nir: Add nir_alu_srcs_negative_equal
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitscan.h"
38 #include "util/bitset.h"
39 #include "util/macros.h"
40 #include "compiler/nir_types.h"
41 #include "compiler/shader_enums.h"
42 #include "compiler/shader_info.h"
43 #include <stdio.h>
44
45 #ifndef NDEBUG
46 #include "util/debug.h"
47 #endif /* NDEBUG */
48
49 #include "nir_opcodes.h"
50
51 #if defined(_WIN32) && !defined(snprintf)
52 #define snprintf _snprintf
53 #endif
54
55 #ifdef __cplusplus
56 extern "C" {
57 #endif
58
59 #define NIR_FALSE 0u
60 #define NIR_TRUE (~0u)
61 #define NIR_MAX_VEC_COMPONENTS 4
62 #define NIR_MAX_MATRIX_COLUMNS 4
63 typedef uint8_t nir_component_mask_t;
64
65 /** Defines a cast function
66 *
67 * This macro defines a cast function from in_type to out_type where
68 * out_type is some structure type that contains a field of type out_type.
69 *
70 * Note that you have to be a bit careful as the generated cast function
71 * destroys constness.
72 */
73 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
74 type_field, type_value) \
75 static inline out_type * \
76 name(const in_type *parent) \
77 { \
78 assert(parent && parent->type_field == type_value); \
79 return exec_node_data(out_type, parent, field); \
80 }
81
82 struct nir_function;
83 struct nir_shader;
84 struct nir_instr;
85 struct nir_builder;
86
87
88 /**
89 * Description of built-in state associated with a uniform
90 *
91 * \sa nir_variable::state_slots
92 */
93 typedef struct {
94 gl_state_index16 tokens[STATE_LENGTH];
95 int swizzle;
96 } nir_state_slot;
97
98 typedef enum {
99 nir_var_shader_in = (1 << 0),
100 nir_var_shader_out = (1 << 1),
101 nir_var_shader_temp = (1 << 2),
102 nir_var_function_temp = (1 << 3),
103 nir_var_uniform = (1 << 4),
104 nir_var_mem_ubo = (1 << 5),
105 nir_var_system_value = (1 << 6),
106 nir_var_mem_ssbo = (1 << 7),
107 nir_var_mem_shared = (1 << 8),
108 nir_var_mem_global = (1 << 9),
109 nir_var_all = ~0,
110 } nir_variable_mode;
111
112 /**
113 * Rounding modes.
114 */
115 typedef enum {
116 nir_rounding_mode_undef = 0,
117 nir_rounding_mode_rtne = 1, /* round to nearest even */
118 nir_rounding_mode_ru = 2, /* round up */
119 nir_rounding_mode_rd = 3, /* round down */
120 nir_rounding_mode_rtz = 4, /* round towards zero */
121 } nir_rounding_mode;
122
123 typedef union {
124 bool b[NIR_MAX_VEC_COMPONENTS];
125 float f32[NIR_MAX_VEC_COMPONENTS];
126 double f64[NIR_MAX_VEC_COMPONENTS];
127 int8_t i8[NIR_MAX_VEC_COMPONENTS];
128 uint8_t u8[NIR_MAX_VEC_COMPONENTS];
129 int16_t i16[NIR_MAX_VEC_COMPONENTS];
130 uint16_t u16[NIR_MAX_VEC_COMPONENTS];
131 int32_t i32[NIR_MAX_VEC_COMPONENTS];
132 uint32_t u32[NIR_MAX_VEC_COMPONENTS];
133 int64_t i64[NIR_MAX_VEC_COMPONENTS];
134 uint64_t u64[NIR_MAX_VEC_COMPONENTS];
135 } nir_const_value;
136
137 typedef struct nir_constant {
138 /**
139 * Value of the constant.
140 *
141 * The field used to back the values supplied by the constant is determined
142 * by the type associated with the \c nir_variable. Constants may be
143 * scalars, vectors, or matrices.
144 */
145 nir_const_value values[NIR_MAX_MATRIX_COLUMNS];
146
147 /* we could get this from the var->type but makes clone *much* easier to
148 * not have to care about the type.
149 */
150 unsigned num_elements;
151
152 /* Array elements / Structure Fields */
153 struct nir_constant **elements;
154 } nir_constant;
155
156 /**
157 * \brief Layout qualifiers for gl_FragDepth.
158 *
159 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
160 * with a layout qualifier.
161 */
162 typedef enum {
163 nir_depth_layout_none, /**< No depth layout is specified. */
164 nir_depth_layout_any,
165 nir_depth_layout_greater,
166 nir_depth_layout_less,
167 nir_depth_layout_unchanged
168 } nir_depth_layout;
169
170 /**
171 * Enum keeping track of how a variable was declared.
172 */
173 typedef enum {
174 /**
175 * Normal declaration.
176 */
177 nir_var_declared_normally = 0,
178
179 /**
180 * Variable is implicitly generated by the compiler and should not be
181 * visible via the API.
182 */
183 nir_var_hidden,
184 } nir_var_declaration_type;
185
186 /**
187 * Either a uniform, global variable, shader input, or shader output. Based on
188 * ir_variable - it should be easy to translate between the two.
189 */
190
191 typedef struct nir_variable {
192 struct exec_node node;
193
194 /**
195 * Declared type of the variable
196 */
197 const struct glsl_type *type;
198
199 /**
200 * Declared name of the variable
201 */
202 char *name;
203
204 struct nir_variable_data {
205 /**
206 * Storage class of the variable.
207 *
208 * \sa nir_variable_mode
209 */
210 nir_variable_mode mode;
211
212 /**
213 * Is the variable read-only?
214 *
215 * This is set for variables declared as \c const, shader inputs,
216 * and uniforms.
217 */
218 unsigned read_only:1;
219 unsigned centroid:1;
220 unsigned sample:1;
221 unsigned patch:1;
222 unsigned invariant:1;
223
224 /**
225 * When separate shader programs are enabled, only input/outputs between
226 * the stages of a multi-stage separate program can be safely removed
227 * from the shader interface. Other input/outputs must remains active.
228 *
229 * This is also used to make sure xfb varyings that are unused by the
230 * fragment shader are not removed.
231 */
232 unsigned always_active_io:1;
233
234 /**
235 * Interpolation mode for shader inputs / outputs
236 *
237 * \sa glsl_interp_mode
238 */
239 unsigned interpolation:2;
240
241 /**
242 * If non-zero, then this variable may be packed along with other variables
243 * into a single varying slot, so this offset should be applied when
244 * accessing components. For example, an offset of 1 means that the x
245 * component of this variable is actually stored in component y of the
246 * location specified by \c location.
247 */
248 unsigned location_frac:2;
249
250 /**
251 * If true, this variable represents an array of scalars that should
252 * be tightly packed. In other words, consecutive array elements
253 * should be stored one component apart, rather than one slot apart.
254 */
255 unsigned compact:1;
256
257 /**
258 * Whether this is a fragment shader output implicitly initialized with
259 * the previous contents of the specified render target at the
260 * framebuffer location corresponding to this shader invocation.
261 */
262 unsigned fb_fetch_output:1;
263
264 /**
265 * Non-zero if this variable is considered bindless as defined by
266 * ARB_bindless_texture.
267 */
268 unsigned bindless:1;
269
270 /**
271 * Was an explicit binding set in the shader?
272 */
273 unsigned explicit_binding:1;
274
275 /**
276 * Was a transfer feedback buffer set in the shader?
277 */
278 unsigned explicit_xfb_buffer:1;
279
280 /**
281 * Was a transfer feedback stride set in the shader?
282 */
283 unsigned explicit_xfb_stride:1;
284
285 /**
286 * Was an explicit offset set in the shader?
287 */
288 unsigned explicit_offset:1;
289
290 /**
291 * \brief Layout qualifier for gl_FragDepth.
292 *
293 * This is not equal to \c ir_depth_layout_none if and only if this
294 * variable is \c gl_FragDepth and a layout qualifier is specified.
295 */
296 nir_depth_layout depth_layout;
297
298 /**
299 * Storage location of the base of this variable
300 *
301 * The precise meaning of this field depends on the nature of the variable.
302 *
303 * - Vertex shader input: one of the values from \c gl_vert_attrib.
304 * - Vertex shader output: one of the values from \c gl_varying_slot.
305 * - Geometry shader input: one of the values from \c gl_varying_slot.
306 * - Geometry shader output: one of the values from \c gl_varying_slot.
307 * - Fragment shader input: one of the values from \c gl_varying_slot.
308 * - Fragment shader output: one of the values from \c gl_frag_result.
309 * - Uniforms: Per-stage uniform slot number for default uniform block.
310 * - Uniforms: Index within the uniform block definition for UBO members.
311 * - Non-UBO Uniforms: uniform slot number.
312 * - Other: This field is not currently used.
313 *
314 * If the variable is a uniform, shader input, or shader output, and the
315 * slot has not been assigned, the value will be -1.
316 */
317 int location;
318
319 /**
320 * The actual location of the variable in the IR. Only valid for inputs
321 * and outputs.
322 */
323 unsigned int driver_location;
324
325 /**
326 * Vertex stream output identifier.
327 *
328 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
329 * stream of the i-th component.
330 */
331 unsigned stream;
332
333 /**
334 * output index for dual source blending.
335 */
336 int index;
337
338 /**
339 * Descriptor set binding for sampler or UBO.
340 */
341 int descriptor_set;
342
343 /**
344 * Initial binding point for a sampler or UBO.
345 *
346 * For array types, this represents the binding point for the first element.
347 */
348 int binding;
349
350 /**
351 * Location an atomic counter or transform feedback is stored at.
352 */
353 unsigned offset;
354
355 /**
356 * Transform feedback buffer.
357 */
358 unsigned xfb_buffer;
359
360 /**
361 * Transform feedback stride.
362 */
363 unsigned xfb_stride;
364
365 /**
366 * How the variable was declared. See nir_var_declaration_type.
367 *
368 * This is used to detect variables generated by the compiler, so should
369 * not be visible via the API.
370 */
371 unsigned how_declared:2;
372
373 /**
374 * ARB_shader_image_load_store qualifiers.
375 */
376 struct {
377 enum gl_access_qualifier access;
378
379 /** Image internal format if specified explicitly, otherwise GL_NONE. */
380 GLenum format;
381 } image;
382 } data;
383
384 /**
385 * Built-in state that backs this uniform
386 *
387 * Once set at variable creation, \c state_slots must remain invariant.
388 * This is because, ideally, this array would be shared by all clones of
389 * this variable in the IR tree. In other words, we'd really like for it
390 * to be a fly-weight.
391 *
392 * If the variable is not a uniform, \c num_state_slots will be zero and
393 * \c state_slots will be \c NULL.
394 */
395 /*@{*/
396 unsigned num_state_slots; /**< Number of state slots used */
397 nir_state_slot *state_slots; /**< State descriptors. */
398 /*@}*/
399
400 /**
401 * Constant expression assigned in the initializer of the variable
402 *
403 * This field should only be used temporarily by creators of NIR shaders
404 * and then lower_constant_initializers can be used to get rid of them.
405 * Most of the rest of NIR ignores this field or asserts that it's NULL.
406 */
407 nir_constant *constant_initializer;
408
409 /**
410 * For variables that are in an interface block or are an instance of an
411 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
412 *
413 * \sa ir_variable::location
414 */
415 const struct glsl_type *interface_type;
416
417 /**
418 * Description of per-member data for per-member struct variables
419 *
420 * This is used for variables which are actually an amalgamation of
421 * multiple entities such as a struct of built-in values or a struct of
422 * inputs each with their own layout specifier. This is only allowed on
423 * variables with a struct or array of array of struct type.
424 */
425 unsigned num_members;
426 struct nir_variable_data *members;
427 } nir_variable;
428
429 #define nir_foreach_variable(var, var_list) \
430 foreach_list_typed(nir_variable, var, node, var_list)
431
432 #define nir_foreach_variable_safe(var, var_list) \
433 foreach_list_typed_safe(nir_variable, var, node, var_list)
434
435 static inline bool
436 nir_variable_is_global(const nir_variable *var)
437 {
438 return var->data.mode != nir_var_function_temp;
439 }
440
441 typedef struct nir_register {
442 struct exec_node node;
443
444 unsigned num_components; /** < number of vector components */
445 unsigned num_array_elems; /** < size of array (0 for no array) */
446
447 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
448 uint8_t bit_size;
449
450 /** generic register index. */
451 unsigned index;
452
453 /** only for debug purposes, can be NULL */
454 const char *name;
455
456 /** whether this register is local (per-function) or global (per-shader) */
457 bool is_global;
458
459 /**
460 * If this flag is set to true, then accessing channels >= num_components
461 * is well-defined, and simply spills over to the next array element. This
462 * is useful for backends that can do per-component accessing, in
463 * particular scalar backends. By setting this flag and making
464 * num_components equal to 1, structures can be packed tightly into
465 * registers and then registers can be accessed per-component to get to
466 * each structure member, even if it crosses vec4 boundaries.
