nir: Add a helper for fetching the SSA def from an instruction
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitscan.h"
38 #include "util/bitset.h"
39 #include "util/macros.h"
40 #include "compiler/nir_types.h"
41 #include "compiler/shader_enums.h"
42 #include "compiler/shader_info.h"
43 #include <stdio.h>
44
45 #ifndef NDEBUG
46 #include "util/debug.h"
47 #endif /* NDEBUG */
48
49 #include "nir_opcodes.h"
50
51 #if defined(_WIN32) && !defined(snprintf)
52 #define snprintf _snprintf
53 #endif
54
55 #ifdef __cplusplus
56 extern "C" {
57 #endif
58
59 #define NIR_FALSE 0u
60 #define NIR_TRUE (~0u)
61 #define NIR_MAX_VEC_COMPONENTS 4
62 #define NIR_MAX_MATRIX_COLUMNS 4
63 typedef uint8_t nir_component_mask_t;
64
65 /** Defines a cast function
66 *
67 * This macro defines a cast function from in_type to out_type where
68 * out_type is some structure type that contains a field of type out_type.
69 *
70 * Note that you have to be a bit careful as the generated cast function
71 * destroys constness.
72 */
73 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
74 type_field, type_value) \
75 static inline out_type * \
76 name(const in_type *parent) \
77 { \
78 assert(parent && parent->type_field == type_value); \
79 return exec_node_data(out_type, parent, field); \
80 }
81
82 struct nir_function;
83 struct nir_shader;
84 struct nir_instr;
85 struct nir_builder;
86
87
88 /**
89 * Description of built-in state associated with a uniform
90 *
91 * \sa nir_variable::state_slots
92 */
93 typedef struct {
94 gl_state_index16 tokens[STATE_LENGTH];
95 int swizzle;
96 } nir_state_slot;
97
98 typedef enum {
99 nir_var_shader_in = (1 << 0),
100 nir_var_shader_out = (1 << 1),
101 nir_var_shader_temp = (1 << 2),
102 nir_var_function_temp = (1 << 3),
103 nir_var_uniform = (1 << 4),
104 nir_var_mem_ubo = (1 << 5),
105 nir_var_system_value = (1 << 6),
106 nir_var_mem_ssbo = (1 << 7),
107 nir_var_mem_shared = (1 << 8),
108 nir_var_mem_global = (1 << 9),
109 nir_var_all = ~0,
110 } nir_variable_mode;
111
112 /**
113 * Rounding modes.
114 */
115 typedef enum {
116 nir_rounding_mode_undef = 0,
117 nir_rounding_mode_rtne = 1, /* round to nearest even */
118 nir_rounding_mode_ru = 2, /* round up */
119 nir_rounding_mode_rd = 3, /* round down */
120 nir_rounding_mode_rtz = 4, /* round towards zero */
121 } nir_rounding_mode;
122
123 typedef union {
124 bool b;
125 float f32;
126 double f64;
127 int8_t i8;
128 uint8_t u8;
129 int16_t i16;
130 uint16_t u16;
131 int32_t i32;
132 uint32_t u32;
133 int64_t i64;
134 uint64_t u64;
135 } nir_const_value;
136
137 #define nir_const_value_to_array(arr, c, components, m) \
138 { \
139 for (unsigned i = 0; i < components; ++i) \
140 arr[i] = c[i].m; \
141 } while (false)
142
143 static inline nir_const_value
144 nir_const_value_for_raw_uint(uint64_t x, unsigned bit_size)
145 {
146 nir_const_value v;
147 memset(&v, 0, sizeof(v));
148
149 switch (bit_size) {
150 case 1: v.b = x; break;
151 case 8: v.u8 = x; break;
152 case 16: v.u16 = x; break;
153 case 32: v.u32 = x; break;
154 case 64: v.u64 = x; break;
155 default:
156 unreachable("Invalid bit size");
157 }
158
159 return v;
160 }
161
162 static inline nir_const_value
163 nir_const_value_for_int(int64_t i, unsigned bit_size)
164 {
165 nir_const_value v;
166 memset(&v, 0, sizeof(v));
167
168 assert(bit_size <= 64);
169 if (bit_size < 64) {
170 assert(i >= (-(1ll << (bit_size - 1))));
171 assert(i < (1ll << (bit_size - 1)));
172 }
173
174 return nir_const_value_for_raw_uint(i, bit_size);
175 }
176
177 static inline nir_const_value
178 nir_const_value_for_uint(uint64_t u, unsigned bit_size)
179 {
180 nir_const_value v;
181 memset(&v, 0, sizeof(v));
182
183 assert(bit_size <= 64);
184 if (bit_size < 64)
185 assert(u < (1ull << bit_size));
186
187 return nir_const_value_for_raw_uint(u, bit_size);
188 }
189
190 static inline nir_const_value
191 nir_const_value_for_bool(bool b, unsigned bit_size)
192 {
193 /* Booleans use a 0/-1 convention */
194 return nir_const_value_for_int(-(int)b, bit_size);
195 }
196
197 /* This one isn't inline because it requires half-float conversion */
198 nir_const_value nir_const_value_for_float(double b, unsigned bit_size);
199
200 static inline int64_t
201 nir_const_value_as_int(nir_const_value value, unsigned bit_size)
202 {
203 switch (bit_size) {
204 /* int1_t uses 0/-1 convention */
205 case 1: return -(int)value.b;
206 case 8: return value.i8;
207 case 16: return value.i16;
208 case 32: return value.i32;
209 case 64: return value.i64;
210 default:
211 unreachable("Invalid bit size");
212 }
213 }
214
215 static inline int64_t
216 nir_const_value_as_uint(nir_const_value value, unsigned bit_size)
217 {
218 switch (bit_size) {
219 case 1: return value.b;
220 case 8: return value.u8;
221 case 16: return value.u16;
222 case 32: return value.u32;
223 case 64: return value.u64;
224 default:
225 unreachable("Invalid bit size");
226 }
227 }
228
229 static inline bool
230 nir_const_value_as_bool(nir_const_value value, unsigned bit_size)
231 {
232 int64_t i = nir_const_value_as_int(value, bit_size);
233
234 /* Booleans of any size use 0/-1 convention */
235 assert(i == 0 || i == -1);
236
237 return i;
238 }
239
240 /* This one isn't inline because it requires half-float conversion */
241 double nir_const_value_as_float(nir_const_value value, unsigned bit_size);
242
243 typedef struct nir_constant {
244 /**
245 * Value of the constant.
246 *
247 * The field used to back the values supplied by the constant is determined
248 * by the type associated with the \c nir_variable. Constants may be
249 * scalars, vectors, or matrices.
250 */
251 nir_const_value values[NIR_MAX_VEC_COMPONENTS];
252
253 /* we could get this from the var->type but makes clone *much* easier to
254 * not have to care about the type.
255 */
256 unsigned num_elements;
257
258 /* Array elements / Structure Fields */
259 struct nir_constant **elements;
260 } nir_constant;
261
262 /**
263 * \brief Layout qualifiers for gl_FragDepth.
264 *
265 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
266 * with a layout qualifier.
267 */
268 typedef enum {
269 nir_depth_layout_none, /**< No depth layout is specified. */
270 nir_depth_layout_any,
271 nir_depth_layout_greater,
272 nir_depth_layout_less,
273 nir_depth_layout_unchanged
274 } nir_depth_layout;
275
276 /**
277 * Enum keeping track of how a variable was declared.
278 */
279 typedef enum {
280 /**
281 * Normal declaration.
282 */
283 nir_var_declared_normally = 0,
284
285 /**
286 * Variable is implicitly generated by the compiler and should not be
287 * visible via the API.
288 */
289 nir_var_hidden,
290 } nir_var_declaration_type;
291
292 /**
293 * Either a uniform, global variable, shader input, or shader output. Based on
294 * ir_variable - it should be easy to translate between the two.
295 */
296
297 typedef struct nir_variable {
298 struct exec_node node;
299
300 /**
301 * Declared type of the variable
302 */
303 const struct glsl_type *type;
304
305 /**
306 * Declared name of the variable
307 */
308 char *name;
309
310 struct nir_variable_data {
311 /**
312 * Storage class of the variable.
313 *
314 * \sa nir_variable_mode
315 */
316 nir_variable_mode mode;
317
318 /**
319 * Is the variable read-only?
320 *
321 * This is set for variables declared as \c const, shader inputs,
322 * and uniforms.
323 */
324 unsigned read_only:1;
325 unsigned centroid:1;
326 unsigned sample:1;
327 unsigned patch:1;
328 unsigned invariant:1;
329
330 /**
331 * Can this variable be coalesced with another?
332 *
333 * This is set by nir_lower_io_to_temporaries to say that any
334 * copies involving this variable should stay put. Propagating it can
335 * duplicate the resulting load/store, which is not wanted, and may
336 * result in a load/store of the variable with an indirect offset which
337 * the backend may not be able to handle.
338 */
339 unsigned cannot_coalesce:1;
340
341 /**
342 * When separate shader programs are enabled, only input/outputs between
343 * the stages of a multi-stage separate program can be safely removed
344 * from the shader interface. Other input/outputs must remains active.
345 *
346 * This is also used to make sure xfb varyings that are unused by the
347 * fragment shader are not removed.
348 */
349 unsigned always_active_io:1;
350
351 /**
352 * Interpolation mode for shader inputs / outputs
353 *
354 * \sa glsl_interp_mode
355 */
356 unsigned interpolation:2;
357
358 /**
359 * If non-zero, then this variable may be packed along with other variables
360 * into a single varying slot, so this offset should be applied when
361 * accessing components. For example, an offset of 1 means that the x
362 * component of this variable is actually stored in component y of the
363 * location specified by \c location.
364 */
365 unsigned location_frac:2;
366
367 /**
368 * If true, this variable represents an array of scalars that should
369 * be tightly packed. In other words, consecutive array elements
370 * should be stored one component apart, rather than one slot apart.
371 */
372 unsigned compact:1;
373
374 /**
375 * Whether this is a fragment shader output implicitly initialized with
376 * the previous contents of the specified render target at the
377 * framebuffer location corresponding to this shader invocation.
378 */
379 unsigned fb_fetch_output:1;
380
381 /**
382 * Non-zero if this variable is considered bindless as defined by
383 * ARB_bindless_texture.
384 */
385 unsigned bindless:1;
386
387 /**
388 * Was an explicit binding set in the shader?
389 */
390 unsigned explicit_binding:1;
391
392 /**
393 * Was a transfer feedback buffer set in the shader?
394 */
395 unsigned explicit_xfb_buffer:1;
396
397 /**
398 * Was a transfer feedback stride set in the shader?
399 */
400 unsigned explicit_xfb_stride:1;
401
402 /**
403 * Was an explicit offset set in the shader?
404 */
405 unsigned explicit_offset:1;
406
407 /**
408 * \brief Layout qualifier for gl_FragDepth.
409 *
410 * This is not equal to \c ir_depth_layout_none if and only if this
411 * variable is \c gl_FragDepth and a layout qualifier is specified.
412 */
413 nir_depth_layout depth_layout;
414
415 /**
416 * Storage location of the base of this variable
417 *
418 * The precise meaning of this field depends on the nature of the variable.
419 *
420 * - Vertex shader input: one of the values from \c gl_vert_attrib.
421 * - Vertex shader output: one of the values from \c gl_varying_slot.
422 * - Geometry shader input: one of the values from \c gl_varying_slot.
423 * - Geometry shader output: one of the values from \c gl_varying_slot.
424 * - Fragment shader input: one of the values from \c gl_varying_slot.
425 * - Fragment shader output: one of the values from \c gl_frag_result.
426 * - Uniforms: Per-stage uniform slot number for default uniform block.
427 * - Uniforms: Index within the uniform block definition for UBO members.
428 * - Non-UBO Uniforms: uniform slot number.
429 * - Other: This field is not currently used.
430 *
431 * If the variable is a uniform, shader input, or shader output, and the
432 * slot has not been assigned, the value will be -1.
433 */
434 int location;
435
436 /**
437 * The actual location of the variable in the IR. Only valid for inputs
438 * and outputs.
439 */
440 unsigned int driver_location;
441
442 /**
443 * Vertex stream output identifier.
444 *
445 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
446 * stream of the i-th component.
447 */
448 unsigned stream;
449
450 /**
451 * output index for dual source blending.
452 */
453 int index;
454
455 /**
456 * Descriptor set binding for sampler or UBO.
457 */
458 int descriptor_set;
459
460 /**
461 * Initial binding point for a sampler or UBO.
462 *
463 * For array types, this represents the binding point for the first element.
464 */
465 int binding;
466
467 /**
468 * Location an atomic counter or transform feedback is stored at.
469 */
470 unsigned offset;
471
472 /**
473 * Transform feedback buffer.
474 */
475 unsigned xfb_buffer;
476
477 /**
478 * Transform feedback stride.
479 */
480 unsigned xfb_stride;
481
482 /**
483 * How the variable was declared. See nir_var_declaration_type.
484 *
485 * This is used to detect variables generated by the compiler, so should
486 * not be visible via the API.
487 */
488 unsigned how_declared:2;
489
490 /**
491 * ARB_shader_image_load_store qualifiers.
492 */
493 struct {
494 enum gl_access_qualifier access;
495
496 /** Image internal format if specified explicitly, otherwise GL_NONE. */
497 GLenum format;
498 } image;
499 } data;
500
501 /**
502 * Built-in state that backs this uniform
503 *
504 * Once set at variable creation, \c state_slots must remain invariant.
505 * This is because, ideally, this array would be shared by all clones of
506 * this variable in the IR tree. In other words, we'd really like for it
507 * to be a fly-weight.
508 *
509 * If the variable is not a uniform, \c num_state_slots will be zero and
510 * \c state_slots will be \c NULL.
511 */
512 /*@{*/
513 unsigned num_state_slots; /**< Number of state slots used */
514 nir_state_slot *state_slots; /**< State descriptors. */
515 /*@}*/
516
517 /**
518 * Constant expression assigned in the initializer of the variable
519 *
520 * This field should only be used temporarily by creators of NIR shaders
521 * and then lower_constant_initializers can be used to get rid of them.
522 * Most of the rest of NIR ignores this field or asserts that it's NULL.
523 */
524 nir_constant *constant_initializer;
525
526 /**
527 * For variables that are in an interface block or are an instance of an
528 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
529 *
530 * \sa ir_variable::location
531 */
532 const struct glsl_type *interface_type;
533
534 /**
535 * Description of per-member data for per-member struct variables
536 *
537 * This is used for variables which are actually an amalgamation of
538 * multiple entities such as a struct of built-in values or a struct of
539 * inputs each with their own layout specifier. This is only allowed on
540 * variables with a struct or array of array of struct type.
