st/nir: Re-vectorize shader IO
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitscan.h"
38 #include "util/bitset.h"
39 #include "util/macros.h"
40 #include "compiler/nir_types.h"
41 #include "compiler/shader_enums.h"
42 #include "compiler/shader_info.h"
43 #include <stdio.h>
44
45 #ifndef NDEBUG
46 #include "util/debug.h"
47 #endif /* NDEBUG */
48
49 #include "nir_opcodes.h"
50
51 #if defined(_WIN32) && !defined(snprintf)
52 #define snprintf _snprintf
53 #endif
54
55 #ifdef __cplusplus
56 extern "C" {
57 #endif
58
59 #define NIR_FALSE 0u
60 #define NIR_TRUE (~0u)
61 #define NIR_MAX_VEC_COMPONENTS 4
62 #define NIR_MAX_MATRIX_COLUMNS 4
63 typedef uint8_t nir_component_mask_t;
64
65 /** Defines a cast function
66 *
67 * This macro defines a cast function from in_type to out_type where
68 * out_type is some structure type that contains a field of type out_type.
69 *
70 * Note that you have to be a bit careful as the generated cast function
71 * destroys constness.
72 */
73 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
74 type_field, type_value) \
75 static inline out_type * \
76 name(const in_type *parent) \
77 { \
78 assert(parent && parent->type_field == type_value); \
79 return exec_node_data(out_type, parent, field); \
80 }
81
82 struct nir_function;
83 struct nir_shader;
84 struct nir_instr;
85 struct nir_builder;
86
87
88 /**
89 * Description of built-in state associated with a uniform
90 *
91 * \sa nir_variable::state_slots
92 */
93 typedef struct {
94 gl_state_index16 tokens[STATE_LENGTH];
95 int swizzle;
96 } nir_state_slot;
97
98 typedef enum {
99 nir_var_shader_in = (1 << 0),
100 nir_var_shader_out = (1 << 1),
101 nir_var_shader_temp = (1 << 2),
102 nir_var_function_temp = (1 << 3),
103 nir_var_uniform = (1 << 4),
104 nir_var_mem_ubo = (1 << 5),
105 nir_var_system_value = (1 << 6),
106 nir_var_mem_ssbo = (1 << 7),
107 nir_var_mem_shared = (1 << 8),
108 nir_var_mem_global = (1 << 9),
109 nir_var_all = ~0,
110 } nir_variable_mode;
111
112 /**
113 * Rounding modes.
114 */
115 typedef enum {
116 nir_rounding_mode_undef = 0,
117 nir_rounding_mode_rtne = 1, /* round to nearest even */
118 nir_rounding_mode_ru = 2, /* round up */
119 nir_rounding_mode_rd = 3, /* round down */
120 nir_rounding_mode_rtz = 4, /* round towards zero */
121 } nir_rounding_mode;
122
123 typedef union {
124 bool b;
125 float f32;
126 double f64;
127 int8_t i8;
128 uint8_t u8;
129 int16_t i16;
130 uint16_t u16;
131 int32_t i32;
132 uint32_t u32;
133 int64_t i64;
134 uint64_t u64;
135 } nir_const_value;
136
137 #define nir_const_value_to_array(arr, c, components, m) \
138 { \
139 for (unsigned i = 0; i < components; ++i) \
140 arr[i] = c[i].m; \
141 } while (false)
142
143 typedef struct nir_constant {
144 /**
145 * Value of the constant.
146 *
147 * The field used to back the values supplied by the constant is determined
148 * by the type associated with the \c nir_variable. Constants may be
149 * scalars, vectors, or matrices.
150 */
151 nir_const_value values[NIR_MAX_MATRIX_COLUMNS][NIR_MAX_VEC_COMPONENTS];
152
153 /* we could get this from the var->type but makes clone *much* easier to
154 * not have to care about the type.
155 */
156 unsigned num_elements;
157
158 /* Array elements / Structure Fields */
159 struct nir_constant **elements;
160 } nir_constant;
161
162 /**
163 * \brief Layout qualifiers for gl_FragDepth.
164 *
165 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
166 * with a layout qualifier.
167 */
168 typedef enum {
169 nir_depth_layout_none, /**< No depth layout is specified. */
170 nir_depth_layout_any,
171 nir_depth_layout_greater,
172 nir_depth_layout_less,
173 nir_depth_layout_unchanged
174 } nir_depth_layout;
175
176 /**
177 * Enum keeping track of how a variable was declared.
178 */
179 typedef enum {
180 /**
181 * Normal declaration.
182 */
183 nir_var_declared_normally = 0,
184
185 /**
186 * Variable is implicitly generated by the compiler and should not be
187 * visible via the API.
188 */
189 nir_var_hidden,
190 } nir_var_declaration_type;
191
192 /**
193 * Either a uniform, global variable, shader input, or shader output. Based on
194 * ir_variable - it should be easy to translate between the two.
195 */
196
197 typedef struct nir_variable {
198 struct exec_node node;
199
200 /**
201 * Declared type of the variable
202 */
203 const struct glsl_type *type;
204
205 /**
206 * Declared name of the variable
207 */
208 char *name;
209
210 struct nir_variable_data {
211 /**
212 * Storage class of the variable.
213 *
214 * \sa nir_variable_mode
215 */
216 nir_variable_mode mode;
217
218 /**
219 * Is the variable read-only?
220 *
221 * This is set for variables declared as \c const, shader inputs,
222 * and uniforms.
223 */
224 unsigned read_only:1;
225 unsigned centroid:1;
226 unsigned sample:1;
227 unsigned patch:1;
228 unsigned invariant:1;
229
230 /**
231 * When separate shader programs are enabled, only input/outputs between
232 * the stages of a multi-stage separate program can be safely removed
233 * from the shader interface. Other input/outputs must remains active.
234 *
235 * This is also used to make sure xfb varyings that are unused by the
236 * fragment shader are not removed.
237 */
238 unsigned always_active_io:1;
239
240 /**
241 * Interpolation mode for shader inputs / outputs
242 *
243 * \sa glsl_interp_mode
244 */
245 unsigned interpolation:2;
246
247 /**
248 * If non-zero, then this variable may be packed along with other variables
249 * into a single varying slot, so this offset should be applied when
250 * accessing components. For example, an offset of 1 means that the x
251 * component of this variable is actually stored in component y of the
252 * location specified by \c location.
253 */
254 unsigned location_frac:2;
255
256 /**
257 * If true, this variable represents an array of scalars that should
258 * be tightly packed. In other words, consecutive array elements
259 * should be stored one component apart, rather than one slot apart.
260 */
261 unsigned compact:1;
262
263 /**
264 * Whether this is a fragment shader output implicitly initialized with
265 * the previous contents of the specified render target at the
266 * framebuffer location corresponding to this shader invocation.
267 */
268 unsigned fb_fetch_output:1;
269
270 /**
271 * Non-zero if this variable is considered bindless as defined by
272 * ARB_bindless_texture.
273 */
274 unsigned bindless:1;
275
276 /**
277 * Was an explicit binding set in the shader?
278 */
279 unsigned explicit_binding:1;
280
281 /**
282 * Was a transfer feedback buffer set in the shader?
283 */
284 unsigned explicit_xfb_buffer:1;
285
286 /**
287 * Was a transfer feedback stride set in the shader?
288 */
289 unsigned explicit_xfb_stride:1;
290
291 /**
292 * Was an explicit offset set in the shader?
293 */
294 unsigned explicit_offset:1;
295
296 /**
297 * \brief Layout qualifier for gl_FragDepth.
298 *
299 * This is not equal to \c ir_depth_layout_none if and only if this
300 * variable is \c gl_FragDepth and a layout qualifier is specified.
301 */
302 nir_depth_layout depth_layout;
303
304 /**
305 * Storage location of the base of this variable
306 *
307 * The precise meaning of this field depends on the nature of the variable.
308 *
309 * - Vertex shader input: one of the values from \c gl_vert_attrib.
310 * - Vertex shader output: one of the values from \c gl_varying_slot.
311 * - Geometry shader input: one of the values from \c gl_varying_slot.
312 * - Geometry shader output: one of the values from \c gl_varying_slot.
313 * - Fragment shader input: one of the values from \c gl_varying_slot.
314 * - Fragment shader output: one of the values from \c gl_frag_result.
315 * - Uniforms: Per-stage uniform slot number for default uniform block.
316 * - Uniforms: Index within the uniform block definition for UBO members.
317 * - Non-UBO Uniforms: uniform slot number.
318 * - Other: This field is not currently used.
319 *
320 * If the variable is a uniform, shader input, or shader output, and the
321 * slot has not been assigned, the value will be -1.
322 */
323 int location;
324
325 /**
326 * The actual location of the variable in the IR. Only valid for inputs
327 * and outputs.
328 */
329 unsigned int driver_location;
330
331 /**
332 * Vertex stream output identifier.
333 *
334 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
335 * stream of the i-th component.
336 */
337 unsigned stream;
338
339 /**
340 * output index for dual source blending.
341 */
342 int index;
343
344 /**
345 * Descriptor set binding for sampler or UBO.
346 */
347 int descriptor_set;
348
349 /**
350 * Initial binding point for a sampler or UBO.
351 *
352 * For array types, this represents the binding point for the first element.
353 */
354 int binding;
355
356 /**
357 * Location an atomic counter or transform feedback is stored at.
358 */
359 unsigned offset;
360
361 /**
362 * Transform feedback buffer.
363 */
364 unsigned xfb_buffer;
365
366 /**
367 * Transform feedback stride.
368 */
369 unsigned xfb_stride;
370
371 /**
372 * How the variable was declared. See nir_var_declaration_type.
373 *
374 * This is used to detect variables generated by the compiler, so should
375 * not be visible via the API.
376 */
377 unsigned how_declared:2;
378
379 /**
380 * ARB_shader_image_load_store qualifiers.
381 */
382 struct {
383 enum gl_access_qualifier access;
384
385 /** Image internal format if specified explicitly, otherwise GL_NONE. */
386 GLenum format;
387 } image;
388 } data;
389
390 /**
391 * Built-in state that backs this uniform
392 *
393 * Once set at variable creation, \c state_slots must remain invariant.
394 * This is because, ideally, this array would be shared by all clones of
395 * this variable in the IR tree. In other words, we'd really like for it
396 * to be a fly-weight.
397 *
398 * If the variable is not a uniform, \c num_state_slots will be zero and
399 * \c state_slots will be \c NULL.
400 */
401 /*@{*/
402 unsigned num_state_slots; /**< Number of state slots used */
403 nir_state_slot *state_slots; /**< State descriptors. */
404 /*@}*/
405
406 /**
407 * Constant expression assigned in the initializer of the variable
408 *
409 * This field should only be used temporarily by creators of NIR shaders
410 * and then lower_constant_initializers can be used to get rid of them.
411 * Most of the rest of NIR ignores this field or asserts that it's NULL.
412 */
413 nir_constant *constant_initializer;
414
415 /**
416 * For variables that are in an interface block or are an instance of an
417 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
418 *
419 * \sa ir_variable::location
420 */
421 const struct glsl_type *interface_type;
422
423 /**
424 * Description of per-member data for per-member struct variables
425 *
426 * This is used for variables which are actually an amalgamation of
427 * multiple entities such as a struct of built-in values or a struct of
428 * inputs each with their own layout specifier. This is only allowed on
429 * variables with a struct or array of array of struct type.
430 */
431 unsigned num_members;
432 struct nir_variable_data *members;
433 } nir_variable;
434
435 #define nir_foreach_variable(var, var_list) \
436 foreach_list_typed(nir_variable, var, node, var_list)
437
438 #define nir_foreach_variable_safe(var, var_list) \
439 foreach_list_typed_safe(nir_variable, var, node, var_list)
440
441 static inline bool
442 nir_variable_is_global(const nir_variable *var)
443 {
444 return var->data.mode != nir_var_function_temp;
445 }
446
447 typedef struct nir_register {
448 struct exec_node node;
449
450 unsigned num_components; /** < number of vector components */
451 unsigned num_array_elems; /** < size of array (0 for no array) */
452
453 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
454 uint8_t bit_size;
455
456 /** generic register index. */
457 unsigned index;
458
459 /** only for debug purposes, can be NULL */
460 const char *name;
461
462 /** set of nir_srcs where this register is used (read from) */
463 struct list_head uses;
464
465 /** set of nir_dests where this register is defined (written to) */
466 struct list_head defs;
467
468 /** set of nir_ifs where this register is used as a condition */
469 struct list_head if_uses;
470 } nir_register;
471
472 #define nir_foreach_register(reg, reg_list) \
473 foreach_list_typed(nir_register, reg, node, reg_list)
474 #define nir_foreach_register_safe(reg, reg_list) \
475 foreach_list_typed_safe(nir_register, reg, node, reg_list)
476
477 typedef enum PACKED {
478 nir_instr_type_alu,
479 nir_instr_type_deref,
480 nir_instr_type_call,
481 nir_instr_type_tex,
482 nir_instr_type_intrinsic,
483 nir_instr_type_load_const,
484 nir_instr_type_jump,
485 nir_instr_type_ssa_undef,
486 nir_instr_type_phi,
487 nir_instr_type_parallel_copy,
488 } nir_instr_type;
489
490 typedef struct nir_instr {
491 struct exec_node node;
492 struct nir_block *block;
493 nir_instr_type type;
494
495 /* A temporary for optimization and analysis passes to use for storing
496 * flags. For instance, DCE uses this to store the "dead/live" info.
