nir: Add a concept of constant data associated with a shader
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitset.h"
38 #include "util/macros.h"
39 #include "compiler/nir_types.h"
40 #include "compiler/shader_enums.h"
41 #include "compiler/shader_info.h"
42 #include <stdio.h>
43
44 #ifndef NDEBUG
45 #include "util/debug.h"
46 #endif /* NDEBUG */
47
48 #include "nir_opcodes.h"
49
50 #if defined(_WIN32) && !defined(snprintf)
51 #define snprintf _snprintf
52 #endif
53
54 #ifdef __cplusplus
55 extern "C" {
56 #endif
57
58 #define NIR_FALSE 0u
59 #define NIR_TRUE (~0u)
60
61 /** Defines a cast function
62 *
63 * This macro defines a cast function from in_type to out_type where
64 * out_type is some structure type that contains a field of type out_type.
65 *
66 * Note that you have to be a bit careful as the generated cast function
67 * destroys constness.
68 */
69 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
70 type_field, type_value) \
71 static inline out_type * \
72 name(const in_type *parent) \
73 { \
74 assert(parent && parent->type_field == type_value); \
75 return exec_node_data(out_type, parent, field); \
76 }
77
78 struct nir_function;
79 struct nir_shader;
80 struct nir_instr;
81 struct nir_builder;
82
83
84 /**
85 * Description of built-in state associated with a uniform
86 *
87 * \sa nir_variable::state_slots
88 */
89 typedef struct {
90 gl_state_index16 tokens[STATE_LENGTH];
91 int swizzle;
92 } nir_state_slot;
93
94 typedef enum {
95 nir_var_shader_in = (1 << 0),
96 nir_var_shader_out = (1 << 1),
97 nir_var_global = (1 << 2),
98 nir_var_local = (1 << 3),
99 nir_var_uniform = (1 << 4),
100 nir_var_shader_storage = (1 << 5),
101 nir_var_system_value = (1 << 6),
102 nir_var_shared = (1 << 8),
103 nir_var_all = ~0,
104 } nir_variable_mode;
105
106 /**
107 * Rounding modes.
108 */
109 typedef enum {
110 nir_rounding_mode_undef = 0,
111 nir_rounding_mode_rtne = 1, /* round to nearest even */
112 nir_rounding_mode_ru = 2, /* round up */
113 nir_rounding_mode_rd = 3, /* round down */
114 nir_rounding_mode_rtz = 4, /* round towards zero */
115 } nir_rounding_mode;
116
117 typedef union {
118 float f32[4];
119 double f64[4];
120 int8_t i8[4];
121 uint8_t u8[4];
122 int16_t i16[4];
123 uint16_t u16[4];
124 int32_t i32[4];
125 uint32_t u32[4];
126 int64_t i64[4];
127 uint64_t u64[4];
128 } nir_const_value;
129
130 typedef struct nir_constant {
131 /**
132 * Value of the constant.
133 *
134 * The field used to back the values supplied by the constant is determined
135 * by the type associated with the \c nir_variable. Constants may be
136 * scalars, vectors, or matrices.
137 */
138 nir_const_value values[4];
139
140 /* we could get this from the var->type but makes clone *much* easier to
141 * not have to care about the type.
142 */
143 unsigned num_elements;
144
145 /* Array elements / Structure Fields */
146 struct nir_constant **elements;
147 } nir_constant;
148
149 /**
150 * \brief Layout qualifiers for gl_FragDepth.
151 *
152 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
153 * with a layout qualifier.
154 */
155 typedef enum {
156 nir_depth_layout_none, /**< No depth layout is specified. */
157 nir_depth_layout_any,
158 nir_depth_layout_greater,
159 nir_depth_layout_less,
160 nir_depth_layout_unchanged
161 } nir_depth_layout;
162
163 /**
164 * Either a uniform, global variable, shader input, or shader output. Based on
165 * ir_variable - it should be easy to translate between the two.
166 */
167
168 typedef struct nir_variable {
169 struct exec_node node;
170
171 /**
172 * Declared type of the variable
173 */
174 const struct glsl_type *type;
175
176 /**
177 * Declared name of the variable
178 */
179 char *name;
180
181 struct nir_variable_data {
182 /**
183 * Storage class of the variable.
184 *
185 * \sa nir_variable_mode
186 */
187 nir_variable_mode mode;
188
189 /**
190 * Is the variable read-only?
191 *
192 * This is set for variables declared as \c const, shader inputs,
193 * and uniforms.