541 */
542 unsigned num_members;
543 struct nir_variable_data *members;
544 } nir_variable;
545
546 #define nir_foreach_variable(var, var_list) \
547 foreach_list_typed(nir_variable, var, node, var_list)
548
549 #define nir_foreach_variable_safe(var, var_list) \
550 foreach_list_typed_safe(nir_variable, var, node, var_list)
551
552 static inline bool
553 nir_variable_is_global(const nir_variable *var)
554 {
555 return var->data.mode != nir_var_function_temp;
556 }
557
558 typedef struct nir_register {
559 struct exec_node node;
560
561 unsigned num_components; /** < number of vector components */
562 unsigned num_array_elems; /** < size of array (0 for no array) */
563
564 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
565 uint8_t bit_size;
566
567 /** generic register index. */
568 unsigned index;
569
570 /** only for debug purposes, can be NULL */
571 const char *name;
572
573 /** set of nir_srcs where this register is used (read from) */
574 struct list_head uses;
575
576 /** set of nir_dests where this register is defined (written to) */
577 struct list_head defs;
578
579 /** set of nir_ifs where this register is used as a condition */
580 struct list_head if_uses;
581 } nir_register;
582
583 #define nir_foreach_register(reg, reg_list) \
584 foreach_list_typed(nir_register, reg, node, reg_list)
585 #define nir_foreach_register_safe(reg, reg_list) \
586 foreach_list_typed_safe(nir_register, reg, node, reg_list)
587
588 typedef enum PACKED {
589 nir_instr_type_alu,
590 nir_instr_type_deref,
591 nir_instr_type_call,
592 nir_instr_type_tex,
593 nir_instr_type_intrinsic,
594 nir_instr_type_load_const,
595 nir_instr_type_jump,
596 nir_instr_type_ssa_undef,
597 nir_instr_type_phi,
598 nir_instr_type_parallel_copy,
599 } nir_instr_type;
600
601 typedef struct nir_instr {
602 struct exec_node node;
603 struct nir_block *block;
604 nir_instr_type type;
605
606 /* A temporary for optimization and analysis passes to use for storing
607 * flags. For instance, DCE uses this to store the "dead/live" info.
608 */
609 uint8_t pass_flags;
610
611 /** generic instruction index. */
612 unsigned index;
613 } nir_instr;
614
615 static inline nir_instr *
616 nir_instr_next(nir_instr *instr)
617 {
618 struct exec_node *next = exec_node_get_next(&instr->node);
619 if (exec_node_is_tail_sentinel(next))
620 return NULL;
621 else
622 return exec_node_data(nir_instr, next, node);
623 }
624
625 static inline nir_instr *
626 nir_instr_prev(nir_instr *instr)
627 {
628 struct exec_node *prev = exec_node_get_prev(&instr->node);
629 if (exec_node_is_head_sentinel(prev))
630 return NULL;
631 else
632 return exec_node_data(nir_instr, prev, node);
633 }
634
635 static inline bool
636 nir_instr_is_first(const nir_instr *instr)
637 {
638 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
639 }
640
641 static inline bool
642 nir_instr_is_last(const nir_instr *instr)
643 {
644 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
645 }
646
647 typedef struct nir_ssa_def {
648 /** for debugging only, can be NULL */
649 const char* name;
650
651 /** generic SSA definition index. */
652 unsigned index;
653
654 /** Index into the live_in and live_out bitfields */
655 unsigned live_index;
656
657 /** Instruction which produces this SSA value. */
658 nir_instr *parent_instr;
659
660 /** set of nir_instrs where this register is used (read from) */
661 struct list_head uses;
662
663 /** set of nir_ifs where this register is used as a condition */
664 struct list_head if_uses;
665
666 uint8_t num_components;
667
668 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
669 uint8_t bit_size;
670 } nir_ssa_def;
671
672 struct nir_src;
673
674 typedef struct {
675 nir_register *reg;
676 struct nir_src *indirect; /** < NULL for no indirect offset */
677 unsigned base_offset;
678
679 /* TODO use-def chain goes here */
680 } nir_reg_src;
681
682 typedef struct {
683 nir_instr *parent_instr;
684 struct list_head def_link;
685
686 nir_register *reg;
687 struct nir_src *indirect; /** < NULL for no indirect offset */
688 unsigned base_offset;
689
690 /* TODO def-use chain goes here */
691 } nir_reg_dest;
692
693 struct nir_if;
694
695 typedef struct nir_src {
696 union {
697 /** Instruction that consumes this value as a source. */
698 nir_instr *parent_instr;
699 struct nir_if *parent_if;
700 };
701
702 struct list_head use_link;
703
704 union {
705 nir_reg_src reg;
706 nir_ssa_def *ssa;
707 };
708
709 bool is_ssa;
710 } nir_src;
711
712 static inline nir_src
713 nir_src_init(void)
714 {
715 nir_src src = { { NULL } };
716 return src;
717 }
718
719 #define NIR_SRC_INIT nir_src_init()
720
721 #define nir_foreach_use(src, reg_or_ssa_def) \
722 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
723
724 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
725 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
726
727 #define nir_foreach_if_use(src, reg_or_ssa_def) \
728 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
729
730 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
731 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
732
733 typedef struct {
734 union {
735 nir_reg_dest reg;
736 nir_ssa_def ssa;
737 };
738
739 bool is_ssa;
740 } nir_dest;
741
742 static inline nir_dest
743 nir_dest_init(void)
744 {
745 nir_dest dest = { { { NULL } } };
746 return dest;
747 }
748
749 #define NIR_DEST_INIT nir_dest_init()
750
751 #define nir_foreach_def(dest, reg) \
752 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
753
754 #define nir_foreach_def_safe(dest, reg) \
755 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
756
757 static inline nir_src
758 nir_src_for_ssa(nir_ssa_def *def)
759 {
760 nir_src src = NIR_SRC_INIT;
761
762 src.is_ssa = true;
763 src.ssa = def;
764
765 return src;
766 }
767
768 static inline nir_src
769 nir_src_for_reg(nir_register *reg)
770 {
771 nir_src src = NIR_SRC_INIT;
772
773 src.is_ssa = false;
774 src.reg.reg = reg;
775 src.reg.indirect = NULL;
776 src.reg.base_offset = 0;
777
778 return src;
779 }
780
781 static inline nir_dest
782 nir_dest_for_reg(nir_register *reg)
783 {
784 nir_dest dest = NIR_DEST_INIT;
785
786 dest.reg.reg = reg;
787
788 return dest;
789 }
790
791 static inline unsigned
792 nir_src_bit_size(nir_src src)
793 {
794 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
795 }
796
797 static inline unsigned
798 nir_src_num_components(nir_src src)
799 {
800 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
801 }
802
803 static inline bool
804 nir_src_is_const(nir_src src)
805 {
806 return src.is_ssa &&
807 src.ssa->parent_instr->type == nir_instr_type_load_const;
808 }
809
810 static inline unsigned
811 nir_dest_bit_size(nir_dest dest)
812 {
813 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
814 }
815
816 static inline unsigned
817 nir_dest_num_components(nir_dest dest)
818 {
819 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
820 }
821
822 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
823 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
824
825 typedef struct {
826 nir_src src;
827
828 /**
829 * \name input modifiers
830 */
831 /*@{*/
832 /**
833 * For inputs interpreted as floating point, flips the sign bit. For
834 * inputs interpreted as integers, performs the two's complement negation.
835 */
836 bool negate;
837
838 /**
839 * Clears the sign bit for floating point values, and computes the integer
840 * absolute value for integers. Note that the negate modifier acts after
841 * the absolute value modifier, therefore if both are set then all inputs
842 * will become negative.
843 */
844 bool abs;
845 /*@}*/
846
847 /**
848 * For each input component, says which component of the register it is
849 * chosen from. Note that which elements of the swizzle are used and which
850 * are ignored are based on the write mask for most opcodes - for example,
851 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
852 * a swizzle of {2, x, 1, 0} where x means "don't care."
853 */
854 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
855 } nir_alu_src;
856
857 typedef struct {
858 nir_dest dest;
859
860 /**
861 * \name saturate output modifier
862 *
863 * Only valid for opcodes that output floating-point numbers. Clamps the
864 * output to between 0.0 and 1.0 inclusive.
865 */
866
867 bool saturate;
868
869 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
870 } nir_alu_dest;
871
872 /** NIR sized and unsized types
873 *
874 * The values in this enum are carefully chosen so that the sized type is
875 * just the unsized type OR the number of bits.
876 */
877 typedef enum {
878 nir_type_invalid = 0, /* Not a valid type */
879 nir_type_int = 2,
880 nir_type_uint = 4,
881 nir_type_bool = 6,
882 nir_type_float = 128,
883 nir_type_bool1 = 1 | nir_type_bool,
884 nir_type_bool32 = 32 | nir_type_bool,
885 nir_type_int1 = 1 | nir_type_int,
886 nir_type_int8 = 8 | nir_type_int,
887 nir_type_int16 = 16 | nir_type_int,
888 nir_type_int32 = 32 | nir_type_int,
889 nir_type_int64 = 64 | nir_type_int,
890 nir_type_uint1 = 1 | nir_type_uint,
891 nir_type_uint8 = 8 | nir_type_uint,
892 nir_type_uint16 = 16 | nir_type_uint,
893 nir_type_uint32 = 32 | nir_type_uint,
894 nir_type_uint64 = 64 | nir_type_uint,
895 nir_type_float16 = 16 | nir_type_float,
896 nir_type_float32 = 32 | nir_type_float,
897 nir_type_float64 = 64 | nir_type_float,
898 } nir_alu_type;
899
900 #define NIR_ALU_TYPE_SIZE_MASK 0x79
901 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
902
903 static inline unsigned
904 nir_alu_type_get_type_size(nir_alu_type type)
905 {
906 return type & NIR_ALU_TYPE_SIZE_MASK;
907 }
908
909 static inline unsigned
910 nir_alu_type_get_base_type(nir_alu_type type)
911 {
912 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
913 }
914
915 static inline nir_alu_type
916 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
917 {
918 switch (base_type) {
919 case GLSL_TYPE_BOOL:
920 return nir_type_bool1;
921 break;
922 case GLSL_TYPE_UINT:
923 return nir_type_uint32;
924 break;
925 case GLSL_TYPE_INT:
926 return nir_type_int32;
927 break;
928 case GLSL_TYPE_UINT16:
929 return nir_type_uint16;
930 break;
931 case GLSL_TYPE_INT16:
932 return nir_type_int16;
933 break;
934 case GLSL_TYPE_UINT8:
935 return nir_type_uint8;
936 case GLSL_TYPE_INT8:
937 return nir_type_int8;
938 case GLSL_TYPE_UINT64:
939 return nir_type_uint64;
940 break;
941 case GLSL_TYPE_INT64:
942 return nir_type_int64;
943 break;
944 case GLSL_TYPE_FLOAT:
945 return nir_type_float32;
946 break;
947 case GLSL_TYPE_FLOAT16:
948 return nir_type_float16;
949 break;
950 case GLSL_TYPE_DOUBLE:
951 return nir_type_float64;
952 break;
953
954 case GLSL_TYPE_SAMPLER:
955 case GLSL_TYPE_IMAGE:
956 case GLSL_TYPE_ATOMIC_UINT:
957 case GLSL_TYPE_STRUCT:
958 case GLSL_TYPE_INTERFACE:
959 case GLSL_TYPE_ARRAY:
960 case GLSL_TYPE_VOID:
961 case GLSL_TYPE_SUBROUTINE:
962 case GLSL_TYPE_FUNCTION:
963 case GLSL_TYPE_ERROR:
964 return nir_type_invalid;
965 }
966
967 unreachable("unknown type");
968 }
969
970 static inline nir_alu_type
971 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
972 {
973 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
974 }
975
976 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
977 nir_rounding_mode rnd);
978
979 static inline nir_op
980 nir_op_vec(unsigned components)
981 {
982 switch (components) {
983 case 1: return nir_op_mov;
984 case 2: return nir_op_vec2;
985 case 3: return nir_op_vec3;
986 case 4: return nir_op_vec4;
987 default: unreachable("bad component count");
988 }
989 }
990
991 typedef enum {
992 /**
993 * Operation where the first two sources are commutative.
994 *
995 * For 2-source operations, this just mathematical commutativity. Some
996 * 3-source operations, like ffma, are only commutative in the first two
997 * sources.
998 */
999 NIR_OP_IS_2SRC_COMMUTATIVE = (1 << 0),
1000 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
1001 } nir_op_algebraic_property;
1002
1003 typedef struct {
1004 const char *name;
1005
1006 unsigned num_inputs;
1007
1008 /**
1009 * The number of components in the output
1010 *
1011 * If non-zero, this is the size of the output and input sizes are
1012 * explicitly given; swizzle and writemask are still in effect, but if
1013 * the output component is masked out, then the input component may
1014 * still be in use.
1015 *
1016 * If zero, the opcode acts in the standard, per-component manner; the
1017 * operation is performed on each component (except the ones that are
1018 * masked out) with the input being taken from the input swizzle for
1019 * that component.
1020 *
1021 * The size of some of the inputs may be given (i.e. non-zero) even
1022 * though output_size is zero; in that case, the inputs with a zero
1023 * size act per-component, while the inputs with non-zero size don't.
1024 */
1025 unsigned output_size;
1026
1027 /**
1028 * The type of vector that the instruction outputs. Note that the
1029 * staurate modifier is only allowed on outputs with the float type.
1030 */
1031
1032 nir_alu_type output_type;
1033
1034 /**
1035 * The number of components in each input
1036 */
1037 unsigned input_sizes[NIR_MAX_VEC_COMPONENTS];
1038
1039 /**
1040 * The type of vector that each input takes. Note that negate and
1041 * absolute value are only allowed on inputs with int or float type and
1042 * behave differently on the two.
1043 */
1044 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
1045
1046 nir_op_algebraic_property algebraic_properties;
1047
1048 /* Whether this represents a numeric conversion opcode */
1049 bool is_conversion;
1050 } nir_op_info;
1051
1052 extern const nir_op_info nir_op_infos[nir_num_opcodes];
1053
1054 typedef struct nir_alu_instr {
1055 nir_instr instr;
1056 nir_op op;
1057
1058 /** Indicates that this ALU instruction generates an exact value
1059 *
1060 * This is kind of a mixture of GLSL "precise" and "invariant" and not
1061 * really equivalent to either. This indicates that the value generated by
1062 * this operation is high-precision and any code transformations that touch
1063 * it must ensure that the resulting value is bit-for-bit identical to the
1064 * original.
1065 */
1066 bool exact:1;
1067
1068 /**
1069 * Indicates that this instruction do not cause wrapping to occur, in the
1070 * form of overflow or underflow.