497 */
498 uint8_t pass_flags;
499
500 /** generic instruction index. */
501 unsigned index;
502 } nir_instr;
503
504 static inline nir_instr *
505 nir_instr_next(nir_instr *instr)
506 {
507 struct exec_node *next = exec_node_get_next(&instr->node);
508 if (exec_node_is_tail_sentinel(next))
509 return NULL;
510 else
511 return exec_node_data(nir_instr, next, node);
512 }
513
514 static inline nir_instr *
515 nir_instr_prev(nir_instr *instr)
516 {
517 struct exec_node *prev = exec_node_get_prev(&instr->node);
518 if (exec_node_is_head_sentinel(prev))
519 return NULL;
520 else
521 return exec_node_data(nir_instr, prev, node);
522 }
523
524 static inline bool
525 nir_instr_is_first(const nir_instr *instr)
526 {
527 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
528 }
529
530 static inline bool
531 nir_instr_is_last(const nir_instr *instr)
532 {
533 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
534 }
535
536 typedef struct nir_ssa_def {
537 /** for debugging only, can be NULL */
538 const char* name;
539
540 /** generic SSA definition index. */
541 unsigned index;
542
543 /** Index into the live_in and live_out bitfields */
544 unsigned live_index;
545
546 /** Instruction which produces this SSA value. */
547 nir_instr *parent_instr;
548
549 /** set of nir_instrs where this register is used (read from) */
550 struct list_head uses;
551
552 /** set of nir_ifs where this register is used as a condition */
553 struct list_head if_uses;
554
555 uint8_t num_components;
556
557 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
558 uint8_t bit_size;
559 } nir_ssa_def;
560
561 struct nir_src;
562
563 typedef struct {
564 nir_register *reg;
565 struct nir_src *indirect; /** < NULL for no indirect offset */
566 unsigned base_offset;
567
568 /* TODO use-def chain goes here */
569 } nir_reg_src;
570
571 typedef struct {
572 nir_instr *parent_instr;
573 struct list_head def_link;
574
575 nir_register *reg;
576 struct nir_src *indirect; /** < NULL for no indirect offset */
577 unsigned base_offset;
578
579 /* TODO def-use chain goes here */
580 } nir_reg_dest;
581
582 struct nir_if;
583
584 typedef struct nir_src {
585 union {
586 /** Instruction that consumes this value as a source. */
587 nir_instr *parent_instr;
588 struct nir_if *parent_if;
589 };
590
591 struct list_head use_link;
592
593 union {
594 nir_reg_src reg;
595 nir_ssa_def *ssa;
596 };
597
598 bool is_ssa;
599 } nir_src;
600
601 static inline nir_src
602 nir_src_init(void)
603 {
604 nir_src src = { { NULL } };
605 return src;
606 }
607
608 #define NIR_SRC_INIT nir_src_init()
609
610 #define nir_foreach_use(src, reg_or_ssa_def) \
611 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
612
613 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
614 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
615
616 #define nir_foreach_if_use(src, reg_or_ssa_def) \
617 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
618
619 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
620 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
621
622 typedef struct {
623 union {
624 nir_reg_dest reg;
625 nir_ssa_def ssa;
626 };
627
628 bool is_ssa;
629 } nir_dest;
630
631 static inline nir_dest
632 nir_dest_init(void)
633 {
634 nir_dest dest = { { { NULL } } };
635 return dest;
636 }
637
638 #define NIR_DEST_INIT nir_dest_init()
639
640 #define nir_foreach_def(dest, reg) \
641 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
642
643 #define nir_foreach_def_safe(dest, reg) \
644 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
645
646 static inline nir_src
647 nir_src_for_ssa(nir_ssa_def *def)
648 {
649 nir_src src = NIR_SRC_INIT;
650
651 src.is_ssa = true;
652 src.ssa = def;
653
654 return src;
655 }
656
657 static inline nir_src
658 nir_src_for_reg(nir_register *reg)
659 {
660 nir_src src = NIR_SRC_INIT;
661
662 src.is_ssa = false;
663 src.reg.reg = reg;
664 src.reg.indirect = NULL;
665 src.reg.base_offset = 0;
666
667 return src;
668 }
669
670 static inline nir_dest
671 nir_dest_for_reg(nir_register *reg)
672 {
673 nir_dest dest = NIR_DEST_INIT;
674
675 dest.reg.reg = reg;
676
677 return dest;
678 }
679
680 static inline unsigned
681 nir_src_bit_size(nir_src src)
682 {
683 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
684 }
685
686 static inline unsigned
687 nir_src_num_components(nir_src src)
688 {
689 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
690 }
691
692 static inline bool
693 nir_src_is_const(nir_src src)
694 {
695 return src.is_ssa &&
696 src.ssa->parent_instr->type == nir_instr_type_load_const;
697 }
698
699 int64_t nir_src_as_int(nir_src src);
700 uint64_t nir_src_as_uint(nir_src src);
701 bool nir_src_as_bool(nir_src src);
702 double nir_src_as_float(nir_src src);
703 int64_t nir_src_comp_as_int(nir_src src, unsigned component);
704 uint64_t nir_src_comp_as_uint(nir_src src, unsigned component);
705 bool nir_src_comp_as_bool(nir_src src, unsigned component);
706 double nir_src_comp_as_float(nir_src src, unsigned component);
707
708 static inline unsigned
709 nir_dest_bit_size(nir_dest dest)
710 {
711 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
712 }
713
714 static inline unsigned
715 nir_dest_num_components(nir_dest dest)
716 {
717 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
718 }
719
720 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
721 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
722
723 typedef struct {
724 nir_src src;
725
726 /**
727 * \name input modifiers
728 */
729 /*@{*/
730 /**
731 * For inputs interpreted as floating point, flips the sign bit. For
732 * inputs interpreted as integers, performs the two's complement negation.
733 */
734 bool negate;
735
736 /**
737 * Clears the sign bit for floating point values, and computes the integer
738 * absolute value for integers. Note that the negate modifier acts after
739 * the absolute value modifier, therefore if both are set then all inputs
740 * will become negative.
741 */
742 bool abs;
743 /*@}*/
744
745 /**
746 * For each input component, says which component of the register it is
747 * chosen from. Note that which elements of the swizzle are used and which
748 * are ignored are based on the write mask for most opcodes - for example,
749 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
750 * a swizzle of {2, x, 1, 0} where x means "don't care."
751 */
752 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
753 } nir_alu_src;
754
755 typedef struct {
756 nir_dest dest;
757
758 /**
759 * \name saturate output modifier
760 *
761 * Only valid for opcodes that output floating-point numbers. Clamps the
762 * output to between 0.0 and 1.0 inclusive.
763 */
764
765 bool saturate;
766
767 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
768 } nir_alu_dest;
769
770 /** NIR sized and unsized types
771 *
772 * The values in this enum are carefully chosen so that the sized type is
773 * just the unsized type OR the number of bits.
774 */
775 typedef enum {
776 nir_type_invalid = 0, /* Not a valid type */
777 nir_type_int = 2,
778 nir_type_uint = 4,
779 nir_type_bool = 6,
780 nir_type_float = 128,
781 nir_type_bool1 = 1 | nir_type_bool,
782 nir_type_bool32 = 32 | nir_type_bool,
783 nir_type_int1 = 1 | nir_type_int,
784 nir_type_int8 = 8 | nir_type_int,
785 nir_type_int16 = 16 | nir_type_int,
786 nir_type_int32 = 32 | nir_type_int,
787 nir_type_int64 = 64 | nir_type_int,
788 nir_type_uint1 = 1 | nir_type_uint,
789 nir_type_uint8 = 8 | nir_type_uint,
790 nir_type_uint16 = 16 | nir_type_uint,
791 nir_type_uint32 = 32 | nir_type_uint,
792 nir_type_uint64 = 64 | nir_type_uint,
793 nir_type_float16 = 16 | nir_type_float,
794 nir_type_float32 = 32 | nir_type_float,
795 nir_type_float64 = 64 | nir_type_float,
796 } nir_alu_type;
797
798 #define NIR_ALU_TYPE_SIZE_MASK 0x79
799 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
800
801 static inline unsigned
802 nir_alu_type_get_type_size(nir_alu_type type)
803 {
804 return type & NIR_ALU_TYPE_SIZE_MASK;
805 }
806
807 static inline unsigned
808 nir_alu_type_get_base_type(nir_alu_type type)
809 {
810 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
811 }
812
813 static inline nir_alu_type
814 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
815 {
816 switch (base_type) {
817 case GLSL_TYPE_BOOL:
818 return nir_type_bool1;
819 break;
820 case GLSL_TYPE_UINT:
821 return nir_type_uint32;
822 break;
823 case GLSL_TYPE_INT:
824 return nir_type_int32;
825 break;
826 case GLSL_TYPE_UINT16:
827 return nir_type_uint16;
828 break;
829 case GLSL_TYPE_INT16:
830 return nir_type_int16;
831 break;
832 case GLSL_TYPE_UINT8:
833 return nir_type_uint8;
834 case GLSL_TYPE_INT8:
835 return nir_type_int8;
836 case GLSL_TYPE_UINT64:
837 return nir_type_uint64;
838 break;
839 case GLSL_TYPE_INT64:
840 return nir_type_int64;
841 break;
842 case GLSL_TYPE_FLOAT:
843 return nir_type_float32;
844 break;
845 case GLSL_TYPE_FLOAT16:
846 return nir_type_float16;
847 break;
848 case GLSL_TYPE_DOUBLE:
849 return nir_type_float64;
850 break;
851 default:
852 unreachable("unknown type");
853 }
854 }
855
856 static inline nir_alu_type
857 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
858 {
859 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
860 }
861
862 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
863 nir_rounding_mode rnd);
864
865 static inline nir_op
866 nir_op_vec(unsigned components)
867 {
868 switch (components) {
869 case 1: return nir_op_mov;
870 case 2: return nir_op_vec2;
871 case 3: return nir_op_vec3;
872 case 4: return nir_op_vec4;
873 default: unreachable("bad component count");
874 }
875 }
876
877 typedef enum {
878 /**
879 * Operation where the first two sources are commutative.
880 *
881 * For 2-source operations, this just mathematical commutativity. Some
882 * 3-source operations, like ffma, are only commutative in the first two
883 * sources.
884 */
885 NIR_OP_IS_2SRC_COMMUTATIVE = (1 << 0),
886 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
887 } nir_op_algebraic_property;
888
889 typedef struct {
890 const char *name;
891
892 unsigned num_inputs;
893
894 /**
895 * The number of components in the output
896 *
897 * If non-zero, this is the size of the output and input sizes are
898 * explicitly given; swizzle and writemask are still in effect, but if
899 * the output component is masked out, then the input component may
900 * still be in use.
901 *
902 * If zero, the opcode acts in the standard, per-component manner; the
903 * operation is performed on each component (except the ones that are
904 * masked out) with the input being taken from the input swizzle for
905 * that component.
906 *
907 * The size of some of the inputs may be given (i.e. non-zero) even
908 * though output_size is zero; in that case, the inputs with a zero
909 * size act per-component, while the inputs with non-zero size don't.
910 */
911 unsigned output_size;
912
913 /**
914 * The type of vector that the instruction outputs. Note that the
915 * staurate modifier is only allowed on outputs with the float type.
916 */
917
918 nir_alu_type output_type;
919
920 /**
921 * The number of components in each input
922 */
923 unsigned input_sizes[NIR_MAX_VEC_COMPONENTS];
924
925 /**
926 * The type of vector that each input takes. Note that negate and
927 * absolute value are only allowed on inputs with int or float type and
928 * behave differently on the two.
929 */
930 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
931
932 nir_op_algebraic_property algebraic_properties;
933
934 /* Whether this represents a numeric conversion opcode */
935 bool is_conversion;
936 } nir_op_info;
937
938 extern const nir_op_info nir_op_infos[nir_num_opcodes];
939
940 typedef struct nir_alu_instr {
941 nir_instr instr;
942 nir_op op;
943
944 /** Indicates that this ALU instruction generates an exact value
945 *
946 * This is kind of a mixture of GLSL "precise" and "invariant" and not
947 * really equivalent to either. This indicates that the value generated by
948 * this operation is high-precision and any code transformations that touch
949 * it must ensure that the resulting value is bit-for-bit identical to the
950 * original.