194 */
195 unsigned read_only:1;
196 unsigned centroid:1;
197 unsigned sample:1;
198 unsigned patch:1;
199 unsigned invariant:1;
200
201 /**
202 * When separate shader programs are enabled, only input/outputs between
203 * the stages of a multi-stage separate program can be safely removed
204 * from the shader interface. Other input/outputs must remains active.
205 *
206 * This is also used to make sure xfb varyings that are unused by the
207 * fragment shader are not removed.
208 */
209 unsigned always_active_io:1;
210
211 /**
212 * Interpolation mode for shader inputs / outputs
213 *
214 * \sa glsl_interp_mode
215 */
216 unsigned interpolation:2;
217
218 /**
219 * \name ARB_fragment_coord_conventions
220 * @{
221 */
222 unsigned origin_upper_left:1;
223 unsigned pixel_center_integer:1;
224 /*@}*/
225
226 /**
227 * If non-zero, then this variable may be packed along with other variables
228 * into a single varying slot, so this offset should be applied when
229 * accessing components. For example, an offset of 1 means that the x
230 * component of this variable is actually stored in component y of the
231 * location specified by \c location.
232 */
233 unsigned location_frac:2;
234
235 /**
236 * If true, this variable represents an array of scalars that should
237 * be tightly packed. In other words, consecutive array elements
238 * should be stored one component apart, rather than one slot apart.
239 */
240 unsigned compact:1;
241
242 /**
243 * Whether this is a fragment shader output implicitly initialized with
244 * the previous contents of the specified render target at the
245 * framebuffer location corresponding to this shader invocation.
246 */
247 unsigned fb_fetch_output:1;
248
249 /**
250 * Non-zero if this variable is considered bindless as defined by
251 * ARB_bindless_texture.
252 */
253 unsigned bindless:1;
254
255 /**
256 * Was an explicit binding set in the shader?
257 */
258 unsigned explicit_binding:1;
259
260 /**
261 * \brief Layout qualifier for gl_FragDepth.
262 *
263 * This is not equal to \c ir_depth_layout_none if and only if this
264 * variable is \c gl_FragDepth and a layout qualifier is specified.
265 */
266 nir_depth_layout depth_layout;
267
268 /**
269 * Storage location of the base of this variable
270 *
271 * The precise meaning of this field depends on the nature of the variable.
272 *
273 * - Vertex shader input: one of the values from \c gl_vert_attrib.
274 * - Vertex shader output: one of the values from \c gl_varying_slot.
275 * - Geometry shader input: one of the values from \c gl_varying_slot.
276 * - Geometry shader output: one of the values from \c gl_varying_slot.
277 * - Fragment shader input: one of the values from \c gl_varying_slot.
278 * - Fragment shader output: one of the values from \c gl_frag_result.
279 * - Uniforms: Per-stage uniform slot number for default uniform block.
280 * - Uniforms: Index within the uniform block definition for UBO members.
281 * - Non-UBO Uniforms: uniform slot number.
282 * - Other: This field is not currently used.
283 *
284 * If the variable is a uniform, shader input, or shader output, and the
285 * slot has not been assigned, the value will be -1.
286 */
287 int location;
288
289 /**
290 * The actual location of the variable in the IR. Only valid for inputs
291 * and outputs.
292 */
293 unsigned int driver_location;
294
295 /**
296 * Vertex stream output identifier.
297 *
298 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
299 * stream of the i-th component.
300 */
301 unsigned stream;
302
303 /**
304 * output index for dual source blending.
305 */
306 int index;
307
308 /**
309 * Descriptor set binding for sampler or UBO.
310 */
311 int descriptor_set;
312
313 /**
314 * Initial binding point for a sampler or UBO.
315 *
316 * For array types, this represents the binding point for the first element.
317 */
318 int binding;
319
320 /**
321 * Location an atomic counter is stored at.
322 */
323 unsigned offset;
324
325 /**
326 * ARB_shader_image_load_store qualifiers.
327 */
328 struct {
329 bool read_only; /**< "readonly" qualifier. */
330 bool write_only; /**< "writeonly" qualifier. */
331 bool coherent;
332 bool _volatile;
333 bool restrict_flag;
334
335 /** Image internal format if specified explicitly, otherwise GL_NONE. */
336 GLenum format;
337 } image;
338 } data;
339
340 /**
341 * Built-in state that backs this uniform
342 *
343 * Once set at variable creation, \c state_slots must remain invariant.
344 * This is because, ideally, this array would be shared by all clones of
345 * this variable in the IR tree. In other words, we'd really like for it
346 * to be a fly-weight.
347 *
348 * If the variable is not a uniform, \c num_state_slots will be zero and
349 * \c state_slots will be \c NULL.
