_type_float;
1964
1965 case nir_tex_src_offset:
1966 case nir_tex_src_ms_index:
1967 case nir_tex_src_plane:
1968 return nir_type_int;
1969
1970 case nir_tex_src_ms_mcs:
1971 case nir_tex_src_texture_deref:
1972 case nir_tex_src_sampler_deref:
1973 case nir_tex_src_texture_offset:
1974 case nir_tex_src_sampler_offset:
1975 case nir_tex_src_texture_handle:
1976 case nir_tex_src_sampler_handle:
1977 return nir_type_uint;
1978
1979 case nir_num_tex_src_types:
1980 unreachable("nir_num_tex_src_types is not a valid source type");
1981 }
1982
1983 unreachable("Invalid texture source type");
1984 }
1985
1986 static inline unsigned
1987 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1988 {
1989 if (instr->src[src].src_type == nir_tex_src_coord)
1990 return instr->coord_components;
1991
1992 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1993 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1994 return 4;
1995
1996 if (instr->src[src].src_type == nir_tex_src_ddx ||
1997 instr->src[src].src_type == nir_tex_src_ddy) {
1998 if (instr->is_array)
1999 return instr->coord_components - 1;
2000 else
2001 return instr->coord_components;
2002 }
2003
2004 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
2005 * the offset, since a cube maps to a single face.
2006 */
2007 if (instr->src[src].src_type == nir_tex_src_offset) {
2008 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
2009 return 2;
2010 else if (instr->is_array)
2011 return instr->coord_components - 1;
2012 else
2013 return instr->coord_components;
2014 }
2015
2016 return 1;
2017 }
2018
2019 static inline int
2020 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
2021 {
2022 for (unsigned i = 0; i < instr->num_srcs; i++)
2023 if (instr->src[i].src_type == type)
2024 return (int) i;
2025
2026 return -1;
2027 }
2028
2029 void nir_tex_instr_add_src(nir_tex_instr *tex,
2030 nir_tex_src_type src_type,
2031 nir_src src);
2032
2033 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
2034
2035 bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
2036
2037 typedef struct {
2038 nir_instr instr;
2039
2040 nir_ssa_def def;
2041
2042 nir_const_value value[];
2043 } nir_load_const_instr;
2044
2045 typedef enum {
2046 nir_jump_return,
2047 nir_jump_break,
2048 nir_jump_continue,
2049 } nir_jump_type;
2050
2051 typedef struct {
2052 nir_instr instr;
2053 nir_jump_type type;
2054 } nir_jump_instr;
2055
2056 /* creates a new SSA variable in an undefined state */
2057
2058 typedef struct {
2059 nir_instr instr;
2060 nir_ssa_def def;
2061 } nir_ssa_undef_instr;
2062
2063 typedef struct {
2064 struct exec_node node;
2065
2066 /* The predecessor block corresponding to this source */
2067 struct nir_block *pred;
2068
2069 nir_src src;
2070 } nir_phi_src;
2071
2072 #define nir_foreach_phi_src(phi_src, phi) \
2073 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
2074 #define nir_foreach_phi_src_safe(phi_src, phi) \
2075 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
2076
2077 typedef struct {
2078 nir_instr instr;
2079
2080 struct exec_list srcs; /** < list of nir_phi_src */
2081
2082 nir_dest dest;
2083 } nir_phi_instr;
2084
2085 typedef struct {
2086 struct exec_node node;
2087 nir_src src;
2088 nir_dest dest;
2089 } nir_parallel_copy_entry;
2090
2091 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
2092 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
2093
2094 typedef struct {
2095 nir_instr instr;
2096
2097 /* A list of nir_parallel_copy_entrys. The sources of all of the
2098 * entries are copied to the corresponding destinations "in parallel".
2099 * In other words, if we have two entries: a -> b and b -> a, the values
2100 * get swapped.
2101 */
2102 struct exec_list entries;
2103 } nir_parallel_copy_instr;
2104
2105 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
2106 type, nir_instr_type_alu)
2107 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
2108 type, nir_instr_type_deref)
2109 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
2110 type, nir_instr_type_call)
2111 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
2112 type, nir_instr_type_jump)
2113 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
2114 type, nir_instr_type_tex)
2115 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
2116 type, nir_instr_type_intrinsic)
2117 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
2118 type, nir_instr_type_load_const)
2119 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
2120 type, nir_instr_type_ssa_undef)
2121 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
2122 type, nir_instr_type_phi)
2123 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
2124 nir_parallel_copy_instr, instr,
2125 type, nir_instr_type_parallel_copy)
2126
2127
2128 #define NIR_DEFINE_SRC_AS_CONST(type, suffix) \
2129 static inline type \
2130 nir_src_comp_as_##suffix(nir_src src, unsigned comp) \
2131 { \
2132 assert(nir_src_is_const(src)); \
2133 nir_load_const_instr *load = \
2134 nir_instr_as_load_const(src.ssa->parent_instr); \
2135 assert(comp < load->def.num_components); \
2136 return nir_const_value_as_##suffix(load->value[comp], \
2137 load->def.bit_size); \
2138 } \
2139 \
2140 static inline type \
2141 nir_src_as_##suffix(nir_src src) \
2142 { \
2143 assert(nir_src_num_components(src) == 1); \
2144 return nir_src_comp_as_##suffix(src, 0); \
2145 }
2146
2147 NIR_DEFINE_SRC_AS_CONST(int64_t, int)
2148 NIR_DEFINE_SRC_AS_CONST(uint64_t, uint)
2149 NIR_DEFINE_SRC_AS_CONST(bool, bool)
2150 NIR_DEFINE_SRC_AS_CONST(double, float)
2151
2152 #undef NIR_DEFINE_SRC_AS_CONST
2153
2154
2155 typedef struct {
2156 nir_ssa_def *def;
2157 unsigned comp;
2158 } nir_ssa_scalar;
2159
2160 static inline bool
2161 nir_ssa_scalar_is_const(nir_ssa_scalar s)
2162 {
2163 return s.def->parent_instr->type == nir_instr_type_load_const;
2164 }
2165
2166 static inline nir_const_value
2167 nir_ssa_scalar_as_const_value(nir_ssa_scalar s)
2168 {
2169 assert(s.comp < s.def->num_components);
2170 nir_load_const_instr *load = nir_instr_as_load_const(s.def->parent_instr);
2171 return load->value[s.comp];
2172 }
2173
2174 #define NIR_DEFINE_SCALAR_AS_CONST(type, suffix) \
2175 static inline type \
2176 nir_ssa_scalar_as_##suffix(nir_ssa_scalar s) \
2177 { \
2178 return nir_const_value_as_##suffix( \
2179 nir_ssa_scalar_as_const_value(s), s.def->bit_size); \
2180 }
2181
2182 NIR_DEFINE_SCALAR_AS_CONST(int64_t, int)
2183 NIR_DEFINE_SCALAR_AS_CONST(uint64_t, uint)
2184 NIR_DEFINE_SCALAR_AS_CONST(bool, bool)
2185 NIR_DEFINE_SCALAR_AS_CONST(double, float)
2186
2187 #undef NIR_DEFINE_SCALAR_AS_CONST
2188
2189 static inline bool
2190 nir_ssa_scalar_is_alu(nir_ssa_scalar s)
2191 {
2192 return s.def->parent_instr->type == nir_instr_type_alu;
2193 }
2194
2195 static inline nir_op
2196 nir_ssa_scalar_alu_op(nir_ssa_scalar s)
2197 {
2198 return nir_instr_as_alu(s.def->parent_instr)->op;
2199 }
2200
2201 static inline nir_ssa_scalar
2202 nir_ssa_scalar_chase_alu_src(nir_ssa_scalar s, unsigned alu_src_idx)
2203 {
2204 nir_ssa_scalar out = { NULL, 0 };
2205
2206 nir_alu_instr *alu = nir_instr_as_alu(s.def->parent_instr);
2207 assert(alu_src_idx < nir_op_infos[alu->op].num_inputs);
2208
2209 /* Our component must be written */
2210 assert(s.comp < s.def->num_components);
2211 assert(alu->dest.write_mask & (1u << s.comp));
2212
2213 assert(alu->src[alu_src_idx].src.is_ssa);
2214 out.def = alu->src[alu_src_idx].src.ssa;
2215
2216 if (nir_op_infos[alu->op].input_sizes[alu_src_idx] == 0) {
2217 /* The ALU src is unsized so the source component follows the
2218 * destination component.
2219 */
2220 out.comp = alu->src[alu_src_idx].swizzle[s.comp];
2221 } else {
2222 /* This is a sized source so all source components work together to
2223 * produce all the destination components. Since we need to return a
2224 * scalar, this only works if the source is a scalar.
2225 */
2226 assert(nir_op_infos[alu->op].input_sizes[alu_src_idx] == 1);
2227 out.comp = alu->src[alu_src_idx].swizzle[0];
2228 }
2229 assert(out.comp < out.def->num_components);
2230
2231 return out;
2232 }
2233
2234
2235 /*
2236 * Control flow
2237 *
2238 * Control flow consists of a tree of control flow nodes, which include
2239 * if-statements and loops. The leaves of the tree are basic blocks, lists of
2240 * instructions that always run start-to-finish. Each basic block also keeps
2241 * track of its successors (blocks which may run immediately after the current
2242 * block) and predecessors (blocks which could have run immediately before the
2243 * current block). Each function also has a start block and an end block which
2244 * all return statements point to (which is always empty). Together, all the
2245 * blocks with their predecessors and successors make up the control flow
2246 * graph (CFG) of the function. There are helpers that modify the tree of
2247 * control flow nodes while modifying the CFG appropriately; these should be
2248 * used instead of modifying the tree directly.