951 */
952 bool exact;
953
954 nir_alu_dest dest;
955 nir_alu_src src[];
956 } nir_alu_instr;
957
958 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
959 nir_alu_instr *instr);
960 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
961 nir_alu_instr *instr);
962
963 /* is this source channel used? */
964 static inline bool
965 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
966 unsigned channel)
967 {
968 if (nir_op_infos[instr->op].input_sizes[src] > 0)
969 return channel < nir_op_infos[instr->op].input_sizes[src];
970
971 return (instr->dest.write_mask >> channel) & 1;
972 }
973
974 static inline nir_component_mask_t
975 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
976 {
977 nir_component_mask_t read_mask = 0;
978 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
979 if (!nir_alu_instr_channel_used(instr, src, c))
980 continue;
981
982 read_mask |= (1 << instr->src[src].swizzle[c]);
983 }
984 return read_mask;
985 }
986
987 /*
988 * For instructions whose destinations are SSA, get the number of channels
989 * used for a source
990 */
991 static inline unsigned
992 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
993 {
994 assert(instr->dest.dest.is_ssa);
995
996 if (nir_op_infos[instr->op].input_sizes[src] > 0)
997 return nir_op_infos[instr->op].input_sizes[src];
998
999 return instr->dest.dest.ssa.num_components;
1000 }
1001
1002 bool nir_const_value_negative_equal(const nir_const_value *c1,
1003 const nir_const_value *c2,
1004 unsigned components,
1005 nir_alu_type base_type,
1006 unsigned bits);
1007
1008 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
1009 unsigned src1, unsigned src2);
1010
1011 bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
1012 const nir_alu_instr *alu2,
1013 unsigned src1, unsigned src2);
1014
1015 typedef enum {
1016 nir_deref_type_var,
1017 nir_deref_type_array,
1018 nir_deref_type_array_wildcard,
1019 nir_deref_type_ptr_as_array,
1020 nir_deref_type_struct,
1021 nir_deref_type_cast,
1022 } nir_deref_type;
1023
1024 typedef struct {
1025 nir_instr instr;
1026
1027 /** The type of this deref instruction */
1028 nir_deref_type deref_type;
1029
1030 /** The mode of the underlying variable */
1031 nir_variable_mode mode;
1032
1033 /** The dereferenced type of the resulting pointer value */
1034 const struct glsl_type *type;
1035
1036 union {
1037 /** Variable being dereferenced if deref_type is a deref_var */
1038 nir_variable *var;
1039
1040 /** Parent deref if deref_type is not deref_var */
1041 nir_src parent;
1042 };
1043
1044 /** Additional deref parameters */
1045 union {
1046 struct {
1047 nir_src index;
1048 } arr;
1049
1050 struct {
1051 unsigned index;
1052 } strct;
1053
1054 struct {
1055 unsigned ptr_stride;
1056 } cast;
1057 };
1058
1059 /** Destination to store the resulting "pointer" */
1060 nir_dest dest;
1061 } nir_deref_instr;
1062
1063 static inline nir_deref_instr *nir_src_as_deref(nir_src src);
1064
1065 static inline nir_deref_instr *
1066 nir_deref_instr_parent(const nir_deref_instr *instr)
1067 {
1068 if (instr->deref_type == nir_deref_type_var)
1069 return NULL;
1070 else
1071 return nir_src_as_deref(instr->parent);
1072 }
1073
1074 static inline nir_variable *
1075 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1076 {
1077 while (instr->deref_type != nir_deref_type_var) {
1078 if (instr->deref_type == nir_deref_type_cast)
1079 return NULL;
1080
1081 instr = nir_deref_instr_parent(instr);
1082 }
1083
1084 return instr->var;
1085 }
1086
1087 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1088
1089 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1090
1091 unsigned nir_deref_instr_ptr_as_array_stride(nir_deref_instr *instr);
1092
1093 typedef struct {
1094 nir_instr instr;
1095
1096 struct nir_function *callee;
1097
1098 unsigned num_params;
1099 nir_src params[];
1100 } nir_call_instr;
1101
1102 #include "nir_intrinsics.h"
1103
1104 #define NIR_INTRINSIC_MAX_CONST_INDEX 4
1105
1106 /** Represents an intrinsic
1107 *
1108 * An intrinsic is an instruction type for handling things that are
1109 * more-or-less regular operations but don't just consume and produce SSA
1110 * values like ALU operations do. Intrinsics are not for things that have
1111 * special semantic meaning such as phi nodes and parallel copies.
1112 * Examples of intrinsics include variable load/store operations, system
1113 * value loads, and the like. Even though texturing more-or-less falls
1114 * under this category, texturing is its own instruction type because
1115 * trying to represent texturing with intrinsics would lead to a
1116 * combinatorial explosion of intrinsic opcodes.
1117 *
1118 * By having a single instruction type for handling a lot of different
1119 * cases, optimization passes can look for intrinsics and, for the most
1120 * part, completely ignore them. Each intrinsic type also has a few
1121 * possible flags that govern whether or not they can be reordered or
1122 * eliminated. That way passes like dead code elimination can still work
1123 * on intrisics without understanding the meaning of each.
1124 *
1125 * Each intrinsic has some number of constant indices, some number of
1126 * variables, and some number of sources. What these sources, variables,
1127 * and indices mean depends on the intrinsic and is documented with the
1128 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1129 * instructions are the only types of instruction that can operate on
1130 * variables.
1131 */
1132 typedef struct {
1133 nir_instr instr;
1134
1135 nir_intrinsic_op intrinsic;
1136
1137 nir_dest dest;
1138
1139 /** number of components if this is a vectorized intrinsic
1140 *
1141 * Similarly to ALU operations, some intrinsics are vectorized.
1142 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1143 * For vectorized intrinsics, the num_components field specifies the
1144 * number of destination components and the number of source components
1145 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1146 */
1147 uint8_t num_components;
1148
1149 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1150
1151 nir_src src[];
1152 } nir_intrinsic_instr;
1153
1154 static inline nir_variable *
1155 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1156 {
1157 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1158 }
1159
1160 /**
1161 * \name NIR intrinsics semantic flags
1162 *
1163 * information about what the compiler can do with the intrinsics.
1164 *
1165 * \sa nir_intrinsic_info::flags
1166 */
1167 typedef enum {
1168 /**
1169 * whether the intrinsic can be safely eliminated if none of its output
1170 * value is not being used.
1171 */
1172 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1173
1174 /**
1175 * Whether the intrinsic can be reordered with respect to any other
1176 * intrinsic, i.e. whether the only reordering dependencies of the
1177 * intrinsic are due to the register reads/writes.
1178 */
1179 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1180 } nir_intrinsic_semantic_flag;
1181
1182 /**
1183 * \name NIR intrinsics const-index flag
1184 *
1185 * Indicates the usage of a const_index slot.
1186 *
1187 * \sa nir_intrinsic_info::index_map
1188 */
1189 typedef enum {
1190 /**
1191 * Generally instructions that take a offset src argument, can encode
1192 * a constant 'base' value which is added to the offset.
1193 */
1194 NIR_INTRINSIC_BASE = 1,
1195
1196 /**
1197 * For store instructions, a writemask for the store.
1198 */
1199 NIR_INTRINSIC_WRMASK = 2,
1200
1201 /**
1202 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1203 */
1204 NIR_INTRINSIC_STREAM_ID = 3,
1205
1206 /**
1207 * The clip-plane id for load_user_clip_plane intrinsic.
1208 */
1209 NIR_INTRINSIC_UCP_ID = 4,
1210
1211 /**
1212 * The amount of data, starting from BASE, that this instruction may
1213 * access. This is used to provide bounds if the offset is not constant.
1214 */
1215 NIR_INTRINSIC_RANGE = 5,
1216
1217 /**
1218 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1219 */
1220 NIR_INTRINSIC_DESC_SET = 6,
1221
1222 /**
1223 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1224 */
1225 NIR_INTRINSIC_BINDING = 7,
1226
1227 /**
1228 * Component offset.
1229 */
1230 NIR_INTRINSIC_COMPONENT = 8,
1231
1232 /**
1233 * Interpolation mode (only meaningful for FS inputs).
1234 */
1235 NIR_INTRINSIC_INTERP_MODE = 9,
1236
1237 /**
1238 * A binary nir_op to use when performing a reduction or scan operation
1239 */
1240 NIR_INTRINSIC_REDUCTION_OP = 10,
1241
1242 /**
1243 * Cluster size for reduction operations
1244 */
1245 NIR_INTRINSIC_CLUSTER_SIZE = 11,
1246
1247 /**
1248 * Parameter index for a load_param intrinsic
1249 */
1250 NIR_INTRINSIC_PARAM_IDX = 12,
1251
1252 /**
1253 * Image dimensionality for image intrinsics
1254 *
1255 * One of GLSL_SAMPLER_DIM_*
1256 */
1257 NIR_INTRINSIC_IMAGE_DIM = 13,
1258
1259 /**
1260 * Non-zero if we are accessing an array image
1261 */
1262 NIR_INTRINSIC_IMAGE_ARRAY = 14,
1263
1264 /**
1265 * Image format for image intrinsics
1266 */
1267 NIR_INTRINSIC_FORMAT = 15,
1268
1269 /**
1270 * Access qualifiers for image and memory access intrinsics
1271 */
1272 NIR_INTRINSIC_ACCESS = 16,
1273
1274 /**
1275 * Alignment for offsets and addresses
1276 *
1277 * These two parameters, specify an alignment in terms of a multiplier and
1278 * an offset. The offset or address parameter X of the intrinsic is
1279 * guaranteed to satisfy the following:
1280 *
1281 * (X - align_offset) % align_mul == 0
1282 */
1283 NIR_INTRINSIC_ALIGN_MUL = 17,
1284 NIR_INTRINSIC_ALIGN_OFFSET = 18,
1285
1286 /**
1287 * The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic.
1288 */
1289 NIR_INTRINSIC_DESC_TYPE = 19,
1290
1291 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1292
1293 } nir_intrinsic_index_flag;
1294
1295 #define NIR_INTRINSIC_MAX_INPUTS 5
1296
1297 typedef struct {
1298 const char *name;
1299
1300 unsigned num_srcs; /** < number of register/SSA inputs */
1301
1302 /** number of components of each input register
1303 *
1304 * If this value is 0, the number of components is given by the
1305 * num_components field of nir_intrinsic_instr. If this value is -1, the
1306 * intrinsic consumes however many components are provided and it is not
1307 * validated at all.
1308 */
1309 int src_components[NIR_INTRINSIC_MAX_INPUTS];
1310
1311 bool has_dest;
1312
1313 /** number of components of the output register
1314 *
1315 * If this value is 0, the number of components is given by the
1316 * num_components field of nir_intrinsic_instr.
1317 */
1318 unsigned dest_components;
1319
1320 /** bitfield of legal bit sizes */
1321 unsigned dest_bit_sizes;
1322
1323 /** the number of constant indices used by the intrinsic */
1324 unsigned num_indices;
1325
1326 /** indicates the usage of intr->const_index[n] */
1327 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1328
1329 /** semantic flags for calls to this intrinsic */
1330 nir_intrinsic_semantic_flag flags;
1331 } nir_intrinsic_info;
1332
1333 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1334
1335 static inline unsigned
1336 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1337 {
1338 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1339 assert(srcn < info->num_srcs);
1340 if (info->src_components[srcn] > 0)
1341 return info->src_components[srcn];
1342 else if (info->src_components[srcn] == 0)
1343 return intr->num_components;
1344 else
1345 return nir_src_num_components(intr->src[srcn]);
1346 }
1347
1348 static inline unsigned
1349 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1350 {
1351 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1352 if (!info->has_dest)
1353 return 0;
1354 else if (info->dest_components)
1355 return info->dest_components;
1356 else
1357 return intr->num_components;
1358 }
1359
1360 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1361 static inline type \
1362 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1363 { \
1364 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1365 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1366 return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1367 } \
1368 static inline void \
1369 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1370 { \
1371 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1372 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1373 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1374 }
1375
1376 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1377 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1378 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1379 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1380 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1381 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1382 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1383 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1384 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1385 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1386 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1387 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1388 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1389 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1390 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1391 INTRINSIC_IDX_ACCESSORS(format, FORMAT, unsigned)
1392 INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
1393 INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
1394 INTRINSIC_IDX_ACCESSORS(desc_type, DESC_TYPE, unsigned)
1395
1396 static inline void
1397 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1398 unsigned align_mul, unsigned align_offset)
1399 {
1400 assert(util_is_power_of_two_nonzero(align_mul));
1401 assert(align_offset < align_mul);
1402 nir_intrinsic_set_align_mul(intrin, align_mul);
1403 nir_intrinsic_set_align_offset(intrin, align_offset);
1404 }
1405
1406 /** Returns a simple alignment for a load/store intrinsic offset
1407 *
1408 * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1409 * and ALIGN_OFFSET parameters, this helper takes both into account and
1410 * provides a single simple alignment parameter. The offset X is guaranteed
1411 * to satisfy X % align == 0.
1412 */
1413 static inline unsigned
1414 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
1415 {
1416 const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1417 const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1418 assert(align_offset < align_mul);
1419 return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1420 }
1421
1422 /* Converts a image_deref_* intrinsic into a image_* one */
1423 void nir_rewrite_image_intrinsic(nir_intrinsic_instr *instr,
1424 nir_ssa_def *handle, bool bindless);
1425
1426 /**
1427 * \group texture information
1428 *
1429 * This gives semantic information about textures which is useful to the
1430 * frontend, the backend, and lowering passes, but not the optimizer.
1431 */
1432
1433 typedef enum {
1434 nir_tex_src_coord,
1435 nir_tex_src_projector,
1436 nir_tex_src_comparator, /* shadow comparator */
1437 nir_tex_src_offset,
1438 nir_tex_src_bias,
1439 nir_tex_src_lod,
1440 nir_tex_src_min_lod,
1441 nir_tex_src_ms_index, /* MSAA sample index */
1442 nir_tex_src_ms_mcs, /* MSAA compression value */
1443 nir_tex_src_ddx,
1444 nir_tex_src_ddy,
1445 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1446 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1447 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1448 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1449 nir_tex_src_texture_handle, /* < bindless texture handle */
1450 nir_tex_src_sampler_handle, /* < bindless sampler handle */
1451 nir_tex_src_plane, /* < selects plane for planar textures */
1452 nir_num_tex_src_types
1453 } nir_tex_src_type;
1454
1455 typedef struct {
1456 nir_src src;
1457 nir_tex_src_type src_type;
1458 } nir_tex_src;
1459
1460 typedef enum {
1461 nir_texop_tex, /**< Regular texture look-up */
1462 nir_texop_txb, /**< Texture look-up with LOD bias */
1463 nir_texop_txl, /**< Texture look-up with explicit LOD */
1464 nir_texop_txd, /**< Texture look-up with partial derivatives */
1465 nir_texop_txf, /**< Texel fetch with explicit LOD */
1466 nir_texop_txf_ms, /**< Multisample texture fetch */
1467 nir_texop_txf_ms_fb, /**< Multisample texture fetch from framebuffer */
1468 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1469 nir_texop_txs, /**< Texture size */
1470 nir_texop_lod, /**< Texture lod query */
1471 nir_texop_tg4, /**< Texture gather */
1472 nir_texop_query_levels, /**< Texture levels query */
1473 nir_texop_texture_samples, /**< Texture samples query */
1474 nir_texop_samples_identical, /**< Query whether all samples are definitely
1475 * identical.