1071 */
1072 bool no_signed_wrap:1;
1073 bool no_unsigned_wrap:1;
1074
1075 nir_alu_dest dest;
1076 nir_alu_src src[];
1077 } nir_alu_instr;
1078
1079 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
1080 nir_alu_instr *instr);
1081 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
1082 nir_alu_instr *instr);
1083
1084 /* is this source channel used? */
1085 static inline bool
1086 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
1087 unsigned channel)
1088 {
1089 if (nir_op_infos[instr->op].input_sizes[src] > 0)
1090 return channel < nir_op_infos[instr->op].input_sizes[src];
1091
1092 return (instr->dest.write_mask >> channel) & 1;
1093 }
1094
1095 static inline nir_component_mask_t
1096 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
1097 {
1098 nir_component_mask_t read_mask = 0;
1099 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
1100 if (!nir_alu_instr_channel_used(instr, src, c))
1101 continue;
1102
1103 read_mask |= (1 << instr->src[src].swizzle[c]);
1104 }
1105 return read_mask;
1106 }
1107
1108 /**
1109 * Get the number of channels used for a source
1110 */
1111 static inline unsigned
1112 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
1113 {
1114 if (nir_op_infos[instr->op].input_sizes[src] > 0)
1115 return nir_op_infos[instr->op].input_sizes[src];
1116
1117 return nir_dest_num_components(instr->dest.dest);
1118 }
1119
1120 bool nir_const_value_negative_equal(nir_const_value c1, nir_const_value c2,
1121 nir_alu_type full_type);
1122
1123 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
1124 unsigned src1, unsigned src2);
1125
1126 bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
1127 const nir_alu_instr *alu2,
1128 unsigned src1, unsigned src2);
1129
1130 typedef enum {
1131 nir_deref_type_var,
1132 nir_deref_type_array,
1133 nir_deref_type_array_wildcard,
1134 nir_deref_type_ptr_as_array,
1135 nir_deref_type_struct,
1136 nir_deref_type_cast,
1137 } nir_deref_type;
1138
1139 typedef struct {
1140 nir_instr instr;
1141
1142 /** The type of this deref instruction */
1143 nir_deref_type deref_type;
1144
1145 /** The mode of the underlying variable */
1146 nir_variable_mode mode;
1147
1148 /** The dereferenced type of the resulting pointer value */
1149 const struct glsl_type *type;
1150
1151 union {
1152 /** Variable being dereferenced if deref_type is a deref_var */
1153 nir_variable *var;
1154
1155 /** Parent deref if deref_type is not deref_var */
1156 nir_src parent;
1157 };
1158
1159 /** Additional deref parameters */
1160 union {
1161 struct {
1162 nir_src index;
1163 } arr;
1164
1165 struct {
1166 unsigned index;
1167 } strct;
1168
1169 struct {
1170 unsigned ptr_stride;
1171 } cast;
1172 };
1173
1174 /** Destination to store the resulting "pointer" */
1175 nir_dest dest;
1176 } nir_deref_instr;
1177
1178 static inline nir_deref_instr *nir_src_as_deref(nir_src src);
1179
1180 static inline nir_deref_instr *
1181 nir_deref_instr_parent(const nir_deref_instr *instr)
1182 {
1183 if (instr->deref_type == nir_deref_type_var)
1184 return NULL;
1185 else
1186 return nir_src_as_deref(instr->parent);
1187 }
1188
1189 static inline nir_variable *
1190 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1191 {
1192 while (instr->deref_type != nir_deref_type_var) {
1193 if (instr->deref_type == nir_deref_type_cast)
1194 return NULL;
1195
1196 instr = nir_deref_instr_parent(instr);
1197 }
1198
1199 return instr->var;
1200 }
1201
1202 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1203 bool nir_deref_instr_has_complex_use(nir_deref_instr *instr);
1204
1205 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1206
1207 unsigned nir_deref_instr_ptr_as_array_stride(nir_deref_instr *instr);
1208
1209 typedef struct {
1210 nir_instr instr;
1211
1212 struct nir_function *callee;
1213
1214 unsigned num_params;
1215 nir_src params[];
1216 } nir_call_instr;
1217
1218 #include "nir_intrinsics.h"
1219
1220 #define NIR_INTRINSIC_MAX_CONST_INDEX 4
1221
1222 /** Represents an intrinsic
1223 *
1224 * An intrinsic is an instruction type for handling things that are
1225 * more-or-less regular operations but don't just consume and produce SSA
1226 * values like ALU operations do. Intrinsics are not for things that have
1227 * special semantic meaning such as phi nodes and parallel copies.
1228 * Examples of intrinsics include variable load/store operations, system
1229 * value loads, and the like. Even though texturing more-or-less falls
1230 * under this category, texturing is its own instruction type because
1231 * trying to represent texturing with intrinsics would lead to a
1232 * combinatorial explosion of intrinsic opcodes.
1233 *
1234 * By having a single instruction type for handling a lot of different
1235 * cases, optimization passes can look for intrinsics and, for the most
1236 * part, completely ignore them. Each intrinsic type also has a few
1237 * possible flags that govern whether or not they can be reordered or
1238 * eliminated. That way passes like dead code elimination can still work
1239 * on intrisics without understanding the meaning of each.
1240 *
1241 * Each intrinsic has some number of constant indices, some number of
1242 * variables, and some number of sources. What these sources, variables,
1243 * and indices mean depends on the intrinsic and is documented with the
1244 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1245 * instructions are the only types of instruction that can operate on
1246 * variables.
1247 */
1248 typedef struct {
1249 nir_instr instr;
1250
1251 nir_intrinsic_op intrinsic;
1252
1253 nir_dest dest;
1254
1255 /** number of components if this is a vectorized intrinsic
1256 *
1257 * Similarly to ALU operations, some intrinsics are vectorized.
1258 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1259 * For vectorized intrinsics, the num_components field specifies the
1260 * number of destination components and the number of source components
1261 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1262 */
1263 uint8_t num_components;
1264
1265 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1266
1267 nir_src src[];
1268 } nir_intrinsic_instr;
1269
1270 static inline nir_variable *
1271 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1272 {
1273 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1274 }
1275
1276 /**
1277 * \name NIR intrinsics semantic flags
1278 *
1279 * information about what the compiler can do with the intrinsics.
1280 *
1281 * \sa nir_intrinsic_info::flags
1282 */
1283 typedef enum {
1284 /**
1285 * whether the intrinsic can be safely eliminated if none of its output
1286 * value is not being used.
1287 */
1288 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1289
1290 /**
1291 * Whether the intrinsic can be reordered with respect to any other
1292 * intrinsic, i.e. whether the only reordering dependencies of the
1293 * intrinsic are due to the register reads/writes.
1294 */
1295 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1296 } nir_intrinsic_semantic_flag;
1297
1298 /**
1299 * \name NIR intrinsics const-index flag
1300 *
1301 * Indicates the usage of a const_index slot.
1302 *
1303 * \sa nir_intrinsic_info::index_map
1304 */
1305 typedef enum {
1306 /**
1307 * Generally instructions that take a offset src argument, can encode
1308 * a constant 'base' value which is added to the offset.
1309 */
1310 NIR_INTRINSIC_BASE = 1,
1311
1312 /**
1313 * For store instructions, a writemask for the store.
1314 */
1315 NIR_INTRINSIC_WRMASK,
1316
1317 /**
1318 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1319 */
1320 NIR_INTRINSIC_STREAM_ID,
1321
1322 /**
1323 * The clip-plane id for load_user_clip_plane intrinsic.
1324 */
1325 NIR_INTRINSIC_UCP_ID,
1326
1327 /**
1328 * The amount of data, starting from BASE, that this instruction may
1329 * access. This is used to provide bounds if the offset is not constant.
1330 */
1331 NIR_INTRINSIC_RANGE,
1332
1333 /**
1334 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1335 */
1336 NIR_INTRINSIC_DESC_SET,
1337
1338 /**
1339 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1340 */
1341 NIR_INTRINSIC_BINDING,
1342
1343 /**
1344 * Component offset.
1345 */
1346 NIR_INTRINSIC_COMPONENT,
1347
1348 /**
1349 * Interpolation mode (only meaningful for FS inputs).
1350 */
1351 NIR_INTRINSIC_INTERP_MODE,
1352
1353 /**
1354 * A binary nir_op to use when performing a reduction or scan operation
1355 */
1356 NIR_INTRINSIC_REDUCTION_OP,
1357
1358 /**
1359 * Cluster size for reduction operations
1360 */
1361 NIR_INTRINSIC_CLUSTER_SIZE,
1362
1363 /**
1364 * Parameter index for a load_param intrinsic
1365 */
1366 NIR_INTRINSIC_PARAM_IDX,
1367
1368 /**
1369 * Image dimensionality for image intrinsics
1370 *
1371 * One of GLSL_SAMPLER_DIM_*
1372 */
1373 NIR_INTRINSIC_IMAGE_DIM,
1374
1375 /**
1376 * Non-zero if we are accessing an array image
1377 */
1378 NIR_INTRINSIC_IMAGE_ARRAY,
1379
1380 /**
1381 * Image format for image intrinsics
1382 */
1383 NIR_INTRINSIC_FORMAT,
1384
1385 /**
1386 * Access qualifiers for image and memory access intrinsics
1387 */
1388 NIR_INTRINSIC_ACCESS,
1389
1390 /**
1391 * Alignment for offsets and addresses
1392 *
1393 * These two parameters, specify an alignment in terms of a multiplier and
1394 * an offset. The offset or address parameter X of the intrinsic is
1395 * guaranteed to satisfy the following:
1396 *
1397 * (X - align_offset) % align_mul == 0
1398 */
1399 NIR_INTRINSIC_ALIGN_MUL,
1400 NIR_INTRINSIC_ALIGN_OFFSET,
1401
1402 /**
1403 * The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic.
1404 */
1405 NIR_INTRINSIC_DESC_TYPE,
1406
1407 /**
1408 * The nir_alu_type of a uniform/input/output
1409 */
1410 NIR_INTRINSIC_TYPE,
1411
1412 /**
1413 * The swizzle mask for the instructions
1414 * SwizzleInvocationsAMD and SwizzleInvocationsMaskedAMD
1415 */
1416 NIR_INTRINSIC_SWIZZLE_MASK,
1417
1418 /* Separate source/dest access flags for copies */
1419 NIR_INTRINSIC_SRC_ACCESS = 21,
1420 NIR_INTRINSIC_DST_ACCESS = 22,
1421
1422 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1423
1424 } nir_intrinsic_index_flag;
1425
1426 #define NIR_INTRINSIC_MAX_INPUTS 5
1427
1428 typedef struct {
1429 const char *name;
1430
1431 unsigned num_srcs; /** < number of register/SSA inputs */
1432
1433 /** number of components of each input register
1434 *
1435 * If this value is 0, the number of components is given by the
1436 * num_components field of nir_intrinsic_instr. If this value is -1, the
1437 * intrinsic consumes however many components are provided and it is not
1438 * validated at all.
1439 */
1440 int src_components[NIR_INTRINSIC_MAX_INPUTS];
1441
1442 bool has_dest;
1443
1444 /** number of components of the output register
1445 *
1446 * If this value is 0, the number of components is given by the
1447 * num_components field of nir_intrinsic_instr.
1448 */
1449 unsigned dest_components;
1450
1451 /** bitfield of legal bit sizes */
1452 unsigned dest_bit_sizes;
1453
1454 /** the number of constant indices used by the intrinsic */
1455 unsigned num_indices;
1456
1457 /** indicates the usage of intr->const_index[n] */
1458 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1459
1460 /** semantic flags for calls to this intrinsic */
1461 nir_intrinsic_semantic_flag flags;
1462 } nir_intrinsic_info;
1463
1464 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1465
1466 static inline unsigned
1467 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1468 {
1469 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1470 assert(srcn < info->num_srcs);
1471 if (info->src_components[srcn] > 0)
1472 return info->src_components[srcn];
1473 else if (info->src_components[srcn] == 0)
1474 return intr->num_components;
1475 else
1476 return nir_src_num_components(intr->src[srcn]);
1477 }
1478
1479 static inline unsigned
1480 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1481 {
1482 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1483 if (!info->has_dest)
1484 return 0;
1485 else if (info->dest_components)
1486 return info->dest_components;
1487 else
1488 return intr->num_components;
1489 }
1490
1491 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1492 static inline type \
1493 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1494 { \
1495 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1496 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1497 return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1498 } \
1499 static inline void \
1500 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1501 { \
1502 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1503 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1504 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1505 }
1506
1507 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1508 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1509 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1510 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1511 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1512 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1513 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1514 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1515 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1516 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1517 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1518 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1519 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1520 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1521 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1522 INTRINSIC_IDX_ACCESSORS(src_access, SRC_ACCESS, enum gl_access_qualifier)
1523 INTRINSIC_IDX_ACCESSORS(dst_access, DST_ACCESS, enum gl_access_qualifier)
1524 INTRINSIC_IDX_ACCESSORS(format, FORMAT, unsigned)
1525 INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
1526 INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
1527 INTRINSIC_IDX_ACCESSORS(desc_type, DESC_TYPE, unsigned)
1528 INTRINSIC_IDX_ACCESSORS(type, TYPE, nir_alu_type)
1529 INTRINSIC_IDX_ACCESSORS(swizzle_mask, SWIZZLE_MASK, unsigned)
1530
1531 static inline void
1532 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1533 unsigned align_mul, unsigned align_offset)
1534 {
1535 assert(util_is_power_of_two_nonzero(align_mul));
1536 assert(align_offset < align_mul);
1537 nir_intrinsic_set_align_mul(intrin, align_mul);
1538 nir_intrinsic_set_align_offset(intrin, align_offset);
1539 }
1540
1541 /** Returns a simple alignment for a load/store intrinsic offset
1542 *
1543 * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1544 * and ALIGN_OFFSET parameters, this helper takes both into account and
1545 * provides a single simple alignment parameter. The offset X is guaranteed
1546 * to satisfy X % align == 0.
1547 */
1548 static inline unsigned
1549 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
1550 {
1551 const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1552 const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1553 assert(align_offset < align_mul);
1554 return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1555 }
1556
1557 /* Converts a image_deref_* intrinsic into a image_* one */
1558 void nir_rewrite_image_intrinsic(nir_intrinsic_instr *instr,
1559 nir_ssa_def *handle, bool bindless);
1560
1561 /* Determine if an intrinsic can be arbitrarily reordered and eliminated. */
1562 static inline bool
1563 nir_intrinsic_can_reorder(nir_intrinsic_instr *instr)
1564 {
1565 if (instr->intrinsic == nir_intrinsic_load_deref ||
1566 instr->intrinsic == nir_intrinsic_load_ssbo ||
1567 instr->intrinsic == nir_intrinsic_bindless_image_load ||
1568 instr->intrinsic == nir_intrinsic_image_deref_load ||
1569 instr->intrinsic == nir_intrinsic_image_load) {
1570 return nir_intrinsic_access(instr) & ACCESS_CAN_REORDER;
1571 } else {
1572 const nir_intrinsic_info *info =
1573 &nir_intrinsic_infos[instr->intrinsic];
1574 return (info->flags & NIR_INTRINSIC_CAN_ELIMINATE) &&
1575 (info->flags & NIR_INTRINSIC_CAN_REORDER);
1576 }
1577 }
1578
1579 /**
1580 * \group texture information
1581 *
1582 * This gives semantic information about textures which is useful to the
1583 * frontend, the backend, and lowering passes, but not the optimizer.