2249 */
2250
2251 typedef enum {
2252 nir_cf_node_block,
2253 nir_cf_node_if,
2254 nir_cf_node_loop,
2255 nir_cf_node_function
2256 } nir_cf_node_type;
2257
2258 typedef struct nir_cf_node {
2259 struct exec_node node;
2260 nir_cf_node_type type;
2261 struct nir_cf_node *parent;
2262 } nir_cf_node;
2263
2264 typedef struct nir_block {
2265 nir_cf_node cf_node;
2266
2267 struct exec_list instr_list; /** < list of nir_instr */
2268
2269 /** generic block index; generated by nir_index_blocks */
2270 unsigned index;
2271
2272 /*
2273 * Each block can only have up to 2 successors, so we put them in a simple
2274 * array - no need for anything more complicated.
2275 */
2276 struct nir_block *successors[2];
2277
2278 /* Set of nir_block predecessors in the CFG */
2279 struct set *predecessors;
2280
2281 /*
2282 * this node's immediate dominator in the dominance tree - set to NULL for
2283 * the start block.
2284 */
2285 struct nir_block *imm_dom;
2286
2287 /* This node's children in the dominance tree */
2288 unsigned num_dom_children;
2289 struct nir_block **dom_children;
2290
2291 /* Set of nir_blocks on the dominance frontier of this block */
2292 struct set *dom_frontier;
2293
2294 /*
2295 * These two indices have the property that dom_{pre,post}_index for each
2296 * child of this block in the dominance tree will always be between
2297 * dom_pre_index and dom_post_index for this block, which makes testing if
2298 * a given block is dominated by another block an O(1) operation.
2299 */
2300 unsigned dom_pre_index, dom_post_index;
2301
2302 /* live in and out for this block; used for liveness analysis */
2303 BITSET_WORD *live_in;
2304 BITSET_WORD *live_out;
2305 } nir_block;
2306
2307 static inline nir_instr *
2308 nir_block_first_instr(nir_block *block)
2309 {
2310 struct exec_node *head = exec_list_get_head(&block->instr_list);
2311 return exec_node_data(nir_instr, head, node);
2312 }
2313
2314 static inline nir_instr *
2315 nir_block_last_instr(nir_block *block)
2316 {
2317 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
2318 return exec_node_data(nir_instr, tail, node);
2319 }
2320
2321 static inline bool
2322 nir_block_ends_in_jump(nir_block *block)
2323 {
2324 return !exec_list_is_empty(&block->instr_list) &&
2325 nir_block_last_instr(block)->type == nir_instr_type_jump;
2326 }
2327
2328 #define nir_foreach_instr(instr, block) \
2329 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
2330 #define nir_foreach_instr_reverse(instr, block) \
2331 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
2332 #define nir_foreach_instr_safe(instr, block) \
2333 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
2334 #define nir_foreach_instr_reverse_safe(instr, block) \
2335 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
2336
2337 typedef enum {
2338 nir_selection_control_none = 0x0,
2339 nir_selection_control_flatten = 0x1,
2340 nir_selection_control_dont_flatten = 0x2,
2341 } nir_selection_control;
2342
2343 typedef struct nir_if {
2344 nir_cf_node cf_node;
2345 nir_src condition;
2346 nir_selection_control control;
2347
2348 struct exec_list then_list; /** < list of nir_cf_node */
2349 struct exec_list else_list; /** < list of nir_cf_node */
2350 } nir_if;
2351
2352 typedef struct {
2353 nir_if *nif;
2354
2355 /** Instruction that generates nif::condition. */
2356 nir_instr *conditional_instr;
2357
2358 /** Block within ::nif that has the break instruction. */
2359 nir_block *break_block;
2360
2361 /** Last block for the then- or else-path that does not contain the break. */
2362 nir_block *continue_from_block;
2363
2364 /** True when ::break_block is in the else-path of ::nif. */
2365 bool continue_from_then;
2366 bool induction_rhs;
2367
2368 /* This is true if the terminators exact trip count is unknown. For
2369 * example:
2370 *
2371 * for (int i = 0; i < imin(x, 4); i++)
2372 * ...
2373 *
2374 * Here loop analysis would have set a max_trip_count of 4 however we dont
2375 * know for sure that this is the exact trip count.
2376 */
2377 bool exact_trip_count_unknown;
2378
2379 struct list_head loop_terminator_link;
2380 } nir_loop_terminator;
2381
2382 typedef struct {
2383 /* Estimated cost (in number of instructions) of the loop */
2384 unsigned instr_cost;
2385
2386 /* Guessed trip count based on array indexing */
2387 unsigned guessed_trip_count;
2388
2389 /* Maximum number of times the loop is run (if known) */
2390 unsigned max_trip_count;
2391
2392 /* Do we know the exact number of times the loop will be run */
2393 bool exact_trip_count_known;
2394
2395 /* Unroll the loop regardless of its size */
2396 bool force_unroll;
2397
2398 /* Does the loop contain complex loop terminators, continues or other
2399 * complex behaviours? If this is true we can't rely on
2400 * loop_terminator_list to be complete or accurate.
2401 */
2402 bool complex_loop;
2403
2404 nir_loop_terminator *limiting_terminator;
2405
2406 /* A list of loop_terminators terminating this loop. */
2407 struct list_head loop_terminator_list;
2408 } nir_loop_info;
2409
2410 typedef enum {
2411 nir_loop_control_none = 0x0,
2412 nir_loop_control_unroll = 0x1,
2413 nir_loop_control_dont_unroll = 0x2,
2414 } nir_loop_control;
2415
2416 typedef struct {
2417 nir_cf_node cf_node;
2418
2419 struct exec_list body; /** < list of nir_cf_node */
2420
2421 nir_loop_info *info;
2422 nir_loop_control control;
2423 bool partially_unrolled;
2424 } nir_loop;
2425
2426 /**
2427 * Various bits of metadata that can may be created or required by
2428 * optimization and analysis passes
2429 */
2430 typedef enum {
2431 nir_metadata_none = 0x0,
2432 nir_metadata_block_index = 0x1,
2433 nir_metadata_dominance = 0x2,
2434 nir_metadata_live_ssa_defs = 0x4,
2435 nir_metadata_not_properly_reset = 0x8,
2436 nir_metadata_loop_analysis = 0x10,
2437 } nir_metadata;
2438
2439 typedef struct {
2440 nir_cf_node cf_node;
2441
2442 /** pointer to the function of which this is an implementation */
2443 struct nir_function *function;
2444
2445 struct exec_list body; /** < list of nir_cf_node */
2446
2447 nir_block *end_block;
2448
2449 /** list for all local variables in the function */
2450 struct exec_list locals;
2451
2452 /** list of local registers in the function */
2453 struct exec_list registers;
2454
2455 /** next available local register index */
2456 unsigned reg_alloc;
2457
2458 /** next available SSA value index */
2459 unsigned ssa_alloc;
2460
2461 /* total number of basic blocks, only valid when block_index_dirty = false */
2462 unsigned num_blocks;
2463
2464 nir_metadata valid_metadata;
2465 } nir_function_impl;
2466
2467 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2468 nir_start_block(nir_function_impl *impl)
2469 {
2470 return (nir_block *) impl->body.head_sentinel.next;
2471 }
2472
2473 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2474 nir_impl_last_block(nir_function_impl *impl)
2475 {
2476 return (nir_block *) impl->body.tail_sentinel.prev;
2477 }
2478
2479 static inline nir_cf_node *
2480 nir_cf_node_next(nir_cf_node *node)
2481 {
2482 struct exec_node *next = exec_node_get_next(&node->node);
2483 if (exec_node_is_tail_sentinel(next))
2484 return NULL;
2485 else
2486 return exec_node_data(nir_cf_node, next, node);
2487 }
2488
2489 static inline nir_cf_node *
2490 nir_cf_node_prev(nir_cf_node *node)
2491 {
2492 struct exec_node *prev = exec_node_get_prev(&node->node);
2493 if (exec_node_is_head_sentinel(prev))
2494 return NULL;
2495 else
2496 return exec_node_data(nir_cf_node, prev, node);
2497 }
2498
2499 static inline bool
2500 nir_cf_node_is_first(const nir_cf_node *node)
2501 {
2502 return exec_node_is_head_sentinel(node->node.prev);
2503 }
2504
2505 static inline bool
2506 nir_cf_node_is_last(const nir_cf_node *node)
2507 {
2508 return exec_node_is_tail_sentinel(node->node.next);
2509 }
2510
2511 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
2512 type, nir_cf_node_block)
2513 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
2514 type, nir_cf_node_if)
2515 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
2516 type, nir_cf_node_loop)
2517 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
2518 nir_function_impl, cf_node, type, nir_cf_node_function)
2519
2520 static inline nir_block *
2521 nir_if_first_then_block(nir_if *if_stmt)
2522 {
2523 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
2524 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2525 }
2526
2527 static inline nir_block *
2528 nir_if_last_then_block(nir_if *if_stmt)
2529 {
2530 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
2531 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2532 }
2533
2534 static inline nir_block *
2535 nir_if_first_else_block(nir_if *if_stmt)
2536 {
2537 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
2538 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2539 }
2540
2541 static inline nir_block *
2542 nir_if_last_else_block(nir_if *if_stmt)
2543 {
2544 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
2545 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2546 }
2547
2548 static inline nir_block *
2549 nir_loop_first_block(nir_loop *loop)
2550 {
2551 struct exec_node *head = exec_list_get_head(&loop->body);
2552 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2553 }
2554
2555 static inline nir_block *
2556 nir_loop_last_block(nir_loop *loop)
2557 {
2558 struct exec_node *tail = exec_list_get_tail(&loop->body);
2559 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2560 }
2561
2562 /**
2563 * Return true if this list of cf_nodes contains a single empty block.