1476 */
1477 } nir_texop;
1478
1479 typedef struct {
1480 nir_instr instr;
1481
1482 enum glsl_sampler_dim sampler_dim;
1483 nir_alu_type dest_type;
1484
1485 nir_texop op;
1486 nir_dest dest;
1487 nir_tex_src *src;
1488 unsigned num_srcs, coord_components;
1489 bool is_array, is_shadow;
1490
1491 /**
1492 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1493 * components or the new-style shadow that outputs 1 component.
1494 */
1495 bool is_new_style_shadow;
1496
1497 /* gather component selector */
1498 unsigned component : 2;
1499
1500 /* gather offsets */
1501 int8_t tg4_offsets[4][2];
1502
1503 /* True if the texture index or handle is not dynamically uniform */
1504 bool texture_non_uniform;
1505
1506 /* True if the sampler index or handle is not dynamically uniform */
1507 bool sampler_non_uniform;
1508
1509 /** The texture index
1510 *
1511 * If this texture instruction has a nir_tex_src_texture_offset source,
1512 * then the texture index is given by texture_index + texture_offset.
1513 */
1514 unsigned texture_index;
1515
1516 /** The size of the texture array or 0 if it's not an array */
1517 unsigned texture_array_size;
1518
1519 /** The sampler index
1520 *
1521 * The following operations do not require a sampler and, as such, this
1522 * field should be ignored:
1523 * - nir_texop_txf
1524 * - nir_texop_txf_ms
1525 * - nir_texop_txs
1526 * - nir_texop_lod
1527 * - nir_texop_query_levels
1528 * - nir_texop_texture_samples
1529 * - nir_texop_samples_identical
1530 *
1531 * If this texture instruction has a nir_tex_src_sampler_offset source,
1532 * then the sampler index is given by sampler_index + sampler_offset.
1533 */
1534 unsigned sampler_index;
1535 } nir_tex_instr;
1536
1537 static inline unsigned
1538 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1539 {
1540 switch (instr->op) {
1541 case nir_texop_txs: {
1542 unsigned ret;
1543 switch (instr->sampler_dim) {
1544 case GLSL_SAMPLER_DIM_1D:
1545 case GLSL_SAMPLER_DIM_BUF:
1546 ret = 1;
1547 break;
1548 case GLSL_SAMPLER_DIM_2D:
1549 case GLSL_SAMPLER_DIM_CUBE:
1550 case GLSL_SAMPLER_DIM_MS:
1551 case GLSL_SAMPLER_DIM_RECT:
1552 case GLSL_SAMPLER_DIM_EXTERNAL:
1553 case GLSL_SAMPLER_DIM_SUBPASS:
1554 ret = 2;
1555 break;
1556 case GLSL_SAMPLER_DIM_3D:
1557 ret = 3;
1558 break;
1559 default:
1560 unreachable("not reached");
1561 }
1562 if (instr->is_array)
1563 ret++;
1564 return ret;
1565 }
1566
1567 case nir_texop_lod:
1568 return 2;
1569
1570 case nir_texop_texture_samples:
1571 case nir_texop_query_levels:
1572 case nir_texop_samples_identical:
1573 return 1;
1574
1575 default:
1576 if (instr->is_shadow && instr->is_new_style_shadow)
1577 return 1;
1578
1579 return 4;
1580 }
1581 }
1582
1583 /* Returns true if this texture operation queries something about the texture
1584 * rather than actually sampling it.
1585 */
1586 static inline bool
1587 nir_tex_instr_is_query(const nir_tex_instr *instr)
1588 {
1589 switch (instr->op) {
1590 case nir_texop_txs:
1591 case nir_texop_lod:
1592 case nir_texop_texture_samples:
1593 case nir_texop_query_levels:
1594 case nir_texop_txf_ms_mcs:
1595 return true;
1596 case nir_texop_tex:
1597 case nir_texop_txb:
1598 case nir_texop_txl:
1599 case nir_texop_txd:
1600 case nir_texop_txf:
1601 case nir_texop_txf_ms:
1602 case nir_texop_txf_ms_fb:
1603 case nir_texop_tg4:
1604 return false;
1605 default:
1606 unreachable("Invalid texture opcode");
1607 }
1608 }
1609
1610 static inline bool
1611 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1612 {
1613 switch (instr->op) {
1614 case nir_op_flt:
1615 case nir_op_fge:
1616 case nir_op_feq:
1617 case nir_op_fne:
1618 case nir_op_ilt:
1619 case nir_op_ult:
1620 case nir_op_ige:
1621 case nir_op_uge:
1622 case nir_op_ieq:
1623 case nir_op_ine:
1624 case nir_op_i2b1:
1625 case nir_op_f2b1:
1626 case nir_op_inot:
1627 case nir_op_fnot:
1628 return true;
1629 default:
1630 return false;
1631 }
1632 }
1633
1634 static inline nir_alu_type
1635 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1636 {
1637 switch (instr->src[src].src_type) {
1638 case nir_tex_src_coord:
1639 switch (instr->op) {
1640 case nir_texop_txf:
1641 case nir_texop_txf_ms:
1642 case nir_texop_txf_ms_fb:
1643 case nir_texop_txf_ms_mcs:
1644 case nir_texop_samples_identical:
1645 return nir_type_int;
1646
1647 default:
1648 return nir_type_float;
1649 }
1650
1651 case nir_tex_src_lod:
1652 switch (instr->op) {
1653 case nir_texop_txs:
1654 case nir_texop_txf:
1655 return nir_type_int;
1656
1657 default:
1658 return nir_type_float;
1659 }
1660
1661 case nir_tex_src_projector:
1662 case nir_tex_src_comparator:
1663 case nir_tex_src_bias:
1664 case nir_tex_src_ddx:
1665 case nir_tex_src_ddy:
1666 return nir_type_float;
1667
1668 case nir_tex_src_offset:
1669 case nir_tex_src_ms_index:
1670 case nir_tex_src_texture_offset:
1671 case nir_tex_src_sampler_offset:
1672 return nir_type_int;
1673
1674 default:
1675 unreachable("Invalid texture source type");
1676 }
1677 }
1678
1679 static inline unsigned
1680 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1681 {
1682 if (instr->src[src].src_type == nir_tex_src_coord)
1683 return instr->coord_components;
1684
1685 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1686 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1687 return 4;
1688
1689 if (instr->src[src].src_type == nir_tex_src_ddx ||
1690 instr->src[src].src_type == nir_tex_src_ddy) {
1691 if (instr->is_array)
1692 return instr->coord_components - 1;
1693 else
1694 return instr->coord_components;
1695 }
1696
1697 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1698 * the offset, since a cube maps to a single face.
1699 */
1700 if (instr->src[src].src_type == nir_tex_src_offset) {
1701 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1702 return 2;
1703 else if (instr->is_array)
1704 return instr->coord_components - 1;
1705 else
1706 return instr->coord_components;
1707 }
1708
1709 return 1;
1710 }
1711
1712 static inline int
1713 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1714 {
1715 for (unsigned i = 0; i < instr->num_srcs; i++)
1716 if (instr->src[i].src_type == type)
1717 return (int) i;
1718
1719 return -1;
1720 }
1721
1722 void nir_tex_instr_add_src(nir_tex_instr *tex,
1723 nir_tex_src_type src_type,
1724 nir_src src);
1725
1726 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1727
1728 bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
1729
1730 typedef struct {
1731 nir_instr instr;
1732
1733 nir_ssa_def def;
1734
1735 nir_const_value value[];
1736 } nir_load_const_instr;
1737
1738 #define nir_const_load_to_arr(arr, l, m) \
1739 { \
1740 nir_const_value_to_array(arr, l->value, l->def.num_components, m); \
1741 } while (false);
1742
1743 typedef enum {
1744 nir_jump_return,
1745 nir_jump_break,
1746 nir_jump_continue,
1747 } nir_jump_type;
1748
1749 typedef struct {
1750 nir_instr instr;
1751 nir_jump_type type;
1752 } nir_jump_instr;
1753
1754 /* creates a new SSA variable in an undefined state */
1755
1756 typedef struct {
1757 nir_instr instr;
1758 nir_ssa_def def;
1759 } nir_ssa_undef_instr;
1760
1761 typedef struct {
1762 struct exec_node node;
1763
1764 /* The predecessor block corresponding to this source */
1765 struct nir_block *pred;
1766
1767 nir_src src;
1768 } nir_phi_src;
1769
1770 #define nir_foreach_phi_src(phi_src, phi) \
1771 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1772 #define nir_foreach_phi_src_safe(phi_src, phi) \
1773 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1774
1775 typedef struct {
1776 nir_instr instr;
1777
1778 struct exec_list srcs; /** < list of nir_phi_src */
1779
1780 nir_dest dest;
1781 } nir_phi_instr;
1782
1783 typedef struct {
1784 struct exec_node node;
1785 nir_src src;
1786 nir_dest dest;
1787 } nir_parallel_copy_entry;
1788
1789 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1790 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1791
1792 typedef struct {
1793 nir_instr instr;
1794
1795 /* A list of nir_parallel_copy_entrys. The sources of all of the
1796 * entries are copied to the corresponding destinations "in parallel".
1797 * In other words, if we have two entries: a -> b and b -> a, the values
1798 * get swapped.
1799 */
1800 struct exec_list entries;
1801 } nir_parallel_copy_instr;
1802
1803 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1804 type, nir_instr_type_alu)
1805 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
1806 type, nir_instr_type_deref)
1807 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1808 type, nir_instr_type_call)
1809 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1810 type, nir_instr_type_jump)
1811 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1812 type, nir_instr_type_tex)
1813 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1814 type, nir_instr_type_intrinsic)
1815 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1816 type, nir_instr_type_load_const)
1817 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1818 type, nir_instr_type_ssa_undef)
1819 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1820 type, nir_instr_type_phi)
1821 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1822 nir_parallel_copy_instr, instr,
1823 type, nir_instr_type_parallel_copy)
1824
1825 /*
1826 * Control flow
1827 *
1828 * Control flow consists of a tree of control flow nodes, which include
1829 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1830 * instructions that always run start-to-finish. Each basic block also keeps
1831 * track of its successors (blocks which may run immediately after the current
1832 * block) and predecessors (blocks which could have run immediately before the
1833 * current block). Each function also has a start block and an end block which
1834 * all return statements point to (which is always empty). Together, all the
1835 * blocks with their predecessors and successors make up the control flow
1836 * graph (CFG) of the function. There are helpers that modify the tree of
1837 * control flow nodes while modifying the CFG appropriately; these should be
1838 * used instead of modifying the tree directly.
1839 */
1840
1841 typedef enum {
1842 nir_cf_node_block,
1843 nir_cf_node_if,
1844 nir_cf_node_loop,
1845 nir_cf_node_function
1846 } nir_cf_node_type;
1847
1848 typedef struct nir_cf_node {
1849 struct exec_node node;
1850 nir_cf_node_type type;
1851 struct nir_cf_node *parent;
1852 } nir_cf_node;
1853
1854 typedef struct nir_block {
1855 nir_cf_node cf_node;
1856
1857 struct exec_list instr_list; /** < list of nir_instr */
1858
1859 /** generic block index; generated by nir_index_blocks */
1860 unsigned index;
1861
1862 /*
1863 * Each block can only have up to 2 successors, so we put them in a simple
1864 * array - no need for anything more complicated.
1865 */
1866 struct nir_block *successors[2];
1867
1868 /* Set of nir_block predecessors in the CFG */
1869 struct set *predecessors;
1870
1871 /*
1872 * this node's immediate dominator in the dominance tree - set to NULL for
1873 * the start block.
1874 */
1875 struct nir_block *imm_dom;
1876
1877 /* This node's children in the dominance tree */
1878 unsigned num_dom_children;
1879 struct nir_block **dom_children;
1880
1881 /* Set of nir_blocks on the dominance frontier of this block */
1882 struct set *dom_frontier;
1883
1884 /*
1885 * These two indices have the property that dom_{pre,post}_index for each
1886 * child of this block in the dominance tree will always be between
1887 * dom_pre_index and dom_post_index for this block, which makes testing if
1888 * a given block is dominated by another block an O(1) operation.