467 */
468 bool is_packed;
469
470 /** set of nir_srcs where this register is used (read from) */
471 struct list_head uses;
472
473 /** set of nir_dests where this register is defined (written to) */
474 struct list_head defs;
475
476 /** set of nir_ifs where this register is used as a condition */
477 struct list_head if_uses;
478 } nir_register;
479
480 #define nir_foreach_register(reg, reg_list) \
481 foreach_list_typed(nir_register, reg, node, reg_list)
482 #define nir_foreach_register_safe(reg, reg_list) \
483 foreach_list_typed_safe(nir_register, reg, node, reg_list)
484
485 typedef enum PACKED {
486 nir_instr_type_alu,
487 nir_instr_type_deref,
488 nir_instr_type_call,
489 nir_instr_type_tex,
490 nir_instr_type_intrinsic,
491 nir_instr_type_load_const,
492 nir_instr_type_jump,
493 nir_instr_type_ssa_undef,
494 nir_instr_type_phi,
495 nir_instr_type_parallel_copy,
496 } nir_instr_type;
497
498 typedef struct nir_instr {
499 struct exec_node node;
500 struct nir_block *block;
501 nir_instr_type type;
502
503 /* A temporary for optimization and analysis passes to use for storing
504 * flags. For instance, DCE uses this to store the "dead/live" info.
505 */
506 uint8_t pass_flags;
507
508 /** generic instruction index. */
509 unsigned index;
510 } nir_instr;
511
512 static inline nir_instr *
513 nir_instr_next(nir_instr *instr)
514 {
515 struct exec_node *next = exec_node_get_next(&instr->node);
516 if (exec_node_is_tail_sentinel(next))
517 return NULL;
518 else
519 return exec_node_data(nir_instr, next, node);
520 }
521
522 static inline nir_instr *
523 nir_instr_prev(nir_instr *instr)
524 {
525 struct exec_node *prev = exec_node_get_prev(&instr->node);
526 if (exec_node_is_head_sentinel(prev))
527 return NULL;
528 else
529 return exec_node_data(nir_instr, prev, node);
530 }
531
532 static inline bool
533 nir_instr_is_first(const nir_instr *instr)
534 {
535 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
536 }
537
538 static inline bool
539 nir_instr_is_last(const nir_instr *instr)
540 {
541 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
542 }
543
544 typedef struct nir_ssa_def {
545 /** for debugging only, can be NULL */
546 const char* name;
547
548 /** generic SSA definition index. */
549 unsigned index;
550
551 /** Index into the live_in and live_out bitfields */
552 unsigned live_index;
553
554 /** Instruction which produces this SSA value. */
555 nir_instr *parent_instr;
556
557 /** set of nir_instrs where this register is used (read from) */
558 struct list_head uses;
559
560 /** set of nir_ifs where this register is used as a condition */
561 struct list_head if_uses;
562
563 uint8_t num_components;
564
565 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
566 uint8_t bit_size;
567 } nir_ssa_def;
568
569 struct nir_src;
570
571 typedef struct {
572 nir_register *reg;
573 struct nir_src *indirect; /** < NULL for no indirect offset */
574 unsigned base_offset;
575
576 /* TODO use-def chain goes here */
577 } nir_reg_src;
578
579 typedef struct {
580 nir_instr *parent_instr;
581 struct list_head def_link;
582
583 nir_register *reg;
584 struct nir_src *indirect; /** < NULL for no indirect offset */
585 unsigned base_offset;
586
587 /* TODO def-use chain goes here */
588 } nir_reg_dest;
589
590 struct nir_if;
591
592 typedef struct nir_src {
593 union {
594 /** Instruction that consumes this value as a source. */
595 nir_instr *parent_instr;
596 struct nir_if *parent_if;
597 };
598
599 struct list_head use_link;
600
601 union {
602 nir_reg_src reg;
603 nir_ssa_def *ssa;
604 };
605
606 bool is_ssa;
607 } nir_src;
608
609 static inline nir_src
610 nir_src_init(void)
611 {
612 nir_src src = { { NULL } };
613 return src;
614 }
615
616 #define NIR_SRC_INIT nir_src_init()
617
618 #define nir_foreach_use(src, reg_or_ssa_def) \
619 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
620
621 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
622 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
623
624 #define nir_foreach_if_use(src, reg_or_ssa_def) \
625 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
626
627 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
628 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
629
630 typedef struct {
631 union {
632 nir_reg_dest reg;
633 nir_ssa_def ssa;
634 };
635
636 bool is_ssa;
637 } nir_dest;
638
639 static inline nir_dest
640 nir_dest_init(void)
641 {
642 nir_dest dest = { { { NULL } } };
643 return dest;
644 }
645
646 #define NIR_DEST_INIT nir_dest_init()
647
648 #define nir_foreach_def(dest, reg) \
649 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
650
651 #define nir_foreach_def_safe(dest, reg) \
652 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
653
654 static inline nir_src
655 nir_src_for_ssa(nir_ssa_def *def)
656 {
657 nir_src src = NIR_SRC_INIT;
658
659 src.is_ssa = true;
660 src.ssa = def;
661
662 return src;
663 }
664
665 static inline nir_src
666 nir_src_for_reg(nir_register *reg)
667 {
668 nir_src src = NIR_SRC_INIT;
669
670 src.is_ssa = false;
671 src.reg.reg = reg;
672 src.reg.indirect = NULL;
673 src.reg.base_offset = 0;
674
675 return src;
676 }
677
678 static inline nir_dest
679 nir_dest_for_reg(nir_register *reg)
680 {
681 nir_dest dest = NIR_DEST_INIT;
682
683 dest.reg.reg = reg;
684
685 return dest;
686 }
687
688 static inline unsigned
689 nir_src_bit_size(nir_src src)
690 {
691 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
692 }
693
694 static inline unsigned
695 nir_src_num_components(nir_src src)
696 {
697 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
698 }
699
700 static inline bool
701 nir_src_is_const(nir_src src)
702 {
703 return src.is_ssa &&
704 src.ssa->parent_instr->type == nir_instr_type_load_const;
705 }
706
707 int64_t nir_src_as_int(nir_src src);
708 uint64_t nir_src_as_uint(nir_src src);
709 bool nir_src_as_bool(nir_src src);
710 double nir_src_as_float(nir_src src);
711 int64_t nir_src_comp_as_int(nir_src src, unsigned component);
712 uint64_t nir_src_comp_as_uint(nir_src src, unsigned component);
713 bool nir_src_comp_as_bool(nir_src src, unsigned component);
714 double nir_src_comp_as_float(nir_src src, unsigned component);
715
716 static inline unsigned
717 nir_dest_bit_size(nir_dest dest)
718 {
719 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
720 }
721
722 static inline unsigned
723 nir_dest_num_components(nir_dest dest)
724 {
725 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
726 }
727
728 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
729 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
730
731 typedef struct {
732 nir_src src;
733
734 /**
735 * \name input modifiers
736 */
737 /*@{*/
738 /**
739 * For inputs interpreted as floating point, flips the sign bit. For
740 * inputs interpreted as integers, performs the two's complement negation.
741 */
742 bool negate;
743
744 /**
745 * Clears the sign bit for floating point values, and computes the integer
746 * absolute value for integers. Note that the negate modifier acts after
747 * the absolute value modifier, therefore if both are set then all inputs
748 * will become negative.
749 */
750 bool abs;
751 /*@}*/
752
753 /**
754 * For each input component, says which component of the register it is
755 * chosen from. Note that which elements of the swizzle are used and which
756 * are ignored are based on the write mask for most opcodes - for example,
757 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
758 * a swizzle of {2, x, 1, 0} where x means "don't care."
759 */
760 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
761 } nir_alu_src;
762
763 typedef struct {
764 nir_dest dest;
765
766 /**
767 * \name saturate output modifier
768 *
769 * Only valid for opcodes that output floating-point numbers. Clamps the
770 * output to between 0.0 and 1.0 inclusive.
771 */
772
773 bool saturate;
774
775 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
776 } nir_alu_dest;
777
778 /** NIR sized and unsized types
779 *
780 * The values in this enum are carefully chosen so that the sized type is
781 * just the unsized type OR the number of bits.
782 */
783 typedef enum {
784 nir_type_invalid = 0, /* Not a valid type */
785 nir_type_int = 2,
786 nir_type_uint = 4,
787 nir_type_bool = 6,
788 nir_type_float = 128,
789 nir_type_bool1 = 1 | nir_type_bool,
790 nir_type_bool32 = 32 | nir_type_bool,
791 nir_type_int1 = 1 | nir_type_int,
792 nir_type_int8 = 8 | nir_type_int,
793 nir_type_int16 = 16 | nir_type_int,
794 nir_type_int32 = 32 | nir_type_int,
795 nir_type_int64 = 64 | nir_type_int,
796 nir_type_uint1 = 1 | nir_type_uint,
797 nir_type_uint8 = 8 | nir_type_uint,
798 nir_type_uint16 = 16 | nir_type_uint,
799 nir_type_uint32 = 32 | nir_type_uint,
800 nir_type_uint64 = 64 | nir_type_uint,
801 nir_type_float16 = 16 | nir_type_float,
802 nir_type_float32 = 32 | nir_type_float,
803 nir_type_float64 = 64 | nir_type_float,
804 } nir_alu_type;
805
806 #define NIR_ALU_TYPE_SIZE_MASK 0x79
807 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
808
809 static inline unsigned
810 nir_alu_type_get_type_size(nir_alu_type type)
811 {
812 return type & NIR_ALU_TYPE_SIZE_MASK;
813 }
814
815 static inline unsigned
816 nir_alu_type_get_base_type(nir_alu_type type)
817 {
818 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
819 }
820
821 static inline nir_alu_type
822 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
823 {
824 switch (base_type) {
825 case GLSL_TYPE_BOOL:
826 return nir_type_bool1;
827 break;
828 case GLSL_TYPE_UINT:
829 return nir_type_uint32;
830 break;
831 case GLSL_TYPE_INT:
832 return nir_type_int32;
833 break;
834 case GLSL_TYPE_UINT16:
835 return nir_type_uint16;
836 break;
837 case GLSL_TYPE_INT16:
838 return nir_type_int16;
839 break;
840 case GLSL_TYPE_UINT8:
841 return nir_type_uint8;
842 case GLSL_TYPE_INT8:
843 return nir_type_int8;
844 case GLSL_TYPE_UINT64:
845 return nir_type_uint64;
846 break;
847 case GLSL_TYPE_INT64:
848 return nir_type_int64;
849 break;
850 case GLSL_TYPE_FLOAT:
851 return nir_type_float32;
852 break;
853 case GLSL_TYPE_FLOAT16:
854 return nir_type_float16;
855 break;
856 case GLSL_TYPE_DOUBLE:
857 return nir_type_float64;
858 break;
859 default:
860 unreachable("unknown type");
861 }
862 }
863
864 static inline nir_alu_type
865 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
866 {
867 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
868 }
869
870 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
871 nir_rounding_mode rnd);
872
873 typedef enum {
874 NIR_OP_IS_COMMUTATIVE = (1 << 0),
875 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
876 } nir_op_algebraic_property;
877
878 typedef struct {
879 const char *name;
880
881 unsigned num_inputs;
882
883 /**
884 * The number of components in the output
885 *
886 * If non-zero, this is the size of the output and input sizes are
887 * explicitly given; swizzle and writemask are still in effect, but if
888 * the output component is masked out, then the input component may
889 * still be in use.
890 *
891 * If zero, the opcode acts in the standard, per-component manner; the
892 * operation is performed on each component (except the ones that are
893 * masked out) with the input being taken from the input swizzle for
894 * that component.
895 *
896 * The size of some of the inputs may be given (i.e. non-zero) even
897 * though output_size is zero; in that case, the inputs with a zero
898 * size act per-component, while the inputs with non-zero size don't.
899 */
900 unsigned output_size;
901
902 /**
903 * The type of vector that the instruction outputs. Note that the
904 * staurate modifier is only allowed on outputs with the float type.
905 */
906
907 nir_alu_type output_type;
908
909 /**
910 * The number of components in each input
911 */
912 unsigned input_sizes[NIR_MAX_VEC_COMPONENTS];
913
914 /**
915 * The type of vector that each input takes. Note that negate and
916 * absolute value are only allowed on inputs with int or float type and
917 * behave differently on the two.
918 */
919 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
920
921 nir_op_algebraic_property algebraic_properties;
922
923 /* Whether this represents a numeric conversion opcode */
924 bool is_conversion;
925 } nir_op_info;
926
927 extern const nir_op_info nir_op_infos[nir_num_opcodes];
928
929 typedef struct nir_alu_instr {
930 nir_instr instr;
931 nir_op op;
932
933 /** Indicates that this ALU instruction generates an exact value
934 *
935 * This is kind of a mixture of GLSL "precise" and "invariant" and not
936 * really equivalent to either. This indicates that the value generated by
937 * this operation is high-precision and any code transformations that touch
938 * it must ensure that the resulting value is bit-for-bit identical to the
939 * original.