1584 */
1585
1586 typedef enum {
1587 nir_tex_src_coord,
1588 nir_tex_src_projector,
1589 nir_tex_src_comparator, /* shadow comparator */
1590 nir_tex_src_offset,
1591 nir_tex_src_bias,
1592 nir_tex_src_lod,
1593 nir_tex_src_min_lod,
1594 nir_tex_src_ms_index, /* MSAA sample index */
1595 nir_tex_src_ms_mcs, /* MSAA compression value */
1596 nir_tex_src_ddx,
1597 nir_tex_src_ddy,
1598 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1599 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1600 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1601 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1602 nir_tex_src_texture_handle, /* < bindless texture handle */
1603 nir_tex_src_sampler_handle, /* < bindless sampler handle */
1604 nir_tex_src_plane, /* < selects plane for planar textures */
1605 nir_num_tex_src_types
1606 } nir_tex_src_type;
1607
1608 typedef struct {
1609 nir_src src;
1610 nir_tex_src_type src_type;
1611 } nir_tex_src;
1612
1613 typedef enum {
1614 nir_texop_tex, /**< Regular texture look-up */
1615 nir_texop_txb, /**< Texture look-up with LOD bias */
1616 nir_texop_txl, /**< Texture look-up with explicit LOD */
1617 nir_texop_txd, /**< Texture look-up with partial derivatives */
1618 nir_texop_txf, /**< Texel fetch with explicit LOD */
1619 nir_texop_txf_ms, /**< Multisample texture fetch */
1620 nir_texop_txf_ms_fb, /**< Multisample texture fetch from framebuffer */
1621 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1622 nir_texop_txs, /**< Texture size */
1623 nir_texop_lod, /**< Texture lod query */
1624 nir_texop_tg4, /**< Texture gather */
1625 nir_texop_query_levels, /**< Texture levels query */
1626 nir_texop_texture_samples, /**< Texture samples query */
1627 nir_texop_samples_identical, /**< Query whether all samples are definitely
1628 * identical.
1629 */
1630 } nir_texop;
1631
1632 typedef struct {
1633 nir_instr instr;
1634
1635 enum glsl_sampler_dim sampler_dim;
1636 nir_alu_type dest_type;
1637
1638 nir_texop op;
1639 nir_dest dest;
1640 nir_tex_src *src;
1641 unsigned num_srcs, coord_components;
1642 bool is_array, is_shadow;
1643
1644 /**
1645 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1646 * components or the new-style shadow that outputs 1 component.
1647 */
1648 bool is_new_style_shadow;
1649
1650 /* gather component selector */
1651 unsigned component : 2;
1652
1653 /* gather offsets */
1654 int8_t tg4_offsets[4][2];
1655
1656 /* True if the texture index or handle is not dynamically uniform */
1657 bool texture_non_uniform;
1658
1659 /* True if the sampler index or handle is not dynamically uniform */
1660 bool sampler_non_uniform;
1661
1662 /** The texture index
1663 *
1664 * If this texture instruction has a nir_tex_src_texture_offset source,
1665 * then the texture index is given by texture_index + texture_offset.
1666 */
1667 unsigned texture_index;
1668
1669 /** The size of the texture array or 0 if it's not an array */
1670 unsigned texture_array_size;
1671
1672 /** The sampler index
1673 *
1674 * The following operations do not require a sampler and, as such, this
1675 * field should be ignored:
1676 * - nir_texop_txf
1677 * - nir_texop_txf_ms
1678 * - nir_texop_txs
1679 * - nir_texop_lod
1680 * - nir_texop_query_levels
1681 * - nir_texop_texture_samples
1682 * - nir_texop_samples_identical
1683 *
1684 * If this texture instruction has a nir_tex_src_sampler_offset source,
1685 * then the sampler index is given by sampler_index + sampler_offset.
1686 */
1687 unsigned sampler_index;
1688 } nir_tex_instr;
1689
1690 static inline unsigned
1691 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1692 {
1693 switch (instr->op) {
1694 case nir_texop_txs: {
1695 unsigned ret;
1696 switch (instr->sampler_dim) {
1697 case GLSL_SAMPLER_DIM_1D:
1698 case GLSL_SAMPLER_DIM_BUF:
1699 ret = 1;
1700 break;
1701 case GLSL_SAMPLER_DIM_2D:
1702 case GLSL_SAMPLER_DIM_CUBE:
1703 case GLSL_SAMPLER_DIM_MS:
1704 case GLSL_SAMPLER_DIM_RECT:
1705 case GLSL_SAMPLER_DIM_EXTERNAL:
1706 case GLSL_SAMPLER_DIM_SUBPASS:
1707 ret = 2;
1708 break;
1709 case GLSL_SAMPLER_DIM_3D:
1710 ret = 3;
1711 break;
1712 default:
1713 unreachable("not reached");
1714 }
1715 if (instr->is_array)
1716 ret++;
1717 return ret;
1718 }
1719
1720 case nir_texop_lod:
1721 return 2;
1722
1723 case nir_texop_texture_samples:
1724 case nir_texop_query_levels:
1725 case nir_texop_samples_identical:
1726 return 1;
1727
1728 default:
1729 if (instr->is_shadow && instr->is_new_style_shadow)
1730 return 1;
1731
1732 return 4;
1733 }
1734 }
1735
1736 /* Returns true if this texture operation queries something about the texture
1737 * rather than actually sampling it.
1738 */
1739 static inline bool
1740 nir_tex_instr_is_query(const nir_tex_instr *instr)
1741 {
1742 switch (instr->op) {
1743 case nir_texop_txs:
1744 case nir_texop_lod:
1745 case nir_texop_texture_samples:
1746 case nir_texop_query_levels:
1747 case nir_texop_txf_ms_mcs:
1748 return true;
1749 case nir_texop_tex:
1750 case nir_texop_txb:
1751 case nir_texop_txl:
1752 case nir_texop_txd:
1753 case nir_texop_txf:
1754 case nir_texop_txf_ms:
1755 case nir_texop_txf_ms_fb:
1756 case nir_texop_tg4:
1757 return false;
1758 default:
1759 unreachable("Invalid texture opcode");
1760 }
1761 }
1762
1763 static inline bool
1764 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1765 {
1766 switch (instr->op) {
1767 case nir_op_flt:
1768 case nir_op_fge:
1769 case nir_op_feq:
1770 case nir_op_fne:
1771 case nir_op_ilt:
1772 case nir_op_ult:
1773 case nir_op_ige:
1774 case nir_op_uge:
1775 case nir_op_ieq:
1776 case nir_op_ine:
1777 case nir_op_i2b1:
1778 case nir_op_f2b1:
1779 case nir_op_inot:
1780 return true;
1781 default:
1782 return false;
1783 }
1784 }
1785
1786 static inline nir_alu_type
1787 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1788 {
1789 switch (instr->src[src].src_type) {
1790 case nir_tex_src_coord:
1791 switch (instr->op) {
1792 case nir_texop_txf:
1793 case nir_texop_txf_ms:
1794 case nir_texop_txf_ms_fb:
1795 case nir_texop_txf_ms_mcs:
1796 case nir_texop_samples_identical:
1797 return nir_type_int;
1798
1799 default:
1800 return nir_type_float;
1801 }
1802
1803 case nir_tex_src_lod:
1804 switch (instr->op) {
1805 case nir_texop_txs:
1806 case nir_texop_txf:
1807 return nir_type_int;
1808
1809 default:
1810 return nir_type_float;
1811 }
1812
1813 case nir_tex_src_projector:
1814 case nir_tex_src_comparator:
1815 case nir_tex_src_bias:
1816 case nir_tex_src_ddx:
1817 case nir_tex_src_ddy:
1818 return nir_type_float;
1819
1820 case nir_tex_src_offset:
1821 case nir_tex_src_ms_index:
1822 case nir_tex_src_texture_offset:
1823 case nir_tex_src_sampler_offset:
1824 return nir_type_int;
1825
1826 default:
1827 unreachable("Invalid texture source type");
1828 }
1829 }
1830
1831 static inline unsigned
1832 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1833 {
1834 if (instr->src[src].src_type == nir_tex_src_coord)
1835 return instr->coord_components;
1836
1837 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1838 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1839 return 4;
1840
1841 if (instr->src[src].src_type == nir_tex_src_ddx ||
1842 instr->src[src].src_type == nir_tex_src_ddy) {
1843 if (instr->is_array)
1844 return instr->coord_components - 1;
1845 else
1846 return instr->coord_components;
1847 }
1848
1849 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1850 * the offset, since a cube maps to a single face.
1851 */
1852 if (instr->src[src].src_type == nir_tex_src_offset) {
1853 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1854 return 2;
1855 else if (instr->is_array)
1856 return instr->coord_components - 1;
1857 else
1858 return instr->coord_components;
1859 }
1860
1861 return 1;
1862 }
1863
1864 static inline int
1865 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1866 {
1867 for (unsigned i = 0; i < instr->num_srcs; i++)
1868 if (instr->src[i].src_type == type)
1869 return (int) i;
1870
1871 return -1;
1872 }
1873
1874 void nir_tex_instr_add_src(nir_tex_instr *tex,
1875 nir_tex_src_type src_type,
1876 nir_src src);
1877
1878 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1879
1880 bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
1881
1882 typedef struct {
1883 nir_instr instr;
1884
1885 nir_ssa_def def;
1886
1887 nir_const_value value[];
1888 } nir_load_const_instr;
1889
1890 #define nir_const_load_to_arr(arr, l, m) \
1891 { \
1892 nir_const_value_to_array(arr, l->value, l->def.num_components, m); \
1893 } while (false);
1894
1895 typedef enum {
1896 nir_jump_return,
1897 nir_jump_break,
1898 nir_jump_continue,
1899 } nir_jump_type;
1900
1901 typedef struct {
1902 nir_instr instr;
1903 nir_jump_type type;
1904 } nir_jump_instr;
1905
1906 /* creates a new SSA variable in an undefined state */
1907
1908 typedef struct {
1909 nir_instr instr;
1910 nir_ssa_def def;
1911 } nir_ssa_undef_instr;
1912
1913 typedef struct {
1914 struct exec_node node;
1915
1916 /* The predecessor block corresponding to this source */
1917 struct nir_block *pred;
1918
1919 nir_src src;
1920 } nir_phi_src;
1921
1922 #define nir_foreach_phi_src(phi_src, phi) \
1923 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1924 #define nir_foreach_phi_src_safe(phi_src, phi) \
1925 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1926
1927 typedef struct {
1928 nir_instr instr;
1929
1930 struct exec_list srcs; /** < list of nir_phi_src */
1931
1932 nir_dest dest;
1933 } nir_phi_instr;
1934
1935 typedef struct {
1936 struct exec_node node;
1937 nir_src src;
1938 nir_dest dest;
1939 } nir_parallel_copy_entry;
1940
1941 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1942 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1943
1944 typedef struct {
1945 nir_instr instr;
1946
1947 /* A list of nir_parallel_copy_entrys. The sources of all of the
1948 * entries are copied to the corresponding destinations "in parallel".
1949 * In other words, if we have two entries: a -> b and b -> a, the values
1950 * get swapped.
1951 */
1952 struct exec_list entries;
1953 } nir_parallel_copy_instr;
1954
1955 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1956 type, nir_instr_type_alu)
1957 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
1958 type, nir_instr_type_deref)
1959 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1960 type, nir_instr_type_call)
1961 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1962 type, nir_instr_type_jump)
1963 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1964 type, nir_instr_type_tex)
1965 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1966 type, nir_instr_type_intrinsic)
1967 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1968 type, nir_instr_type_load_const)
1969 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1970 type, nir_instr_type_ssa_undef)
1971 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1972 type, nir_instr_type_phi)
1973 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1974 nir_parallel_copy_instr, instr,
1975 type, nir_instr_type_parallel_copy)
1976
1977
1978 #define NIR_DEFINE_SRC_AS_CONST(type, suffix) \
1979 static inline type \
1980 nir_src_comp_as_##suffix(nir_src src, unsigned comp) \
1981 { \
1982 assert(nir_src_is_const(src)); \
1983 nir_load_const_instr *load = \
1984 nir_instr_as_load_const(src.ssa->parent_instr); \
1985 assert(comp < load->def.num_components); \
1986 return nir_const_value_as_##suffix(load->value[comp], \
1987 load->def.bit_size); \
1988 } \
1989 \
1990 static inline type \
1991 nir_src_as_##suffix(nir_src src) \
1992 { \
1993 assert(nir_src_num_components(src) == 1); \
1994 return nir_src_comp_as_##suffix(src, 0); \
1995 }
1996
1997 NIR_DEFINE_SRC_AS_CONST(int64_t, int)
1998 NIR_DEFINE_SRC_AS_CONST(uint64_t, uint)
1999 NIR_DEFINE_SRC_AS_CONST(bool, bool)
2000 NIR_DEFINE_SRC_AS_CONST(double, float)
2001
2002 #undef NIR_DEFINE_SRC_AS_CONST
2003
2004
2005 typedef struct {
2006 nir_ssa_def *def;
2007 unsigned comp;
2008 } nir_ssa_scalar;
2009
2010 static inline bool
2011 nir_ssa_scalar_is_const(nir_ssa_scalar s)
2012 {
2013 return s.def->parent_instr->type == nir_instr_type_load_const;
2014 }
2015
2016 static inline nir_const_value
2017 nir_ssa_scalar_as_const_value(nir_ssa_scalar s)
2018 {
2019 assert(s.comp < s.def->num_components);
2020 nir_load_const_instr *load = nir_instr_as_load_const(s.def->parent_instr);
2021 return load->value[s.comp];
2022 }
2023
2024 #define NIR_DEFINE_SCALAR_AS_CONST(type, suffix) \
2025 static inline type \
2026 nir_ssa_scalar_as_##suffix(nir_ssa_scalar s) \
2027 { \
2028 return nir_const_value_as_##suffix( \
2029 nir_ssa_scalar_as_const_value(s), s.def->bit_size); \
2030 }
2031
2032 NIR_DEFINE_SCALAR_AS_CONST(int64_t, int)
2033 NIR_DEFINE_SCALAR_AS_CONST(uint64_t, uint)
2034 NIR_DEFINE_SCALAR_AS_CONST(bool, bool)
2035 NIR_DEFINE_SCALAR_AS_CONST(double, float)
2036
2037 #undef NIR_DEFINE_SCALAR_AS_CONST
2038
2039 static inline bool
2040 nir_ssa_scalar_is_alu(nir_ssa_scalar s)
2041 {
2042 return s.def->parent_instr->type == nir_instr_type_alu;
2043 }
2044
2045 static inline nir_op
2046 nir_ssa_scalar_alu_op(nir_ssa_scalar s)
2047 {
2048 return nir_instr_as_alu(s.def->parent_instr)->op;
2049 }
2050
2051 static inline nir_ssa_scalar
2052 nir_ssa_scalar_chase_alu_src(nir_ssa_scalar s, unsigned alu_src_idx)
2053 {
2054 nir_ssa_scalar out = { NULL, 0 };
2055
2056 nir_alu_instr *alu = nir_instr_as_alu(s.def->parent_instr);
2057 assert(alu_src_idx < nir_op_infos[alu->op].num_inputs);
2058
2059 /* Our component must be written */
2060 assert(s.comp < s.def->num_components);
2061 assert(alu->dest.write_mask & (1u << s.comp));
2062
2063 assert(alu->src[alu_src_idx].src.is_ssa);
2064 out.def = alu->src[alu_src_idx].src.ssa;
2065
2066 if (nir_op_infos[alu->op].input_sizes[alu_src_idx] == 0) {
2067 /* The ALU src is unsized so the source component follows the
2068 * destination component.