1889 */
1890 unsigned dom_pre_index, dom_post_index;
1891
1892 /* live in and out for this block; used for liveness analysis */
1893 BITSET_WORD *live_in;
1894 BITSET_WORD *live_out;
1895 } nir_block;
1896
1897 static inline nir_instr *
1898 nir_block_first_instr(nir_block *block)
1899 {
1900 struct exec_node *head = exec_list_get_head(&block->instr_list);
1901 return exec_node_data(nir_instr, head, node);
1902 }
1903
1904 static inline nir_instr *
1905 nir_block_last_instr(nir_block *block)
1906 {
1907 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1908 return exec_node_data(nir_instr, tail, node);
1909 }
1910
1911 static inline bool
1912 nir_block_ends_in_jump(nir_block *block)
1913 {
1914 return !exec_list_is_empty(&block->instr_list) &&
1915 nir_block_last_instr(block)->type == nir_instr_type_jump;
1916 }
1917
1918 #define nir_foreach_instr(instr, block) \
1919 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1920 #define nir_foreach_instr_reverse(instr, block) \
1921 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1922 #define nir_foreach_instr_safe(instr, block) \
1923 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1924 #define nir_foreach_instr_reverse_safe(instr, block) \
1925 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1926
1927 typedef enum {
1928 nir_selection_control_none = 0x0,
1929 nir_selection_control_flatten = 0x1,
1930 nir_selection_control_dont_flatten = 0x2,
1931 } nir_selection_control;
1932
1933 typedef struct nir_if {
1934 nir_cf_node cf_node;
1935 nir_src condition;
1936 nir_selection_control control;
1937
1938 struct exec_list then_list; /** < list of nir_cf_node */
1939 struct exec_list else_list; /** < list of nir_cf_node */
1940 } nir_if;
1941
1942 typedef struct {
1943 nir_if *nif;
1944
1945 /** Instruction that generates nif::condition. */
1946 nir_instr *conditional_instr;
1947
1948 /** Block within ::nif that has the break instruction. */
1949 nir_block *break_block;
1950
1951 /** Last block for the then- or else-path that does not contain the break. */
1952 nir_block *continue_from_block;
1953
1954 /** True when ::break_block is in the else-path of ::nif. */
1955 bool continue_from_then;
1956 bool induction_rhs;
1957
1958 /* This is true if the terminators exact trip count is unknown. For
1959 * example:
1960 *
1961 * for (int i = 0; i < imin(x, 4); i++)
1962 * ...
1963 *
1964 * Here loop analysis would have set a max_trip_count of 4 however we dont
1965 * know for sure that this is the exact trip count.
1966 */
1967 bool exact_trip_count_unknown;
1968
1969 struct list_head loop_terminator_link;
1970 } nir_loop_terminator;
1971
1972 typedef struct {
1973 /* Estimated cost (in number of instructions) of the loop */
1974 unsigned instr_cost;
1975
1976 /* Guessed trip count based on array indexing */
1977 unsigned guessed_trip_count;
1978
1979 /* Maximum number of times the loop is run (if known) */
1980 unsigned max_trip_count;
1981
1982 /* Do we know the exact number of times the loop will be run */
1983 bool exact_trip_count_known;
1984
1985 /* Unroll the loop regardless of its size */
1986 bool force_unroll;
1987
1988 /* Does the loop contain complex loop terminators, continues or other
1989 * complex behaviours? If this is true we can't rely on
1990 * loop_terminator_list to be complete or accurate.
1991 */
1992 bool complex_loop;
1993
1994 nir_loop_terminator *limiting_terminator;
1995
1996 /* A list of loop_terminators terminating this loop. */
1997 struct list_head loop_terminator_list;
1998 } nir_loop_info;
1999
2000 typedef enum {
2001 nir_loop_control_none = 0x0,
2002 nir_loop_control_unroll = 0x1,
2003 nir_loop_control_dont_unroll = 0x2,
2004 } nir_loop_control;
2005
2006 typedef struct {
2007 nir_cf_node cf_node;
2008
2009 struct exec_list body; /** < list of nir_cf_node */
2010
2011 nir_loop_info *info;
2012 nir_loop_control control;
2013 bool partially_unrolled;
2014 } nir_loop;
2015
2016 /**
2017 * Various bits of metadata that can may be created or required by
2018 * optimization and analysis passes
2019 */
2020 typedef enum {
2021 nir_metadata_none = 0x0,
2022 nir_metadata_block_index = 0x1,
2023 nir_metadata_dominance = 0x2,
2024 nir_metadata_live_ssa_defs = 0x4,
2025 nir_metadata_not_properly_reset = 0x8,
2026 nir_metadata_loop_analysis = 0x10,
2027 } nir_metadata;
2028
2029 typedef struct {
2030 nir_cf_node cf_node;
2031
2032 /** pointer to the function of which this is an implementation */
2033 struct nir_function *function;
2034
2035 struct exec_list body; /** < list of nir_cf_node */
2036
2037 nir_block *end_block;
2038
2039 /** list for all local variables in the function */
2040 struct exec_list locals;
2041
2042 /** list of local registers in the function */
2043 struct exec_list registers;
2044
2045 /** next available local register index */
2046 unsigned reg_alloc;
2047
2048 /** next available SSA value index */
2049 unsigned ssa_alloc;
2050
2051 /* total number of basic blocks, only valid when block_index_dirty = false */
2052 unsigned num_blocks;
2053
2054 nir_metadata valid_metadata;
2055 } nir_function_impl;
2056
2057 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2058 nir_start_block(nir_function_impl *impl)
2059 {
2060 return (nir_block *) impl->body.head_sentinel.next;
2061 }
2062
2063 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2064 nir_impl_last_block(nir_function_impl *impl)
2065 {
2066 return (nir_block *) impl->body.tail_sentinel.prev;
2067 }
2068
2069 static inline nir_cf_node *
2070 nir_cf_node_next(nir_cf_node *node)
2071 {
2072 struct exec_node *next = exec_node_get_next(&node->node);
2073 if (exec_node_is_tail_sentinel(next))
2074 return NULL;
2075 else
2076 return exec_node_data(nir_cf_node, next, node);
2077 }
2078
2079 static inline nir_cf_node *
2080 nir_cf_node_prev(nir_cf_node *node)
2081 {
2082 struct exec_node *prev = exec_node_get_prev(&node->node);
2083 if (exec_node_is_head_sentinel(prev))
2084 return NULL;
2085 else
2086 return exec_node_data(nir_cf_node, prev, node);
2087 }
2088
2089 static inline bool
2090 nir_cf_node_is_first(const nir_cf_node *node)
2091 {
2092 return exec_node_is_head_sentinel(node->node.prev);
2093 }
2094
2095 static inline bool
2096 nir_cf_node_is_last(const nir_cf_node *node)
2097 {
2098 return exec_node_is_tail_sentinel(node->node.next);
2099 }
2100
2101 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
2102 type, nir_cf_node_block)
2103 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
2104 type, nir_cf_node_if)
2105 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
2106 type, nir_cf_node_loop)
2107 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
2108 nir_function_impl, cf_node, type, nir_cf_node_function)
2109
2110 static inline nir_block *
2111 nir_if_first_then_block(nir_if *if_stmt)
2112 {
2113 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
2114 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2115 }
2116
2117 static inline nir_block *
2118 nir_if_last_then_block(nir_if *if_stmt)
2119 {
2120 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
2121 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2122 }
2123
2124 static inline nir_block *
2125 nir_if_first_else_block(nir_if *if_stmt)
2126 {
2127 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
2128 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2129 }
2130
2131 static inline nir_block *
2132 nir_if_last_else_block(nir_if *if_stmt)
2133 {
2134 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
2135 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2136 }
2137
2138 static inline nir_block *
2139 nir_loop_first_block(nir_loop *loop)
2140 {
2141 struct exec_node *head = exec_list_get_head(&loop->body);
2142 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2143 }
2144
2145 static inline nir_block *
2146 nir_loop_last_block(nir_loop *loop)
2147 {
2148 struct exec_node *tail = exec_list_get_tail(&loop->body);
2149 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2150 }
2151
2152 /**
2153 * Return true if this list of cf_nodes contains a single empty block.
2154 */
2155 static inline bool
2156 nir_cf_list_is_empty_block(struct exec_list *cf_list)
2157 {
2158 if (exec_list_is_singular(cf_list)) {
2159 struct exec_node *head = exec_list_get_head(cf_list);
2160 nir_block *block =
2161 nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2162 return exec_list_is_empty(&block->instr_list);
2163 }
2164 return false;
2165 }
2166
2167 typedef struct {
2168 uint8_t num_components;
2169 uint8_t bit_size;
2170 } nir_parameter;
2171
2172 typedef struct nir_function {
2173 struct exec_node node;
2174
2175 const char *name;
2176 struct nir_shader *shader;
2177
2178 unsigned num_params;
2179 nir_parameter *params;
2180
2181 /** The implementation of this function.
2182 *
2183 * If the function is only declared and not implemented, this is NULL.
2184 */
2185 nir_function_impl *impl;
2186
2187 bool is_entrypoint;
2188 } nir_function;
2189
2190 typedef enum {
2191 nir_lower_imul64 = (1 << 0),
2192 nir_lower_isign64 = (1 << 1),
2193 /** Lower all int64 modulus and division opcodes */
2194 nir_lower_divmod64 = (1 << 2),
2195 /** Lower all 64-bit umul_high and imul_high opcodes */
2196 nir_lower_imul_high64 = (1 << 3),
2197 nir_lower_mov64 = (1 << 4),
2198 nir_lower_icmp64 = (1 << 5),
2199 nir_lower_iadd64 = (1 << 6),
2200 nir_lower_iabs64 = (1 << 7),
2201 nir_lower_ineg64 = (1 << 8),
2202 nir_lower_logic64 = (1 << 9),
2203 nir_lower_minmax64 = (1 << 10),
2204 nir_lower_shift64 = (1 << 11),
2205 nir_lower_imul_2x32_64 = (1 << 12),
2206 } nir_lower_int64_options;
2207
2208 typedef enum {
2209 nir_lower_drcp = (1 << 0),
2210 nir_lower_dsqrt = (1 << 1),
2211 nir_lower_drsq = (1 << 2),
2212 nir_lower_dtrunc = (1 << 3),
2213 nir_lower_dfloor = (1 << 4),
2214 nir_lower_dceil = (1 << 5),
2215 nir_lower_dfract = (1 << 6),
2216 nir_lower_dround_even = (1 << 7),
2217 nir_lower_dmod = (1 << 8),
2218 nir_lower_fp64_full_software = (1 << 9),
2219 } nir_lower_doubles_options;
2220
2221 typedef struct nir_shader_compiler_options {
2222 bool lower_fdiv;
2223 bool lower_ffma;
2224 bool fuse_ffma;
2225 bool lower_flrp16;
2226 bool lower_flrp32;
2227 /** Lowers flrp when it does not support doubles */
2228 bool lower_flrp64;
2229 bool lower_fpow;
2230 bool lower_fsat;
2231 bool lower_fsqrt;
2232 bool lower_fmod16;
2233 bool lower_fmod32;
2234 bool lower_fmod64;
2235 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2236 bool lower_bitfield_extract;
2237 /** Lowers ibitfield_extract/ubitfield_extract to bfm, compares, shifts. */
2238 bool lower_bitfield_extract_to_shifts;
2239 /** Lowers bitfield_insert to bfi/bfm */
2240 bool lower_bitfield_insert;
2241 /** Lowers bitfield_insert to bfm, compares, and shifts. */
2242 bool lower_bitfield_insert_to_shifts;
2243 /** Lowers bitfield_reverse to shifts. */
2244 bool lower_bitfield_reverse;
2245 /** Lowers bit_count to shifts. */
2246 bool lower_bit_count;
2247 /** Lowers bfm to shifts and subtracts. */
2248 bool lower_bfm;
2249 /** Lowers ifind_msb to compare and ufind_msb */
2250 bool lower_ifind_msb;
2251 /** Lowers find_lsb to ufind_msb and logic ops */
2252 bool lower_find_lsb;
2253 bool lower_uadd_carry;
2254 bool lower_usub_borrow;
2255 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2256 bool lower_mul_high;
2257 /** lowers fneg and ineg to fsub and isub. */
2258 bool lower_negate;
2259 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2260 bool lower_sub;
2261
2262 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2263 bool lower_scmp;
2264
2265 /** enables rules to lower idiv by power-of-two: */
2266 bool lower_idiv;
2267
2268 /** enables rules to lower isign to imin+imax */
2269 bool lower_isign;
2270
2271 /** enables rules to lower fsign to fsub and flt */
2272 bool lower_fsign;
2273
2274 /* Does the native fdot instruction replicate its result for four
2275 * components? If so, then opt_algebraic_late will turn all fdotN
2276 * instructions into fdot_replicatedN instructions.
2277 */
2278 bool fdot_replicates;
2279
2280 /** lowers ffloor to fsub+ffract: */
2281 bool lower_ffloor;
2282
2283 /** lowers ffract to fsub+ffloor: */
2284 bool lower_ffract;
2285
2286 /** lowers fceil to fneg+ffloor+fneg: */
2287 bool lower_fceil;
2288
2289 bool lower_ftrunc;
2290
2291 bool lower_ldexp;
2292
2293 bool lower_pack_half_2x16;
2294 bool lower_pack_unorm_2x16;
2295 bool lower_pack_snorm_2x16;
2296 bool lower_pack_unorm_4x8;
2297 bool lower_pack_snorm_4x8;
2298 bool lower_unpack_half_2x16;
2299 bool lower_unpack_unorm_2x16;
2300 bool lower_unpack_snorm_2x16;
2301 bool lower_unpack_unorm_4x8;
2302 bool lower_unpack_snorm_4x8;
2303
2304 bool lower_extract_byte;
2305 bool lower_extract_word;
2306
2307 bool lower_all_io_to_temps;
2308 bool lower_all_io_to_elements;
2309
2310 /* Indicates that the driver only has zero-based vertex id */
2311 bool vertex_id_zero_based;
2312
2313 /**
2314 * If enabled, gl_BaseVertex will be lowered as:
2315 * is_indexed_draw (~0/0) & firstvertex
2316 */
2317 bool lower_base_vertex;
2318
2319 /**
2320 * If enabled, gl_HelperInvocation will be lowered as:
2321 *
2322 * !((1 << sample_id) & sample_mask_in))
2323 *
2324 * This depends on some possibly hw implementation details, which may
2325 * not be true for all hw. In particular that the FS is only executed
2326 * for covered samples or for helper invocations. So, do not blindly
2327 * enable this option.