940 */
941 bool exact;
942
943 nir_alu_dest dest;
944 nir_alu_src src[];
945 } nir_alu_instr;
946
947 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
948 nir_alu_instr *instr);
949 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
950 nir_alu_instr *instr);
951
952 /* is this source channel used? */
953 static inline bool
954 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
955 unsigned channel)
956 {
957 if (nir_op_infos[instr->op].input_sizes[src] > 0)
958 return channel < nir_op_infos[instr->op].input_sizes[src];
959
960 return (instr->dest.write_mask >> channel) & 1;
961 }
962
963 static inline nir_component_mask_t
964 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
965 {
966 nir_component_mask_t read_mask = 0;
967 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
968 if (!nir_alu_instr_channel_used(instr, src, c))
969 continue;
970
971 read_mask |= (1 << instr->src[src].swizzle[c]);
972 }
973 return read_mask;
974 }
975
976 /*
977 * For instructions whose destinations are SSA, get the number of channels
978 * used for a source
979 */
980 static inline unsigned
981 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
982 {
983 assert(instr->dest.dest.is_ssa);
984
985 if (nir_op_infos[instr->op].input_sizes[src] > 0)
986 return nir_op_infos[instr->op].input_sizes[src];
987
988 return instr->dest.dest.ssa.num_components;
989 }
990
991 bool nir_const_value_negative_equal(const nir_const_value *c1,
992 const nir_const_value *c2,
993 unsigned components,
994 nir_alu_type base_type,
995 unsigned bits);
996
997 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
998 unsigned src1, unsigned src2);
999
1000 bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
1001 const nir_alu_instr *alu2,
1002 unsigned src1, unsigned src2);
1003
1004 typedef enum {
1005 nir_deref_type_var,
1006 nir_deref_type_array,
1007 nir_deref_type_array_wildcard,
1008 nir_deref_type_ptr_as_array,
1009 nir_deref_type_struct,
1010 nir_deref_type_cast,
1011 } nir_deref_type;
1012
1013 typedef struct {
1014 nir_instr instr;
1015
1016 /** The type of this deref instruction */
1017 nir_deref_type deref_type;
1018
1019 /** The mode of the underlying variable */
1020 nir_variable_mode mode;
1021
1022 /** The dereferenced type of the resulting pointer value */
1023 const struct glsl_type *type;
1024
1025 union {
1026 /** Variable being dereferenced if deref_type is a deref_var */
1027 nir_variable *var;
1028
1029 /** Parent deref if deref_type is not deref_var */
1030 nir_src parent;
1031 };
1032
1033 /** Additional deref parameters */
1034 union {
1035 struct {
1036 nir_src index;
1037 } arr;
1038
1039 struct {
1040 unsigned index;
1041 } strct;
1042
1043 struct {
1044 unsigned ptr_stride;
1045 } cast;
1046 };
1047
1048 /** Destination to store the resulting "pointer" */
1049 nir_dest dest;
1050 } nir_deref_instr;
1051
1052 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
1053 type, nir_instr_type_deref)
1054
1055 static inline nir_deref_instr *
1056 nir_src_as_deref(nir_src src)
1057 {
1058 if (!src.is_ssa)
1059 return NULL;
1060
1061 if (src.ssa->parent_instr->type != nir_instr_type_deref)
1062 return NULL;
1063
1064 return nir_instr_as_deref(src.ssa->parent_instr);
1065 }
1066
1067 static inline nir_deref_instr *
1068 nir_deref_instr_parent(const nir_deref_instr *instr)
1069 {
1070 if (instr->deref_type == nir_deref_type_var)
1071 return NULL;
1072 else
1073 return nir_src_as_deref(instr->parent);
1074 }
1075
1076 static inline nir_variable *
1077 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1078 {
1079 while (instr->deref_type != nir_deref_type_var) {
1080 if (instr->deref_type == nir_deref_type_cast)
1081 return NULL;
1082
1083 instr = nir_deref_instr_parent(instr);
1084 }
1085
1086 return instr->var;
1087 }
1088
1089 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1090
1091 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1092
1093 unsigned nir_deref_instr_ptr_as_array_stride(nir_deref_instr *instr);
1094
1095 typedef struct {
1096 nir_instr instr;
1097
1098 struct nir_function *callee;
1099
1100 unsigned num_params;
1101 nir_src params[];
1102 } nir_call_instr;
1103
1104 #include "nir_intrinsics.h"
1105
1106 #define NIR_INTRINSIC_MAX_CONST_INDEX 4
1107
1108 /** Represents an intrinsic
1109 *
1110 * An intrinsic is an instruction type for handling things that are
1111 * more-or-less regular operations but don't just consume and produce SSA
1112 * values like ALU operations do. Intrinsics are not for things that have
1113 * special semantic meaning such as phi nodes and parallel copies.
1114 * Examples of intrinsics include variable load/store operations, system
1115 * value loads, and the like. Even though texturing more-or-less falls
1116 * under this category, texturing is its own instruction type because
1117 * trying to represent texturing with intrinsics would lead to a
1118 * combinatorial explosion of intrinsic opcodes.
1119 *
1120 * By having a single instruction type for handling a lot of different
1121 * cases, optimization passes can look for intrinsics and, for the most
1122 * part, completely ignore them. Each intrinsic type also has a few
1123 * possible flags that govern whether or not they can be reordered or
1124 * eliminated. That way passes like dead code elimination can still work
1125 * on intrisics without understanding the meaning of each.
1126 *
1127 * Each intrinsic has some number of constant indices, some number of
1128 * variables, and some number of sources. What these sources, variables,
1129 * and indices mean depends on the intrinsic and is documented with the
1130 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1131 * instructions are the only types of instruction that can operate on
1132 * variables.
1133 */
1134 typedef struct {
1135 nir_instr instr;
1136
1137 nir_intrinsic_op intrinsic;
1138
1139 nir_dest dest;
1140
1141 /** number of components if this is a vectorized intrinsic
1142 *
1143 * Similarly to ALU operations, some intrinsics are vectorized.
1144 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1145 * For vectorized intrinsics, the num_components field specifies the
1146 * number of destination components and the number of source components
1147 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1148 */
1149 uint8_t num_components;
1150
1151 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1152
1153 nir_src src[];
1154 } nir_intrinsic_instr;
1155
1156 static inline nir_variable *
1157 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1158 {
1159 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1160 }
1161
1162 /**
1163 * \name NIR intrinsics semantic flags
1164 *
1165 * information about what the compiler can do with the intrinsics.
1166 *
1167 * \sa nir_intrinsic_info::flags
1168 */
1169 typedef enum {
1170 /**
1171 * whether the intrinsic can be safely eliminated if none of its output
1172 * value is not being used.
1173 */
1174 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1175
1176 /**
1177 * Whether the intrinsic can be reordered with respect to any other
1178 * intrinsic, i.e. whether the only reordering dependencies of the
1179 * intrinsic are due to the register reads/writes.
1180 */
1181 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1182 } nir_intrinsic_semantic_flag;
1183
1184 /**
1185 * \name NIR intrinsics const-index flag
1186 *
1187 * Indicates the usage of a const_index slot.
1188 *
1189 * \sa nir_intrinsic_info::index_map
1190 */
1191 typedef enum {
1192 /**
1193 * Generally instructions that take a offset src argument, can encode
1194 * a constant 'base' value which is added to the offset.
1195 */
1196 NIR_INTRINSIC_BASE = 1,
1197
1198 /**
1199 * For store instructions, a writemask for the store.
1200 */
1201 NIR_INTRINSIC_WRMASK = 2,
1202
1203 /**
1204 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1205 */
1206 NIR_INTRINSIC_STREAM_ID = 3,
1207
1208 /**
1209 * The clip-plane id for load_user_clip_plane intrinsic.
1210 */
1211 NIR_INTRINSIC_UCP_ID = 4,
1212
1213 /**
1214 * The amount of data, starting from BASE, that this instruction may
1215 * access. This is used to provide bounds if the offset is not constant.
1216 */
1217 NIR_INTRINSIC_RANGE = 5,
1218
1219 /**
1220 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1221 */
1222 NIR_INTRINSIC_DESC_SET = 6,
1223
1224 /**
1225 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1226 */
1227 NIR_INTRINSIC_BINDING = 7,
1228
1229 /**
1230 * Component offset.
1231 */
1232 NIR_INTRINSIC_COMPONENT = 8,
1233
1234 /**
1235 * Interpolation mode (only meaningful for FS inputs).
1236 */
1237 NIR_INTRINSIC_INTERP_MODE = 9,
1238
1239 /**
1240 * A binary nir_op to use when performing a reduction or scan operation
1241 */
1242 NIR_INTRINSIC_REDUCTION_OP = 10,
1243
1244 /**
1245 * Cluster size for reduction operations
1246 */
1247 NIR_INTRINSIC_CLUSTER_SIZE = 11,
1248
1249 /**
1250 * Parameter index for a load_param intrinsic
1251 */
1252 NIR_INTRINSIC_PARAM_IDX = 12,
1253
1254 /**
1255 * Image dimensionality for image intrinsics
1256 *
1257 * One of GLSL_SAMPLER_DIM_*
1258 */
1259 NIR_INTRINSIC_IMAGE_DIM = 13,
1260
1261 /**
1262 * Non-zero if we are accessing an array image
1263 */
1264 NIR_INTRINSIC_IMAGE_ARRAY = 14,
1265
1266 /**
1267 * Image format for image intrinsics
1268 */
1269 NIR_INTRINSIC_FORMAT = 15,
1270
1271 /**
1272 * Access qualifiers for image and memory access intrinsics
1273 */
1274 NIR_INTRINSIC_ACCESS = 16,
1275
1276 /**
1277 * Alignment for offsets and addresses
1278 *
1279 * These two parameters, specify an alignment in terms of a multiplier and
1280 * an offset. The offset or address parameter X of the intrinsic is
1281 * guaranteed to satisfy the following:
1282 *
1283 * (X - align_offset) % align_mul == 0
1284 */
1285 NIR_INTRINSIC_ALIGN_MUL = 17,
1286 NIR_INTRINSIC_ALIGN_OFFSET = 18,
1287
1288 /**
1289 * The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic.
1290 */
1291 NIR_INTRINSIC_DESC_TYPE = 19,
1292
1293 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1294
1295 } nir_intrinsic_index_flag;
1296
1297 #define NIR_INTRINSIC_MAX_INPUTS 5
1298
1299 typedef struct {
1300 const char *name;
1301
1302 unsigned num_srcs; /** < number of register/SSA inputs */
1303
1304 /** number of components of each input register
1305 *
1306 * If this value is 0, the number of components is given by the
1307 * num_components field of nir_intrinsic_instr. If this value is -1, the
1308 * intrinsic consumes however many components are provided and it is not
1309 * validated at all.
1310 */
1311 int src_components[NIR_INTRINSIC_MAX_INPUTS];
1312
1313 bool has_dest;
1314
1315 /** number of components of the output register
1316 *
1317 * If this value is 0, the number of components is given by the
1318 * num_components field of nir_intrinsic_instr.
1319 */
1320 unsigned dest_components;
1321
1322 /** bitfield of legal bit sizes */
1323 unsigned dest_bit_sizes;
1324
1325 /** the number of constant indices used by the intrinsic */
1326 unsigned num_indices;
1327
1328 /** indicates the usage of intr->const_index[n] */
1329 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1330
1331 /** semantic flags for calls to this intrinsic */
1332 nir_intrinsic_semantic_flag flags;
1333 } nir_intrinsic_info;
1334
1335 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1336
1337 static inline unsigned
1338 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1339 {
1340 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1341 assert(srcn < info->num_srcs);
1342 if (info->src_components[srcn] > 0)
1343 return info->src_components[srcn];
1344 else if (info->src_components[srcn] == 0)
1345 return intr->num_components;
1346 else
1347 return nir_src_num_components(intr->src[srcn]);
1348 }
1349
1350 static inline unsigned
1351 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1352 {
1353 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1354 if (!info->has_dest)
1355 return 0;
1356 else if (info->dest_components)
1357 return info->dest_components;
1358 else
1359 return intr->num_components;
1360 }
1361
1362 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1363 static inline type \
1364 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1365 { \
1366 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1367 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1368 return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1369 } \
1370 static inline void \
1371 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1372 { \
1373 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1374 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1375 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1376 }
1377
1378 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1379 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1380 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1381 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1382 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1383 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1384 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1385 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1386 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1387 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1388 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1389 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1390 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1391 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1392 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1393 INTRINSIC_IDX_ACCESSORS(format, FORMAT, unsigned)
1394 INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
1395 INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
1396 INTRINSIC_IDX_ACCESSORS(desc_type, DESC_TYPE, unsigned)
1397
1398 static inline void
1399 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1400 unsigned align_mul, unsigned align_offset)
1401 {
1402 assert(util_is_power_of_two_nonzero(align_mul));
1403 assert(align_offset < align_mul);
1404 nir_intrinsic_set_align_mul(intrin, align_mul);
1405 nir_intrinsic_set_align_offset(intrin, align_offset);
1406 }
1407
1408 /** Returns a simple alignment for a load/store intrinsic offset
1409 *
1410 * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1411 * and ALIGN_OFFSET parameters, this helper takes both into account and
1412 * provides a single simple alignment parameter. The offset X is guaranteed
1413 * to satisfy X % align == 0.