2564 */
2565 static inline bool
2566 nir_cf_list_is_empty_block(struct exec_list *cf_list)
2567 {
2568 if (exec_list_is_singular(cf_list)) {
2569 struct exec_node *head = exec_list_get_head(cf_list);
2570 nir_block *block =
2571 nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2572 return exec_list_is_empty(&block->instr_list);
2573 }
2574 return false;
2575 }
2576
2577 typedef struct {
2578 uint8_t num_components;
2579 uint8_t bit_size;
2580 } nir_parameter;
2581
2582 typedef struct nir_function {
2583 struct exec_node node;
2584
2585 const char *name;
2586 struct nir_shader *shader;
2587
2588 unsigned num_params;
2589 nir_parameter *params;
2590
2591 /** The implementation of this function.
2592 *
2593 * If the function is only declared and not implemented, this is NULL.
2594 */
2595 nir_function_impl *impl;
2596
2597 bool is_entrypoint;
2598 } nir_function;
2599
2600 typedef enum {
2601 nir_lower_imul64 = (1 << 0),
2602 nir_lower_isign64 = (1 << 1),
2603 /** Lower all int64 modulus and division opcodes */
2604 nir_lower_divmod64 = (1 << 2),
2605 /** Lower all 64-bit umul_high and imul_high opcodes */
2606 nir_lower_imul_high64 = (1 << 3),
2607 nir_lower_mov64 = (1 << 4),
2608 nir_lower_icmp64 = (1 << 5),
2609 nir_lower_iadd64 = (1 << 6),
2610 nir_lower_iabs64 = (1 << 7),
2611 nir_lower_ineg64 = (1 << 8),
2612 nir_lower_logic64 = (1 << 9),
2613 nir_lower_minmax64 = (1 << 10),
2614 nir_lower_shift64 = (1 << 11),
2615 nir_lower_imul_2x32_64 = (1 << 12),
2616 nir_lower_extract64 = (1 << 13),
2617 } nir_lower_int64_options;
2618
2619 typedef enum {
2620 nir_lower_drcp = (1 << 0),
2621 nir_lower_dsqrt = (1 << 1),
2622 nir_lower_drsq = (1 << 2),
2623 nir_lower_dtrunc = (1 << 3),
2624 nir_lower_dfloor = (1 << 4),
2625 nir_lower_dceil = (1 << 5),
2626 nir_lower_dfract = (1 << 6),
2627 nir_lower_dround_even = (1 << 7),
2628 nir_lower_dmod = (1 << 8),
2629 nir_lower_dsub = (1 << 9),
2630 nir_lower_ddiv = (1 << 10),
2631 nir_lower_fp64_full_software = (1 << 11),
2632 } nir_lower_doubles_options;
2633
2634 typedef enum {
2635 nir_divergence_single_prim_per_subgroup = (1 << 0),
2636 nir_divergence_single_patch_per_tcs_subgroup = (1 << 1),
2637 nir_divergence_single_patch_per_tes_subgroup = (1 << 2),
2638 nir_divergence_view_index_uniform = (1 << 3),
2639 } nir_divergence_options;
2640
2641 typedef struct nir_shader_compiler_options {
2642 bool lower_fdiv;
2643 bool lower_ffma;
2644 bool fuse_ffma;
2645 bool lower_flrp16;
2646 bool lower_flrp32;
2647 /** Lowers flrp when it does not support doubles */
2648 bool lower_flrp64;
2649 bool lower_fpow;
2650 bool lower_fsat;
2651 bool lower_fsqrt;
2652 bool lower_sincos;
2653 bool lower_fmod;
2654 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2655 bool lower_bitfield_extract;
2656 /** Lowers ibitfield_extract/ubitfield_extract to compares, shifts. */
2657 bool lower_bitfield_extract_to_shifts;
2658 /** Lowers bitfield_insert to bfi/bfm */
2659 bool lower_bitfield_insert;
2660 /** Lowers bitfield_insert to compares, and shifts. */
2661 bool lower_bitfield_insert_to_shifts;
2662 /** Lowers bitfield_insert to bfm/bitfield_select. */
2663 bool lower_bitfield_insert_to_bitfield_select;
2664 /** Lowers bitfield_reverse to shifts. */
2665 bool lower_bitfield_reverse;
2666 /** Lowers bit_count to shifts. */
2667 bool lower_bit_count;
2668 /** Lowers ifind_msb to compare and ufind_msb */
2669 bool lower_ifind_msb;
2670 /** Lowers find_lsb to ufind_msb and logic ops */
2671 bool lower_find_lsb;
2672 bool lower_uadd_carry;
2673 bool lower_usub_borrow;
2674 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2675 bool lower_mul_high;
2676 /** lowers fneg and ineg to fsub and isub. */
2677 bool lower_negate;
2678 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2679 bool lower_sub;
2680
2681 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2682 bool lower_scmp;
2683
2684 /* lower fall_equalN/fany_nequalN (ex:fany_nequal4 to sne+fdot4+fsat) */
2685 bool lower_vector_cmp;
2686
2687 /** enables rules to lower idiv by power-of-two: */
2688 bool lower_idiv;
2689
2690 /** enable rules to avoid bit ops */
2691 bool lower_bitops;
2692
2693 /** enables rules to lower isign to imin+imax */
2694 bool lower_isign;
2695
2696 /** enables rules to lower fsign to fsub and flt */
2697 bool lower_fsign;
2698
2699 /* lower fdph to fdot4 */
2700 bool lower_fdph;
2701
2702 /** lower fdot to fmul and fsum/fadd. */
2703 bool lower_fdot;
2704
2705 /* Does the native fdot instruction replicate its result for four
2706 * components? If so, then opt_algebraic_late will turn all fdotN
2707 * instructions into fdot_replicatedN instructions.
2708 */
2709 bool fdot_replicates;
2710
2711 /** lowers ffloor to fsub+ffract: */
2712 bool lower_ffloor;
2713
2714 /** lowers ffract to fsub+ffloor: */
2715 bool lower_ffract;
2716
2717 /** lowers fceil to fneg+ffloor+fneg: */
2718 bool lower_fceil;
2719
2720 bool lower_ftrunc;
2721
2722 bool lower_ldexp;
2723
2724 bool lower_pack_half_2x16;
2725 bool lower_pack_unorm_2x16;
2726 bool lower_pack_snorm_2x16;
2727 bool lower_pack_unorm_4x8;
2728 bool lower_pack_snorm_4x8;
2729 bool lower_unpack_half_2x16;
2730 bool lower_unpack_unorm_2x16;
2731 bool lower_unpack_snorm_2x16;
2732 bool lower_unpack_unorm_4x8;
2733 bool lower_unpack_snorm_4x8;
2734
2735 bool lower_extract_byte;
2736 bool lower_extract_word;
2737
2738 bool lower_all_io_to_temps;
2739 bool lower_all_io_to_elements;
2740
2741 /* Indicates that the driver only has zero-based vertex id */
2742 bool vertex_id_zero_based;
2743
2744 /**
2745 * If enabled, gl_BaseVertex will be lowered as:
2746 * is_indexed_draw (~0/0) & firstvertex
2747 */
2748 bool lower_base_vertex;
2749
2750 /**
2751 * If enabled, gl_HelperInvocation will be lowered as:
2752 *
2753 * !((1 << sample_id) & sample_mask_in))
2754 *
2755 * This depends on some possibly hw implementation details, which may
2756 * not be true for all hw. In particular that the FS is only executed
2757 * for covered samples or for helper invocations. So, do not blindly
2758 * enable this option.
2759 *
2760 * Note: See also issue #22 in ARB_shader_image_load_store
2761 */
2762 bool lower_helper_invocation;
2763
2764 /**
2765 * Convert gl_SampleMaskIn to gl_HelperInvocation as follows:
2766 *
2767 * gl_SampleMaskIn == 0 ---> gl_HelperInvocation
2768 * gl_SampleMaskIn != 0 ---> !gl_HelperInvocation
2769 */
2770 bool optimize_sample_mask_in;
2771
2772 bool lower_cs_local_index_from_id;
2773 bool lower_cs_local_id_from_index;
2774
2775 bool lower_device_index_to_zero;
2776
2777 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
2778 bool lower_wpos_pntc;
2779
2780 bool lower_hadd;
2781 bool lower_add_sat;
2782
2783 /**
2784 * Should IO be re-vectorized? Some scalar ISAs still operate on vec4's
2785 * for IO purposes and would prefer loads/stores be vectorized.
2786 */
2787 bool vectorize_io;
2788 bool lower_to_scalar;
2789
2790 /**
2791 * Should nir_lower_io() create load_interpolated_input intrinsics?
2792 *
2793 * If not, it generates regular load_input intrinsics and interpolation
2794 * information must be inferred from the list of input nir_variables.
2795 */
2796 bool use_interpolated_input_intrinsics;
2797
2798 /* Lowers when 32x32->64 bit multiplication is not supported */
2799 bool lower_mul_2x32_64;
2800
2801 /* Lowers when rotate instruction is not supported */
2802 bool lower_rotate;
2803
2804 /**
2805 * Backend supports imul24, and would like to use it (when possible)
2806 * for address/offset calculation. If true, driver should call
2807 * nir_lower_amul(). (If not set, amul will automatically be lowered
2808 * to imul.)