2328 *
2329 * Note: See also issue #22 in ARB_shader_image_load_store
2330 */
2331 bool lower_helper_invocation;
2332
2333 /**
2334 * Convert gl_SampleMaskIn to gl_HelperInvocation as follows:
2335 *
2336 * gl_SampleMaskIn == 0 ---> gl_HelperInvocation
2337 * gl_SampleMaskIn != 0 ---> !gl_HelperInvocation
2338 */
2339 bool optimize_sample_mask_in;
2340
2341 bool lower_cs_local_index_from_id;
2342 bool lower_cs_local_id_from_index;
2343
2344 bool lower_device_index_to_zero;
2345
2346 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
2347 bool lower_wpos_pntc;
2348
2349 bool lower_hadd;
2350 bool lower_add_sat;
2351
2352 /**
2353 * Should IO be re-vectorized? Some scalar ISAs still operate on vec4's
2354 * for IO purposes and would prefer loads/stores be vectorized.
2355 */
2356 bool vectorize_io;
2357
2358 /**
2359 * Should nir_lower_io() create load_interpolated_input intrinsics?
2360 *
2361 * If not, it generates regular load_input intrinsics and interpolation
2362 * information must be inferred from the list of input nir_variables.
2363 */
2364 bool use_interpolated_input_intrinsics;
2365
2366 /* Lowers when 32x32->64 bit multiplication is not supported */
2367 bool lower_mul_2x32_64;
2368
2369 unsigned max_unroll_iterations;
2370
2371 nir_lower_int64_options lower_int64_options;
2372 nir_lower_doubles_options lower_doubles_options;
2373 } nir_shader_compiler_options;
2374
2375 typedef struct nir_shader {
2376 /** list of uniforms (nir_variable) */
2377 struct exec_list uniforms;
2378
2379 /** list of inputs (nir_variable) */
2380 struct exec_list inputs;
2381
2382 /** list of outputs (nir_variable) */
2383 struct exec_list outputs;
2384
2385 /** list of shared compute variables (nir_variable) */
2386 struct exec_list shared;
2387
2388 /** Set of driver-specific options for the shader.
2389 *
2390 * The memory for the options is expected to be kept in a single static
2391 * copy by the driver.
2392 */
2393 const struct nir_shader_compiler_options *options;
2394
2395 /** Various bits of compile-time information about a given shader */
2396 struct shader_info info;
2397
2398 /** list of global variables in the shader (nir_variable) */
2399 struct exec_list globals;
2400
2401 /** list of system value variables in the shader (nir_variable) */
2402 struct exec_list system_values;
2403
2404 struct exec_list functions; /** < list of nir_function */
2405
2406 /**
2407 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2408 * access plus one
2409 */
2410 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2411
2412 /** Size in bytes of required scratch space */
2413 unsigned scratch_size;
2414
2415 /** Constant data associated with this shader.
2416 *
2417 * Constant data is loaded through load_constant intrinsics. See also
2418 * nir_opt_large_constants.
2419 */
2420 void *constant_data;
2421 unsigned constant_data_size;
2422 } nir_shader;
2423
2424 #define nir_foreach_function(func, shader) \
2425 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2426
2427 static inline nir_function_impl *
2428 nir_shader_get_entrypoint(nir_shader *shader)
2429 {
2430 nir_function *func = NULL;
2431
2432 nir_foreach_function(function, shader) {
2433 assert(func == NULL);
2434 if (function->is_entrypoint) {
2435 func = function;
2436 #ifndef NDEBUG
2437 break;
2438 #endif
2439 }
2440 }
2441
2442 if (!func)
2443 return NULL;
2444
2445 assert(func->num_params == 0);
2446 assert(func->impl);
2447 return func->impl;
2448 }
2449
2450 nir_shader *nir_shader_create(void *mem_ctx,
2451 gl_shader_stage stage,
2452 const nir_shader_compiler_options *options,
2453 shader_info *si);
2454
2455 nir_register *nir_local_reg_create(nir_function_impl *impl);
2456
2457 void nir_reg_remove(nir_register *reg);
2458
2459 /** Adds a variable to the appropriate list in nir_shader */
2460 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2461
2462 static inline void
2463 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2464 {
2465 assert(var->data.mode == nir_var_function_temp);
2466 exec_list_push_tail(&impl->locals, &var->node);
2467 }
2468
2469 /** creates a variable, sets a few defaults, and adds it to the list */
2470 nir_variable *nir_variable_create(nir_shader *shader,
2471 nir_variable_mode mode,
2472 const struct glsl_type *type,
2473 const char *name);
2474 /** creates a local variable and adds it to the list */
2475 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2476 const struct glsl_type *type,
2477 const char *name);
2478
2479 /** creates a function and adds it to the shader's list of functions */
2480 nir_function *nir_function_create(nir_shader *shader, const char *name);
2481
2482 nir_function_impl *nir_function_impl_create(nir_function *func);
2483 /** creates a function_impl that isn't tied to any particular function */
2484 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2485
2486 nir_block *nir_block_create(nir_shader *shader);
2487 nir_if *nir_if_create(nir_shader *shader);
2488 nir_loop *nir_loop_create(nir_shader *shader);
2489
2490 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2491
2492 /** requests that the given pieces of metadata be generated */
2493 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2494 /** dirties all but the preserved metadata */
2495 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2496
2497 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2498 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2499
2500 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2501 nir_deref_type deref_type);
2502
2503 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2504
2505 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2506 unsigned num_components,
2507 unsigned bit_size);
2508
2509 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2510 nir_intrinsic_op op);
2511
2512 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2513 nir_function *callee);
2514
2515 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2516
2517 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2518
2519 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2520
2521 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2522 unsigned num_components,
2523 unsigned bit_size);
2524
2525 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2526
2527 /**
2528 * NIR Cursors and Instruction Insertion API
2529 * @{
2530 *
2531 * A tiny struct representing a point to insert/extract instructions or
2532 * control flow nodes. Helps reduce the combinatorial explosion of possible
2533 * points to insert/extract.
2534 *
2535 * \sa nir_control_flow.h
2536 */
2537 typedef enum {
2538 nir_cursor_before_block,
2539 nir_cursor_after_block,
2540 nir_cursor_before_instr,
2541 nir_cursor_after_instr,
2542 } nir_cursor_option;
2543
2544 typedef struct {
2545 nir_cursor_option option;
2546 union {
2547 nir_block *block;
2548 nir_instr *instr;
2549 };
2550 } nir_cursor;
2551
2552 static inline nir_block *
2553 nir_cursor_current_block(nir_cursor cursor)
2554 {
2555 if (cursor.option == nir_cursor_before_instr ||
2556 cursor.option == nir_cursor_after_instr) {
2557 return cursor.instr->block;
2558 } else {
2559 return cursor.block;
2560 }
2561 }
2562
2563 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2564
2565 static inline nir_cursor
2566 nir_before_block(nir_block *block)
2567 {
2568 nir_cursor cursor;
2569 cursor.option = nir_cursor_before_block;
2570 cursor.block = block;
2571 return cursor;
2572 }
2573
2574 static inline nir_cursor
2575 nir_after_block(nir_block *block)
2576 {
2577 nir_cursor cursor;
2578 cursor.option = nir_cursor_after_block;
2579 cursor.block = block;
2580 return cursor;
2581 }
2582
2583 static inline nir_cursor
2584 nir_before_instr(nir_instr *instr)
2585 {
2586 nir_cursor cursor;
2587 cursor.option = nir_cursor_before_instr;
2588 cursor.instr = instr;
2589 return cursor;
2590 }
2591
2592 static inline nir_cursor
2593 nir_after_instr(nir_instr *instr)
2594 {
2595 nir_cursor cursor;
2596 cursor.option = nir_cursor_after_instr;
2597 cursor.instr = instr;
2598 return cursor;
2599 }
2600
2601 static inline nir_cursor
2602 nir_after_block_before_jump(nir_block *block)
2603 {
2604 nir_instr *last_instr = nir_block_last_instr(block);
2605 if (last_instr && last_instr->type == nir_instr_type_jump) {
2606 return nir_before_instr(last_instr);
2607 } else {
2608 return nir_after_block(block);
2609 }
2610 }
2611
2612 static inline nir_cursor
2613 nir_before_src(nir_src *src, bool is_if_condition)
2614 {
2615 if (is_if_condition) {
2616 nir_block *prev_block =
2617 nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
2618 assert(!nir_block_ends_in_jump(prev_block));
2619 return nir_after_block(prev_block);
2620 } else if (src->parent_instr->type == nir_instr_type_phi) {
2621 #ifndef NDEBUG
2622 nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
2623 bool found = false;
2624 nir_foreach_phi_src(phi_src, cond_phi) {
2625 if (phi_src->src.ssa == src->ssa) {
2626 found = true;
2627 break;
2628 }
2629 }
2630 assert(found);
2631 #endif
2632 /* The LIST_ENTRY macro is a generic container-of macro, it just happens
2633 * to have a more specific name.
2634 */
2635 nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
2636 return nir_after_block_before_jump(phi_src->pred);
2637 } else {
2638 return nir_before_instr(src->parent_instr);
2639 }
2640 }
2641
2642 static inline nir_cursor
2643 nir_before_cf_node(nir_cf_node *node)
2644 {
2645 if (node->type == nir_cf_node_block)
2646 return nir_before_block(nir_cf_node_as_block(node));
2647
2648 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2649 }
2650
2651 static inline nir_cursor
2652 nir_after_cf_node(nir_cf_node *node)
2653 {
2654 if (node->type == nir_cf_node_block)
2655 return nir_after_block(nir_cf_node_as_block(node));
2656
2657 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2658 }
2659
2660 static inline nir_cursor
2661 nir_after_phis(nir_block *block)
2662 {
2663 nir_foreach_instr(instr, block) {
2664 if (instr->type != nir_instr_type_phi)
2665 return nir_before_instr(instr);
2666 }
2667 return nir_after_block(block);
2668 }
2669
2670 static inline nir_cursor
2671 nir_after_cf_node_and_phis(nir_cf_node *node)
2672 {
2673 if (node->type == nir_cf_node_block)
2674 return nir_after_block(nir_cf_node_as_block(node));
2675
2676 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2677
2678 return nir_after_phis(block);
2679 }
2680
2681 static inline nir_cursor
2682 nir_before_cf_list(struct exec_list *cf_list)
2683 {
2684 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2685 exec_list_get_head(cf_list), node);
2686 return nir_before_cf_node(first_node);
2687 }
2688
2689 static inline nir_cursor
2690 nir_after_cf_list(struct exec_list *cf_list)
2691 {
2692 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2693 exec_list_get_tail(cf_list), node);
2694 return nir_after_cf_node(last_node);
2695 }
2696
2697 /**
2698 * Insert a NIR instruction at the given cursor.
2699 *
2700 * Note: This does not update the cursor.