1414 */
1415 static inline unsigned
1416 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
1417 {
1418 const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1419 const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1420 assert(align_offset < align_mul);
1421 return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1422 }
1423
1424 /**
1425 * \group texture information
1426 *
1427 * This gives semantic information about textures which is useful to the
1428 * frontend, the backend, and lowering passes, but not the optimizer.
1429 */
1430
1431 typedef enum {
1432 nir_tex_src_coord,
1433 nir_tex_src_projector,
1434 nir_tex_src_comparator, /* shadow comparator */
1435 nir_tex_src_offset,
1436 nir_tex_src_bias,
1437 nir_tex_src_lod,
1438 nir_tex_src_min_lod,
1439 nir_tex_src_ms_index, /* MSAA sample index */
1440 nir_tex_src_ms_mcs, /* MSAA compression value */
1441 nir_tex_src_ddx,
1442 nir_tex_src_ddy,
1443 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1444 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1445 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1446 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1447 nir_tex_src_texture_handle, /* < bindless texture handle */
1448 nir_tex_src_sampler_handle, /* < bindless sampler handle */
1449 nir_tex_src_plane, /* < selects plane for planar textures */
1450 nir_num_tex_src_types
1451 } nir_tex_src_type;
1452
1453 typedef struct {
1454 nir_src src;
1455 nir_tex_src_type src_type;
1456 } nir_tex_src;
1457
1458 typedef enum {
1459 nir_texop_tex, /**< Regular texture look-up */
1460 nir_texop_txb, /**< Texture look-up with LOD bias */
1461 nir_texop_txl, /**< Texture look-up with explicit LOD */
1462 nir_texop_txd, /**< Texture look-up with partial derivatives */
1463 nir_texop_txf, /**< Texel fetch with explicit LOD */
1464 nir_texop_txf_ms, /**< Multisample texture fetch */
1465 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1466 nir_texop_txs, /**< Texture size */
1467 nir_texop_lod, /**< Texture lod query */
1468 nir_texop_tg4, /**< Texture gather */
1469 nir_texop_query_levels, /**< Texture levels query */
1470 nir_texop_texture_samples, /**< Texture samples query */
1471 nir_texop_samples_identical, /**< Query whether all samples are definitely
1472 * identical.
1473 */
1474 } nir_texop;
1475
1476 typedef struct {
1477 nir_instr instr;
1478
1479 enum glsl_sampler_dim sampler_dim;
1480 nir_alu_type dest_type;
1481
1482 nir_texop op;
1483 nir_dest dest;
1484 nir_tex_src *src;
1485 unsigned num_srcs, coord_components;
1486 bool is_array, is_shadow;
1487
1488 /**
1489 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1490 * components or the new-style shadow that outputs 1 component.
1491 */
1492 bool is_new_style_shadow;
1493
1494 /* gather component selector */
1495 unsigned component : 2;
1496
1497 /* gather offsets */
1498 int8_t tg4_offsets[4][2];
1499
1500 /* True if the texture index or handle is not dynamically uniform */
1501 bool texture_non_uniform;
1502
1503 /* True if the sampler index or handle is not dynamically uniform */
1504 bool sampler_non_uniform;
1505
1506 /** The texture index
1507 *
1508 * If this texture instruction has a nir_tex_src_texture_offset source,
1509 * then the texture index is given by texture_index + texture_offset.
1510 */
1511 unsigned texture_index;
1512
1513 /** The size of the texture array or 0 if it's not an array */
1514 unsigned texture_array_size;
1515
1516 /** The sampler index
1517 *
1518 * The following operations do not require a sampler and, as such, this
1519 * field should be ignored:
1520 * - nir_texop_txf
1521 * - nir_texop_txf_ms
1522 * - nir_texop_txs
1523 * - nir_texop_lod
1524 * - nir_texop_query_levels
1525 * - nir_texop_texture_samples
1526 * - nir_texop_samples_identical
1527 *
1528 * If this texture instruction has a nir_tex_src_sampler_offset source,
1529 * then the sampler index is given by sampler_index + sampler_offset.
1530 */
1531 unsigned sampler_index;
1532 } nir_tex_instr;
1533
1534 static inline unsigned
1535 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1536 {
1537 switch (instr->op) {
1538 case nir_texop_txs: {
1539 unsigned ret;
1540 switch (instr->sampler_dim) {
1541 case GLSL_SAMPLER_DIM_1D:
1542 case GLSL_SAMPLER_DIM_BUF:
1543 ret = 1;
1544 break;
1545 case GLSL_SAMPLER_DIM_2D:
1546 case GLSL_SAMPLER_DIM_CUBE:
1547 case GLSL_SAMPLER_DIM_MS:
1548 case GLSL_SAMPLER_DIM_RECT:
1549 case GLSL_SAMPLER_DIM_EXTERNAL:
1550 case GLSL_SAMPLER_DIM_SUBPASS:
1551 ret = 2;
1552 break;
1553 case GLSL_SAMPLER_DIM_3D:
1554 ret = 3;
1555 break;
1556 default:
1557 unreachable("not reached");
1558 }
1559 if (instr->is_array)
1560 ret++;
1561 return ret;
1562 }
1563
1564 case nir_texop_lod:
1565 return 2;
1566
1567 case nir_texop_texture_samples:
1568 case nir_texop_query_levels:
1569 case nir_texop_samples_identical:
1570 return 1;
1571
1572 default:
1573 if (instr->is_shadow && instr->is_new_style_shadow)
1574 return 1;
1575
1576 return 4;
1577 }
1578 }
1579
1580 /* Returns true if this texture operation queries something about the texture
1581 * rather than actually sampling it.
1582 */
1583 static inline bool
1584 nir_tex_instr_is_query(const nir_tex_instr *instr)
1585 {
1586 switch (instr->op) {
1587 case nir_texop_txs:
1588 case nir_texop_lod:
1589 case nir_texop_texture_samples:
1590 case nir_texop_query_levels:
1591 case nir_texop_txf_ms_mcs:
1592 return true;
1593 case nir_texop_tex:
1594 case nir_texop_txb:
1595 case nir_texop_txl:
1596 case nir_texop_txd:
1597 case nir_texop_txf:
1598 case nir_texop_txf_ms:
1599 case nir_texop_tg4:
1600 return false;
1601 default:
1602 unreachable("Invalid texture opcode");
1603 }
1604 }
1605
1606 static inline bool
1607 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1608 {
1609 switch (instr->op) {
1610 case nir_op_flt:
1611 case nir_op_fge:
1612 case nir_op_feq:
1613 case nir_op_fne:
1614 case nir_op_ilt:
1615 case nir_op_ult:
1616 case nir_op_ige:
1617 case nir_op_uge:
1618 case nir_op_ieq:
1619 case nir_op_ine:
1620 case nir_op_i2b1:
1621 case nir_op_f2b1:
1622 case nir_op_inot:
1623 case nir_op_fnot:
1624 return true;
1625 default:
1626 return false;
1627 }
1628 }
1629
1630 static inline nir_alu_type
1631 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1632 {
1633 switch (instr->src[src].src_type) {
1634 case nir_tex_src_coord:
1635 switch (instr->op) {
1636 case nir_texop_txf:
1637 case nir_texop_txf_ms:
1638 case nir_texop_txf_ms_mcs:
1639 case nir_texop_samples_identical:
1640 return nir_type_int;
1641
1642 default:
1643 return nir_type_float;
1644 }
1645
1646 case nir_tex_src_lod:
1647 switch (instr->op) {
1648 case nir_texop_txs:
1649 case nir_texop_txf:
1650 return nir_type_int;
1651
1652 default:
1653 return nir_type_float;
1654 }
1655
1656 case nir_tex_src_projector:
1657 case nir_tex_src_comparator:
1658 case nir_tex_src_bias:
1659 case nir_tex_src_ddx:
1660 case nir_tex_src_ddy:
1661 return nir_type_float;
1662
1663 case nir_tex_src_offset:
1664 case nir_tex_src_ms_index:
1665 case nir_tex_src_texture_offset:
1666 case nir_tex_src_sampler_offset:
1667 return nir_type_int;
1668
1669 default:
1670 unreachable("Invalid texture source type");
1671 }
1672 }
1673
1674 static inline unsigned
1675 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1676 {
1677 if (instr->src[src].src_type == nir_tex_src_coord)
1678 return instr->coord_components;
1679
1680 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1681 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1682 return 4;
1683
1684 if (instr->src[src].src_type == nir_tex_src_ddx ||
1685 instr->src[src].src_type == nir_tex_src_ddy) {
1686 if (instr->is_array)
1687 return instr->coord_components - 1;
1688 else
1689 return instr->coord_components;
1690 }
1691
1692 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1693 * the offset, since a cube maps to a single face.
1694 */
1695 if (instr->src[src].src_type == nir_tex_src_offset) {
1696 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1697 return 2;
1698 else if (instr->is_array)
1699 return instr->coord_components - 1;
1700 else
1701 return instr->coord_components;
1702 }
1703
1704 return 1;
1705 }
1706
1707 static inline int
1708 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1709 {
1710 for (unsigned i = 0; i < instr->num_srcs; i++)
1711 if (instr->src[i].src_type == type)
1712 return (int) i;
1713
1714 return -1;
1715 }
1716
1717 void nir_tex_instr_add_src(nir_tex_instr *tex,
1718 nir_tex_src_type src_type,
1719 nir_src src);
1720
1721 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1722
1723 bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
1724
1725 typedef struct {
1726 nir_instr instr;
1727
1728 nir_const_value value;
1729
1730 nir_ssa_def def;
1731 } nir_load_const_instr;
1732
1733 typedef enum {
1734 nir_jump_return,
1735 nir_jump_break,
1736 nir_jump_continue,
1737 } nir_jump_type;
1738
1739 typedef struct {
1740 nir_instr instr;
1741 nir_jump_type type;
1742 } nir_jump_instr;
1743
1744 /* creates a new SSA variable in an undefined state */
1745
1746 typedef struct {
1747 nir_instr instr;
1748 nir_ssa_def def;
1749 } nir_ssa_undef_instr;
1750
1751 typedef struct {
1752 struct exec_node node;
1753
1754 /* The predecessor block corresponding to this source */
1755 struct nir_block *pred;
1756
1757 nir_src src;
1758 } nir_phi_src;
1759
1760 #define nir_foreach_phi_src(phi_src, phi) \
1761 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1762 #define nir_foreach_phi_src_safe(phi_src, phi) \
1763 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1764
1765 typedef struct {
1766 nir_instr instr;
1767
1768 struct exec_list srcs; /** < list of nir_phi_src */
1769
1770 nir_dest dest;
1771 } nir_phi_instr;
1772
1773 typedef struct {
1774 struct exec_node node;
1775 nir_src src;
1776 nir_dest dest;
1777 } nir_parallel_copy_entry;
1778
1779 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1780 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1781
1782 typedef struct {
1783 nir_instr instr;
1784
1785 /* A list of nir_parallel_copy_entrys. The sources of all of the
1786 * entries are copied to the corresponding destinations "in parallel".
1787 * In other words, if we have two entries: a -> b and b -> a, the values
1788 * get swapped.
1789 */
1790 struct exec_list entries;
1791 } nir_parallel_copy_instr;
1792
1793 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1794 type, nir_instr_type_alu)
1795 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1796 type, nir_instr_type_call)
1797 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1798 type, nir_instr_type_jump)
1799 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1800 type, nir_instr_type_tex)
1801 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1802 type, nir_instr_type_intrinsic)
1803 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1804 type, nir_instr_type_load_const)
1805 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1806 type, nir_instr_type_ssa_undef)
1807 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1808 type, nir_instr_type_phi)
1809 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1810 nir_parallel_copy_instr, instr,
1811 type, nir_instr_type_parallel_copy)
1812
1813 /*
1814 * Control flow
1815 *
1816 * Control flow consists of a tree of control flow nodes, which include
1817 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1818 * instructions that always run start-to-finish. Each basic block also keeps
1819 * track of its successors (blocks which may run immediately after the current
1820 * block) and predecessors (blocks which could have run immediately before the
1821 * current block). Each function also has a start block and an end block which
1822 * all return statements point to (which is always empty). Together, all the
1823 * blocks with their predecessors and successors make up the control flow
1824 * graph (CFG) of the function. There are helpers that modify the tree of
1825 * control flow nodes while modifying the CFG appropriately; these should be
1826 * used instead of modifying the tree directly.