2809 */
2810 bool has_imul24;
2811
2812 /**
2813 * Is this the Intel vec4 backend?
2814 *
2815 * Used to inhibit algebraic optimizations that are known to be harmful on
2816 * the Intel vec4 backend. This is generally applicable to any
2817 * optimization that might cause more immediate values to be used in
2818 * 3-source (e.g., ffma and flrp) instructions.
2819 */
2820 bool intel_vec4;
2821
2822 unsigned max_unroll_iterations;
2823
2824 nir_lower_int64_options lower_int64_options;
2825 nir_lower_doubles_options lower_doubles_options;
2826 } nir_shader_compiler_options;
2827
2828 typedef struct nir_shader {
2829 /** list of uniforms (nir_variable) */
2830 struct exec_list uniforms;
2831
2832 /** list of inputs (nir_variable) */
2833 struct exec_list inputs;
2834
2835 /** list of outputs (nir_variable) */
2836 struct exec_list outputs;
2837
2838 /** list of shared compute variables (nir_variable) */
2839 struct exec_list shared;
2840
2841 /** Set of driver-specific options for the shader.
2842 *
2843 * The memory for the options is expected to be kept in a single static
2844 * copy by the driver.
2845 */
2846 const struct nir_shader_compiler_options *options;
2847
2848 /** Various bits of compile-time information about a given shader */
2849 struct shader_info info;
2850
2851 /** list of global variables in the shader (nir_variable) */
2852 struct exec_list globals;
2853
2854 /** list of system value variables in the shader (nir_variable) */
2855 struct exec_list system_values;
2856
2857 struct exec_list functions; /** < list of nir_function */
2858
2859 /**
2860 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2861 * access plus one
2862 */
2863 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2864
2865 /** Size in bytes of required scratch space */
2866 unsigned scratch_size;
2867
2868 /** Constant data associated with this shader.
2869 *
2870 * Constant data is loaded through load_constant intrinsics. See also
2871 * nir_opt_large_constants.
2872 */
2873 void *constant_data;
2874 unsigned constant_data_size;
2875 } nir_shader;
2876
2877 #define nir_foreach_function(func, shader) \
2878 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2879
2880 static inline nir_function_impl *
2881 nir_shader_get_entrypoint(nir_shader *shader)
2882 {
2883 nir_function *func = NULL;
2884
2885 nir_foreach_function(function, shader) {
2886 assert(func == NULL);
2887 if (function->is_entrypoint) {
2888 func = function;
2889 #ifndef NDEBUG
2890 break;
2891 #endif
2892 }
2893 }
2894
2895 if (!func)
2896 return NULL;
2897
2898 assert(func->num_params == 0);
2899 assert(func->impl);
2900 return func->impl;
2901 }
2902
2903 nir_shader *nir_shader_create(void *mem_ctx,
2904 gl_shader_stage stage,
2905 const nir_shader_compiler_options *options,
2906 shader_info *si);
2907
2908 nir_register *nir_local_reg_create(nir_function_impl *impl);
2909
2910 void nir_reg_remove(nir_register *reg);
2911
2912 /** Adds a variable to the appropriate list in nir_shader */
2913 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2914
2915 static inline void
2916 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2917 {
2918 assert(var->data.mode == nir_var_function_temp);
2919 exec_list_push_tail(&impl->locals, &var->node);
2920 }
2921
2922 /** creates a variable, sets a few defaults, and adds it to the list */
2923 nir_variable *nir_variable_create(nir_shader *shader,
2924 nir_variable_mode mode,
2925 const struct glsl_type *type,
2926 const char *name);
2927 /** creates a local variable and adds it to the list */
2928 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2929 const struct glsl_type *type,
2930 const char *name);
2931
2932 /** creates a function and adds it to the shader's list of functions */
2933 nir_function *nir_function_create(nir_shader *shader, const char *name);
2934
2935 nir_function_impl *nir_function_impl_create(nir_function *func);
2936 /** creates a function_impl that isn't tied to any particular function */
2937 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2938
2939 nir_block *nir_block_create(nir_shader *shader);
2940 nir_if *nir_if_create(nir_shader *shader);
2941 nir_loop *nir_loop_create(nir_shader *shader);
2942
2943 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2944
2945 /** requests that the given pieces of metadata be generated */
2946 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2947 /** dirties all but the preserved metadata */
2948 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2949
2950 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2951 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2952
2953 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2954 nir_deref_type deref_type);
2955
2956 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2957
2958 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2959 unsigned num_components,
2960 unsigned bit_size);
2961
2962 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2963 nir_intrinsic_op op);
2964
2965 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2966 nir_function *callee);
2967
2968 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2969
2970 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2971
2972 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2973
2974 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2975 unsigned num_components,
2976 unsigned bit_size);
2977
2978 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2979
2980 /**
2981 * NIR Cursors and Instruction Insertion API
2982 * @{
2983 *
2984 * A tiny struct representing a point to insert/extract instructions or
2985 * control flow nodes. Helps reduce the combinatorial explosion of possible
2986 * points to insert/extract.
2987 *
2988 * \sa nir_control_flow.h
2989 */
2990 typedef enum {
2991 nir_cursor_before_block,
2992 nir_cursor_after_block,
2993 nir_cursor_before_instr,
2994 nir_cursor_after_instr,
2995 } nir_cursor_option;
2996
2997 typedef struct {
2998 nir_cursor_option option;
2999 union {
3000 nir_block *block;
3001 nir_instr *instr;
3002 };
3003 } nir_cursor;
3004
3005 static inline nir_block *
3006 nir_cursor_current_block(nir_cursor cursor)
3007 {
3008 if (cursor.option == nir_cursor_before_instr ||
3009 cursor.option == nir_cursor_after_instr) {
3010 return cursor.instr->block;
3011 } else {
3012 return cursor.block;
3013 }
3014 }
3015
3016 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
3017
3018 static inline nir_cursor
3019 nir_before_block(nir_block *block)
3020 {
3021 nir_cursor cursor;
3022 cursor.option = nir_cursor_before_block;
3023 cursor.block = block;
3024 return cursor;
3025 }
3026
3027 static inline nir_cursor
3028 nir_after_block(nir_block *block)
3029 {
3030 nir_cursor cursor;
3031 cursor.option = nir_cursor_after_block;
3032 cursor.block = block;
3033 return cursor;
3034 }
3035
3036 static inline nir_cursor
3037 nir_before_instr(nir_instr *instr)
3038 {
3039 nir_cursor cursor;
3040 cursor.option = nir_cursor_before_instr;
3041 cursor.instr = instr;
3042 return cursor;
3043 }
3044
3045 static inline nir_cursor
3046 nir_after_instr(nir_instr *instr)
3047 {
3048 nir_cursor cursor;
3049 cursor.option = nir_cursor_after_instr;
3050 cursor.instr = instr;
3051 return cursor;
3052 }
3053
3054 static inline nir_cursor
3055 nir_after_block_before_jump(nir_block *block)
3056 {
3057 nir_instr *last_instr = nir_block_last_instr(block);
3058 if (last_instr && last_instr->type == nir_instr_type_jump) {
3059 return nir_before_instr(last_instr);
3060 } else {
3061 return nir_after_block(block);
3062 }
3063 }
3064
3065 static inline nir_cursor
3066 nir_before_src(nir_src *src, bool is_if_condition)
3067 {
3068 if (is_if_condition) {
3069 nir_block *prev_block =
3070 nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
3071 assert(!nir_block_ends_in_jump(prev_block));
3072 return nir_after_block(prev_block);
3073 } else if (src->parent_instr->type == nir_instr_type_phi) {
3074 #ifndef NDEBUG
3075 nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
3076 bool found = false;
3077 nir_foreach_phi_src(phi_src, cond_phi) {
3078 if (phi_src->src.ssa == src->ssa) {
3079 found = true;
3080 break;
3081 }
3082 }
3083 assert(found);
3084 #endif
3085 /* The LIST_ENTRY macro is a generic container-of macro, it just happens
3086 * to have a more specific name.
3087 */
3088 nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
3089 return nir_after_block_before_jump(phi_src->pred);
3090 } else {
3091 return nir_before_instr(src->parent_instr);
3092 }
3093 }
3094
3095 static inline nir_cursor
3096 nir_before_cf_node(nir_cf_node *node)
3097 {
3098 if (node->type == nir_cf_node_block)
3099 return nir_before_block(nir_cf_node_as_block(node));
3100
3101 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
3102 }
3103
3104 static inline nir_cursor
3105 nir_after_cf_node(nir_cf_node *node)
3106 {
3107 if (node->type == nir_cf_node_block)
3108 return nir_after_block(nir_cf_node_as_block(node));
3109
3110 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
3111 }
3112
3113 static inline nir_cursor
3114 nir_after_phis(nir_block *block)
3115 {
3116 nir_foreach_instr(instr, block) {
3117 if (instr->type != nir_instr_type_phi)
3118 return nir_before_instr(instr);
3119 }
3120 return nir_after_block(block);
3121 }
3122
3123 static inline nir_cursor
3124 nir_after_cf_node_and_phis(nir_cf_node *node)
3125 {
3126 if (node->type == nir_cf_node_block)
3127 return nir_after_block(nir_cf_node_as_block(node));
3128
3129 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
3130
3131 return nir_after_phis(block);
3132 }
3133
3134 static inline nir_cursor
3135 nir_before_cf_list(struct exec_list *cf_list)
3136 {
3137 nir_cf_node *first_node = exec_node_data(nir_cf_node,
3138 exec_list_get_head(cf_list), node);
3139 return nir_before_cf_node(first_node);
3140 }
3141
3142 static inline nir_cursor
3143 nir_after_cf_list(struct exec_list *cf_list)
3144 {
3145 nir_cf_node *last_node = exec_node_data(nir_cf_node,
3146 exec_list_get_tail(cf_list), node);
3147 return nir_after_cf_node(last_node);
3148 }
3149
3150 /**
3151 * Insert a NIR instruction at the given cursor.