350 */
351 /*@{*/
352 unsigned num_state_slots; /**< Number of state slots used */
353 nir_state_slot *state_slots; /**< State descriptors. */
354 /*@}*/
355
356 /**
357 * Constant expression assigned in the initializer of the variable
358 *
359 * This field should only be used temporarily by creators of NIR shaders
360 * and then lower_constant_initializers can be used to get rid of them.
361 * Most of the rest of NIR ignores this field or asserts that it's NULL.
362 */
363 nir_constant *constant_initializer;
364
365 /**
366 * For variables that are in an interface block or are an instance of an
367 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
368 *
369 * \sa ir_variable::location
370 */
371 const struct glsl_type *interface_type;
372
373 /**
374 * Description of per-member data for per-member struct variables
375 *
376 * This is used for variables which are actually an amalgamation of
377 * multiple entities such as a struct of built-in values or a struct of
378 * inputs each with their own layout specifier. This is only allowed on
379 * variables with a struct or array of array of struct type.
380 */
381 unsigned num_members;
382 struct nir_variable_data *members;
383 } nir_variable;
384
385 #define nir_foreach_variable(var, var_list) \
386 foreach_list_typed(nir_variable, var, node, var_list)
387
388 #define nir_foreach_variable_safe(var, var_list) \
389 foreach_list_typed_safe(nir_variable, var, node, var_list)
390
391 static inline bool
392 nir_variable_is_global(const nir_variable *var)
393 {
394 return var->data.mode != nir_var_local;
395 }
396
397 typedef struct nir_register {
398 struct exec_node node;
399
400 unsigned num_components; /** < number of vector components */
401 unsigned num_array_elems; /** < size of array (0 for no array) */
402
403 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
404 uint8_t bit_size;
405
406 /** generic register index. */
407 unsigned index;
408
409 /** only for debug purposes, can be NULL */
410 const char *name;
411
412 /** whether this register is local (per-function) or global (per-shader) */
413 bool is_global;
414
415 /**
416 * If this flag is set to true, then accessing channels >= num_components
417 * is well-defined, and simply spills over to the next array element. This
418 * is useful for backends that can do per-component accessing, in
419 * particular scalar backends. By setting this flag and making
420 * num_components equal to 1, structures can be packed tightly into
421 * registers and then registers can be accessed per-component to get to
422 * each structure member, even if it crosses vec4 boundaries.
423 */
424 bool is_packed;
425
426 /** set of nir_srcs where this register is used (read from) */
427 struct list_head uses;
428
429 /** set of nir_dests where this register is defined (written to) */
430 struct list_head defs;
431
432 /** set of nir_ifs where this register is used as a condition */
433 struct list_head if_uses;
434 } nir_register;
435
436 #define nir_foreach_register(reg, reg_list) \
437 foreach_list_typed(nir_register, reg, node, reg_list)
438 #define nir_foreach_register_safe(reg, reg_list) \
439 foreach_list_typed_safe(nir_register, reg, node, reg_list)
440
441 typedef enum {
442 nir_instr_type_alu,
443 nir_instr_type_deref,
444 nir_instr_type_call,
445 nir_instr_type_tex,
446 nir_instr_type_intrinsic,
447 nir_instr_type_load_const,
448 nir_instr_type_jump,
449 nir_instr_type_ssa_undef,
450 nir_instr_type_phi,
451 nir_instr_type_parallel_copy,
452 } nir_instr_type;
453
454 typedef struct nir_instr {
455 struct exec_node node;
456 nir_instr_type type;
457 struct nir_block *block;
458
459 /** generic instruction index. */
460 unsigned index;
461
462 /* A temporary for optimization and analysis passes to use for storing
463 * flags. For instance, DCE uses this to store the "dead/live" info.