2069 */
2070 out.comp = alu->src[alu_src_idx].swizzle[s.comp];
2071 } else {
2072 /* This is a sized source so all source components work together to
2073 * produce all the destination components. Since we need to return a
2074 * scalar, this only works if the source is a scalar.
2075 */
2076 assert(nir_op_infos[alu->op].input_sizes[alu_src_idx] == 1);
2077 out.comp = alu->src[alu_src_idx].swizzle[0];
2078 }
2079 assert(out.comp < out.def->num_components);
2080
2081 return out;
2082 }
2083
2084
2085 /*
2086 * Control flow
2087 *
2088 * Control flow consists of a tree of control flow nodes, which include
2089 * if-statements and loops. The leaves of the tree are basic blocks, lists of
2090 * instructions that always run start-to-finish. Each basic block also keeps
2091 * track of its successors (blocks which may run immediately after the current
2092 * block) and predecessors (blocks which could have run immediately before the
2093 * current block). Each function also has a start block and an end block which
2094 * all return statements point to (which is always empty). Together, all the
2095 * blocks with their predecessors and successors make up the control flow
2096 * graph (CFG) of the function. There are helpers that modify the tree of
2097 * control flow nodes while modifying the CFG appropriately; these should be
2098 * used instead of modifying the tree directly.
2099 */
2100
2101 typedef enum {
2102 nir_cf_node_block,
2103 nir_cf_node_if,
2104 nir_cf_node_loop,
2105 nir_cf_node_function
2106 } nir_cf_node_type;
2107
2108 typedef struct nir_cf_node {
2109 struct exec_node node;
2110 nir_cf_node_type type;
2111 struct nir_cf_node *parent;
2112 } nir_cf_node;
2113
2114 typedef struct nir_block {
2115 nir_cf_node cf_node;
2116
2117 struct exec_list instr_list; /** < list of nir_instr */
2118
2119 /** generic block index; generated by nir_index_blocks */
2120 unsigned index;
2121
2122 /*
2123 * Each block can only have up to 2 successors, so we put them in a simple
2124 * array - no need for anything more complicated.
2125 */
2126 struct nir_block *successors[2];
2127
2128 /* Set of nir_block predecessors in the CFG */
2129 struct set *predecessors;
2130
2131 /*
2132 * this node's immediate dominator in the dominance tree - set to NULL for
2133 * the start block.
2134 */
2135 struct nir_block *imm_dom;
2136
2137 /* This node's children in the dominance tree */
2138 unsigned num_dom_children;
2139 struct nir_block **dom_children;
2140
2141 /* Set of nir_blocks on the dominance frontier of this block */
2142 struct set *dom_frontier;
2143
2144 /*
2145 * These two indices have the property that dom_{pre,post}_index for each
2146 * child of this block in the dominance tree will always be between
2147 * dom_pre_index and dom_post_index for this block, which makes testing if
2148 * a given block is dominated by another block an O(1) operation.
2149 */
2150 unsigned dom_pre_index, dom_post_index;
2151
2152 /* live in and out for this block; used for liveness analysis */
2153 BITSET_WORD *live_in;
2154 BITSET_WORD *live_out;
2155 } nir_block;
2156
2157 static inline nir_instr *
2158 nir_block_first_instr(nir_block *block)
2159 {
2160 struct exec_node *head = exec_list_get_head(&block->instr_list);
2161 return exec_node_data(nir_instr, head, node);
2162 }
2163
2164 static inline nir_instr *
2165 nir_block_last_instr(nir_block *block)
2166 {
2167 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
2168 return exec_node_data(nir_instr, tail, node);
2169 }
2170
2171 static inline bool
2172 nir_block_ends_in_jump(nir_block *block)
2173 {
2174 return !exec_list_is_empty(&block->instr_list) &&
2175 nir_block_last_instr(block)->type == nir_instr_type_jump;
2176 }
2177
2178 #define nir_foreach_instr(instr, block) \
2179 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
2180 #define nir_foreach_instr_reverse(instr, block) \
2181 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
2182 #define nir_foreach_instr_safe(instr, block) \
2183 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
2184 #define nir_foreach_instr_reverse_safe(instr, block) \
2185 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
2186
2187 typedef enum {
2188 nir_selection_control_none = 0x0,
2189 nir_selection_control_flatten = 0x1,
2190 nir_selection_control_dont_flatten = 0x2,
2191 } nir_selection_control;
2192
2193 typedef struct nir_if {
2194 nir_cf_node cf_node;
2195 nir_src condition;
2196 nir_selection_control control;
2197
2198 struct exec_list then_list; /** < list of nir_cf_node */
2199 struct exec_list else_list; /** < list of nir_cf_node */
2200 } nir_if;
2201
2202 typedef struct {
2203 nir_if *nif;
2204
2205 /** Instruction that generates nif::condition. */
2206 nir_instr *conditional_instr;
2207
2208 /** Block within ::nif that has the break instruction. */
2209 nir_block *break_block;
2210
2211 /** Last block for the then- or else-path that does not contain the break. */
2212 nir_block *continue_from_block;
2213
2214 /** True when ::break_block is in the else-path of ::nif. */
2215 bool continue_from_then;
2216 bool induction_rhs;
2217
2218 /* This is true if the terminators exact trip count is unknown. For
2219 * example:
2220 *
2221 * for (int i = 0; i < imin(x, 4); i++)
2222 * ...
2223 *
2224 * Here loop analysis would have set a max_trip_count of 4 however we dont
2225 * know for sure that this is the exact trip count.
2226 */
2227 bool exact_trip_count_unknown;
2228
2229 struct list_head loop_terminator_link;
2230 } nir_loop_terminator;
2231
2232 typedef struct {
2233 /* Estimated cost (in number of instructions) of the loop */
2234 unsigned instr_cost;
2235
2236 /* Guessed trip count based on array indexing */
2237 unsigned guessed_trip_count;
2238
2239 /* Maximum number of times the loop is run (if known) */
2240 unsigned max_trip_count;
2241
2242 /* Do we know the exact number of times the loop will be run */
2243 bool exact_trip_count_known;
2244
2245 /* Unroll the loop regardless of its size */
2246 bool force_unroll;
2247
2248 /* Does the loop contain complex loop terminators, continues or other
2249 * complex behaviours? If this is true we can't rely on
2250 * loop_terminator_list to be complete or accurate.
2251 */
2252 bool complex_loop;
2253
2254 nir_loop_terminator *limiting_terminator;
2255
2256 /* A list of loop_terminators terminating this loop. */
2257 struct list_head loop_terminator_list;
2258 } nir_loop_info;
2259
2260 typedef enum {
2261 nir_loop_control_none = 0x0,
2262 nir_loop_control_unroll = 0x1,
2263 nir_loop_control_dont_unroll = 0x2,
2264 } nir_loop_control;
2265
2266 typedef struct {
2267 nir_cf_node cf_node;
2268
2269 struct exec_list body; /** < list of nir_cf_node */
2270
2271 nir_loop_info *info;
2272 nir_loop_control control;
2273 bool partially_unrolled;
2274 } nir_loop;
2275
2276 /**
2277 * Various bits of metadata that can may be created or required by
2278 * optimization and analysis passes
2279 */
2280 typedef enum {
2281 nir_metadata_none = 0x0,
2282 nir_metadata_block_index = 0x1,
2283 nir_metadata_dominance = 0x2,
2284 nir_metadata_live_ssa_defs = 0x4,
2285 nir_metadata_not_properly_reset = 0x8,
2286 nir_metadata_loop_analysis = 0x10,
2287 } nir_metadata;
2288
2289 typedef struct {
2290 nir_cf_node cf_node;
2291
2292 /** pointer to the function of which this is an implementation */
2293 struct nir_function *function;
2294
2295 struct exec_list body; /** < list of nir_cf_node */
2296
2297 nir_block *end_block;
2298
2299 /** list for all local variables in the function */
2300 struct exec_list locals;
2301
2302 /** list of local registers in the function */
2303 struct exec_list registers;
2304
2305 /** next available local register index */
2306 unsigned reg_alloc;
2307
2308 /** next available SSA value index */
2309 unsigned ssa_alloc;
2310
2311 /* total number of basic blocks, only valid when block_index_dirty = false */
2312 unsigned num_blocks;
2313
2314 nir_metadata valid_metadata;
2315 } nir_function_impl;
2316
2317 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2318 nir_start_block(nir_function_impl *impl)
2319 {
2320 return (nir_block *) impl->body.head_sentinel.next;
2321 }
2322
2323 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2324 nir_impl_last_block(nir_function_impl *impl)
2325 {
2326 return (nir_block *) impl->body.tail_sentinel.prev;
2327 }
2328
2329 static inline nir_cf_node *
2330 nir_cf_node_next(nir_cf_node *node)
2331 {
2332 struct exec_node *next = exec_node_get_next(&node->node);
2333 if (exec_node_is_tail_sentinel(next))
2334 return NULL;
2335 else
2336 return exec_node_data(nir_cf_node, next, node);
2337 }
2338
2339 static inline nir_cf_node *
2340 nir_cf_node_prev(nir_cf_node *node)
2341 {
2342 struct exec_node *prev = exec_node_get_prev(&node->node);
2343 if (exec_node_is_head_sentinel(prev))
2344 return NULL;
2345 else
2346 return exec_node_data(nir_cf_node, prev, node);
2347 }
2348
2349 static inline bool
2350 nir_cf_node_is_first(const nir_cf_node *node)
2351 {
2352 return exec_node_is_head_sentinel(node->node.prev);
2353 }
2354
2355 static inline bool
2356 nir_cf_node_is_last(const nir_cf_node *node)
2357 {
2358 return exec_node_is_tail_sentinel(node->node.next);
2359 }
2360
2361 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
2362 type, nir_cf_node_block)
2363 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
2364 type, nir_cf_node_if)
2365 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
2366 type, nir_cf_node_loop)
2367 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
2368 nir_function_impl, cf_node, type, nir_cf_node_function)
2369
2370 static inline nir_block *
2371 nir_if_first_then_block(nir_if *if_stmt)
2372 {
2373 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
2374 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2375 }
2376
2377 static inline nir_block *
2378 nir_if_last_then_block(nir_if *if_stmt)
2379 {
2380 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
2381 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2382 }
2383
2384 static inline nir_block *
2385 nir_if_first_else_block(nir_if *if_stmt)
2386 {
2387 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
2388 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2389 }
2390
2391 static inline nir_block *
2392 nir_if_last_else_block(nir_if *if_stmt)
2393 {
2394 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
2395 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2396 }
2397
2398 static inline nir_block *
2399 nir_loop_first_block(nir_loop *loop)
2400 {
2401 struct exec_node *head = exec_list_get_head(&loop->body);
2402 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2403 }
2404
2405 static inline nir_block *
2406 nir_loop_last_block(nir_loop *loop)
2407 {
2408 struct exec_node *tail = exec_list_get_tail(&loop->body);
2409 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2410 }
2411
2412 /**
2413 * Return true if this list of cf_nodes contains a single empty block.
2414 */
2415 static inline bool
2416 nir_cf_list_is_empty_block(struct exec_list *cf_list)
2417 {
2418 if (exec_list_is_singular(cf_list)) {
2419 struct exec_node *head = exec_list_get_head(cf_list);
2420 nir_block *block =
2421 nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2422 return exec_list_is_empty(&block->instr_list);
2423 }
2424 return false;
2425 }
2426
2427 typedef struct {
2428 uint8_t num_components;
2429 uint8_t bit_size;
2430 } nir_parameter;
2431
2432 typedef struct nir_function {
2433 struct exec_node node;
2434
2435 const char *name;
2436 struct nir_shader *shader;
2437
2438 unsigned num_params;
2439 nir_parameter *params;
2440
2441 /** The implementation of this function.
2442 *
2443 * If the function is only declared and not implemented, this is NULL.
2444 */
2445 nir_function_impl *impl;
2446
2447 bool is_entrypoint;
2448 } nir_function;
2449
2450 typedef enum {
2451 nir_lower_imul64 = (1 << 0),
2452 nir_lower_isign64 = (1 << 1),
2453 /** Lower all int64 modulus and division opcodes */
2454 nir_lower_divmod64 = (1 << 2),
2455 /** Lower all 64-bit umul_high and imul_high opcodes */
2456 nir_lower_imul_high64 = (1 << 3),
2457 nir_lower_mov64 = (1 << 4),
2458 nir_lower_icmp64 = (1 << 5),
2459 nir_lower_iadd64 = (1 << 6),
2460 nir_lower_iabs64 = (1 << 7),
2461 nir_lower_ineg64 = (1 << 8),
2462 nir_lower_logic64 = (1 << 9),
2463 nir_lower_minmax64 = (1 << 10),
2464 nir_lower_shift64 = (1 << 11),
2465 nir_lower_imul_2x32_64 = (1 << 12),
2466 nir_lower_extract64 = (1 << 13),
2467 } nir_lower_int64_options;
2468
2469 typedef enum {
2470 nir_lower_drcp = (1 << 0),
2471 nir_lower_dsqrt = (1 << 1),
2472 nir_lower_drsq = (1 << 2),
2473 nir_lower_dtrunc = (1 << 3),
2474 nir_lower_dfloor = (1 << 4),
2475 nir_lower_dceil = (1 << 5),
2476 nir_lower_dfract = (1 << 6),
2477 nir_lower_dround_even = (1 << 7),
2478 nir_lower_dmod = (1 << 8),
2479 nir_lower_fp64_full_software = (1 << 9),
2480 } nir_lower_doubles_options;
2481
2482 typedef struct nir_shader_compiler_options {
2483 bool lower_fdiv;
2484 bool lower_ffma;
2485 bool fuse_ffma;
2486 bool lower_flrp16;
2487 bool lower_flrp32;
2488 /** Lowers flrp when it does not support doubles */
2489 bool lower_flrp64;
2490 bool lower_fpow;
2491 bool lower_fsat;
2492 bool lower_fsqrt;
2493 bool lower_fmod;
2494 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2495 bool lower_bitfield_extract;
2496 /** Lowers ibitfield_extract/ubitfield_extract to compares, shifts. */
2497 bool lower_bitfield_extract_to_shifts;
2498 /** Lowers bitfield_insert to bfi/bfm */
2499 bool lower_bitfield_insert;
2500 /** Lowers bitfield_insert to compares, and shifts. */
2501 bool lower_bitfield_insert_to_shifts;
2502 /** Lowers bitfield_insert to bfm/bitfield_select. */
2503 bool lower_bitfield_insert_to_bitfield_select;
2504 /** Lowers bitfield_reverse to shifts. */
2505 bool lower_bitfield_reverse;
2506 /** Lowers bit_count to shifts. */
2507 bool lower_bit_count;
2508 /** Lowers ifind_msb to compare and ufind_msb */
2509 bool lower_ifind_msb;
2510 /** Lowers find_lsb to ufind_msb and logic ops */
2511 bool lower_find_lsb;
2512 bool lower_uadd_carry;
2513 bool lower_usub_borrow;
2514 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2515 bool lower_mul_high;
2516 /** lowers fneg and ineg to fsub and isub. */
2517 bool lower_negate;
2518 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2519 bool lower_sub;
2520
2521 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2522 bool lower_scmp;
2523
2524 /** enables rules to lower idiv by power-of-two: */
2525 bool lower_idiv;
2526
2527 /** enable rules to avoid bit shifts */
2528 bool lower_bitshift;
2529
2530 /** enables rules to lower isign to imin+imax */
2531 bool lower_isign;
2532
2533 /** enables rules to lower fsign to fsub and flt */
2534 bool lower_fsign;
2535
2536 /* Does the native fdot instruction replicate its result for four
2537 * components? If so, then opt_algebraic_late will turn all fdotN
2538 * instructions into fdot_replicatedN instructions.