3152 *
3153 * Note: This does not update the cursor.
3154 */
3155 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
3156
3157 static inline void
3158 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
3159 {
3160 nir_instr_insert(nir_before_instr(instr), before);
3161 }
3162
3163 static inline void
3164 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
3165 {
3166 nir_instr_insert(nir_after_instr(instr), after);
3167 }
3168
3169 static inline void
3170 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
3171 {
3172 nir_instr_insert(nir_before_block(block), before);
3173 }
3174
3175 static inline void
3176 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
3177 {
3178 nir_instr_insert(nir_after_block(block), after);
3179 }
3180
3181 static inline void
3182 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
3183 {
3184 nir_instr_insert(nir_before_cf_node(node), before);
3185 }
3186
3187 static inline void
3188 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
3189 {
3190 nir_instr_insert(nir_after_cf_node(node), after);
3191 }
3192
3193 static inline void
3194 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
3195 {
3196 nir_instr_insert(nir_before_cf_list(list), before);
3197 }
3198
3199 static inline void
3200 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
3201 {
3202 nir_instr_insert(nir_after_cf_list(list), after);
3203 }
3204
3205 void nir_instr_remove_v(nir_instr *instr);
3206
3207 static inline nir_cursor
3208 nir_instr_remove(nir_instr *instr)
3209 {
3210 nir_cursor cursor;
3211 nir_instr *prev = nir_instr_prev(instr);
3212 if (prev) {
3213 cursor = nir_after_instr(prev);
3214 } else {
3215 cursor = nir_before_block(instr->block);
3216 }
3217 nir_instr_remove_v(instr);
3218 return cursor;
3219 }
3220
3221 /** @} */
3222
3223 nir_ssa_def *nir_instr_ssa_def(nir_instr *instr);
3224
3225 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
3226 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
3227 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
3228 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
3229 void *state);
3230 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
3231 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
3232
3233 nir_const_value *nir_src_as_const_value(nir_src src);
3234
3235 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
3236 static inline c_type * \
3237 nir_src_as_ ## name (nir_src src) \
3238 { \
3239 return src.is_ssa && src.ssa->parent_instr->type == type_enum \
3240 ? cast_macro(src.ssa->parent_instr) : NULL; \
3241 }
3242
3243 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
3244 NIR_SRC_AS_(intrinsic, nir_intrinsic_instr,
3245 nir_instr_type_intrinsic, nir_instr_as_intrinsic)
3246 NIR_SRC_AS_(deref, nir_deref_instr, nir_instr_type_deref, nir_instr_as_deref)
3247
3248 bool nir_src_is_dynamically_uniform(nir_src src);
3249 bool nir_srcs_equal(nir_src src1, nir_src src2);
3250 bool nir_instrs_equal(const nir_instr *instr1, const nir_instr *instr2);
3251 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
3252 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
3253 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
3254 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
3255 nir_dest new_dest);
3256
3257 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
3258 unsigned num_components, unsigned bit_size,
3259 const char *name);
3260 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
3261 unsigned num_components, unsigned bit_size,
3262 const char *name);
3263 static inline void
3264 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
3265 const struct glsl_type *type,
3266 const char *name)
3267 {
3268 assert(glsl_type_is_vector_or_scalar(type));
3269 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
3270 glsl_get_bit_size(type), name);
3271 }
3272 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
3273 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
3274 nir_instr *after_me);
3275
3276 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
3277
3278 /*
3279 * finds the next basic block in source-code order, returns NULL if there is
3280 * none
3281 */
3282
3283 nir_block *nir_block_cf_tree_next(nir_block *block);
3284
3285 /* Performs the opposite of nir_block_cf_tree_next() */
3286
3287 nir_block *nir_block_cf_tree_prev(nir_block *block);
3288
3289 /* Gets the first block in a CF node in source-code order */
3290
3291 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
3292
3293 /* Gets the last block in a CF node in source-code order */
3294
3295 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
3296
3297 /* Gets the next block after a CF node in source-code order */
3298
3299 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
3300
3301 /* Macros for loops that visit blocks in source-code order */
3302
3303 #define nir_foreach_block(block, impl) \
3304 for (nir_block *block = nir_start_block(impl); block != NULL; \
3305 block = nir_block_cf_tree_next(block))
3306
3307 #define nir_foreach_block_safe(block, impl) \
3308 for (nir_block *block = nir_start_block(impl), \
3309 *next = nir_block_cf_tree_next(block); \
3310 block != NULL; \
3311 block = next, next = nir_block_cf_tree_next(block))
3312
3313 #define nir_foreach_block_reverse(block, impl) \
3314 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
3315 block = nir_block_cf_tree_prev(block))
3316
3317 #define nir_foreach_block_reverse_safe(block, impl) \
3318 for (nir_block *block = nir_impl_last_block(impl), \
3319 *prev = nir_block_cf_tree_prev(block); \
3320 block != NULL; \
3321 block = prev, prev = nir_block_cf_tree_prev(block))
3322
3323 #define nir_foreach_block_in_cf_node(block, node) \
3324 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
3325 block != nir_cf_node_cf_tree_next(node); \
3326 block = nir_block_cf_tree_next(block))
3327
3328 /* If the following CF node is an if, this function returns that if.
3329 * Otherwise, it returns NULL.
3330 */
3331 nir_if *nir_block_get_following_if(nir_block *block);
3332
3333 nir_loop *nir_block_get_following_loop(nir_block *block);
3334
3335 void nir_index_local_regs(nir_function_impl *impl);
3336 void nir_index_ssa_defs(nir_function_impl *impl);
3337 unsigned nir_index_instrs(nir_function_impl *impl);
3338
3339 void nir_index_blocks(nir_function_impl *impl);
3340
3341 void nir_print_shader(nir_shader *shader, FILE *fp);
3342 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
3343 void nir_print_instr(const nir_instr *instr, FILE *fp);
3344 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
3345
3346 /** Shallow clone of a single ALU instruction. */
3347 nir_alu_instr *nir_alu_instr_clone(nir_shader *s, const nir_alu_instr *orig);
3348
3349 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
3350 nir_function_impl *nir_function_impl_clone(nir_shader *shader,
3351 const nir_function_impl *fi);
3352 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
3353 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
3354
3355 void nir_shader_replace(nir_shader *dest, nir_shader *src);
3356
3357 void nir_shader_serialize_deserialize(nir_shader *s);
3358
3359 #ifndef NDEBUG
3360 void nir_validate_shader(nir_shader *shader, const char *when);
3361 void nir_metadata_set_validation_flag(nir_shader *shader);
3362 void nir_metadata_check_validation_flag(nir_shader *shader);
3363
3364 static inline bool
3365 should_skip_nir(const char *name)
3366 {
3367 static const char *list = NULL;
3368 if (!list) {
3369 /* Comma separated list of names to skip. */
3370 list = getenv("NIR_SKIP");
3371 if (!list)
3372 list = "";
3373 }
3374
3375 if (!list[0])
3376 return false;
3377
3378 return comma_separated_list_contains(list, name);
3379 }
3380
3381 static inline bool
3382 should_clone_nir(void)
3383 {
3384 static int should_clone = -1;
3385 if (should_clone < 0)
3386 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
3387
3388 return should_clone;
3389 }
3390
3391 static inline bool
3392 should_serialize_deserialize_nir(void)
3393 {
3394 static int test_serialize = -1;
3395 if (test_serialize < 0)
3396 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
3397
3398 return test_serialize;
3399 }
3400
3401 static inline bool
3402 should_print_nir(void)
3403 {
3404 static int should_print = -1;
3405 if (should_print < 0)
3406 should_print = env_var_as_boolean("NIR_PRINT", false);
3407
3408 return should_print;
3409 }
3410 #else
3411 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
3412 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
3413 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
3414 static inline bool should_skip_nir(UNUSED const char *pass_name) { return false; }
3415 static inline bool should_clone_nir(void) { return false; }
3416 static inline bool should_serialize_deserialize_nir(void) { return false; }
3417 static inline bool should_print_nir(void) { return false; }
3418 #endif /* NDEBUG */
3419
3420 #define _PASS(pass, nir, do_pass) do { \
3421 if (should_skip_nir(#pass)) { \
3422 printf("skipping %s\n", #pass); \
3423 break; \
3424 } \
3425 do_pass \
3426 nir_validate_shader(nir, "after " #pass); \
3427 if (should_clone_nir()) { \
3428 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
3429 nir_shader_replace(nir, clone); \
3430 } \
3431 if (should_serialize_deserialize_nir()) { \
3432 nir_shader_serialize_deserialize(nir); \
3433 } \
3434 } while (0)
3435
3436 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, \
3437 nir_metadata_set_validation_flag(nir); \
3438 if (should_print_nir()) \
3439 printf("%s\n", #pass); \
3440 if (pass(nir, ##__VA_ARGS__)) { \
3441 progress = true; \
3442 if (should_print_nir()) \
3443 nir_print_shader(nir, stdout); \
3444 nir_metadata_check_validation_flag(nir); \
3445 } \
3446 )
3447
3448 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, \
3449 if (should_print_nir()) \
3450 printf("%s\n", #pass); \
3451 pass(nir, ##__VA_ARGS__); \
3452 if (should_print_nir()) \
3453 nir_print_shader(nir, stdout); \
3454 )
3455
3456 #define NIR_SKIP(name) should_skip_nir(#name)
3457
3458 /** An instruction filtering callback
3459 *
3460 * Returns true if the instruction should be processed and false otherwise.