1827 */
1828
1829 typedef enum {
1830 nir_cf_node_block,
1831 nir_cf_node_if,
1832 nir_cf_node_loop,
1833 nir_cf_node_function
1834 } nir_cf_node_type;
1835
1836 typedef struct nir_cf_node {
1837 struct exec_node node;
1838 nir_cf_node_type type;
1839 struct nir_cf_node *parent;
1840 } nir_cf_node;
1841
1842 typedef struct nir_block {
1843 nir_cf_node cf_node;
1844
1845 struct exec_list instr_list; /** < list of nir_instr */
1846
1847 /** generic block index; generated by nir_index_blocks */
1848 unsigned index;
1849
1850 /*
1851 * Each block can only have up to 2 successors, so we put them in a simple
1852 * array - no need for anything more complicated.
1853 */
1854 struct nir_block *successors[2];
1855
1856 /* Set of nir_block predecessors in the CFG */
1857 struct set *predecessors;
1858
1859 /*
1860 * this node's immediate dominator in the dominance tree - set to NULL for
1861 * the start block.
1862 */
1863 struct nir_block *imm_dom;
1864
1865 /* This node's children in the dominance tree */
1866 unsigned num_dom_children;
1867 struct nir_block **dom_children;
1868
1869 /* Set of nir_blocks on the dominance frontier of this block */
1870 struct set *dom_frontier;
1871
1872 /*
1873 * These two indices have the property that dom_{pre,post}_index for each
1874 * child of this block in the dominance tree will always be between
1875 * dom_pre_index and dom_post_index for this block, which makes testing if
1876 * a given block is dominated by another block an O(1) operation.
1877 */
1878 unsigned dom_pre_index, dom_post_index;
1879
1880 /* live in and out for this block; used for liveness analysis */
1881 BITSET_WORD *live_in;
1882 BITSET_WORD *live_out;
1883 } nir_block;
1884
1885 static inline nir_instr *
1886 nir_block_first_instr(nir_block *block)
1887 {
1888 struct exec_node *head = exec_list_get_head(&block->instr_list);
1889 return exec_node_data(nir_instr, head, node);
1890 }
1891
1892 static inline nir_instr *
1893 nir_block_last_instr(nir_block *block)
1894 {
1895 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1896 return exec_node_data(nir_instr, tail, node);
1897 }
1898
1899 static inline bool
1900 nir_block_ends_in_jump(nir_block *block)
1901 {
1902 return !exec_list_is_empty(&block->instr_list) &&
1903 nir_block_last_instr(block)->type == nir_instr_type_jump;
1904 }
1905
1906 #define nir_foreach_instr(instr, block) \
1907 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1908 #define nir_foreach_instr_reverse(instr, block) \
1909 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1910 #define nir_foreach_instr_safe(instr, block) \
1911 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1912 #define nir_foreach_instr_reverse_safe(instr, block) \
1913 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1914
1915 typedef enum {
1916 nir_selection_control_none = 0x0,
1917 nir_selection_control_flatten = 0x1,
1918 nir_selection_control_dont_flatten = 0x2,
1919 } nir_selection_control;
1920
1921 typedef struct nir_if {
1922 nir_cf_node cf_node;
1923 nir_src condition;
1924 nir_selection_control control;
1925
1926 struct exec_list then_list; /** < list of nir_cf_node */
1927 struct exec_list else_list; /** < list of nir_cf_node */
1928 } nir_if;
1929
1930 typedef struct {
1931 nir_if *nif;
1932
1933 /** Instruction that generates nif::condition. */
1934 nir_instr *conditional_instr;
1935
1936 /** Block within ::nif that has the break instruction. */
1937 nir_block *break_block;
1938
1939 /** Last block for the then- or else-path that does not contain the break. */
1940 nir_block *continue_from_block;
1941
1942 /** True when ::break_block is in the else-path of ::nif. */
1943 bool continue_from_then;
1944 bool induction_rhs;
1945
1946 /* This is true if the terminators exact trip count is unknown. For
1947 * example:
1948 *
1949 * for (int i = 0; i < imin(x, 4); i++)
1950 * ...
1951 *
1952 * Here loop analysis would have set a max_trip_count of 4 however we dont
1953 * know for sure that this is the exact trip count.
1954 */
1955 bool exact_trip_count_unknown;
1956
1957 struct list_head loop_terminator_link;
1958 } nir_loop_terminator;
1959
1960 typedef struct {
1961 /* Estimated cost (in number of instructions) of the loop */
1962 unsigned instr_cost;
1963
1964 /* Guessed trip count based on array indexing */
1965 unsigned guessed_trip_count;
1966
1967 /* Maximum number of times the loop is run (if known) */
1968 unsigned max_trip_count;
1969
1970 /* Do we know the exact number of times the loop will be run */
1971 bool exact_trip_count_known;
1972
1973 /* Unroll the loop regardless of its size */
1974 bool force_unroll;
1975
1976 /* Does the loop contain complex loop terminators, continues or other
1977 * complex behaviours? If this is true we can't rely on
1978 * loop_terminator_list to be complete or accurate.
1979 */
1980 bool complex_loop;
1981
1982 nir_loop_terminator *limiting_terminator;
1983
1984 /* A list of loop_terminators terminating this loop. */
1985 struct list_head loop_terminator_list;
1986 } nir_loop_info;
1987
1988 typedef enum {
1989 nir_loop_control_none = 0x0,
1990 nir_loop_control_unroll = 0x1,
1991 nir_loop_control_dont_unroll = 0x2,
1992 } nir_loop_control;
1993
1994 typedef struct {
1995 nir_cf_node cf_node;
1996
1997 struct exec_list body; /** < list of nir_cf_node */
1998
1999 nir_loop_info *info;
2000 nir_loop_control control;
2001 bool partially_unrolled;
2002 } nir_loop;
2003
2004 /**
2005 * Various bits of metadata that can may be created or required by
2006 * optimization and analysis passes
2007 */
2008 typedef enum {
2009 nir_metadata_none = 0x0,
2010 nir_metadata_block_index = 0x1,
2011 nir_metadata_dominance = 0x2,
2012 nir_metadata_live_ssa_defs = 0x4,
2013 nir_metadata_not_properly_reset = 0x8,
2014 nir_metadata_loop_analysis = 0x10,
2015 } nir_metadata;
2016
2017 typedef struct {
2018 nir_cf_node cf_node;
2019
2020 /** pointer to the function of which this is an implementation */
2021 struct nir_function *function;
2022
2023 struct exec_list body; /** < list of nir_cf_node */
2024
2025 nir_block *end_block;
2026
2027 /** list for all local variables in the function */
2028 struct exec_list locals;
2029
2030 /** list of local registers in the function */
2031 struct exec_list registers;
2032
2033 /** next available local register index */
2034 unsigned reg_alloc;
2035
2036 /** next available SSA value index */
2037 unsigned ssa_alloc;
2038
2039 /* total number of basic blocks, only valid when block_index_dirty = false */
2040 unsigned num_blocks;
2041
2042 nir_metadata valid_metadata;
2043 } nir_function_impl;
2044
2045 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2046 nir_start_block(nir_function_impl *impl)
2047 {
2048 return (nir_block *) impl->body.head_sentinel.next;
2049 }
2050
2051 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2052 nir_impl_last_block(nir_function_impl *impl)
2053 {
2054 return (nir_block *) impl->body.tail_sentinel.prev;
2055 }
2056
2057 static inline nir_cf_node *
2058 nir_cf_node_next(nir_cf_node *node)
2059 {
2060 struct exec_node *next = exec_node_get_next(&node->node);
2061 if (exec_node_is_tail_sentinel(next))
2062 return NULL;
2063 else
2064 return exec_node_data(nir_cf_node, next, node);
2065 }
2066
2067 static inline nir_cf_node *
2068 nir_cf_node_prev(nir_cf_node *node)
2069 {
2070 struct exec_node *prev = exec_node_get_prev(&node->node);
2071 if (exec_node_is_head_sentinel(prev))
2072 return NULL;
2073 else
2074 return exec_node_data(nir_cf_node, prev, node);
2075 }
2076
2077 static inline bool
2078 nir_cf_node_is_first(const nir_cf_node *node)
2079 {
2080 return exec_node_is_head_sentinel(node->node.prev);
2081 }
2082
2083 static inline bool
2084 nir_cf_node_is_last(const nir_cf_node *node)
2085 {
2086 return exec_node_is_tail_sentinel(node->node.next);
2087 }
2088
2089 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
2090 type, nir_cf_node_block)
2091 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
2092 type, nir_cf_node_if)
2093 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
2094 type, nir_cf_node_loop)
2095 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
2096 nir_function_impl, cf_node, type, nir_cf_node_function)
2097
2098 static inline nir_block *
2099 nir_if_first_then_block(nir_if *if_stmt)
2100 {
2101 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
2102 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2103 }
2104
2105 static inline nir_block *
2106 nir_if_last_then_block(nir_if *if_stmt)
2107 {
2108 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
2109 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2110 }
2111
2112 static inline nir_block *
2113 nir_if_first_else_block(nir_if *if_stmt)
2114 {
2115 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
2116 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2117 }
2118
2119 static inline nir_block *
2120 nir_if_last_else_block(nir_if *if_stmt)
2121 {
2122 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
2123 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2124 }
2125
2126 static inline nir_block *
2127 nir_loop_first_block(nir_loop *loop)
2128 {
2129 struct exec_node *head = exec_list_get_head(&loop->body);
2130 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2131 }
2132
2133 static inline nir_block *
2134 nir_loop_last_block(nir_loop *loop)
2135 {
2136 struct exec_node *tail = exec_list_get_tail(&loop->body);
2137 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2138 }
2139
2140 typedef struct {
2141 uint8_t num_components;
2142 uint8_t bit_size;
2143 } nir_parameter;
2144
2145 typedef struct nir_function {
2146 struct exec_node node;
2147
2148 const char *name;
2149 struct nir_shader *shader;
2150
2151 unsigned num_params;
2152 nir_parameter *params;
2153
2154 /** The implementation of this function.
2155 *
2156 * If the function is only declared and not implemented, this is NULL.
2157 */
2158 nir_function_impl *impl;
2159
2160 bool is_entrypoint;
2161 } nir_function;
2162
2163 typedef enum {
2164 nir_lower_imul64 = (1 << 0),
2165 nir_lower_isign64 = (1 << 1),
2166 /** Lower all int64 modulus and division opcodes */
2167 nir_lower_divmod64 = (1 << 2),
2168 /** Lower all 64-bit umul_high and imul_high opcodes */
2169 nir_lower_imul_high64 = (1 << 3),
2170 nir_lower_mov64 = (1 << 4),
2171 nir_lower_icmp64 = (1 << 5),
2172 nir_lower_iadd64 = (1 << 6),
2173 nir_lower_iabs64 = (1 << 7),
2174 nir_lower_ineg64 = (1 << 8),
2175 nir_lower_logic64 = (1 << 9),
2176 nir_lower_minmax64 = (1 << 10),
2177 nir_lower_shift64 = (1 << 11),
2178 nir_lower_imul_2x32_64 = (1 << 12),
2179 } nir_lower_int64_options;
2180
2181 typedef enum {
2182 nir_lower_drcp = (1 << 0),
2183 nir_lower_dsqrt = (1 << 1),
2184 nir_lower_drsq = (1 << 2),
2185 nir_lower_dtrunc = (1 << 3),
2186 nir_lower_dfloor = (1 << 4),
2187 nir_lower_dceil = (1 << 5),
2188 nir_lower_dfract = (1 << 6),
2189 nir_lower_dround_even = (1 << 7),
2190 nir_lower_dmod = (1 << 8),
2191 nir_lower_fp64_full_software = (1 << 9),
2192 } nir_lower_doubles_options;
2193
2194 typedef struct nir_shader_compiler_options {
2195 bool lower_fdiv;
2196 bool lower_ffma;
2197 bool fuse_ffma;
2198 bool lower_flrp16;
2199 bool lower_flrp32;
2200 /** Lowers flrp when it does not support doubles */
2201 bool lower_flrp64;
2202 bool lower_fpow;
2203 bool lower_fsat;
2204 bool lower_fsqrt;
2205 bool lower_fmod16;
2206 bool lower_fmod32;
2207 bool lower_fmod64;
2208 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2209 bool lower_bitfield_extract;
2210 /** Lowers ibitfield_extract/ubitfield_extract to bfm, compares, shifts. */
2211 bool lower_bitfield_extract_to_shifts;
2212 /** Lowers bitfield_insert to bfi/bfm */
2213 bool lower_bitfield_insert;
2214 /** Lowers bitfield_insert to bfm, compares, and shifts. */
2215 bool lower_bitfield_insert_to_shifts;
2216 /** Lowers bitfield_reverse to shifts. */
2217 bool lower_bitfield_reverse;
2218 /** Lowers bit_count to shifts. */
2219 bool lower_bit_count;
2220 /** Lowers bfm to shifts and subtracts. */
2221 bool lower_bfm;
2222 /** Lowers ifind_msb to compare and ufind_msb */
2223 bool lower_ifind_msb;
2224 /** Lowers find_lsb to ufind_msb and logic ops */
2225 bool lower_find_lsb;
2226 bool lower_uadd_carry;
2227 bool lower_usub_borrow;
2228 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2229 bool lower_mul_high;
2230 /** lowers fneg and ineg to fsub and isub. */
2231 bool lower_negate;
2232 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2233 bool lower_sub;
2234
2235 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2236 bool lower_scmp;
2237
2238 /** enables rules to lower idiv by power-of-two: */
2239 bool lower_idiv;
2240
2241 /** enables rules to lower isign to imin+imax */
2242 bool lower_isign;
2243
2244 /* Does the native fdot instruction replicate its result for four
2245 * components? If so, then opt_algebraic_late will turn all fdotN
2246 * instructions into fdot_replicatedN instructions.