464 */
465 uint8_t pass_flags;
466 } nir_instr;
467
468 static inline nir_instr *
469 nir_instr_next(nir_instr *instr)
470 {
471 struct exec_node *next = exec_node_get_next(&instr->node);
472 if (exec_node_is_tail_sentinel(next))
473 return NULL;
474 else
475 return exec_node_data(nir_instr, next, node);
476 }
477
478 static inline nir_instr *
479 nir_instr_prev(nir_instr *instr)
480 {
481 struct exec_node *prev = exec_node_get_prev(&instr->node);
482 if (exec_node_is_head_sentinel(prev))
483 return NULL;
484 else
485 return exec_node_data(nir_instr, prev, node);
486 }
487
488 static inline bool
489 nir_instr_is_first(const nir_instr *instr)
490 {
491 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
492 }
493
494 static inline bool
495 nir_instr_is_last(const nir_instr *instr)
496 {
497 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
498 }
499
500 typedef struct nir_ssa_def {
501 /** for debugging only, can be NULL */
502 const char* name;
503
504 /** generic SSA definition index. */
505 unsigned index;
506
507 /** Index into the live_in and live_out bitfields */
508 unsigned live_index;
509
510 /** Instruction which produces this SSA value. */
511 nir_instr *parent_instr;
512
513 /** set of nir_instrs where this register is used (read from) */
514 struct list_head uses;
515
516 /** set of nir_ifs where this register is used as a condition */
517 struct list_head if_uses;
518
519 uint8_t num_components;
520
521 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
522 uint8_t bit_size;
523 } nir_ssa_def;
524
525 struct nir_src;
526
527 typedef struct {
528 nir_register *reg;
529 struct nir_src *indirect; /** < NULL for no indirect offset */
530 unsigned base_offset;
531
532 /* TODO use-def chain goes here */
533 } nir_reg_src;
534
535 typedef struct {
536 nir_instr *parent_instr;
537 struct list_head def_link;
538
539 nir_register *reg;
540 struct nir_src *indirect; /** < NULL for no indirect offset */
541 unsigned base_offset;
542
543 /* TODO def-use chain goes here */
544 } nir_reg_dest;
545
546 struct nir_if;
547
548 typedef struct nir_src {
549 union {
550 /** Instruction that consumes this value as a source. */
551 nir_instr *parent_instr;
552 struct nir_if *parent_if;
553 };
554
555 struct list_head use_link;
556
557 union {
558 nir_reg_src reg;
559 nir_ssa_def *ssa;
560 };
561
562 bool is_ssa;
563 } nir_src;
564
565 static inline nir_src
566 nir_src_init(void)
567 {
568 nir_src src = { { NULL } };
569 return src;
570 }
571
572 #define NIR_SRC_INIT nir_src_init()
573
574 #define nir_foreach_use(src, reg_or_ssa_def) \
575 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
576
577 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
578 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
579
580 #define nir_foreach_if_use(src, reg_or_ssa_def) \
581 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
582
583 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
584 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
585
586 typedef struct {
587 union {
588 nir_reg_dest reg;
589 nir_ssa_def ssa;
590 };
591
592 bool is_ssa;
593 } nir_dest;
594
595 static inline nir_dest
596 nir_dest_init(void)
597 {
598 nir_dest dest = { { { NULL } } };
599 return dest;
600 }
601
602 #define NIR_DEST_INIT nir_dest_init()
603
604 #define nir_foreach_def(dest, reg) \
605 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
606
607 #define nir_foreach_def_safe(dest, reg) \
608 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
609
610 static inline nir_src
611 nir_src_for_ssa(nir_ssa_def *def)
612 {
613 nir_src src = NIR_SRC_INIT;
614
615 src.is_ssa = true;
616 src.ssa = def;
617
618 return src;
619 }
620
621 static inline nir_src
622 nir_src_for_reg(nir_register *reg)
623 {
624 nir_src src = NIR_SRC_INIT;
625
626 src.is_ssa = false;
627 src.reg.reg = reg;
628 src.reg.indirect = NULL;
629 src.reg.base_offset = 0;
630
631 return src;
632 }
633
634 static inline nir_dest
635 nir_dest_for_reg(nir_register *reg)
636 {
637 nir_dest dest = NIR_DEST_INIT;
638
639 dest.reg.reg = reg;
640
641 return dest;
642 }
643
644 static inline unsigned
645 nir_src_bit_size(nir_src src)
646 {
647 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
648 }
649
650 static inline unsigned
651 nir_src_num_components(nir_src src)
652 {
653 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
654 }
655
656 static inline unsigned
657 nir_dest_bit_size(nir_dest dest)
658 {
659 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
660 }
661
662 static inline unsigned
663 nir_dest_num_components(nir_dest dest)
664 {
665 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
666 }
667
668 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
669 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
670
671 typedef struct {
672 nir_src src;
673
674 /**
675 * \name input modifiers
676 */
677 /*@{*/
678 /**
679 * For inputs interpreted as floating point, flips the sign bit. For
680 * inputs interpreted as integers, performs the two's complement negation.
681 */
682 bool negate;
683
684 /**
685 * Clears the sign bit for floating point values, and computes the integer
686 * absolute value for integers. Note that the negate modifier acts after
687 * the absolute value modifier, therefore if both are set then all inputs
688 * will become negative.
689 */
690 bool abs;
691 /*@}*/
692
693 /**
694 * For each input component, says which component of the register it is
695 * chosen from. Note that which elements of the swizzle are used and which
696 * are ignored are based on the write mask for most opcodes - for example,
697 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
698 * a swizzle of {2, x, 1, 0} where x means "don't care."