2701 */
2702 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2703
2704 static inline void
2705 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2706 {
2707 nir_instr_insert(nir_before_instr(instr), before);
2708 }
2709
2710 static inline void
2711 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2712 {
2713 nir_instr_insert(nir_after_instr(instr), after);
2714 }
2715
2716 static inline void
2717 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2718 {
2719 nir_instr_insert(nir_before_block(block), before);
2720 }
2721
2722 static inline void
2723 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2724 {
2725 nir_instr_insert(nir_after_block(block), after);
2726 }
2727
2728 static inline void
2729 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2730 {
2731 nir_instr_insert(nir_before_cf_node(node), before);
2732 }
2733
2734 static inline void
2735 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2736 {
2737 nir_instr_insert(nir_after_cf_node(node), after);
2738 }
2739
2740 static inline void
2741 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2742 {
2743 nir_instr_insert(nir_before_cf_list(list), before);
2744 }
2745
2746 static inline void
2747 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2748 {
2749 nir_instr_insert(nir_after_cf_list(list), after);
2750 }
2751
2752 void nir_instr_remove_v(nir_instr *instr);
2753
2754 static inline nir_cursor
2755 nir_instr_remove(nir_instr *instr)
2756 {
2757 nir_cursor cursor;
2758 nir_instr *prev = nir_instr_prev(instr);
2759 if (prev) {
2760 cursor = nir_after_instr(prev);
2761 } else {
2762 cursor = nir_before_block(instr->block);
2763 }
2764 nir_instr_remove_v(instr);
2765 return cursor;
2766 }
2767
2768 /** @} */
2769
2770 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2771 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2772 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2773 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2774 void *state);
2775 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2776 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2777
2778 nir_const_value *nir_src_as_const_value(nir_src src);
2779
2780 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
2781 static inline c_type * \
2782 nir_src_as_ ## name (nir_src src) \
2783 { \
2784 return src.is_ssa && src.ssa->parent_instr->type == type_enum \
2785 ? cast_macro(src.ssa->parent_instr) : NULL; \
2786 }
2787
2788 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
2789 NIR_SRC_AS_(intrinsic, nir_intrinsic_instr,
2790 nir_instr_type_intrinsic, nir_instr_as_intrinsic)
2791 NIR_SRC_AS_(deref, nir_deref_instr, nir_instr_type_deref, nir_instr_as_deref)
2792
2793 bool nir_src_is_dynamically_uniform(nir_src src);
2794 bool nir_srcs_equal(nir_src src1, nir_src src2);
2795 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2796 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2797 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2798 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2799 nir_dest new_dest);
2800
2801 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2802 unsigned num_components, unsigned bit_size,
2803 const char *name);
2804 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2805 unsigned num_components, unsigned bit_size,
2806 const char *name);
2807 static inline void
2808 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
2809 const struct glsl_type *type,
2810 const char *name)
2811 {
2812 assert(glsl_type_is_vector_or_scalar(type));
2813 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
2814 glsl_get_bit_size(type), name);
2815 }
2816 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2817 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2818 nir_instr *after_me);
2819
2820 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
2821
2822 /*
2823 * finds the next basic block in source-code order, returns NULL if there is
2824 * none
2825 */
2826
2827 nir_block *nir_block_cf_tree_next(nir_block *block);
2828
2829 /* Performs the opposite of nir_block_cf_tree_next() */
2830
2831 nir_block *nir_block_cf_tree_prev(nir_block *block);
2832
2833 /* Gets the first block in a CF node in source-code order */
2834
2835 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2836
2837 /* Gets the last block in a CF node in source-code order */
2838
2839 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2840
2841 /* Gets the next block after a CF node in source-code order */
2842
2843 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2844
2845 /* Macros for loops that visit blocks in source-code order */
2846
2847 #define nir_foreach_block(block, impl) \
2848 for (nir_block *block = nir_start_block(impl); block != NULL; \
2849 block = nir_block_cf_tree_next(block))
2850
2851 #define nir_foreach_block_safe(block, impl) \
2852 for (nir_block *block = nir_start_block(impl), \
2853 *next = nir_block_cf_tree_next(block); \
2854 block != NULL; \
2855 block = next, next = nir_block_cf_tree_next(block))
2856
2857 #define nir_foreach_block_reverse(block, impl) \
2858 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2859 block = nir_block_cf_tree_prev(block))
2860
2861 #define nir_foreach_block_reverse_safe(block, impl) \
2862 for (nir_block *block = nir_impl_last_block(impl), \
2863 *prev = nir_block_cf_tree_prev(block); \
2864 block != NULL; \
2865 block = prev, prev = nir_block_cf_tree_prev(block))
2866
2867 #define nir_foreach_block_in_cf_node(block, node) \
2868 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2869 block != nir_cf_node_cf_tree_next(node); \
2870 block = nir_block_cf_tree_next(block))
2871
2872 /* If the following CF node is an if, this function returns that if.
2873 * Otherwise, it returns NULL.
2874 */
2875 nir_if *nir_block_get_following_if(nir_block *block);
2876
2877 nir_loop *nir_block_get_following_loop(nir_block *block);
2878
2879 void nir_index_local_regs(nir_function_impl *impl);
2880 void nir_index_ssa_defs(nir_function_impl *impl);
2881 unsigned nir_index_instrs(nir_function_impl *impl);
2882
2883 void nir_index_blocks(nir_function_impl *impl);
2884
2885 void nir_print_shader(nir_shader *shader, FILE *fp);
2886 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2887 void nir_print_instr(const nir_instr *instr, FILE *fp);
2888 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
2889
2890 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2891 nir_function_impl *nir_function_impl_clone(nir_shader *shader,
2892 const nir_function_impl *fi);
2893 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2894 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2895
2896 nir_shader *nir_shader_serialize_deserialize(void *mem_ctx, nir_shader *s);
2897
2898 #ifndef NDEBUG
2899 void nir_validate_shader(nir_shader *shader, const char *when);
2900 void nir_metadata_set_validation_flag(nir_shader *shader);
2901 void nir_metadata_check_validation_flag(nir_shader *shader);
2902
2903 static inline bool
2904 should_skip_nir(const char *name)
2905 {
2906 static const char *list = NULL;
2907 if (!list) {
2908 /* Comma separated list of names to skip. */
2909 list = getenv("NIR_SKIP");
2910 if (!list)
2911 list = "";
2912 }
2913
2914 if (!list[0])
2915 return false;
2916
2917 return comma_separated_list_contains(list, name);
2918 }
2919
2920 static inline bool
2921 should_clone_nir(void)
2922 {
2923 static int should_clone = -1;
2924 if (should_clone < 0)
2925 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2926
2927 return should_clone;
2928 }
2929
2930 static inline bool
2931 should_serialize_deserialize_nir(void)
2932 {
2933 static int test_serialize = -1;
2934 if (test_serialize < 0)
2935 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
2936
2937 return test_serialize;
2938 }
2939
2940 static inline bool
2941 should_print_nir(void)
2942 {
2943 static int should_print = -1;
2944 if (should_print < 0)
2945 should_print = env_var_as_boolean("NIR_PRINT", false);
2946
2947 return should_print;
2948 }
2949 #else
2950 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
2951 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2952 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2953 static inline bool should_skip_nir(UNUSED const char *pass_name) { return false; }
2954 static inline bool should_clone_nir(void) { return false; }
2955 static inline bool should_serialize_deserialize_nir(void) { return false; }
2956 static inline bool should_print_nir(void) { return false; }
2957 #endif /* NDEBUG */
2958
2959 #define _PASS(pass, nir, do_pass) do { \
2960 if (should_skip_nir(#pass)) { \
2961 printf("skipping %s\n", #pass); \
2962 break; \
2963 } \
2964 do_pass \
2965 nir_validate_shader(nir, "after " #pass); \
2966 if (should_clone_nir()) { \
2967 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2968 ralloc_free(nir); \
2969 nir = clone; \
2970 } \
2971 if (should_serialize_deserialize_nir()) { \
2972 void *mem_ctx = ralloc_parent(nir); \
2973 nir = nir_shader_serialize_deserialize(mem_ctx, nir); \
2974 } \
2975 } while (0)
2976
2977 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, \
2978 nir_metadata_set_validation_flag(nir); \
2979 if (should_print_nir()) \
2980 printf("%s\n", #pass); \
2981 if (pass(nir, ##__VA_ARGS__)) { \
2982 progress = true; \
2983 if (should_print_nir()) \
2984 nir_print_shader(nir, stdout); \
2985 nir_metadata_check_validation_flag(nir); \
2986 } \
2987 )
2988
2989 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, \
2990 if (should_print_nir()) \
2991 printf("%s\n", #pass); \
2992 pass(nir, ##__VA_ARGS__); \
2993 if (should_print_nir()) \
2994 nir_print_shader(nir, stdout); \
2995 )
2996
2997 #define NIR_SKIP(name) should_skip_nir(#name)
2998
2999 void nir_calc_dominance_impl(nir_function_impl *impl);
3000 void nir_calc_dominance(nir_shader *shader);
3001
3002 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
3003 bool nir_block_dominates(nir_block *parent, nir_block *child);
3004
3005 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
3006 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
3007
3008 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
3009 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
3010
3011 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
3012 void nir_dump_cfg(nir_shader *shader, FILE *fp);
3013
3014 int nir_gs_count_vertices(const nir_shader *shader);
3015
3016 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
3017 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
3018 bool nir_split_var_copies(nir_shader *shader);
3019 bool nir_split_per_member_structs(nir_shader *shader);
3020 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
3021
3022 bool nir_lower_returns_impl(nir_function_impl *impl);
3023 bool nir_lower_returns(nir_shader *shader);
3024
3025 void nir_inline_function_impl(struct nir_builder *b,
3026 const nir_function_impl *impl,
3027 nir_ssa_def **params);
3028 bool nir_inline_functions(nir_shader *shader);
3029
3030 bool nir_propagate_invariant(nir_shader *shader);
3031
3032 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
3033 void nir_lower_deref_copy_instr(struct nir_builder *b,
3034 nir_intrinsic_instr *copy);
3035 bool nir_lower_var_copies(nir_shader *shader);
3036
3037 void nir_fixup_deref_modes(nir_shader *shader);
3038
3039 bool nir_lower_global_vars_to_local(nir_shader *shader);
3040
3041 typedef enum {
3042 nir_lower_direct_array_deref_of_vec_load = (1 << 0),
3043 nir_lower_indirect_array_deref_of_vec_load = (1 << 1),
3044 nir_lower_direct_array_deref_of_vec_store = (1 << 2),
3045 nir_lower_indirect_array_deref_of_vec_store = (1 << 3),
3046 } nir_lower_array_deref_of_vec_options;
3047
3048 bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
3049 nir_lower_array_deref_of_vec_options options);
3050
3051 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
3052
3053 bool nir_lower_locals_to_regs(nir_shader *shader);
3054
3055 void nir_lower_io_to_temporaries(nir_shader *shader,
3056 nir_function_impl *entrypoint,
3057 bool outputs, bool inputs);
3058
3059 bool nir_lower_vars_to_scratch(nir_shader *shader,
3060 nir_variable_mode modes,
3061 int size_threshold,
3062 glsl_type_size_align_func size_align);
3063
3064 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
3065
3066 void nir_gather_ssa_types(nir_function_impl *impl,
3067 BITSET_WORD *float_types,
3068 BITSET_WORD *int_types);
3069
3070 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
3071 int (*type_size)(const struct glsl_type *, bool));
3072
3073 /* Some helpers to do very simple linking */
3074 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
3075 bool nir_remove_unused_io_vars(nir_shader *shader, struct exec_list *var_list,
3076 uint64_t *used_by_other_stage,
3077 uint64_t *used_by_other_stage_patches);
3078 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
3079 bool default_to_smooth_interp);
3080 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
3081 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
3082
3083 typedef enum {
3084 /* If set, this forces all non-flat fragment shader inputs to be
3085 * interpolated as if with the "sample" qualifier. This requires
3086 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
3087 */
3088 nir_lower_io_force_sample_interpolation = (1 << 1),
3089 } nir_lower_io_options;
3090 bool nir_lower_io(nir_shader *shader,
3091 nir_variable_mode modes,
3092 int (*type_size)(const struct glsl_type *, bool),
3093 nir_lower_io_options);
3094
3095 typedef enum {
3096 /**
3097 * An address format which is a simple 32-bit global GPU address.
3098 */
3099 nir_address_format_32bit_global,
3100
3101 /**
3102 * An address format which is a simple 64-bit global GPU address.
3103 */
3104 nir_address_format_64bit_global,
3105
3106 /**
3107 * An address format which is a bounds-checked 64-bit global GPU address.
3108 *
3109 * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
3110 * address stored with the low bits in .x and high bits in .y, .z is a
3111 * size, and .w is an offset. When the final I/O operation is lowered, .w
3112 * is checked against .z and the operation is predicated on the result.
3113 */
3114 nir_address_format_64bit_bounded_global,
3115
3116 /**
3117 * An address format which is comprised of a vec2 where the first
3118 * component is a buffer index and the second is an offset.
3119 */
3120 nir_address_format_32bit_index_offset,
3121
3122 /**
3123 * An address format which is a simple 32-bit offset.
3124 */
3125 nir_address_format_32bit_offset,
3126
3127 /**
3128 * An address format representing a purely logical addressing model. In
3129 * this model, all deref chains must be complete from the dereference
3130 * operation to the variable. Cast derefs are not allowed. These
3131 * addresses will be 32-bit scalars but the format is immaterial because
3132 * you can always chase the chain.