2247 */
2248 bool fdot_replicates;
2249
2250 /** lowers ffloor to fsub+ffract: */
2251 bool lower_ffloor;
2252
2253 /** lowers ffract to fsub+ffloor: */
2254 bool lower_ffract;
2255
2256 /** lowers fceil to fneg+ffloor+fneg: */
2257 bool lower_fceil;
2258
2259 bool lower_ldexp;
2260
2261 bool lower_pack_half_2x16;
2262 bool lower_pack_unorm_2x16;
2263 bool lower_pack_snorm_2x16;
2264 bool lower_pack_unorm_4x8;
2265 bool lower_pack_snorm_4x8;
2266 bool lower_unpack_half_2x16;
2267 bool lower_unpack_unorm_2x16;
2268 bool lower_unpack_snorm_2x16;
2269 bool lower_unpack_unorm_4x8;
2270 bool lower_unpack_snorm_4x8;
2271
2272 bool lower_extract_byte;
2273 bool lower_extract_word;
2274
2275 bool lower_all_io_to_temps;
2276
2277 /**
2278 * Does the driver support real 32-bit integers? (Otherwise, integers
2279 * are simulated by floats.)
2280 */
2281 bool native_integers;
2282
2283 /* Indicates that the driver only has zero-based vertex id */
2284 bool vertex_id_zero_based;
2285
2286 /**
2287 * If enabled, gl_BaseVertex will be lowered as:
2288 * is_indexed_draw (~0/0) & firstvertex
2289 */
2290 bool lower_base_vertex;
2291
2292 /**
2293 * If enabled, gl_HelperInvocation will be lowered as:
2294 *
2295 * !((1 << sample_id) & sample_mask_in))
2296 *
2297 * This depends on some possibly hw implementation details, which may
2298 * not be true for all hw. In particular that the FS is only executed
2299 * for covered samples or for helper invocations. So, do not blindly
2300 * enable this option.
2301 *
2302 * Note: See also issue #22 in ARB_shader_image_load_store
2303 */
2304 bool lower_helper_invocation;
2305
2306 bool lower_cs_local_index_from_id;
2307 bool lower_cs_local_id_from_index;
2308
2309 bool lower_device_index_to_zero;
2310
2311 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
2312 bool lower_wpos_pntc;
2313
2314 bool lower_hadd;
2315 bool lower_add_sat;
2316
2317 /**
2318 * Should nir_lower_io() create load_interpolated_input intrinsics?
2319 *
2320 * If not, it generates regular load_input intrinsics and interpolation
2321 * information must be inferred from the list of input nir_variables.
2322 */
2323 bool use_interpolated_input_intrinsics;
2324
2325 /* Lowers when 32x32->64 bit multiplication is not supported */
2326 bool lower_mul_2x32_64;
2327
2328 unsigned max_unroll_iterations;
2329
2330 nir_lower_int64_options lower_int64_options;
2331 nir_lower_doubles_options lower_doubles_options;
2332 } nir_shader_compiler_options;
2333
2334 typedef struct nir_shader {
2335 /** list of uniforms (nir_variable) */
2336 struct exec_list uniforms;
2337
2338 /** list of inputs (nir_variable) */
2339 struct exec_list inputs;
2340
2341 /** list of outputs (nir_variable) */
2342 struct exec_list outputs;
2343
2344 /** list of shared compute variables (nir_variable) */
2345 struct exec_list shared;
2346
2347 /** Set of driver-specific options for the shader.
2348 *
2349 * The memory for the options is expected to be kept in a single static
2350 * copy by the driver.
2351 */
2352 const struct nir_shader_compiler_options *options;
2353
2354 /** Various bits of compile-time information about a given shader */
2355 struct shader_info info;
2356
2357 /** list of global variables in the shader (nir_variable) */
2358 struct exec_list globals;
2359
2360 /** list of system value variables in the shader (nir_variable) */
2361 struct exec_list system_values;
2362
2363 struct exec_list functions; /** < list of nir_function */
2364
2365 /** list of global register in the shader */
2366 struct exec_list registers;
2367
2368 /** next available global register index */
2369 unsigned reg_alloc;
2370
2371 /**
2372 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2373 * access plus one
2374 */
2375 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2376
2377 /** Constant data associated with this shader.
2378 *
2379 * Constant data is loaded through load_constant intrinsics. See also
2380 * nir_opt_large_constants.
2381 */
2382 void *constant_data;
2383 unsigned constant_data_size;
2384 } nir_shader;
2385
2386 #define nir_foreach_function(func, shader) \
2387 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2388
2389 static inline nir_function_impl *
2390 nir_shader_get_entrypoint(nir_shader *shader)
2391 {
2392 nir_function *func = NULL;
2393
2394 nir_foreach_function(function, shader) {
2395 assert(func == NULL);
2396 if (function->is_entrypoint) {
2397 func = function;
2398 #ifndef NDEBUG
2399 break;
2400 #endif
2401 }
2402 }
2403
2404 if (!func)
2405 return NULL;
2406
2407 assert(func->num_params == 0);
2408 assert(func->impl);
2409 return func->impl;
2410 }
2411
2412 nir_shader *nir_shader_create(void *mem_ctx,
2413 gl_shader_stage stage,
2414 const nir_shader_compiler_options *options,
2415 shader_info *si);
2416
2417 /** creates a register, including assigning it an index and adding it to the list */
2418 nir_register *nir_global_reg_create(nir_shader *shader);
2419
2420 nir_register *nir_local_reg_create(nir_function_impl *impl);
2421
2422 void nir_reg_remove(nir_register *reg);
2423
2424 /** Adds a variable to the appropriate list in nir_shader */
2425 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2426
2427 static inline void
2428 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2429 {
2430 assert(var->data.mode == nir_var_function_temp);
2431 exec_list_push_tail(&impl->locals, &var->node);
2432 }
2433
2434 /** creates a variable, sets a few defaults, and adds it to the list */
2435 nir_variable *nir_variable_create(nir_shader *shader,
2436 nir_variable_mode mode,
2437 const struct glsl_type *type,
2438 const char *name);
2439 /** creates a local variable and adds it to the list */
2440 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2441 const struct glsl_type *type,
2442 const char *name);
2443
2444 /** creates a function and adds it to the shader's list of functions */
2445 nir_function *nir_function_create(nir_shader *shader, const char *name);
2446
2447 nir_function_impl *nir_function_impl_create(nir_function *func);
2448 /** creates a function_impl that isn't tied to any particular function */
2449 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2450
2451 nir_block *nir_block_create(nir_shader *shader);
2452 nir_if *nir_if_create(nir_shader *shader);
2453 nir_loop *nir_loop_create(nir_shader *shader);
2454
2455 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2456
2457 /** requests that the given pieces of metadata be generated */
2458 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2459 /** dirties all but the preserved metadata */
2460 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2461
2462 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2463 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2464
2465 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2466 nir_deref_type deref_type);
2467
2468 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2469
2470 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2471 unsigned num_components,
2472 unsigned bit_size);
2473
2474 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2475 nir_intrinsic_op op);
2476
2477 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2478 nir_function *callee);
2479
2480 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2481
2482 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2483
2484 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2485
2486 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2487 unsigned num_components,
2488 unsigned bit_size);
2489
2490 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2491
2492 /**
2493 * NIR Cursors and Instruction Insertion API
2494 * @{
2495 *
2496 * A tiny struct representing a point to insert/extract instructions or
2497 * control flow nodes. Helps reduce the combinatorial explosion of possible
2498 * points to insert/extract.
2499 *
2500 * \sa nir_control_flow.h
2501 */
2502 typedef enum {
2503 nir_cursor_before_block,
2504 nir_cursor_after_block,
2505 nir_cursor_before_instr,
2506 nir_cursor_after_instr,
2507 } nir_cursor_option;
2508
2509 typedef struct {
2510 nir_cursor_option option;
2511 union {
2512 nir_block *block;
2513 nir_instr *instr;
2514 };
2515 } nir_cursor;
2516
2517 static inline nir_block *
2518 nir_cursor_current_block(nir_cursor cursor)
2519 {
2520 if (cursor.option == nir_cursor_before_instr ||
2521 cursor.option == nir_cursor_after_instr) {
2522 return cursor.instr->block;
2523 } else {
2524 return cursor.block;
2525 }
2526 }
2527
2528 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2529
2530 static inline nir_cursor
2531 nir_before_block(nir_block *block)
2532 {
2533 nir_cursor cursor;
2534 cursor.option = nir_cursor_before_block;
2535 cursor.block = block;
2536 return cursor;
2537 }
2538
2539 static inline nir_cursor
2540 nir_after_block(nir_block *block)
2541 {
2542 nir_cursor cursor;
2543 cursor.option = nir_cursor_after_block;
2544 cursor.block = block;
2545 return cursor;
2546 }
2547
2548 static inline nir_cursor
2549 nir_before_instr(nir_instr *instr)
2550 {
2551 nir_cursor cursor;
2552 cursor.option = nir_cursor_before_instr;
2553 cursor.instr = instr;
2554 return cursor;
2555 }
2556
2557 static inline nir_cursor
2558 nir_after_instr(nir_instr *instr)
2559 {
2560 nir_cursor cursor;
2561 cursor.option = nir_cursor_after_instr;
2562 cursor.instr = instr;
2563 return cursor;
2564 }
2565
2566 static inline nir_cursor
2567 nir_after_block_before_jump(nir_block *block)
2568 {
2569 nir_instr *last_instr = nir_block_last_instr(block);
2570 if (last_instr && last_instr->type == nir_instr_type_jump) {
2571 return nir_before_instr(last_instr);
2572 } else {
2573 return nir_after_block(block);
2574 }
2575 }
2576
2577 static inline nir_cursor
2578 nir_before_src(nir_src *src, bool is_if_condition)
2579 {
2580 if (is_if_condition) {
2581 nir_block *prev_block =
2582 nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
2583 assert(!nir_block_ends_in_jump(prev_block));
2584 return nir_after_block(prev_block);
2585 } else if (src->parent_instr->type == nir_instr_type_phi) {
2586 #ifndef NDEBUG
2587 nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
2588 bool found = false;
2589 nir_foreach_phi_src(phi_src, cond_phi) {
2590 if (phi_src->src.ssa == src->ssa) {
2591 found = true;
2592 break;
2593 }
2594 }
2595 assert(found);
2596 #endif
2597 /* The LIST_ENTRY macro is a generic container-of macro, it just happens
2598 * to have a more specific name.
2599 */
2600 nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
2601 return nir_after_block_before_jump(phi_src->pred);
2602 } else {
2603 return nir_before_instr(src->parent_instr);
2604 }
2605 }
2606
2607 static inline nir_cursor
2608 nir_before_cf_node(nir_cf_node *node)
2609 {
2610 if (node->type == nir_cf_node_block)
2611 return nir_before_block(nir_cf_node_as_block(node));
2612
2613 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2614 }
2615
2616 static inline nir_cursor
2617 nir_after_cf_node(nir_cf_node *node)
2618 {
2619 if (node->type == nir_cf_node_block)
2620 return nir_after_block(nir_cf_node_as_block(node));
2621
2622 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2623 }
2624
2625 static inline nir_cursor
2626 nir_after_phis(nir_block *block)
2627 {
2628 nir_foreach_instr(instr, block) {
2629 if (instr->type != nir_instr_type_phi)
2630 return nir_before_instr(instr);
2631 }
2632 return nir_after_block(block);
2633 }
2634
2635 static inline nir_cursor
2636 nir_after_cf_node_and_phis(nir_cf_node *node)
2637 {
2638 if (node->type == nir_cf_node_block)
2639 return nir_after_block(nir_cf_node_as_block(node));
2640
2641 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2642
2643 return nir_after_phis(block);
2644 }
2645
2646 static inline nir_cursor
2647 nir_before_cf_list(struct exec_list *cf_list)
2648 {
2649 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2650 exec_list_get_head(cf_list), node);
2651 return nir_before_cf_node(first_node);
2652 }
2653
2654 static inline nir_cursor
2655 nir_after_cf_list(struct exec_list *cf_list)
2656 {
2657 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2658 exec_list_get_tail(cf_list), node);
2659 return nir_after_cf_node(last_node);
2660 }
2661
2662 /**
2663 * Insert a NIR instruction at the given cursor.