3461 */
3462 typedef bool (*nir_instr_filter_cb)(const nir_instr *, const void *);
3463
3464 /** A simple instruction lowering callback
3465 *
3466 * Many instruction lowering passes can be written as a simple function which
3467 * takes an instruction as its input and returns a sequence of instructions
3468 * that implement the consumed instruction. This function type represents
3469 * such a lowering function. When called, a function with this prototype
3470 * should either return NULL indicating that no lowering needs to be done or
3471 * emit a sequence of instructions using the provided builder (whose cursor
3472 * will already be placed after the instruction to be lowered) and return the
3473 * resulting nir_ssa_def.
3474 */
3475 typedef nir_ssa_def *(*nir_lower_instr_cb)(struct nir_builder *,
3476 nir_instr *, void *);
3477
3478 /**
3479 * Special return value for nir_lower_instr_cb when some progress occurred
3480 * (like changing an input to the instr) that didn't result in a replacement
3481 * SSA def being generated.
3482 */
3483 #define NIR_LOWER_INSTR_PROGRESS ((nir_ssa_def *)(uintptr_t)1)
3484
3485 /** Iterate over all the instructions in a nir_function_impl and lower them
3486 * using the provided callbacks
3487 *
3488 * This function implements the guts of a standard lowering pass for you. It
3489 * iterates over all of the instructions in a nir_function_impl and calls the
3490 * filter callback on each one. If the filter callback returns true, it then
3491 * calls the lowering call back on the instruction. (Splitting it this way
3492 * allows us to avoid some save/restore work for instructions we know won't be
3493 * lowered.) If the instruction is dead after the lowering is complete, it
3494 * will be removed. If new instructions are added, the lowering callback will
3495 * also be called on them in case multiple lowerings are required.
3496 *
3497 * The metadata for the nir_function_impl will also be updated. If any blocks
3498 * are added (they cannot be removed), dominance and block indices will be
3499 * invalidated.
3500 */
3501 bool nir_function_impl_lower_instructions(nir_function_impl *impl,
3502 nir_instr_filter_cb filter,
3503 nir_lower_instr_cb lower,
3504 void *cb_data);
3505 bool nir_shader_lower_instructions(nir_shader *shader,
3506 nir_instr_filter_cb filter,
3507 nir_lower_instr_cb lower,
3508 void *cb_data);
3509
3510 void nir_calc_dominance_impl(nir_function_impl *impl);
3511 void nir_calc_dominance(nir_shader *shader);
3512
3513 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
3514 bool nir_block_dominates(nir_block *parent, nir_block *child);
3515 bool nir_block_is_unreachable(nir_block *block);
3516
3517 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
3518 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
3519
3520 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
3521 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
3522
3523 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
3524 void nir_dump_cfg(nir_shader *shader, FILE *fp);
3525
3526 int nir_gs_count_vertices(const nir_shader *shader);
3527
3528 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
3529 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
3530 bool nir_split_var_copies(nir_shader *shader);
3531 bool nir_split_per_member_structs(nir_shader *shader);
3532 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
3533
3534 bool nir_lower_returns_impl(nir_function_impl *impl);
3535 bool nir_lower_returns(nir_shader *shader);
3536
3537 void nir_inline_function_impl(struct nir_builder *b,
3538 const nir_function_impl *impl,
3539 nir_ssa_def **params);
3540 bool nir_inline_functions(nir_shader *shader);
3541
3542 bool nir_propagate_invariant(nir_shader *shader);
3543
3544 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
3545 void nir_lower_deref_copy_instr(struct nir_builder *b,
3546 nir_intrinsic_instr *copy);
3547 bool nir_lower_var_copies(nir_shader *shader);
3548
3549 void nir_fixup_deref_modes(nir_shader *shader);
3550
3551 bool nir_lower_global_vars_to_local(nir_shader *shader);
3552
3553 typedef enum {
3554 nir_lower_direct_array_deref_of_vec_load = (1 << 0),
3555 nir_lower_indirect_array_deref_of_vec_load = (1 << 1),
3556 nir_lower_direct_array_deref_of_vec_store = (1 << 2),
3557 nir_lower_indirect_array_deref_of_vec_store = (1 << 3),
3558 } nir_lower_array_deref_of_vec_options;
3559
3560 bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
3561 nir_lower_array_deref_of_vec_options options);
3562
3563 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
3564
3565 bool nir_lower_locals_to_regs(nir_shader *shader);
3566
3567 void nir_lower_io_to_temporaries(nir_shader *shader,
3568 nir_function_impl *entrypoint,
3569 bool outputs, bool inputs);
3570
3571 bool nir_lower_vars_to_scratch(nir_shader *shader,
3572 nir_variable_mode modes,
3573 int size_threshold,
3574 glsl_type_size_align_func size_align);
3575
3576 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
3577
3578 void nir_gather_ssa_types(nir_function_impl *impl,
3579 BITSET_WORD *float_types,
3580 BITSET_WORD *int_types);
3581
3582 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
3583 int (*type_size)(const struct glsl_type *, bool));
3584
3585 /* Some helpers to do very simple linking */
3586 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
3587 bool nir_remove_unused_io_vars(nir_shader *shader, struct exec_list *var_list,
3588 uint64_t *used_by_other_stage,
3589 uint64_t *used_by_other_stage_patches);
3590 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
3591 bool default_to_smooth_interp);
3592 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
3593 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
3594
3595 bool nir_lower_amul(nir_shader *shader,
3596 int (*type_size)(const struct glsl_type *, bool));
3597
3598 void nir_assign_io_var_locations(struct exec_list *var_list,
3599 unsigned *size,
3600 gl_shader_stage stage);
3601
3602 typedef enum {
3603 /* If set, this causes all 64-bit IO operations to be lowered on-the-fly
3604 * to 32-bit operations. This is only valid for nir_var_shader_in/out
3605 * modes.
3606 */
3607 nir_lower_io_lower_64bit_to_32 = (1 << 0),
3608
3609 /* If set, this forces all non-flat fragment shader inputs to be
3610 * interpolated as if with the "sample" qualifier. This requires
3611 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
3612 */
3613 nir_lower_io_force_sample_interpolation = (1 << 1),
3614 } nir_lower_io_options;
3615 bool nir_lower_io(nir_shader *shader,
3616 nir_variable_mode modes,
3617 int (*type_size)(const struct glsl_type *, bool),
3618 nir_lower_io_options);
3619
3620 bool nir_io_add_const_offset_to_base(nir_shader *nir, nir_variable_mode mode);
3621
3622 bool
3623 nir_lower_vars_to_explicit_types(nir_shader *shader,
3624 nir_variable_mode modes,
3625 glsl_type_size_align_func type_info);
3626
3627 typedef enum {
3628 /**
3629 * An address format which is a simple 32-bit global GPU address.
3630 */
3631 nir_address_format_32bit_global,
3632
3633 /**
3634 * An address format which is a simple 64-bit global GPU address.
3635 */
3636 nir_address_format_64bit_global,
3637
3638 /**
3639 * An address format which is a bounds-checked 64-bit global GPU address.
3640 *
3641 * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
3642 * address stored with the low bits in .x and high bits in .y, .z is a
3643 * size, and .w is an offset. When the final I/O operation is lowered, .w
3644 * is checked against .z and the operation is predicated on the result.
3645 */
3646 nir_address_format_64bit_bounded_global,
3647
3648 /**
3649 * An address format which is comprised of a vec2 where the first
3650 * component is a buffer index and the second is an offset.
3651 */
3652 nir_address_format_32bit_index_offset,
3653
3654 /**
3655 * An address format which is a simple 32-bit offset.
3656 */
3657 nir_address_format_32bit_offset,
3658
3659 /**
3660 * An address format representing a purely logical addressing model. In
3661 * this model, all deref chains must be complete from the dereference
3662 * operation to the variable. Cast derefs are not allowed. These
3663 * addresses will be 32-bit scalars but the format is immaterial because
3664 * you can always chase the chain.