3133 */
3134 nir_address_format_logical,
3135 } nir_address_format;
3136
3137 static inline unsigned
3138 nir_address_format_bit_size(nir_address_format addr_format)
3139 {
3140 switch (addr_format) {
3141 case nir_address_format_32bit_global: return 32;
3142 case nir_address_format_64bit_global: return 64;
3143 case nir_address_format_64bit_bounded_global: return 32;
3144 case nir_address_format_32bit_index_offset: return 32;
3145 case nir_address_format_32bit_offset: return 32;
3146 case nir_address_format_logical: return 32;
3147 }
3148 unreachable("Invalid address format");
3149 }
3150
3151 static inline unsigned
3152 nir_address_format_num_components(nir_address_format addr_format)
3153 {
3154 switch (addr_format) {
3155 case nir_address_format_32bit_global: return 1;
3156 case nir_address_format_64bit_global: return 1;
3157 case nir_address_format_64bit_bounded_global: return 4;
3158 case nir_address_format_32bit_index_offset: return 2;
3159 case nir_address_format_32bit_offset: return 1;
3160 case nir_address_format_logical: return 1;
3161 }
3162 unreachable("Invalid address format");
3163 }
3164
3165 static inline const struct glsl_type *
3166 nir_address_format_to_glsl_type(nir_address_format addr_format)
3167 {
3168 unsigned bit_size = nir_address_format_bit_size(addr_format);
3169 assert(bit_size == 32 || bit_size == 64);
3170 return glsl_vector_type(bit_size == 32 ? GLSL_TYPE_UINT : GLSL_TYPE_UINT64,
3171 nir_address_format_num_components(addr_format));
3172 }
3173
3174 const nir_const_value *nir_address_format_null_value(nir_address_format addr_format);
3175
3176 nir_ssa_def * nir_explicit_io_address_from_deref(struct nir_builder *b,
3177 nir_deref_instr *deref,
3178 nir_ssa_def *base_addr,
3179 nir_address_format addr_format);
3180 void nir_lower_explicit_io_instr(struct nir_builder *b,
3181 nir_intrinsic_instr *io_instr,
3182 nir_ssa_def *addr,
3183 nir_address_format addr_format);
3184
3185 bool nir_lower_explicit_io(nir_shader *shader,
3186 nir_variable_mode modes,
3187 nir_address_format);
3188
3189 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
3190 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
3191
3192 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
3193
3194 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
3195 bool nir_lower_regs_to_ssa(nir_shader *shader);
3196 bool nir_lower_vars_to_ssa(nir_shader *shader);
3197
3198 bool nir_remove_dead_derefs(nir_shader *shader);
3199 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
3200 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
3201 bool nir_lower_constant_initializers(nir_shader *shader,
3202 nir_variable_mode modes);
3203
3204 bool nir_move_load_const(nir_shader *shader);
3205 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
3206 bool nir_lower_vec_to_movs(nir_shader *shader);
3207 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
3208 bool alpha_to_one);
3209 bool nir_lower_alu(nir_shader *shader);
3210
3211 bool nir_lower_flrp(nir_shader *shader, unsigned lowering_mask,
3212 bool always_precise, bool have_ffma);
3213
3214 bool nir_lower_alu_to_scalar(nir_shader *shader, BITSET_WORD *lower_set);
3215 bool nir_lower_bool_to_float(nir_shader *shader);
3216 bool nir_lower_bool_to_int32(nir_shader *shader);
3217 bool nir_lower_int_to_float(nir_shader *shader);
3218 bool nir_lower_load_const_to_scalar(nir_shader *shader);
3219 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
3220 bool nir_lower_phis_to_scalar(nir_shader *shader);
3221 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
3222 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
3223 bool outputs_only);
3224 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
3225 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
3226 bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
3227
3228 void nir_lower_fragcoord_wtrans(nir_shader *shader);
3229 void nir_lower_viewport_transform(nir_shader *shader);
3230 bool nir_lower_uniforms_to_ubo(nir_shader *shader, int multiplier);
3231
3232 typedef struct nir_lower_subgroups_options {
3233 uint8_t subgroup_size;
3234 uint8_t ballot_bit_size;
3235 bool lower_to_scalar:1;
3236 bool lower_vote_trivial:1;
3237 bool lower_vote_eq_to_ballot:1;
3238 bool lower_subgroup_masks:1;
3239 bool lower_shuffle:1;
3240 bool lower_shuffle_to_32bit:1;
3241 bool lower_quad:1;
3242 } nir_lower_subgroups_options;
3243
3244 bool nir_lower_subgroups(nir_shader *shader,
3245 const nir_lower_subgroups_options *options);
3246
3247 bool nir_lower_system_values(nir_shader *shader);
3248
3249 enum PACKED nir_lower_tex_packing {
3250 nir_lower_tex_packing_none = 0,
3251 /* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
3252 * or unsigned ints based on the sampler type
3253 */
3254 nir_lower_tex_packing_16,
3255 /* The sampler returns 1 32-bit word of 4x8 unorm */
3256 nir_lower_tex_packing_8,
3257 };
3258
3259 typedef struct nir_lower_tex_options {
3260 /**
3261 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
3262 * sampler types a texture projector is lowered.
3263 */
3264 unsigned lower_txp;
3265
3266 /**
3267 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
3268 */
3269 bool lower_txf_offset;
3270
3271 /**
3272 * If true, lower away nir_tex_src_offset for all rect textures.
3273 */
3274 bool lower_rect_offset;
3275
3276 /**
3277 * If true, lower rect textures to 2D, using txs to fetch the
3278 * texture dimensions and dividing the texture coords by the
3279 * texture dims to normalize.
3280 */
3281 bool lower_rect;
3282
3283 /**
3284 * If true, convert yuv to rgb.
3285 */
3286 unsigned lower_y_uv_external;
3287 unsigned lower_y_u_v_external;
3288 unsigned lower_yx_xuxv_external;
3289 unsigned lower_xy_uxvx_external;
3290 unsigned lower_ayuv_external;
3291 unsigned lower_xyuv_external;
3292
3293 /**
3294 * To emulate certain texture wrap modes, this can be used
3295 * to saturate the specified tex coord to [0.0, 1.0]. The
3296 * bits are according to sampler #, ie. if, for example:
3297 *
3298 * (conf->saturate_s & (1 << n))
3299 *
3300 * is true, then the s coord for sampler n is saturated.
3301 *
3302 * Note that clamping must happen *after* projector lowering
3303 * so any projected texture sample instruction with a clamped
3304 * coordinate gets automatically lowered, regardless of the
3305 * 'lower_txp' setting.
3306 */
3307 unsigned saturate_s;
3308 unsigned saturate_t;
3309 unsigned saturate_r;
3310
3311 /* Bitmask of textures that need swizzling.
3312 *
3313 * If (swizzle_result & (1 << texture_index)), then the swizzle in
3314 * swizzles[texture_index] is applied to the result of the texturing
3315 * operation.
3316 */
3317 unsigned swizzle_result;
3318
3319 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
3320 * while 4 and 5 represent 0 and 1 respectively.
3321 */
3322 uint8_t swizzles[32][4];
3323
3324 /* Can be used to scale sampled values in range required by the format. */
3325 float scale_factors[32];
3326
3327 /**
3328 * Bitmap of textures that need srgb to linear conversion. If
3329 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
3330 * of the texture are lowered to linear.
3331 */
3332 unsigned lower_srgb;
3333
3334 /**
3335 * If true, lower nir_texop_tex on shaders that doesn't support implicit
3336 * LODs to nir_texop_txl.
3337 */
3338 bool lower_tex_without_implicit_lod;
3339
3340 /**
3341 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
3342 */
3343 bool lower_txd_cube_map;
3344
3345 /**
3346 * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
3347 */
3348 bool lower_txd_3d;
3349
3350 /**
3351 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
3352 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
3353 * with lower_txd_cube_map.
3354 */
3355 bool lower_txd_shadow;
3356
3357 /**
3358 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
3359 * Implies lower_txd_cube_map and lower_txd_shadow.
3360 */
3361 bool lower_txd;
3362
3363 /**
3364 * If true, lower nir_texop_txb that try to use shadow compare and min_lod
3365 * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
3366 */
3367 bool lower_txb_shadow_clamp;
3368
3369 /**
3370 * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
3371 * with nir_texop_txl. This includes cube maps.
3372 */
3373 bool lower_txd_shadow_clamp;
3374
3375 /**
3376 * If true, lower nir_texop_txd on when it uses both offset and min_lod
3377 * with nir_texop_txl. This includes cube maps.
3378 */
3379 bool lower_txd_offset_clamp;
3380
3381 /**
3382 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3383 * sampler is bindless.
3384 */
3385 bool lower_txd_clamp_bindless_sampler;
3386
3387 /**
3388 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3389 * sampler index is not statically determinable to be less than 16.
3390 */
3391 bool lower_txd_clamp_if_sampler_index_not_lt_16;
3392
3393 /**
3394 * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
3395 * mixed-up tg4 locations.
3396 */
3397 bool lower_tg4_broadcom_swizzle;
3398
3399 /**
3400 * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
3401 */
3402 bool lower_tg4_offsets;
3403
3404 enum nir_lower_tex_packing lower_tex_packing[32];
3405 } nir_lower_tex_options;
3406
3407 bool nir_lower_tex(nir_shader *shader,
3408 const nir_lower_tex_options *options);
3409
3410 enum nir_lower_non_uniform_access_type {
3411 nir_lower_non_uniform_ubo_access = (1 << 0),
3412 nir_lower_non_uniform_ssbo_access = (1 << 1),
3413 nir_lower_non_uniform_texture_access = (1 << 2),
3414 nir_lower_non_uniform_image_access = (1 << 3),
3415 };
3416
3417 bool nir_lower_non_uniform_access(nir_shader *shader,
3418 enum nir_lower_non_uniform_access_type);
3419
3420 bool nir_lower_idiv(nir_shader *shader);
3421
3422 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables, bool use_vars);
3423 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
3424 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
3425
3426 bool nir_lower_frexp(nir_shader *nir);
3427
3428 void nir_lower_two_sided_color(nir_shader *shader);
3429
3430 bool nir_lower_clamp_color_outputs(nir_shader *shader);
3431
3432 void nir_lower_passthrough_edgeflags(nir_shader *shader);
3433 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
3434 const gl_state_index16 *uniform_state_tokens);
3435
3436 typedef struct nir_lower_wpos_ytransform_options {
3437 gl_state_index16 state_tokens[STATE_LENGTH];
3438 bool fs_coord_origin_upper_left :1;
3439 bool fs_coord_origin_lower_left :1;
3440 bool fs_coord_pixel_center_integer :1;
3441 bool fs_coord_pixel_center_half_integer :1;
3442 } nir_lower_wpos_ytransform_options;
3443
3444 bool nir_lower_wpos_ytransform(nir_shader *shader,
3445 const nir_lower_wpos_ytransform_options *options);
3446 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
3447
3448 bool nir_lower_fb_read(nir_shader *shader);
3449
3450 typedef struct nir_lower_drawpixels_options {
3451 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
3452 gl_state_index16 scale_state_tokens[STATE_LENGTH];
3453 gl_state_index16 bias_state_tokens[STATE_LENGTH];
3454 unsigned drawpix_sampler;
3455 unsigned pixelmap_sampler;
3456 bool pixel_maps :1;
3457 bool scale_and_bias :1;
3458 } nir_lower_drawpixels_options;
3459
3460 void nir_lower_drawpixels(nir_shader *shader,
3461 const nir_lower_drawpixels_options *options);
3462
3463 typedef struct nir_lower_bitmap_options {
3464 unsigned sampler;
3465 bool swizzle_xxxx;
3466 } nir_lower_bitmap_options;
3467
3468 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
3469
3470 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
3471
3472 typedef enum {
3473 nir_lower_int_source_mods = 1 << 0,
3474 nir_lower_float_source_mods = 1 << 1,
3475 nir_lower_triop_abs = 1 << 2,
3476 nir_lower_all_source_mods = (1 << 3) - 1
3477 } nir_lower_to_source_mods_flags;
3478
3479
3480 bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
3481
3482 bool nir_lower_gs_intrinsics(nir_shader *shader);
3483
3484 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
3485
3486 bool nir_lower_bit_size(nir_shader *shader,
3487 nir_lower_bit_size_callback callback,
3488 void *callback_data);
3489
3490 nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
3491 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
3492
3493 nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
3494 bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
3495 nir_lower_doubles_options options);
3496 bool nir_lower_pack(nir_shader *shader);
3497
3498 bool nir_normalize_cubemap_coords(nir_shader *shader);
3499
3500 void nir_live_ssa_defs_impl(nir_function_impl *impl);
3501
3502 void nir_loop_analyze_impl(nir_function_impl *impl,
3503 nir_variable_mode indirect_mask);
3504
3505 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
3506
3507 bool nir_repair_ssa_impl(nir_function_impl *impl);
3508 bool nir_repair_ssa(nir_shader *shader);
3509
3510 void nir_convert_loop_to_lcssa(nir_loop *loop);
3511
3512 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
3513 * registers. If false, convert all values (even those not involved in a phi
3514 * node) to registers.
3515 */
3516 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
3517
3518 bool nir_lower_phis_to_regs_block(nir_block *block);
3519 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
3520 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
3521
3522 bool nir_opt_comparison_pre(nir_shader *shader);
3523
3524 bool nir_opt_algebraic(nir_shader *shader);
3525 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
3526 bool nir_opt_algebraic_late(nir_shader *shader);
3527 bool nir_opt_constant_folding(nir_shader *shader);
3528
3529 bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
3530
3531 bool nir_copy_prop(nir_shader *shader);
3532
3533 bool nir_opt_copy_prop_vars(nir_shader *shader);
3534
3535 bool nir_opt_cse(nir_shader *shader);
3536
3537 bool nir_opt_dce(nir_shader *shader);
3538
3539 bool nir_opt_dead_cf(nir_shader *shader);
3540
3541 bool nir_opt_dead_write_vars(nir_shader *shader);
3542
3543 bool nir_opt_deref_impl(nir_function_impl *impl);
3544 bool nir_opt_deref(nir_shader *shader);
3545
3546 bool nir_opt_find_array_copies(nir_shader *shader);
3547
3548 bool nir_opt_gcm(nir_shader *shader, bool value_number);
3549
3550 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
3551
3552 bool nir_opt_if(nir_shader *shader, bool aggressive_last_continue);
3553
3554 bool nir_opt_intrinsics(nir_shader *shader);
3555
3556 bool nir_opt_large_constants(nir_shader *shader,
3557 glsl_type_size_align_func size_align,
3558 unsigned threshold);
3559
3560 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
3561
3562 bool nir_opt_move_comparisons(nir_shader *shader);
3563
3564 bool nir_opt_move_load_ubo(nir_shader *shader);
3565
3566 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
3567 bool indirect_load_ok, bool expensive_alu_ok);
3568
3569 bool nir_opt_remove_phis(nir_shader *shader);
3570
3571 bool nir_opt_shrink_load(nir_shader *shader);
3572
3573 bool nir_opt_trivial_continues(nir_shader *shader);
3574
3575 bool nir_opt_undef(nir_shader *shader);
3576
3577 bool nir_opt_conditional_discard(nir_shader *shader);
3578
3579 void nir_strip(nir_shader *shader);
3580
3581 void nir_sweep(nir_shader *shader);
3582
3583 void nir_remap_dual_slot_attributes(nir_shader *shader,
3584 uint64_t *dual_slot_inputs);
3585 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
3586
3587 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
3588 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
3589
3590 bool nir_lower_sincos(nir_shader *shader);
3591
3592 #ifdef __cplusplus
3593 } /* extern "C" */
3594 #endif
3595
3596 #endif /* NIR_H */