2539 */
2540 bool fdot_replicates;
2541
2542 /** lowers ffloor to fsub+ffract: */
2543 bool lower_ffloor;
2544
2545 /** lowers ffract to fsub+ffloor: */
2546 bool lower_ffract;
2547
2548 /** lowers fceil to fneg+ffloor+fneg: */
2549 bool lower_fceil;
2550
2551 bool lower_ftrunc;
2552
2553 bool lower_ldexp;
2554
2555 bool lower_pack_half_2x16;
2556 bool lower_pack_unorm_2x16;
2557 bool lower_pack_snorm_2x16;
2558 bool lower_pack_unorm_4x8;
2559 bool lower_pack_snorm_4x8;
2560 bool lower_unpack_half_2x16;
2561 bool lower_unpack_unorm_2x16;
2562 bool lower_unpack_snorm_2x16;
2563 bool lower_unpack_unorm_4x8;
2564 bool lower_unpack_snorm_4x8;
2565
2566 bool lower_extract_byte;
2567 bool lower_extract_word;
2568
2569 bool lower_all_io_to_temps;
2570 bool lower_all_io_to_elements;
2571
2572 /* Indicates that the driver only has zero-based vertex id */
2573 bool vertex_id_zero_based;
2574
2575 /**
2576 * If enabled, gl_BaseVertex will be lowered as:
2577 * is_indexed_draw (~0/0) & firstvertex
2578 */
2579 bool lower_base_vertex;
2580
2581 /**
2582 * If enabled, gl_HelperInvocation will be lowered as:
2583 *
2584 * !((1 << sample_id) & sample_mask_in))
2585 *
2586 * This depends on some possibly hw implementation details, which may
2587 * not be true for all hw. In particular that the FS is only executed
2588 * for covered samples or for helper invocations. So, do not blindly
2589 * enable this option.
2590 *
2591 * Note: See also issue #22 in ARB_shader_image_load_store
2592 */
2593 bool lower_helper_invocation;
2594
2595 /**
2596 * Convert gl_SampleMaskIn to gl_HelperInvocation as follows:
2597 *
2598 * gl_SampleMaskIn == 0 ---> gl_HelperInvocation
2599 * gl_SampleMaskIn != 0 ---> !gl_HelperInvocation
2600 */
2601 bool optimize_sample_mask_in;
2602
2603 bool lower_cs_local_index_from_id;
2604 bool lower_cs_local_id_from_index;
2605
2606 bool lower_device_index_to_zero;
2607
2608 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
2609 bool lower_wpos_pntc;
2610
2611 bool lower_hadd;
2612 bool lower_add_sat;
2613
2614 /**
2615 * Should IO be re-vectorized? Some scalar ISAs still operate on vec4's
2616 * for IO purposes and would prefer loads/stores be vectorized.
2617 */
2618 bool vectorize_io;
2619
2620 /**
2621 * Should nir_lower_io() create load_interpolated_input intrinsics?
2622 *
2623 * If not, it generates regular load_input intrinsics and interpolation
2624 * information must be inferred from the list of input nir_variables.
2625 */
2626 bool use_interpolated_input_intrinsics;
2627
2628 /* Lowers when 32x32->64 bit multiplication is not supported */
2629 bool lower_mul_2x32_64;
2630
2631 /* Lowers when rotate instruction is not supported */
2632 bool lower_rotate;
2633
2634 /**
2635 * Is this the Intel vec4 backend?
2636 *
2637 * Used to inhibit algebraic optimizations that are known to be harmful on
2638 * the Intel vec4 backend. This is generally applicable to any
2639 * optimization that might cause more immediate values to be used in
2640 * 3-source (e.g., ffma and flrp) instructions.
2641 */
2642 bool intel_vec4;
2643
2644 unsigned max_unroll_iterations;
2645
2646 nir_lower_int64_options lower_int64_options;
2647 nir_lower_doubles_options lower_doubles_options;
2648 } nir_shader_compiler_options;
2649
2650 typedef struct nir_shader {
2651 /** list of uniforms (nir_variable) */
2652 struct exec_list uniforms;
2653
2654 /** list of inputs (nir_variable) */
2655 struct exec_list inputs;
2656
2657 /** list of outputs (nir_variable) */
2658 struct exec_list outputs;
2659
2660 /** list of shared compute variables (nir_variable) */
2661 struct exec_list shared;
2662
2663 /** Set of driver-specific options for the shader.
2664 *
2665 * The memory for the options is expected to be kept in a single static
2666 * copy by the driver.
2667 */
2668 const struct nir_shader_compiler_options *options;
2669
2670 /** Various bits of compile-time information about a given shader */
2671 struct shader_info info;
2672
2673 /** list of global variables in the shader (nir_variable) */
2674 struct exec_list globals;
2675
2676 /** list of system value variables in the shader (nir_variable) */
2677 struct exec_list system_values;
2678
2679 struct exec_list functions; /** < list of nir_function */
2680
2681 /**
2682 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2683 * access plus one
2684 */
2685 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2686
2687 /** Size in bytes of required scratch space */
2688 unsigned scratch_size;
2689
2690 /** Constant data associated with this shader.
2691 *
2692 * Constant data is loaded through load_constant intrinsics. See also
2693 * nir_opt_large_constants.
2694 */
2695 void *constant_data;
2696 unsigned constant_data_size;
2697 } nir_shader;
2698
2699 #define nir_foreach_function(func, shader) \
2700 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2701
2702 static inline nir_function_impl *
2703 nir_shader_get_entrypoint(nir_shader *shader)
2704 {
2705 nir_function *func = NULL;
2706
2707 nir_foreach_function(function, shader) {
2708 assert(func == NULL);
2709 if (function->is_entrypoint) {
2710 func = function;
2711 #ifndef NDEBUG
2712 break;
2713 #endif
2714 }
2715 }
2716
2717 if (!func)
2718 return NULL;
2719
2720 assert(func->num_params == 0);
2721 assert(func->impl);
2722 return func->impl;
2723 }
2724
2725 nir_shader *nir_shader_create(void *mem_ctx,
2726 gl_shader_stage stage,
2727 const nir_shader_compiler_options *options,
2728 shader_info *si);
2729
2730 nir_register *nir_local_reg_create(nir_function_impl *impl);
2731
2732 void nir_reg_remove(nir_register *reg);
2733
2734 /** Adds a variable to the appropriate list in nir_shader */
2735 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2736
2737 static inline void
2738 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2739 {
2740 assert(var->data.mode == nir_var_function_temp);
2741 exec_list_push_tail(&impl->locals, &var->node);
2742 }
2743
2744 /** creates a variable, sets a few defaults, and adds it to the list */
2745 nir_variable *nir_variable_create(nir_shader *shader,
2746 nir_variable_mode mode,
2747 const struct glsl_type *type,
2748 const char *name);
2749 /** creates a local variable and adds it to the list */
2750 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2751 const struct glsl_type *type,
2752 const char *name);
2753
2754 /** creates a function and adds it to the shader's list of functions */
2755 nir_function *nir_function_create(nir_shader *shader, const char *name);
2756
2757 nir_function_impl *nir_function_impl_create(nir_function *func);
2758 /** creates a function_impl that isn't tied to any particular function */
2759 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2760
2761 nir_block *nir_block_create(nir_shader *shader);
2762 nir_if *nir_if_create(nir_shader *shader);
2763 nir_loop *nir_loop_create(nir_shader *shader);
2764
2765 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2766
2767 /** requests that the given pieces of metadata be generated */
2768 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2769 /** dirties all but the preserved metadata */
2770 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2771
2772 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2773 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2774
2775 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2776 nir_deref_type deref_type);
2777
2778 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2779
2780 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2781 unsigned num_components,
2782 unsigned bit_size);
2783
2784 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2785 nir_intrinsic_op op);
2786
2787 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2788 nir_function *callee);
2789
2790 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2791
2792 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2793
2794 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2795
2796 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2797 unsigned num_components,
2798 unsigned bit_size);
2799
2800 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2801
2802 /**
2803 * NIR Cursors and Instruction Insertion API
2804 * @{
2805 *
2806 * A tiny struct representing a point to insert/extract instructions or
2807 * control flow nodes. Helps reduce the combinatorial explosion of possible
2808 * points to insert/extract.
2809 *
2810 * \sa nir_control_flow.h
2811 */
2812 typedef enum {
2813 nir_cursor_before_block,
2814 nir_cursor_after_block,
2815 nir_cursor_before_instr,
2816 nir_cursor_after_instr,
2817 } nir_cursor_option;
2818
2819 typedef struct {
2820 nir_cursor_option option;
2821 union {
2822 nir_block *block;
2823 nir_instr *instr;
2824 };
2825 } nir_cursor;
2826
2827 static inline nir_block *
2828 nir_cursor_current_block(nir_cursor cursor)
2829 {
2830 if (cursor.option == nir_cursor_before_instr ||
2831 cursor.option == nir_cursor_after_instr) {
2832 return cursor.instr->block;
2833 } else {
2834 return cursor.block;
2835 }
2836 }
2837
2838 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2839
2840 static inline nir_cursor
2841 nir_before_block(nir_block *block)
2842 {
2843 nir_cursor cursor;
2844 cursor.option = nir_cursor_before_block;
2845 cursor.block = block;
2846 return cursor;
2847 }
2848
2849 static inline nir_cursor
2850 nir_after_block(nir_block *block)
2851 {
2852 nir_cursor cursor;
2853 cursor.option = nir_cursor_after_block;
2854 cursor.block = block;
2855 return cursor;
2856 }
2857
2858 static inline nir_cursor
2859 nir_before_instr(nir_instr *instr)
2860 {
2861 nir_cursor cursor;
2862 cursor.option = nir_cursor_before_instr;
2863 cursor.instr = instr;
2864 return cursor;
2865 }
2866
2867 static inline nir_cursor
2868 nir_after_instr(nir_instr *instr)
2869 {
2870 nir_cursor cursor;
2871 cursor.option = nir_cursor_after_instr;
2872 cursor.instr = instr;
2873 return cursor;
2874 }
2875
2876 static inline nir_cursor
2877 nir_after_block_before_jump(nir_block *block)
2878 {
2879 nir_instr *last_instr = nir_block_last_instr(block);
2880 if (last_instr && last_instr->type == nir_instr_type_jump) {
2881 return nir_before_instr(last_instr);
2882 } else {
2883 return nir_after_block(block);
2884 }
2885 }
2886
2887 static inline nir_cursor
2888 nir_before_src(nir_src *src, bool is_if_condition)
2889 {
2890 if (is_if_condition) {
2891 nir_block *prev_block =
2892 nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
2893 assert(!nir_block_ends_in_jump(prev_block));
2894 return nir_after_block(prev_block);
2895 } else if (src->parent_instr->type == nir_instr_type_phi) {
2896 #ifndef NDEBUG
2897 nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
2898 bool found = false;
2899 nir_foreach_phi_src(phi_src, cond_phi) {
2900 if (phi_src->src.ssa == src->ssa) {
2901 found = true;
2902 break;
2903 }
2904 }
2905 assert(found);
2906 #endif
2907 /* The LIST_ENTRY macro is a generic container-of macro, it just happens
2908 * to have a more specific name.
2909 */
2910 nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
2911 return nir_after_block_before_jump(phi_src->pred);
2912 } else {
2913 return nir_before_instr(src->parent_instr);
2914 }
2915 }
2916
2917 static inline nir_cursor
2918 nir_before_cf_node(nir_cf_node *node)
2919 {
2920 if (node->type == nir_cf_node_block)
2921 return nir_before_block(nir_cf_node_as_block(node));
2922
2923 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2924 }
2925
2926 static inline nir_cursor
2927 nir_after_cf_node(nir_cf_node *node)
2928 {
2929 if (node->type == nir_cf_node_block)
2930 return nir_after_block(nir_cf_node_as_block(node));
2931
2932 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2933 }
2934
2935 static inline nir_cursor
2936 nir_after_phis(nir_block *block)
2937 {
2938 nir_foreach_instr(instr, block) {
2939 if (instr->type != nir_instr_type_phi)
2940 return nir_before_instr(instr);
2941 }
2942 return nir_after_block(block);
2943 }
2944
2945 static inline nir_cursor
2946 nir_after_cf_node_and_phis(nir_cf_node *node)
2947 {
2948 if (node->type == nir_cf_node_block)
2949 return nir_after_block(nir_cf_node_as_block(node));
2950
2951 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2952
2953 return nir_after_phis(block);
2954 }
2955
2956 static inline nir_cursor
2957 nir_before_cf_list(struct exec_list *cf_list)
2958 {
2959 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2960 exec_list_get_head(cf_list), node);
2961 return nir_before_cf_node(first_node);
2962 }
2963
2964 static inline nir_cursor
2965 nir_after_cf_list(struct exec_list *cf_list)
2966 {
2967 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2968 exec_list_get_tail(cf_list), node);
2969 return nir_after_cf_node(last_node);
2970 }
2971
2972 /**
2973 * Insert a NIR instruction at the given cursor.
2974 *
2975 * Note: This does not update the cursor.