3665 */
3666 nir_address_format_logical,
3667 } nir_address_format;
3668
3669 static inline unsigned
3670 nir_address_format_bit_size(nir_address_format addr_format)
3671 {
3672 switch (addr_format) {
3673 case nir_address_format_32bit_global: return 32;
3674 case nir_address_format_64bit_global: return 64;
3675 case nir_address_format_64bit_bounded_global: return 32;
3676 case nir_address_format_32bit_index_offset: return 32;
3677 case nir_address_format_32bit_offset: return 32;
3678 case nir_address_format_logical: return 32;
3679 }
3680 unreachable("Invalid address format");
3681 }
3682
3683 static inline unsigned
3684 nir_address_format_num_components(nir_address_format addr_format)
3685 {
3686 switch (addr_format) {
3687 case nir_address_format_32bit_global: return 1;
3688 case nir_address_format_64bit_global: return 1;
3689 case nir_address_format_64bit_bounded_global: return 4;
3690 case nir_address_format_32bit_index_offset: return 2;
3691 case nir_address_format_32bit_offset: return 1;
3692 case nir_address_format_logical: return 1;
3693 }
3694 unreachable("Invalid address format");
3695 }
3696
3697 static inline const struct glsl_type *
3698 nir_address_format_to_glsl_type(nir_address_format addr_format)
3699 {
3700 unsigned bit_size = nir_address_format_bit_size(addr_format);
3701 assert(bit_size == 32 || bit_size == 64);
3702 return glsl_vector_type(bit_size == 32 ? GLSL_TYPE_UINT : GLSL_TYPE_UINT64,
3703 nir_address_format_num_components(addr_format));
3704 }
3705
3706 const nir_const_value *nir_address_format_null_value(nir_address_format addr_format);
3707
3708 nir_ssa_def *nir_build_addr_ieq(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
3709 nir_address_format addr_format);
3710
3711 nir_ssa_def *nir_build_addr_isub(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
3712 nir_address_format addr_format);
3713
3714 nir_ssa_def * nir_explicit_io_address_from_deref(struct nir_builder *b,
3715 nir_deref_instr *deref,
3716 nir_ssa_def *base_addr,
3717 nir_address_format addr_format);
3718 void nir_lower_explicit_io_instr(struct nir_builder *b,
3719 nir_intrinsic_instr *io_instr,
3720 nir_ssa_def *addr,
3721 nir_address_format addr_format);
3722
3723 bool nir_lower_explicit_io(nir_shader *shader,
3724 nir_variable_mode modes,
3725 nir_address_format);
3726
3727 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
3728 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
3729
3730 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
3731
3732 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
3733 bool nir_lower_regs_to_ssa(nir_shader *shader);
3734 bool nir_lower_vars_to_ssa(nir_shader *shader);
3735
3736 bool nir_remove_dead_derefs(nir_shader *shader);
3737 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
3738 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
3739 bool nir_lower_constant_initializers(nir_shader *shader,
3740 nir_variable_mode modes);
3741
3742 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
3743 bool nir_lower_vec_to_movs(nir_shader *shader);
3744 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
3745 bool alpha_to_one,
3746 const gl_state_index16 *alpha_ref_state_tokens);
3747 bool nir_lower_alu(nir_shader *shader);
3748
3749 bool nir_lower_flrp(nir_shader *shader, unsigned lowering_mask,
3750 bool always_precise, bool have_ffma);
3751
3752 bool nir_lower_alu_to_scalar(nir_shader *shader, nir_instr_filter_cb cb, const void *data);
3753 bool nir_lower_bool_to_float(nir_shader *shader);
3754 bool nir_lower_bool_to_int32(nir_shader *shader);
3755 bool nir_lower_int_to_float(nir_shader *shader);
3756 bool nir_lower_load_const_to_scalar(nir_shader *shader);
3757 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
3758 bool nir_lower_phis_to_scalar(nir_shader *shader);
3759 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
3760 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
3761 bool outputs_only);
3762 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
3763 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
3764 bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
3765
3766 void nir_lower_fragcoord_wtrans(nir_shader *shader);
3767 void nir_lower_viewport_transform(nir_shader *shader);
3768 bool nir_lower_uniforms_to_ubo(nir_shader *shader, int multiplier);
3769
3770 typedef struct nir_lower_subgroups_options {
3771 uint8_t subgroup_size;
3772 uint8_t ballot_bit_size;
3773 bool lower_to_scalar:1;
3774 bool lower_vote_trivial:1;
3775 bool lower_vote_eq_to_ballot:1;
3776 bool lower_subgroup_masks:1;
3777 bool lower_shuffle:1;
3778 bool lower_shuffle_to_32bit:1;
3779 bool lower_quad:1;
3780 } nir_lower_subgroups_options;
3781
3782 bool nir_lower_subgroups(nir_shader *shader,
3783 const nir_lower_subgroups_options *options);
3784
3785 bool nir_lower_system_values(nir_shader *shader);
3786
3787 enum PACKED nir_lower_tex_packing {
3788 nir_lower_tex_packing_none = 0,
3789 /* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
3790 * or unsigned ints based on the sampler type
3791 */
3792 nir_lower_tex_packing_16,
3793 /* The sampler returns 1 32-bit word of 4x8 unorm */
3794 nir_lower_tex_packing_8,
3795 };
3796
3797 typedef struct nir_lower_tex_options {
3798 /**
3799 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
3800 * sampler types a texture projector is lowered.
3801 */
3802 unsigned lower_txp;
3803
3804 /**
3805 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
3806 */
3807 bool lower_txf_offset;
3808
3809 /**
3810 * If true, lower away nir_tex_src_offset for all rect textures.
3811 */
3812 bool lower_rect_offset;
3813
3814 /**
3815 * If true, lower rect textures to 2D, using txs to fetch the
3816 * texture dimensions and dividing the texture coords by the
3817 * texture dims to normalize.
3818 */
3819 bool lower_rect;
3820
3821 /**
3822 * If true, convert yuv to rgb.
3823 */
3824 unsigned lower_y_uv_external;
3825 unsigned lower_y_u_v_external;
3826 unsigned lower_yx_xuxv_external;
3827 unsigned lower_xy_uxvx_external;
3828 unsigned lower_ayuv_external;
3829 unsigned lower_xyuv_external;
3830
3831 /**
3832 * To emulate certain texture wrap modes, this can be used
3833 * to saturate the specified tex coord to [0.0, 1.0]. The
3834 * bits are according to sampler #, ie. if, for example:
3835 *
3836 * (conf->saturate_s & (1 << n))
3837 *
3838 * is true, then the s coord for sampler n is saturated.
3839 *
3840 * Note that clamping must happen *after* projector lowering
3841 * so any projected texture sample instruction with a clamped
3842 * coordinate gets automatically lowered, regardless of the
3843 * 'lower_txp' setting.
3844 */
3845 unsigned saturate_s;
3846 unsigned saturate_t;
3847 unsigned saturate_r;
3848
3849 /* Bitmask of textures that need swizzling.
3850 *
3851 * If (swizzle_result & (1 << texture_index)), then the swizzle in
3852 * swizzles[texture_index] is applied to the result of the texturing
3853 * operation.
3854 */
3855 unsigned swizzle_result;
3856
3857 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
3858 * while 4 and 5 represent 0 and 1 respectively.
3859 */
3860 uint8_t swizzles[32][4];
3861
3862 /* Can be used to scale sampled values in range required by the format. */
3863 float scale_factors[32];
3864
3865 /**
3866 * Bitmap of textures that need srgb to linear conversion. If
3867 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
3868 * of the texture are lowered to linear.
3869 */
3870 unsigned lower_srgb;
3871
3872 /**
3873 * If true, lower nir_texop_tex on shaders that doesn't support implicit
3874 * LODs to nir_texop_txl.
3875 */
3876 bool lower_tex_without_implicit_lod;
3877
3878 /**
3879 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
3880 */
3881 bool lower_txd_cube_map;
3882
3883 /**
3884 * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
3885 */
3886 bool lower_txd_3d;
3887
3888 /**
3889 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
3890 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
3891 * with lower_txd_cube_map.
3892 */
3893 bool lower_txd_shadow;
3894
3895 /**
3896 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
3897 * Implies lower_txd_cube_map and lower_txd_shadow.
3898 */
3899 bool lower_txd;
3900
3901 /**
3902 * If true, lower nir_texop_txb that try to use shadow compare and min_lod
3903 * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
3904 */
3905 bool lower_txb_shadow_clamp;
3906
3907 /**
3908 * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
3909 * with nir_texop_txl. This includes cube maps.
3910 */
3911 bool lower_txd_shadow_clamp;
3912
3913 /**
3914 * If true, lower nir_texop_txd on when it uses both offset and min_lod
3915 * with nir_texop_txl. This includes cube maps.
3916 */
3917 bool lower_txd_offset_clamp;
3918
3919 /**
3920 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3921 * sampler is bindless.
3922 */
3923 bool lower_txd_clamp_bindless_sampler;
3924
3925 /**
3926 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3927 * sampler index is not statically determinable to be less than 16.
3928 */
3929 bool lower_txd_clamp_if_sampler_index_not_lt_16;
3930
3931 /**
3932 * If true, lower nir_texop_txs with a non-0-lod into nir_texop_txs with
3933 * 0-lod followed by a nir_ishr.
3934 */
3935 bool lower_txs_lod;
3936
3937 /**
3938 * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
3939 * mixed-up tg4 locations.