2664 *
2665 * Note: This does not update the cursor.
2666 */
2667 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2668
2669 static inline void
2670 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2671 {
2672 nir_instr_insert(nir_before_instr(instr), before);
2673 }
2674
2675 static inline void
2676 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2677 {
2678 nir_instr_insert(nir_after_instr(instr), after);
2679 }
2680
2681 static inline void
2682 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2683 {
2684 nir_instr_insert(nir_before_block(block), before);
2685 }
2686
2687 static inline void
2688 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2689 {
2690 nir_instr_insert(nir_after_block(block), after);
2691 }
2692
2693 static inline void
2694 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2695 {
2696 nir_instr_insert(nir_before_cf_node(node), before);
2697 }
2698
2699 static inline void
2700 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2701 {
2702 nir_instr_insert(nir_after_cf_node(node), after);
2703 }
2704
2705 static inline void
2706 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2707 {
2708 nir_instr_insert(nir_before_cf_list(list), before);
2709 }
2710
2711 static inline void
2712 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2713 {
2714 nir_instr_insert(nir_after_cf_list(list), after);
2715 }
2716
2717 void nir_instr_remove_v(nir_instr *instr);
2718
2719 static inline nir_cursor
2720 nir_instr_remove(nir_instr *instr)
2721 {
2722 nir_cursor cursor;
2723 nir_instr *prev = nir_instr_prev(instr);
2724 if (prev) {
2725 cursor = nir_after_instr(prev);
2726 } else {
2727 cursor = nir_before_block(instr->block);
2728 }
2729 nir_instr_remove_v(instr);
2730 return cursor;
2731 }
2732
2733 /** @} */
2734
2735 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2736 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2737 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2738 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2739 void *state);
2740 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2741 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2742
2743 nir_const_value *nir_src_as_const_value(nir_src src);
2744
2745 static inline struct nir_instr *
2746 nir_src_instr(const struct nir_src *src)
2747 {
2748 return src->is_ssa ? src->ssa->parent_instr : NULL;
2749 }
2750
2751 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
2752 static inline c_type * \
2753 nir_src_as_ ## name (struct nir_src *src) \
2754 { \
2755 return src->is_ssa && src->ssa->parent_instr->type == type_enum \
2756 ? cast_macro(src->ssa->parent_instr) : NULL; \
2757 } \
2758 static inline const c_type * \
2759 nir_src_as_ ## name ## _const(const struct nir_src *src) \
2760 { \
2761 return src->is_ssa && src->ssa->parent_instr->type == type_enum \
2762 ? cast_macro(src->ssa->parent_instr) : NULL; \
2763 }
2764
2765 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
2766
2767 bool nir_src_is_dynamically_uniform(nir_src src);
2768 bool nir_srcs_equal(nir_src src1, nir_src src2);
2769 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2770 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2771 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2772 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2773 nir_dest new_dest);
2774
2775 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2776 unsigned num_components, unsigned bit_size,
2777 const char *name);
2778 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2779 unsigned num_components, unsigned bit_size,
2780 const char *name);
2781 static inline void
2782 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
2783 const struct glsl_type *type,
2784 const char *name)
2785 {
2786 assert(glsl_type_is_vector_or_scalar(type));
2787 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
2788 glsl_get_bit_size(type), name);
2789 }
2790 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2791 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2792 nir_instr *after_me);
2793
2794 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
2795
2796 /*
2797 * finds the next basic block in source-code order, returns NULL if there is
2798 * none
2799 */
2800
2801 nir_block *nir_block_cf_tree_next(nir_block *block);
2802
2803 /* Performs the opposite of nir_block_cf_tree_next() */
2804
2805 nir_block *nir_block_cf_tree_prev(nir_block *block);
2806
2807 /* Gets the first block in a CF node in source-code order */
2808
2809 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2810
2811 /* Gets the last block in a CF node in source-code order */
2812
2813 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2814
2815 /* Gets the next block after a CF node in source-code order */
2816
2817 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2818
2819 /* Macros for loops that visit blocks in source-code order */
2820
2821 #define nir_foreach_block(block, impl) \
2822 for (nir_block *block = nir_start_block(impl); block != NULL; \
2823 block = nir_block_cf_tree_next(block))
2824
2825 #define nir_foreach_block_safe(block, impl) \
2826 for (nir_block *block = nir_start_block(impl), \
2827 *next = nir_block_cf_tree_next(block); \
2828 block != NULL; \
2829 block = next, next = nir_block_cf_tree_next(block))
2830
2831 #define nir_foreach_block_reverse(block, impl) \
2832 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2833 block = nir_block_cf_tree_prev(block))
2834
2835 #define nir_foreach_block_reverse_safe(block, impl) \
2836 for (nir_block *block = nir_impl_last_block(impl), \
2837 *prev = nir_block_cf_tree_prev(block); \
2838 block != NULL; \
2839 block = prev, prev = nir_block_cf_tree_prev(block))
2840
2841 #define nir_foreach_block_in_cf_node(block, node) \
2842 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2843 block != nir_cf_node_cf_tree_next(node); \
2844 block = nir_block_cf_tree_next(block))
2845
2846 /* If the following CF node is an if, this function returns that if.
2847 * Otherwise, it returns NULL.
2848 */
2849 nir_if *nir_block_get_following_if(nir_block *block);
2850
2851 nir_loop *nir_block_get_following_loop(nir_block *block);
2852
2853 void nir_index_local_regs(nir_function_impl *impl);
2854 void nir_index_global_regs(nir_shader *shader);
2855 void nir_index_ssa_defs(nir_function_impl *impl);
2856 unsigned nir_index_instrs(nir_function_impl *impl);
2857
2858 void nir_index_blocks(nir_function_impl *impl);
2859
2860 void nir_print_shader(nir_shader *shader, FILE *fp);
2861 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2862 void nir_print_instr(const nir_instr *instr, FILE *fp);
2863 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
2864
2865 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2866 nir_function_impl *nir_function_impl_clone(nir_shader *shader,
2867 const nir_function_impl *fi);
2868 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2869 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2870
2871 nir_shader *nir_shader_serialize_deserialize(void *mem_ctx, nir_shader *s);
2872
2873 #ifndef NDEBUG
2874 void nir_validate_shader(nir_shader *shader, const char *when);
2875 void nir_metadata_set_validation_flag(nir_shader *shader);
2876 void nir_metadata_check_validation_flag(nir_shader *shader);
2877
2878 static inline bool
2879 should_skip_nir(const char *name)
2880 {
2881 static const char *list = NULL;
2882 if (!list) {
2883 /* Comma separated list of names to skip. */
2884 list = getenv("NIR_SKIP");
2885 if (!list)
2886 list = "";
2887 }
2888
2889 if (!list[0])
2890 return false;
2891
2892 return comma_separated_list_contains(list, name);
2893 }
2894
2895 static inline bool
2896 should_clone_nir(void)
2897 {
2898 static int should_clone = -1;
2899 if (should_clone < 0)
2900 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2901
2902 return should_clone;
2903 }
2904
2905 static inline bool
2906 should_serialize_deserialize_nir(void)
2907 {
2908 static int test_serialize = -1;
2909 if (test_serialize < 0)
2910 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
2911
2912 return test_serialize;
2913 }
2914
2915 static inline bool
2916 should_print_nir(void)
2917 {
2918 static int should_print = -1;
2919 if (should_print < 0)
2920 should_print = env_var_as_boolean("NIR_PRINT", false);
2921
2922 return should_print;
2923 }
2924 #else
2925 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
2926 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2927 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2928 static inline bool should_skip_nir(UNUSED const char *pass_name) { return false; }
2929 static inline bool should_clone_nir(void) { return false; }
2930 static inline bool should_serialize_deserialize_nir(void) { return false; }
2931 static inline bool should_print_nir(void) { return false; }
2932 #endif /* NDEBUG */
2933
2934 #define _PASS(pass, nir, do_pass) do { \
2935 if (should_skip_nir(#pass)) { \
2936 printf("skipping %s\n", #pass); \
2937 break; \
2938 } \
2939 do_pass \
2940 nir_validate_shader(nir, "after " #pass); \
2941 if (should_clone_nir()) { \
2942 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2943 ralloc_free(nir); \
2944 nir = clone; \
2945 } \
2946 if (should_serialize_deserialize_nir()) { \
2947 void *mem_ctx = ralloc_parent(nir); \
2948 nir = nir_shader_serialize_deserialize(mem_ctx, nir); \
2949 } \
2950 } while (0)
2951
2952 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, \
2953 nir_metadata_set_validation_flag(nir); \
2954 if (should_print_nir()) \
2955 printf("%s\n", #pass); \
2956 if (pass(nir, ##__VA_ARGS__)) { \
2957 progress = true; \
2958 if (should_print_nir()) \
2959 nir_print_shader(nir, stdout); \
2960 nir_metadata_check_validation_flag(nir); \
2961 } \
2962 )
2963
2964 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, \
2965 if (should_print_nir()) \
2966 printf("%s\n", #pass); \
2967 pass(nir, ##__VA_ARGS__); \
2968 if (should_print_nir()) \
2969 nir_print_shader(nir, stdout); \
2970 )
2971
2972 #define NIR_SKIP(name) should_skip_nir(#name)
2973
2974 void nir_calc_dominance_impl(nir_function_impl *impl);
2975 void nir_calc_dominance(nir_shader *shader);
2976
2977 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2978 bool nir_block_dominates(nir_block *parent, nir_block *child);
2979
2980 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2981 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2982
2983 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2984 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2985
2986 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2987 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2988
2989 int nir_gs_count_vertices(const nir_shader *shader);
2990
2991 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
2992 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
2993 bool nir_split_var_copies(nir_shader *shader);
2994 bool nir_split_per_member_structs(nir_shader *shader);
2995 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
2996
2997 bool nir_lower_returns_impl(nir_function_impl *impl);
2998 bool nir_lower_returns(nir_shader *shader);
2999
3000 void nir_inline_function_impl(struct nir_builder *b,
3001 const nir_function_impl *impl,
3002 nir_ssa_def **params);
3003 bool nir_inline_functions(nir_shader *shader);
3004
3005 bool nir_propagate_invariant(nir_shader *shader);
3006
3007 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
3008 void nir_lower_deref_copy_instr(struct nir_builder *b,
3009 nir_intrinsic_instr *copy);
3010 bool nir_lower_var_copies(nir_shader *shader);
3011
3012 void nir_fixup_deref_modes(nir_shader *shader);
3013
3014 bool nir_lower_global_vars_to_local(nir_shader *shader);
3015
3016 typedef enum {
3017 nir_lower_direct_array_deref_of_vec_load = (1 << 0),
3018 nir_lower_indirect_array_deref_of_vec_load = (1 << 1),
3019 nir_lower_direct_array_deref_of_vec_store = (1 << 2),
3020 nir_lower_indirect_array_deref_of_vec_store = (1 << 3),
3021 } nir_lower_array_deref_of_vec_options;
3022
3023 bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
3024 nir_lower_array_deref_of_vec_options options);
3025
3026 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
3027
3028 bool nir_lower_locals_to_regs(nir_shader *shader);
3029
3030 void nir_lower_io_to_temporaries(nir_shader *shader,
3031 nir_function_impl *entrypoint,
3032 bool outputs, bool inputs);
3033
3034 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
3035
3036 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
3037 int (*type_size)(const struct glsl_type *));
3038
3039 /* Some helpers to do very simple linking */
3040 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
3041 bool nir_remove_unused_io_vars(nir_shader *shader, struct exec_list *var_list,
3042 uint64_t *used_by_other_stage,
3043 uint64_t *used_by_other_stage_patches);
3044 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
3045 bool default_to_smooth_interp);
3046 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
3047 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
3048
3049 typedef enum {
3050 /* If set, this forces all non-flat fragment shader inputs to be
3051 * interpolated as if with the "sample" qualifier. This requires
3052 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
3053 */
3054 nir_lower_io_force_sample_interpolation = (1 << 1),
3055 } nir_lower_io_options;
3056 bool nir_lower_io(nir_shader *shader,
3057 nir_variable_mode modes,
3058 int (*type_size)(const struct glsl_type *),
3059 nir_lower_io_options);
3060
3061 typedef enum {
3062 /**
3063 * An address format which is a simple 32-bit global GPU address.
3064 */
3065 nir_address_format_32bit_global,
3066
3067 /**
3068 * An address format which is a simple 64-bit global GPU address.
3069 */
3070 nir_address_format_64bit_global,
3071
3072 /**
3073 * An address format which is a bounds-checked 64-bit global GPU address.
3074 *
3075 * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
3076 * address stored with the low bits in .x and high bits in .y, .z is a
3077 * size, and .w is an offset. When the final I/O operation is lowered, .w
3078 * is checked against .z and the operation is predicated on the result.