2976 */
2977 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2978
2979 static inline void
2980 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2981 {
2982 nir_instr_insert(nir_before_instr(instr), before);
2983 }
2984
2985 static inline void
2986 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2987 {
2988 nir_instr_insert(nir_after_instr(instr), after);
2989 }
2990
2991 static inline void
2992 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2993 {
2994 nir_instr_insert(nir_before_block(block), before);
2995 }
2996
2997 static inline void
2998 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2999 {
3000 nir_instr_insert(nir_after_block(block), after);
3001 }
3002
3003 static inline void
3004 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
3005 {
3006 nir_instr_insert(nir_before_cf_node(node), before);
3007 }
3008
3009 static inline void
3010 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
3011 {
3012 nir_instr_insert(nir_after_cf_node(node), after);
3013 }
3014
3015 static inline void
3016 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
3017 {
3018 nir_instr_insert(nir_before_cf_list(list), before);
3019 }
3020
3021 static inline void
3022 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
3023 {
3024 nir_instr_insert(nir_after_cf_list(list), after);
3025 }
3026
3027 void nir_instr_remove_v(nir_instr *instr);
3028
3029 static inline nir_cursor
3030 nir_instr_remove(nir_instr *instr)
3031 {
3032 nir_cursor cursor;
3033 nir_instr *prev = nir_instr_prev(instr);
3034 if (prev) {
3035 cursor = nir_after_instr(prev);
3036 } else {
3037 cursor = nir_before_block(instr->block);
3038 }
3039 nir_instr_remove_v(instr);
3040 return cursor;
3041 }
3042
3043 /** @} */
3044
3045 nir_ssa_def *nir_instr_ssa_def(nir_instr *instr);
3046
3047 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
3048 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
3049 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
3050 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
3051 void *state);
3052 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
3053 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
3054
3055 nir_const_value *nir_src_as_const_value(nir_src src);
3056
3057 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
3058 static inline c_type * \
3059 nir_src_as_ ## name (nir_src src) \
3060 { \
3061 return src.is_ssa && src.ssa->parent_instr->type == type_enum \
3062 ? cast_macro(src.ssa->parent_instr) : NULL; \
3063 }
3064
3065 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
3066 NIR_SRC_AS_(intrinsic, nir_intrinsic_instr,
3067 nir_instr_type_intrinsic, nir_instr_as_intrinsic)
3068 NIR_SRC_AS_(deref, nir_deref_instr, nir_instr_type_deref, nir_instr_as_deref)
3069
3070 bool nir_src_is_dynamically_uniform(nir_src src);
3071 bool nir_srcs_equal(nir_src src1, nir_src src2);
3072 bool nir_instrs_equal(const nir_instr *instr1, const nir_instr *instr2);
3073 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
3074 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
3075 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
3076 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
3077 nir_dest new_dest);
3078
3079 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
3080 unsigned num_components, unsigned bit_size,
3081 const char *name);
3082 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
3083 unsigned num_components, unsigned bit_size,
3084 const char *name);
3085 static inline void
3086 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
3087 const struct glsl_type *type,
3088 const char *name)
3089 {
3090 assert(glsl_type_is_vector_or_scalar(type));
3091 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
3092 glsl_get_bit_size(type), name);
3093 }
3094 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
3095 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
3096 nir_instr *after_me);
3097
3098 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
3099
3100 /*
3101 * finds the next basic block in source-code order, returns NULL if there is
3102 * none
3103 */
3104
3105 nir_block *nir_block_cf_tree_next(nir_block *block);
3106
3107 /* Performs the opposite of nir_block_cf_tree_next() */
3108
3109 nir_block *nir_block_cf_tree_prev(nir_block *block);
3110
3111 /* Gets the first block in a CF node in source-code order */
3112
3113 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
3114
3115 /* Gets the last block in a CF node in source-code order */
3116
3117 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
3118
3119 /* Gets the next block after a CF node in source-code order */
3120
3121 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
3122
3123 /* Macros for loops that visit blocks in source-code order */
3124
3125 #define nir_foreach_block(block, impl) \
3126 for (nir_block *block = nir_start_block(impl); block != NULL; \
3127 block = nir_block_cf_tree_next(block))
3128
3129 #define nir_foreach_block_safe(block, impl) \
3130 for (nir_block *block = nir_start_block(impl), \
3131 *next = nir_block_cf_tree_next(block); \
3132 block != NULL; \
3133 block = next, next = nir_block_cf_tree_next(block))
3134
3135 #define nir_foreach_block_reverse(block, impl) \
3136 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
3137 block = nir_block_cf_tree_prev(block))
3138
3139 #define nir_foreach_block_reverse_safe(block, impl) \
3140 for (nir_block *block = nir_impl_last_block(impl), \
3141 *prev = nir_block_cf_tree_prev(block); \
3142 block != NULL; \
3143 block = prev, prev = nir_block_cf_tree_prev(block))
3144
3145 #define nir_foreach_block_in_cf_node(block, node) \
3146 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
3147 block != nir_cf_node_cf_tree_next(node); \
3148 block = nir_block_cf_tree_next(block))
3149
3150 /* If the following CF node is an if, this function returns that if.
3151 * Otherwise, it returns NULL.
3152 */
3153 nir_if *nir_block_get_following_if(nir_block *block);
3154
3155 nir_loop *nir_block_get_following_loop(nir_block *block);
3156
3157 void nir_index_local_regs(nir_function_impl *impl);
3158 void nir_index_ssa_defs(nir_function_impl *impl);
3159 unsigned nir_index_instrs(nir_function_impl *impl);
3160
3161 void nir_index_blocks(nir_function_impl *impl);
3162
3163 void nir_print_shader(nir_shader *shader, FILE *fp);
3164 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
3165 void nir_print_instr(const nir_instr *instr, FILE *fp);
3166 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
3167
3168 /** Shallow clone of a single ALU instruction. */
3169 nir_alu_instr *nir_alu_instr_clone(nir_shader *s, const nir_alu_instr *orig);
3170
3171 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
3172 nir_function_impl *nir_function_impl_clone(nir_shader *shader,
3173 const nir_function_impl *fi);
3174 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
3175 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
3176
3177 void nir_shader_replace(nir_shader *dest, nir_shader *src);
3178
3179 void nir_shader_serialize_deserialize(nir_shader *s);
3180
3181 #ifndef NDEBUG
3182 void nir_validate_shader(nir_shader *shader, const char *when);
3183 void nir_metadata_set_validation_flag(nir_shader *shader);
3184 void nir_metadata_check_validation_flag(nir_shader *shader);
3185
3186 static inline bool
3187 should_skip_nir(const char *name)
3188 {
3189 static const char *list = NULL;
3190 if (!list) {
3191 /* Comma separated list of names to skip. */
3192 list = getenv("NIR_SKIP");
3193 if (!list)
3194 list = "";
3195 }
3196
3197 if (!list[0])
3198 return false;
3199
3200 return comma_separated_list_contains(list, name);
3201 }
3202
3203 static inline bool
3204 should_clone_nir(void)
3205 {
3206 static int should_clone = -1;
3207 if (should_clone < 0)
3208 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
3209
3210 return should_clone;
3211 }
3212
3213 static inline bool
3214 should_serialize_deserialize_nir(void)
3215 {
3216 static int test_serialize = -1;
3217 if (test_serialize < 0)
3218 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
3219
3220 return test_serialize;
3221 }
3222
3223 static inline bool
3224 should_print_nir(void)
3225 {
3226 static int should_print = -1;
3227 if (should_print < 0)
3228 should_print = env_var_as_boolean("NIR_PRINT", false);
3229
3230 return should_print;
3231 }
3232 #else
3233 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
3234 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
3235 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
3236 static inline bool should_skip_nir(UNUSED const char *pass_name) { return false; }
3237 static inline bool should_clone_nir(void) { return false; }
3238 static inline bool should_serialize_deserialize_nir(void) { return false; }
3239 static inline bool should_print_nir(void) { return false; }
3240 #endif /* NDEBUG */
3241
3242 #define _PASS(pass, nir, do_pass) do { \
3243 if (should_skip_nir(#pass)) { \
3244 printf("skipping %s\n", #pass); \
3245 break; \
3246 } \
3247 do_pass \
3248 nir_validate_shader(nir, "after " #pass); \
3249 if (should_clone_nir()) { \
3250 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
3251 nir_shader_replace(nir, clone); \
3252 } \
3253 if (should_serialize_deserialize_nir()) { \
3254 nir_shader_serialize_deserialize(nir); \
3255 } \
3256 } while (0)
3257
3258 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, \
3259 nir_metadata_set_validation_flag(nir); \
3260 if (should_print_nir()) \
3261 printf("%s\n", #pass); \
3262 if (pass(nir, ##__VA_ARGS__)) { \
3263 progress = true; \
3264 if (should_print_nir()) \
3265 nir_print_shader(nir, stdout); \
3266 nir_metadata_check_validation_flag(nir); \
3267 } \
3268 )
3269
3270 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, \
3271 if (should_print_nir()) \
3272 printf("%s\n", #pass); \
3273 pass(nir, ##__VA_ARGS__); \
3274 if (should_print_nir()) \
3275 nir_print_shader(nir, stdout); \
3276 )
3277
3278 #define NIR_SKIP(name) should_skip_nir(#name)
3279
3280 void nir_calc_dominance_impl(nir_function_impl *impl);
3281 void nir_calc_dominance(nir_shader *shader);
3282
3283 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
3284 bool nir_block_dominates(nir_block *parent, nir_block *child);
3285
3286 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
3287 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
3288
3289 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
3290 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
3291
3292 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
3293 void nir_dump_cfg(nir_shader *shader, FILE *fp);
3294
3295 int nir_gs_count_vertices(const nir_shader *shader);
3296
3297 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
3298 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
3299 bool nir_split_var_copies(nir_shader *shader);
3300 bool nir_split_per_member_structs(nir_shader *shader);
3301 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
3302
3303 bool nir_lower_returns_impl(nir_function_impl *impl);
3304 bool nir_lower_returns(nir_shader *shader);
3305
3306 void nir_inline_function_impl(struct nir_builder *b,
3307 const nir_function_impl *impl,
3308 nir_ssa_def **params);
3309 bool nir_inline_functions(nir_shader *shader);
3310
3311 bool nir_propagate_invariant(nir_shader *shader);
3312
3313 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
3314 void nir_lower_deref_copy_instr(struct nir_builder *b,
3315 nir_intrinsic_instr *copy);
3316 bool nir_lower_var_copies(nir_shader *shader);
3317
3318 void nir_fixup_deref_modes(nir_shader *shader);
3319
3320 bool nir_lower_global_vars_to_local(nir_shader *shader);
3321
3322 typedef enum {
3323 nir_lower_direct_array_deref_of_vec_load = (1 << 0),
3324 nir_lower_indirect_array_deref_of_vec_load = (1 << 1),
3325 nir_lower_direct_array_deref_of_vec_store = (1 << 2),
3326 nir_lower_indirect_array_deref_of_vec_store = (1 << 3),
3327 } nir_lower_array_deref_of_vec_options;
3328
3329 bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
3330 nir_lower_array_deref_of_vec_options options);
3331
3332 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
3333
3334 bool nir_lower_locals_to_regs(nir_shader *shader);
3335
3336 void nir_lower_io_to_temporaries(nir_shader *shader,
3337 nir_function_impl *entrypoint,
3338 bool outputs, bool inputs);
3339
3340 bool nir_lower_vars_to_scratch(nir_shader *shader,
3341 nir_variable_mode modes,
3342 int size_threshold,
3343 glsl_type_size_align_func size_align);
3344
3345 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
3346
3347 void nir_gather_ssa_types(nir_function_impl *impl,
3348 BITSET_WORD *float_types,
3349 BITSET_WORD *int_types);
3350
3351 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
3352 int (*type_size)(const struct glsl_type *, bool));
3353
3354 /* Some helpers to do very simple linking */
3355 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
3356 bool nir_remove_unused_io_vars(nir_shader *shader, struct exec_list *var_list,
3357 uint64_t *used_by_other_stage,
3358 uint64_t *used_by_other_stage_patches);
3359 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
3360 bool default_to_smooth_interp);
3361 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
3362 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
3363
3364
3365 void nir_assign_io_var_locations(struct exec_list *var_list,
3366 unsigned *size,
3367 gl_shader_stage stage);
3368
3369 typedef enum {
3370 /* If set, this forces all non-flat fragment shader inputs to be
3371 * interpolated as if with the "sample" qualifier. This requires
3372 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
3373 */
3374 nir_lower_io_force_sample_interpolation = (1 << 1),
3375 } nir_lower_io_options;
3376 bool nir_lower_io(nir_shader *shader,
3377 nir_variable_mode modes,
3378 int (*type_size)(const struct glsl_type *, bool),
3379 nir_lower_io_options);
3380
3381 bool nir_io_add_const_offset_to_base(nir_shader *nir, nir_variable_mode mode);
3382
3383 typedef enum {
3384 /**
3385 * An address format which is a simple 32-bit global GPU address.
3386 */
3387 nir_address_format_32bit_global,
3388
3389 /**
3390 * An address format which is a simple 64-bit global GPU address.
3391 */
3392 nir_address_format_64bit_global,
3393
3394 /**
3395 * An address format which is a bounds-checked 64-bit global GPU address.
3396 *
3397 * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
3398 * address stored with the low bits in .x and high bits in .y, .z is a
3399 * size, and .w is an offset. When the final I/O operation is lowered, .w
3400 * is checked against .z and the operation is predicated on the result.
3401 */
3402 nir_address_format_64bit_bounded_global,
3403
3404 /**
3405 * An address format which is comprised of a vec2 where the first
3406 * component is a buffer index and the second is an offset.
3407 */
3408 nir_address_format_32bit_index_offset,
3409
3410 /**
3411 * An address format which is a simple 32-bit offset.
3412 */
3413 nir_address_format_32bit_offset,
3414
3415 /**
3416 * An address format representing a purely logical addressing model. In
3417 * this model, all deref chains must be complete from the dereference
3418 * operation to the variable. Cast derefs are not allowed. These
3419 * addresses will be 32-bit scalars but the format is immaterial because
3420 * you can always chase the chain.