3940 */
3941 bool lower_tg4_broadcom_swizzle;
3942
3943 /**
3944 * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
3945 */
3946 bool lower_tg4_offsets;
3947
3948 enum nir_lower_tex_packing lower_tex_packing[32];
3949 } nir_lower_tex_options;
3950
3951 bool nir_lower_tex(nir_shader *shader,
3952 const nir_lower_tex_options *options);
3953
3954 enum nir_lower_non_uniform_access_type {
3955 nir_lower_non_uniform_ubo_access = (1 << 0),
3956 nir_lower_non_uniform_ssbo_access = (1 << 1),
3957 nir_lower_non_uniform_texture_access = (1 << 2),
3958 nir_lower_non_uniform_image_access = (1 << 3),
3959 };
3960
3961 bool nir_lower_non_uniform_access(nir_shader *shader,
3962 enum nir_lower_non_uniform_access_type);
3963
3964 enum nir_lower_idiv_path {
3965 /* This path is based on NV50LegalizeSSA::handleDIV(). It is the faster of
3966 * the two but it is not exact in some cases (for example, 1091317713u /
3967 * 1034u gives 5209173 instead of 1055432) */
3968 nir_lower_idiv_fast,
3969 /* This path is based on AMDGPUTargetLowering::LowerUDIVREM() and
3970 * AMDGPUTargetLowering::LowerSDIVREM(). It requires more instructions than
3971 * the nv50 path and many of them are integer multiplications, so it is
3972 * probably slower. It should always return the correct result, though. */
3973 nir_lower_idiv_precise,
3974 };
3975
3976 bool nir_lower_idiv(nir_shader *shader, enum nir_lower_idiv_path path);
3977
3978 bool nir_lower_input_attachments(nir_shader *shader, bool use_fragcoord_sysval);
3979
3980 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables,
3981 bool use_vars,
3982 bool use_clipdist_array,
3983 const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
3984 bool nir_lower_clip_gs(nir_shader *shader, unsigned ucp_enables,
3985 bool use_clipdist_array,
3986 const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
3987 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables,
3988 bool use_clipdist_array);
3989 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
3990
3991 void nir_lower_point_size_mov(nir_shader *shader,
3992 const gl_state_index16 *pointsize_state_tokens);
3993
3994 bool nir_lower_frexp(nir_shader *nir);
3995
3996 void nir_lower_two_sided_color(nir_shader *shader);
3997
3998 bool nir_lower_clamp_color_outputs(nir_shader *shader);
3999
4000 bool nir_lower_flatshade(nir_shader *shader);
4001
4002 void nir_lower_passthrough_edgeflags(nir_shader *shader);
4003 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
4004 const gl_state_index16 *uniform_state_tokens);
4005
4006 typedef struct nir_lower_wpos_ytransform_options {
4007 gl_state_index16 state_tokens[STATE_LENGTH];
4008 bool fs_coord_origin_upper_left :1;
4009 bool fs_coord_origin_lower_left :1;
4010 bool fs_coord_pixel_center_integer :1;
4011 bool fs_coord_pixel_center_half_integer :1;
4012 } nir_lower_wpos_ytransform_options;
4013
4014 bool nir_lower_wpos_ytransform(nir_shader *shader,
4015 const nir_lower_wpos_ytransform_options *options);
4016 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
4017
4018 bool nir_lower_fb_read(nir_shader *shader);
4019
4020 typedef struct nir_lower_drawpixels_options {
4021 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
4022 gl_state_index16 scale_state_tokens[STATE_LENGTH];
4023 gl_state_index16 bias_state_tokens[STATE_LENGTH];
4024 unsigned drawpix_sampler;
4025 unsigned pixelmap_sampler;
4026 bool pixel_maps :1;
4027 bool scale_and_bias :1;
4028 } nir_lower_drawpixels_options;
4029
4030 void nir_lower_drawpixels(nir_shader *shader,
4031 const nir_lower_drawpixels_options *options);
4032
4033 typedef struct nir_lower_bitmap_options {
4034 unsigned sampler;
4035 bool swizzle_xxxx;
4036 } nir_lower_bitmap_options;
4037
4038 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
4039
4040 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
4041
4042 typedef enum {
4043 nir_lower_int_source_mods = 1 << 0,
4044 nir_lower_float_source_mods = 1 << 1,
4045 nir_lower_triop_abs = 1 << 2,
4046 nir_lower_all_source_mods = (1 << 3) - 1
4047 } nir_lower_to_source_mods_flags;
4048
4049
4050 bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
4051
4052 bool nir_lower_gs_intrinsics(nir_shader *shader);
4053
4054 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
4055
4056 bool nir_lower_bit_size(nir_shader *shader,
4057 nir_lower_bit_size_callback callback,
4058 void *callback_data);
4059
4060 nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
4061 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
4062
4063 nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
4064 bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
4065 nir_lower_doubles_options options);
4066 bool nir_lower_pack(nir_shader *shader);
4067
4068 bool nir_lower_point_size(nir_shader *shader, float min, float max);
4069
4070 typedef enum {
4071 nir_lower_interpolation_at_sample = (1 << 1),
4072 nir_lower_interpolation_at_offset = (1 << 2),
4073 nir_lower_interpolation_centroid = (1 << 3),
4074 nir_lower_interpolation_pixel = (1 << 4),
4075 nir_lower_interpolation_sample = (1 << 5),
4076 } nir_lower_interpolation_options;
4077
4078 bool nir_lower_interpolation(nir_shader *shader,
4079 nir_lower_interpolation_options options);
4080
4081 bool nir_normalize_cubemap_coords(nir_shader *shader);
4082
4083 void nir_live_ssa_defs_impl(nir_function_impl *impl);
4084
4085 void nir_loop_analyze_impl(nir_function_impl *impl,
4086 nir_variable_mode indirect_mask);
4087
4088 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
4089
4090 bool nir_repair_ssa_impl(nir_function_impl *impl);
4091 bool nir_repair_ssa(nir_shader *shader);
4092
4093 void nir_convert_loop_to_lcssa(nir_loop *loop);
4094 bool nir_convert_to_lcssa(nir_shader *shader, bool skip_invariants, bool skip_bool_invariants);
4095 bool* nir_divergence_analysis(nir_shader *shader, nir_divergence_options options);
4096
4097 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
4098 * registers. If false, convert all values (even those not involved in a phi
4099 * node) to registers.
4100 */
4101 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
4102
4103 bool nir_lower_phis_to_regs_block(nir_block *block);
4104 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
4105 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
4106
4107 bool nir_lower_samplers(nir_shader *shader);
4108
4109 /* This is here for unit tests. */
4110 bool nir_opt_comparison_pre_impl(nir_function_impl *impl);
4111
4112 bool nir_opt_comparison_pre(nir_shader *shader);
4113
4114 bool nir_opt_access(nir_shader *shader);
4115 bool nir_opt_algebraic(nir_shader *shader);
4116 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
4117 bool nir_opt_algebraic_late(nir_shader *shader);
4118 bool nir_opt_constant_folding(nir_shader *shader);
4119
4120 bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
4121
4122 bool nir_copy_prop(nir_shader *shader);
4123
4124 bool nir_opt_copy_prop_vars(nir_shader *shader);
4125
4126 bool nir_opt_cse(nir_shader *shader);
4127
4128 bool nir_opt_dce(nir_shader *shader);
4129
4130 bool nir_opt_dead_cf(nir_shader *shader);
4131
4132 bool nir_opt_dead_write_vars(nir_shader *shader);
4133
4134 bool nir_opt_deref_impl(nir_function_impl *impl);
4135 bool nir_opt_deref(nir_shader *shader);
4136
4137 bool nir_opt_find_array_copies(nir_shader *shader);
4138
4139 bool nir_opt_gcm(nir_shader *shader, bool value_number);
4140
4141 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
4142
4143 bool nir_opt_if(nir_shader *shader, bool aggressive_last_continue);
4144
4145 bool nir_opt_intrinsics(nir_shader *shader);
4146
4147 bool nir_opt_large_constants(nir_shader *shader,
4148 glsl_type_size_align_func size_align,
4149 unsigned threshold);
4150
4151 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
4152
4153 typedef enum {
4154 nir_move_const_undef = (1 << 0),
4155 nir_move_load_ubo = (1 << 1),
4156 nir_move_load_input = (1 << 2),
4157 nir_move_comparisons = (1 << 3),
4158 } nir_move_options;
4159
4160 bool nir_can_move_instr(nir_instr *instr, nir_move_options options);
4161
4162 bool nir_opt_sink(nir_shader *shader, nir_move_options options);
4163
4164 bool nir_opt_move(nir_shader *shader, nir_move_options options);
4165
4166 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
4167 bool indirect_load_ok, bool expensive_alu_ok);
4168
4169 bool nir_opt_rematerialize_compares(nir_shader *shader);
4170
4171 bool nir_opt_remove_phis(nir_shader *shader);
4172 bool nir_opt_remove_phis_block(nir_block *block);
4173
4174 bool nir_opt_shrink_load(nir_shader *shader);
4175
4176 bool nir_opt_trivial_continues(nir_shader *shader);
4177
4178 bool nir_opt_undef(nir_shader *shader);
4179
4180 bool nir_opt_vectorize(nir_shader *shader);
4181
4182 bool nir_opt_conditional_discard(nir_shader *shader);
4183
4184 void nir_strip(nir_shader *shader);
4185
4186 void nir_sweep(nir_shader *shader);
4187
4188 void nir_remap_dual_slot_attributes(nir_shader *shader,
4189 uint64_t *dual_slot_inputs);
4190 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
4191
4192 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
4193 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
4194
4195 static inline bool
4196 nir_variable_is_in_ubo(const nir_variable *var)
4197 {
4198 return (var->data.mode == nir_var_mem_ubo &&
4199 var->interface_type != NULL);
4200 }
4201
4202 static inline bool
4203 nir_variable_is_in_ssbo(const nir_variable *var)
4204 {
4205 return (var->data.mode == nir_var_mem_ssbo &&
4206 var->interface_type != NULL);
4207 }
4208
4209 static inline bool
4210 nir_variable_is_in_block(const nir_variable *var)
4211 {
4212 return nir_variable_is_in_ubo(var) || nir_variable_is_in_ssbo(var);
4213 }
4214
4215 #ifdef __cplusplus
4216 } /* extern "C" */
4217 #endif
4218
4219 #endif /* NIR_H */