3079 */
3080 nir_address_format_64bit_bounded_global,
3081
3082 /**
3083 * An address format which is comprised of a vec2 where the first
3084 * component is a buffer index and the second is an offset.
3085 */
3086 nir_address_format_32bit_index_offset,
3087 } nir_address_format;
3088 bool nir_lower_explicit_io(nir_shader *shader,
3089 nir_variable_mode modes,
3090 nir_address_format);
3091
3092 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
3093 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
3094
3095 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
3096
3097 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
3098 bool nir_lower_regs_to_ssa(nir_shader *shader);
3099 bool nir_lower_vars_to_ssa(nir_shader *shader);
3100
3101 bool nir_remove_dead_derefs(nir_shader *shader);
3102 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
3103 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
3104 bool nir_lower_constant_initializers(nir_shader *shader,
3105 nir_variable_mode modes);
3106
3107 bool nir_move_load_const(nir_shader *shader);
3108 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
3109 bool nir_lower_vec_to_movs(nir_shader *shader);
3110 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
3111 bool alpha_to_one);
3112 bool nir_lower_alu(nir_shader *shader);
3113 bool nir_lower_alu_to_scalar(nir_shader *shader);
3114 bool nir_lower_bool_to_float(nir_shader *shader);
3115 bool nir_lower_bool_to_int32(nir_shader *shader);
3116 bool nir_lower_load_const_to_scalar(nir_shader *shader);
3117 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
3118 bool nir_lower_phis_to_scalar(nir_shader *shader);
3119 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
3120 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
3121 bool outputs_only);
3122 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
3123 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
3124 bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
3125
3126 bool nir_lower_uniforms_to_ubo(nir_shader *shader, int multiplier);
3127
3128 typedef struct nir_lower_subgroups_options {
3129 uint8_t subgroup_size;
3130 uint8_t ballot_bit_size;
3131 bool lower_to_scalar:1;
3132 bool lower_vote_trivial:1;
3133 bool lower_vote_eq_to_ballot:1;
3134 bool lower_subgroup_masks:1;
3135 bool lower_shuffle:1;
3136 bool lower_shuffle_to_32bit:1;
3137 bool lower_quad:1;
3138 } nir_lower_subgroups_options;
3139
3140 bool nir_lower_subgroups(nir_shader *shader,
3141 const nir_lower_subgroups_options *options);
3142
3143 bool nir_lower_system_values(nir_shader *shader);
3144
3145 enum PACKED nir_lower_tex_packing {
3146 nir_lower_tex_packing_none = 0,
3147 /* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
3148 * or unsigned ints based on the sampler type
3149 */
3150 nir_lower_tex_packing_16,
3151 /* The sampler returns 1 32-bit word of 4x8 unorm */
3152 nir_lower_tex_packing_8,
3153 };
3154
3155 typedef struct nir_lower_tex_options {
3156 /**
3157 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
3158 * sampler types a texture projector is lowered.
3159 */
3160 unsigned lower_txp;
3161
3162 /**
3163 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
3164 */
3165 bool lower_txf_offset;
3166
3167 /**
3168 * If true, lower away nir_tex_src_offset for all rect textures.
3169 */
3170 bool lower_rect_offset;
3171
3172 /**
3173 * If true, lower rect textures to 2D, using txs to fetch the
3174 * texture dimensions and dividing the texture coords by the
3175 * texture dims to normalize.
3176 */
3177 bool lower_rect;
3178
3179 /**
3180 * If true, convert yuv to rgb.
3181 */
3182 unsigned lower_y_uv_external;
3183 unsigned lower_y_u_v_external;
3184 unsigned lower_yx_xuxv_external;
3185 unsigned lower_xy_uxvx_external;
3186 unsigned lower_ayuv_external;
3187 unsigned lower_xyuv_external;
3188
3189 /**
3190 * To emulate certain texture wrap modes, this can be used
3191 * to saturate the specified tex coord to [0.0, 1.0]. The
3192 * bits are according to sampler #, ie. if, for example:
3193 *
3194 * (conf->saturate_s & (1 << n))
3195 *
3196 * is true, then the s coord for sampler n is saturated.
3197 *
3198 * Note that clamping must happen *after* projector lowering
3199 * so any projected texture sample instruction with a clamped
3200 * coordinate gets automatically lowered, regardless of the
3201 * 'lower_txp' setting.
3202 */
3203 unsigned saturate_s;
3204 unsigned saturate_t;
3205 unsigned saturate_r;
3206
3207 /* Bitmask of textures that need swizzling.
3208 *
3209 * If (swizzle_result & (1 << texture_index)), then the swizzle in
3210 * swizzles[texture_index] is applied to the result of the texturing
3211 * operation.
3212 */
3213 unsigned swizzle_result;
3214
3215 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
3216 * while 4 and 5 represent 0 and 1 respectively.
3217 */
3218 uint8_t swizzles[32][4];
3219
3220 /* Can be used to scale sampled values in range required by the format. */
3221 float scale_factors[32];
3222
3223 /**
3224 * Bitmap of textures that need srgb to linear conversion. If
3225 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
3226 * of the texture are lowered to linear.
3227 */
3228 unsigned lower_srgb;
3229
3230 /**
3231 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
3232 */
3233 bool lower_txd_cube_map;
3234
3235 /**
3236 * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
3237 */
3238 bool lower_txd_3d;
3239
3240 /**
3241 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
3242 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
3243 * with lower_txd_cube_map.
3244 */
3245 bool lower_txd_shadow;
3246
3247 /**
3248 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
3249 * Implies lower_txd_cube_map and lower_txd_shadow.
3250 */
3251 bool lower_txd;
3252
3253 /**
3254 * If true, lower nir_texop_txb that try to use shadow compare and min_lod
3255 * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
3256 */
3257 bool lower_txb_shadow_clamp;
3258
3259 /**
3260 * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
3261 * with nir_texop_txl. This includes cube maps.
3262 */
3263 bool lower_txd_shadow_clamp;
3264
3265 /**
3266 * If true, lower nir_texop_txd on when it uses both offset and min_lod
3267 * with nir_texop_txl. This includes cube maps.
3268 */
3269 bool lower_txd_offset_clamp;
3270
3271 /**
3272 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3273 * sampler index is not statically determinable to be less than 16.
3274 */
3275 bool lower_txd_clamp_if_sampler_index_not_lt_16;
3276
3277 /**
3278 * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
3279 * mixed-up tg4 locations.
3280 */
3281 bool lower_tg4_broadcom_swizzle;
3282
3283 /**
3284 * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
3285 */
3286 bool lower_tg4_offsets;
3287
3288 enum nir_lower_tex_packing lower_tex_packing[32];
3289 } nir_lower_tex_options;
3290
3291 bool nir_lower_tex(nir_shader *shader,
3292 const nir_lower_tex_options *options);
3293
3294 enum nir_lower_non_uniform_access_type {
3295 nir_lower_non_uniform_ubo_access = (1 << 0),
3296 nir_lower_non_uniform_ssbo_access = (1 << 1),
3297 nir_lower_non_uniform_texture_access = (1 << 2),
3298 nir_lower_non_uniform_image_access = (1 << 3),
3299 };
3300
3301 bool nir_lower_non_uniform_access(nir_shader *shader,
3302 enum nir_lower_non_uniform_access_type);
3303
3304 bool nir_lower_idiv(nir_shader *shader);
3305
3306 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables, bool use_vars);
3307 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
3308 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
3309
3310 bool nir_lower_frexp(nir_shader *nir);
3311
3312 void nir_lower_two_sided_color(nir_shader *shader);
3313
3314 bool nir_lower_clamp_color_outputs(nir_shader *shader);
3315
3316 void nir_lower_passthrough_edgeflags(nir_shader *shader);
3317 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
3318 const gl_state_index16 *uniform_state_tokens);
3319
3320 typedef struct nir_lower_wpos_ytransform_options {
3321 gl_state_index16 state_tokens[STATE_LENGTH];
3322 bool fs_coord_origin_upper_left :1;
3323 bool fs_coord_origin_lower_left :1;
3324 bool fs_coord_pixel_center_integer :1;
3325 bool fs_coord_pixel_center_half_integer :1;
3326 } nir_lower_wpos_ytransform_options;
3327
3328 bool nir_lower_wpos_ytransform(nir_shader *shader,
3329 const nir_lower_wpos_ytransform_options *options);
3330 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
3331
3332 typedef struct nir_lower_drawpixels_options {
3333 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
3334 gl_state_index16 scale_state_tokens[STATE_LENGTH];
3335 gl_state_index16 bias_state_tokens[STATE_LENGTH];
3336 unsigned drawpix_sampler;
3337 unsigned pixelmap_sampler;
3338 bool pixel_maps :1;
3339 bool scale_and_bias :1;
3340 } nir_lower_drawpixels_options;
3341
3342 void nir_lower_drawpixels(nir_shader *shader,
3343 const nir_lower_drawpixels_options *options);
3344
3345 typedef struct nir_lower_bitmap_options {
3346 unsigned sampler;
3347 bool swizzle_xxxx;
3348 } nir_lower_bitmap_options;
3349
3350 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
3351
3352 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
3353
3354 typedef enum {
3355 nir_lower_int_source_mods = 1 << 0,
3356 nir_lower_float_source_mods = 1 << 1,
3357 nir_lower_triop_abs = 1 << 2,
3358 nir_lower_all_source_mods = (1 << 3) - 1
3359 } nir_lower_to_source_mods_flags;
3360
3361
3362 bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
3363
3364 bool nir_lower_gs_intrinsics(nir_shader *shader);
3365
3366 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
3367
3368 bool nir_lower_bit_size(nir_shader *shader,
3369 nir_lower_bit_size_callback callback,
3370 void *callback_data);
3371
3372 nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
3373 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
3374
3375 nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
3376 bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
3377 nir_lower_doubles_options options);
3378 bool nir_lower_pack(nir_shader *shader);
3379
3380 bool nir_normalize_cubemap_coords(nir_shader *shader);
3381
3382 void nir_live_ssa_defs_impl(nir_function_impl *impl);
3383
3384 void nir_loop_analyze_impl(nir_function_impl *impl,
3385 nir_variable_mode indirect_mask);
3386
3387 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
3388
3389 bool nir_repair_ssa_impl(nir_function_impl *impl);
3390 bool nir_repair_ssa(nir_shader *shader);
3391
3392 void nir_convert_loop_to_lcssa(nir_loop *loop);
3393
3394 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
3395 * registers. If false, convert all values (even those not involved in a phi
3396 * node) to registers.
3397 */
3398 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
3399
3400 bool nir_lower_phis_to_regs_block(nir_block *block);
3401 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
3402 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
3403
3404 bool nir_opt_algebraic(nir_shader *shader);
3405 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
3406 bool nir_opt_algebraic_late(nir_shader *shader);
3407 bool nir_opt_constant_folding(nir_shader *shader);
3408
3409 bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
3410
3411 bool nir_opt_global_to_local(nir_shader *shader);
3412
3413 bool nir_copy_prop(nir_shader *shader);
3414
3415 bool nir_opt_copy_prop_vars(nir_shader *shader);
3416
3417 bool nir_opt_cse(nir_shader *shader);
3418
3419 bool nir_opt_dce(nir_shader *shader);
3420
3421 bool nir_opt_dead_cf(nir_shader *shader);
3422
3423 bool nir_opt_dead_write_vars(nir_shader *shader);
3424
3425 bool nir_opt_deref_impl(nir_function_impl *impl);
3426 bool nir_opt_deref(nir_shader *shader);
3427
3428 bool nir_opt_find_array_copies(nir_shader *shader);
3429
3430 bool nir_opt_gcm(nir_shader *shader, bool value_number);
3431
3432 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
3433
3434 bool nir_opt_if(nir_shader *shader);
3435
3436 bool nir_opt_intrinsics(nir_shader *shader);
3437
3438 bool nir_opt_large_constants(nir_shader *shader,
3439 glsl_type_size_align_func size_align,
3440 unsigned threshold);
3441
3442 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
3443
3444 bool nir_opt_move_comparisons(nir_shader *shader);
3445
3446 bool nir_opt_move_load_ubo(nir_shader *shader);
3447
3448 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
3449 bool indirect_load_ok, bool expensive_alu_ok);
3450
3451 bool nir_opt_remove_phis(nir_shader *shader);
3452
3453 bool nir_opt_shrink_load(nir_shader *shader);
3454
3455 bool nir_opt_trivial_continues(nir_shader *shader);
3456
3457 bool nir_opt_undef(nir_shader *shader);
3458
3459 bool nir_opt_conditional_discard(nir_shader *shader);
3460
3461 void nir_strip(nir_shader *shader);
3462
3463 void nir_sweep(nir_shader *shader);
3464
3465 void nir_remap_dual_slot_attributes(nir_shader *shader,
3466 uint64_t *dual_slot_inputs);
3467 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
3468
3469 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
3470 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
3471
3472 #ifdef __cplusplus
3473 } /* extern "C" */
3474 #endif
3475
3476 #endif /* NIR_H */