3421 */
3422 nir_address_format_logical,
3423 } nir_address_format;
3424
3425 static inline unsigned
3426 nir_address_format_bit_size(nir_address_format addr_format)
3427 {
3428 switch (addr_format) {
3429 case nir_address_format_32bit_global: return 32;
3430 case nir_address_format_64bit_global: return 64;
3431 case nir_address_format_64bit_bounded_global: return 32;
3432 case nir_address_format_32bit_index_offset: return 32;
3433 case nir_address_format_32bit_offset: return 32;
3434 case nir_address_format_logical: return 32;
3435 }
3436 unreachable("Invalid address format");
3437 }
3438
3439 static inline unsigned
3440 nir_address_format_num_components(nir_address_format addr_format)
3441 {
3442 switch (addr_format) {
3443 case nir_address_format_32bit_global: return 1;
3444 case nir_address_format_64bit_global: return 1;
3445 case nir_address_format_64bit_bounded_global: return 4;
3446 case nir_address_format_32bit_index_offset: return 2;
3447 case nir_address_format_32bit_offset: return 1;
3448 case nir_address_format_logical: return 1;
3449 }
3450 unreachable("Invalid address format");
3451 }
3452
3453 static inline const struct glsl_type *
3454 nir_address_format_to_glsl_type(nir_address_format addr_format)
3455 {
3456 unsigned bit_size = nir_address_format_bit_size(addr_format);
3457 assert(bit_size == 32 || bit_size == 64);
3458 return glsl_vector_type(bit_size == 32 ? GLSL_TYPE_UINT : GLSL_TYPE_UINT64,
3459 nir_address_format_num_components(addr_format));
3460 }
3461
3462 const nir_const_value *nir_address_format_null_value(nir_address_format addr_format);
3463
3464 nir_ssa_def *nir_build_addr_ieq(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
3465 nir_address_format addr_format);
3466
3467 nir_ssa_def *nir_build_addr_isub(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
3468 nir_address_format addr_format);
3469
3470 nir_ssa_def * nir_explicit_io_address_from_deref(struct nir_builder *b,
3471 nir_deref_instr *deref,
3472 nir_ssa_def *base_addr,
3473 nir_address_format addr_format);
3474 void nir_lower_explicit_io_instr(struct nir_builder *b,
3475 nir_intrinsic_instr *io_instr,
3476 nir_ssa_def *addr,
3477 nir_address_format addr_format);
3478
3479 bool nir_lower_explicit_io(nir_shader *shader,
3480 nir_variable_mode modes,
3481 nir_address_format);
3482
3483 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
3484 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
3485
3486 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
3487
3488 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
3489 bool nir_lower_regs_to_ssa(nir_shader *shader);
3490 bool nir_lower_vars_to_ssa(nir_shader *shader);
3491
3492 bool nir_remove_dead_derefs(nir_shader *shader);
3493 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
3494 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
3495 bool nir_lower_constant_initializers(nir_shader *shader,
3496 nir_variable_mode modes);
3497
3498 bool nir_move_load_const(nir_shader *shader);
3499 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
3500 bool nir_lower_vec_to_movs(nir_shader *shader);
3501 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
3502 bool alpha_to_one);
3503 bool nir_lower_alu(nir_shader *shader);
3504
3505 bool nir_lower_flrp(nir_shader *shader, unsigned lowering_mask,
3506 bool always_precise, bool have_ffma);
3507
3508 bool nir_lower_alu_to_scalar(nir_shader *shader, BITSET_WORD *lower_set);
3509 bool nir_lower_bool_to_float(nir_shader *shader);
3510 bool nir_lower_bool_to_int32(nir_shader *shader);
3511 bool nir_lower_int_to_float(nir_shader *shader);
3512 bool nir_lower_load_const_to_scalar(nir_shader *shader);
3513 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
3514 bool nir_lower_phis_to_scalar(nir_shader *shader);
3515 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
3516 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
3517 bool outputs_only);
3518 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
3519 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
3520 bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
3521
3522 void nir_lower_fragcoord_wtrans(nir_shader *shader);
3523 void nir_lower_viewport_transform(nir_shader *shader);
3524 bool nir_lower_uniforms_to_ubo(nir_shader *shader, int multiplier);
3525
3526 typedef struct nir_lower_subgroups_options {
3527 uint8_t subgroup_size;
3528 uint8_t ballot_bit_size;
3529 bool lower_to_scalar:1;
3530 bool lower_vote_trivial:1;
3531 bool lower_vote_eq_to_ballot:1;
3532 bool lower_subgroup_masks:1;
3533 bool lower_shuffle:1;
3534 bool lower_shuffle_to_32bit:1;
3535 bool lower_quad:1;
3536 } nir_lower_subgroups_options;
3537
3538 bool nir_lower_subgroups(nir_shader *shader,
3539 const nir_lower_subgroups_options *options);
3540
3541 bool nir_lower_system_values(nir_shader *shader);
3542
3543 enum PACKED nir_lower_tex_packing {
3544 nir_lower_tex_packing_none = 0,
3545 /* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
3546 * or unsigned ints based on the sampler type
3547 */
3548 nir_lower_tex_packing_16,
3549 /* The sampler returns 1 32-bit word of 4x8 unorm */
3550 nir_lower_tex_packing_8,
3551 };
3552
3553 typedef struct nir_lower_tex_options {
3554 /**
3555 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
3556 * sampler types a texture projector is lowered.
3557 */
3558 unsigned lower_txp;
3559
3560 /**
3561 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
3562 */
3563 bool lower_txf_offset;
3564
3565 /**
3566 * If true, lower away nir_tex_src_offset for all rect textures.
3567 */
3568 bool lower_rect_offset;
3569
3570 /**
3571 * If true, lower rect textures to 2D, using txs to fetch the
3572 * texture dimensions and dividing the texture coords by the
3573 * texture dims to normalize.
3574 */
3575 bool lower_rect;
3576
3577 /**
3578 * If true, convert yuv to rgb.
3579 */
3580 unsigned lower_y_uv_external;
3581 unsigned lower_y_u_v_external;
3582 unsigned lower_yx_xuxv_external;
3583 unsigned lower_xy_uxvx_external;
3584 unsigned lower_ayuv_external;
3585 unsigned lower_xyuv_external;
3586
3587 /**
3588 * To emulate certain texture wrap modes, this can be used
3589 * to saturate the specified tex coord to [0.0, 1.0]. The
3590 * bits are according to sampler #, ie. if, for example:
3591 *
3592 * (conf->saturate_s & (1 << n))
3593 *
3594 * is true, then the s coord for sampler n is saturated.
3595 *
3596 * Note that clamping must happen *after* projector lowering
3597 * so any projected texture sample instruction with a clamped
3598 * coordinate gets automatically lowered, regardless of the
3599 * 'lower_txp' setting.
3600 */
3601 unsigned saturate_s;
3602 unsigned saturate_t;
3603 unsigned saturate_r;
3604
3605 /* Bitmask of textures that need swizzling.
3606 *
3607 * If (swizzle_result & (1 << texture_index)), then the swizzle in
3608 * swizzles[texture_index] is applied to the result of the texturing
3609 * operation.
3610 */
3611 unsigned swizzle_result;
3612
3613 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
3614 * while 4 and 5 represent 0 and 1 respectively.
3615 */
3616 uint8_t swizzles[32][4];
3617
3618 /* Can be used to scale sampled values in range required by the format. */
3619 float scale_factors[32];
3620
3621 /**
3622 * Bitmap of textures that need srgb to linear conversion. If
3623 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
3624 * of the texture are lowered to linear.
3625 */
3626 unsigned lower_srgb;
3627
3628 /**
3629 * If true, lower nir_texop_tex on shaders that doesn't support implicit
3630 * LODs to nir_texop_txl.
3631 */
3632 bool lower_tex_without_implicit_lod;
3633
3634 /**
3635 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
3636 */
3637 bool lower_txd_cube_map;
3638
3639 /**
3640 * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
3641 */
3642 bool lower_txd_3d;
3643
3644 /**
3645 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
3646 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
3647 * with lower_txd_cube_map.
3648 */
3649 bool lower_txd_shadow;
3650
3651 /**
3652 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
3653 * Implies lower_txd_cube_map and lower_txd_shadow.
3654 */
3655 bool lower_txd;
3656
3657 /**
3658 * If true, lower nir_texop_txb that try to use shadow compare and min_lod
3659 * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
3660 */
3661 bool lower_txb_shadow_clamp;
3662
3663 /**
3664 * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
3665 * with nir_texop_txl. This includes cube maps.
3666 */
3667 bool lower_txd_shadow_clamp;
3668
3669 /**
3670 * If true, lower nir_texop_txd on when it uses both offset and min_lod
3671 * with nir_texop_txl. This includes cube maps.
3672 */
3673 bool lower_txd_offset_clamp;
3674
3675 /**
3676 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3677 * sampler is bindless.
3678 */
3679 bool lower_txd_clamp_bindless_sampler;
3680
3681 /**
3682 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3683 * sampler index is not statically determinable to be less than 16.
3684 */
3685 bool lower_txd_clamp_if_sampler_index_not_lt_16;
3686
3687 /**
3688 * If true, lower nir_texop_txs with a non-0-lod into nir_texop_txs with
3689 * 0-lod followed by a nir_ishr.
3690 */
3691 bool lower_txs_lod;
3692
3693 /**
3694 * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
3695 * mixed-up tg4 locations.
3696 */
3697 bool lower_tg4_broadcom_swizzle;
3698
3699 /**
3700 * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
3701 */
3702 bool lower_tg4_offsets;
3703
3704 enum nir_lower_tex_packing lower_tex_packing[32];
3705 } nir_lower_tex_options;
3706
3707 bool nir_lower_tex(nir_shader *shader,
3708 const nir_lower_tex_options *options);
3709
3710 enum nir_lower_non_uniform_access_type {
3711 nir_lower_non_uniform_ubo_access = (1 << 0),
3712 nir_lower_non_uniform_ssbo_access = (1 << 1),
3713 nir_lower_non_uniform_texture_access = (1 << 2),
3714 nir_lower_non_uniform_image_access = (1 << 3),
3715 };
3716
3717 bool nir_lower_non_uniform_access(nir_shader *shader,
3718 enum nir_lower_non_uniform_access_type);
3719
3720 bool nir_lower_idiv(nir_shader *shader);
3721
3722 bool nir_lower_input_attachments(nir_shader *shader, bool use_fragcoord_sysval);
3723
3724 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables, bool use_vars);
3725 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
3726 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
3727
3728 bool nir_lower_frexp(nir_shader *nir);
3729
3730 void nir_lower_two_sided_color(nir_shader *shader);
3731
3732 bool nir_lower_clamp_color_outputs(nir_shader *shader);
3733
3734 void nir_lower_passthrough_edgeflags(nir_shader *shader);
3735 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
3736 const gl_state_index16 *uniform_state_tokens);
3737
3738 typedef struct nir_lower_wpos_ytransform_options {
3739 gl_state_index16 state_tokens[STATE_LENGTH];
3740 bool fs_coord_origin_upper_left :1;
3741 bool fs_coord_origin_lower_left :1;
3742 bool fs_coord_pixel_center_integer :1;
3743 bool fs_coord_pixel_center_half_integer :1;
3744 } nir_lower_wpos_ytransform_options;
3745
3746 bool nir_lower_wpos_ytransform(nir_shader *shader,
3747 const nir_lower_wpos_ytransform_options *options);
3748 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
3749
3750 bool nir_lower_fb_read(nir_shader *shader);
3751
3752 typedef struct nir_lower_drawpixels_options {
3753 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
3754 gl_state_index16 scale_state_tokens[STATE_LENGTH];
3755 gl_state_index16 bias_state_tokens[STATE_LENGTH];
3756 unsigned drawpix_sampler;
3757 unsigned pixelmap_sampler;
3758 bool pixel_maps :1;
3759 bool scale_and_bias :1;
3760 } nir_lower_drawpixels_options;
3761
3762 void nir_lower_drawpixels(nir_shader *shader,
3763 const nir_lower_drawpixels_options *options);
3764
3765 typedef struct nir_lower_bitmap_options {
3766 unsigned sampler;
3767 bool swizzle_xxxx;
3768 } nir_lower_bitmap_options;
3769
3770 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
3771
3772 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
3773
3774 typedef enum {
3775 nir_lower_int_source_mods = 1 << 0,
3776 nir_lower_float_source_mods = 1 << 1,
3777 nir_lower_triop_abs = 1 << 2,
3778 nir_lower_all_source_mods = (1 << 3) - 1
3779 } nir_lower_to_source_mods_flags;
3780
3781
3782 bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
3783
3784 bool nir_lower_gs_intrinsics(nir_shader *shader);
3785
3786 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
3787
3788 bool nir_lower_bit_size(nir_shader *shader,
3789 nir_lower_bit_size_callback callback,
3790 void *callback_data);
3791
3792 nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
3793 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
3794
3795 nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
3796 bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
3797 nir_lower_doubles_options options);
3798 bool nir_lower_pack(nir_shader *shader);
3799
3800 typedef enum {
3801 nir_lower_interpolation_at_sample = (1 << 1),
3802 nir_lower_interpolation_at_offset = (1 << 2),
3803 nir_lower_interpolation_centroid = (1 << 3),
3804 nir_lower_interpolation_pixel = (1 << 4),
3805 nir_lower_interpolation_sample = (1 << 5),
3806 } nir_lower_interpolation_options;
3807
3808 bool nir_lower_interpolation(nir_shader *shader,
3809 nir_lower_interpolation_options options);
3810
3811 bool nir_normalize_cubemap_coords(nir_shader *shader);
3812
3813 void nir_live_ssa_defs_impl(nir_function_impl *impl);
3814
3815 void nir_loop_analyze_impl(nir_function_impl *impl,
3816 nir_variable_mode indirect_mask);
3817
3818 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
3819
3820 bool nir_repair_ssa_impl(nir_function_impl *impl);
3821 bool nir_repair_ssa(nir_shader *shader);
3822
3823 void nir_convert_loop_to_lcssa(nir_loop *loop);
3824
3825 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
3826 * registers. If false, convert all values (even those not involved in a phi
3827 * node) to registers.
3828 */
3829 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
3830
3831 bool nir_lower_phis_to_regs_block(nir_block *block);
3832 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
3833 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
3834
3835 /* This is here for unit tests. */
3836 bool nir_opt_comparison_pre_impl(nir_function_impl *impl);
3837
3838 bool nir_opt_comparison_pre(nir_shader *shader);
3839
3840 bool nir_opt_algebraic(nir_shader *shader);
3841 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
3842 bool nir_opt_algebraic_late(nir_shader *shader);
3843 bool nir_opt_constant_folding(nir_shader *shader);
3844
3845 bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
3846
3847 bool nir_copy_prop(nir_shader *shader);
3848
3849 bool nir_opt_copy_prop_vars(nir_shader *shader);
3850
3851 bool nir_opt_cse(nir_shader *shader);
3852
3853 bool nir_opt_dce(nir_shader *shader);
3854
3855 bool nir_opt_dead_cf(nir_shader *shader);
3856
3857 bool nir_opt_dead_write_vars(nir_shader *shader);
3858
3859 bool nir_opt_deref_impl(nir_function_impl *impl);
3860 bool nir_opt_deref(nir_shader *shader);
3861
3862 bool nir_opt_find_array_copies(nir_shader *shader);
3863
3864 bool nir_opt_gcm(nir_shader *shader, bool value_number);
3865
3866 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
3867
3868 bool nir_opt_if(nir_shader *shader, bool aggressive_last_continue);
3869
3870 bool nir_opt_intrinsics(nir_shader *shader);
3871
3872 bool nir_opt_large_constants(nir_shader *shader,
3873 glsl_type_size_align_func size_align,
3874 unsigned threshold);
3875
3876 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
3877
3878 bool nir_opt_move_comparisons(nir_shader *shader);
3879
3880 bool nir_opt_move_load_ubo(nir_shader *shader);
3881
3882 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
3883 bool indirect_load_ok, bool expensive_alu_ok);
3884
3885 bool nir_opt_rematerialize_compares(nir_shader *shader);
3886
3887 bool nir_opt_remove_phis(nir_shader *shader);
3888 bool nir_opt_remove_phis_block(nir_block *block);
3889
3890 bool nir_opt_shrink_load(nir_shader *shader);
3891
3892 bool nir_opt_trivial_continues(nir_shader *shader);
3893
3894 bool nir_opt_undef(nir_shader *shader);
3895
3896 bool nir_opt_vectorize(nir_shader *shader);
3897
3898 bool nir_opt_conditional_discard(nir_shader *shader);
3899
3900 void nir_strip(nir_shader *shader);
3901
3902 void nir_sweep(nir_shader *shader);
3903
3904 void nir_remap_dual_slot_attributes(nir_shader *shader,
3905 uint64_t *dual_slot_inputs);
3906 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
3907
3908 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
3909 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
3910
3911 bool nir_lower_sincos(nir_shader *shader);
3912
3913 static inline bool
3914 nir_variable_is_in_ubo(const nir_variable *var)
3915 {
3916 return (var->data.mode == nir_var_mem_ubo &&
3917 var->interface_type != NULL);
3918 }
3919
3920 static inline bool
3921 nir_variable_is_in_ssbo(const nir_variable *var)
3922 {
3923 return (var->data.mode == nir_var_mem_ssbo &&
3924 var->interface_type != NULL);
3925 }
3926
3927 static inline bool
3928 nir_variable_is_in_block(const nir_variable *var)
3929 {
3930 return nir_variable_is_in_ubo(var) || nir_variable_is_in_ssbo(var);
3931 }
3932
3933 #ifdef __cplusplus
3934 } /* extern "C" */
3935 #endif
3936
3937 #endif /* NIR_H */