699 */
700 uint8_t swizzle[4];
701 } nir_alu_src;
702
703 typedef struct {
704 nir_dest dest;
705
706 /**
707 * \name saturate output modifier
708 *
709 * Only valid for opcodes that output floating-point numbers. Clamps the
710 * output to between 0.0 and 1.0 inclusive.
711 */
712
713 bool saturate;
714
715 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
716 } nir_alu_dest;
717
718 typedef enum {
719 nir_type_invalid = 0, /* Not a valid type */
720 nir_type_float,
721 nir_type_int,
722 nir_type_uint,
723 nir_type_bool,
724 nir_type_bool32 = 32 | nir_type_bool,
725 nir_type_int8 = 8 | nir_type_int,
726 nir_type_int16 = 16 | nir_type_int,
727 nir_type_int32 = 32 | nir_type_int,
728 nir_type_int64 = 64 | nir_type_int,
729 nir_type_uint8 = 8 | nir_type_uint,
730 nir_type_uint16 = 16 | nir_type_uint,
731 nir_type_uint32 = 32 | nir_type_uint,
732 nir_type_uint64 = 64 | nir_type_uint,
733 nir_type_float16 = 16 | nir_type_float,
734 nir_type_float32 = 32 | nir_type_float,
735 nir_type_float64 = 64 | nir_type_float,
736 } nir_alu_type;
737
738 #define NIR_ALU_TYPE_SIZE_MASK 0xfffffff8
739 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x00000007
740
741 static inline unsigned
742 nir_alu_type_get_type_size(nir_alu_type type)
743 {
744 return type & NIR_ALU_TYPE_SIZE_MASK;
745 }
746
747 static inline unsigned
748 nir_alu_type_get_base_type(nir_alu_type type)
749 {
750 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
751 }
752
753 static inline nir_alu_type
754 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
755 {
756 switch (base_type) {
757 case GLSL_TYPE_BOOL:
758 return nir_type_bool32;
759 break;
760 case GLSL_TYPE_UINT:
761 return nir_type_uint32;
762 break;
763 case GLSL_TYPE_INT:
764 return nir_type_int32;
765 break;
766 case GLSL_TYPE_UINT16:
767 return nir_type_uint16;
768 break;
769 case GLSL_TYPE_INT16:
770 return nir_type_int16;
771 break;
772 case GLSL_TYPE_UINT8:
773 return nir_type_uint8;
774 case GLSL_TYPE_INT8:
775 return nir_type_int8;
776 case GLSL_TYPE_UINT64:
777 return nir_type_uint64;
778 break;
779 case GLSL_TYPE_INT64:
780 return nir_type_int64;
781 break;
782 case GLSL_TYPE_FLOAT:
783 return nir_type_float32;
784 break;
785 case GLSL_TYPE_FLOAT16:
786 return nir_type_float16;
787 break;
788 case GLSL_TYPE_DOUBLE:
789 return nir_type_float64;
790 break;
791 default:
792 unreachable("unknown type");
793 }
794 }
795
796 static inline nir_alu_type
797 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
798 {
799 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
800 }
801
802 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
803 nir_rounding_mode rnd);
804
805 typedef enum {
806 NIR_OP_IS_COMMUTATIVE = (1 << 0),
807 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
808 } nir_op_algebraic_property;
809
810 typedef struct {
811 const char *name;
812
813 unsigned num_inputs;
814
815 /**
816 * The number of components in the output
817 *
818 * If non-zero, this is the size of the output and input sizes are
819 * explicitly given; swizzle and writemask are still in effect, but if
820 * the output component is masked out, then the input component may
821 * still be in use.
822 *
823 * If zero, the opcode acts in the standard, per-component manner; the
824 * operation is performed on each component (except the ones that are
825 * masked out) with the input being taken from the input swizzle for
826 * that component.
827 *
828 * The size of some of the inputs may be given (i.e. non-zero) even
829 * though output_size is zero; in that case, the inputs with a zero
830 * size act per-component, while the inputs with non-zero size don't.
831 */
832 unsigned output_size;
833
834 /**
835 * The type of vector that the instruction outputs. Note that the
836 * staurate modifier is only allowed on outputs with the float type.
837 */
838
839 nir_alu_type output_type;
840
841 /**
842 * The number of components in each input
843 */
844 unsigned input_sizes[4];
845
846 /**
847 * The type of vector that each input takes. Note that negate and
848 * absolute value are only allowed on inputs with int or float type and
849 * behave differently on the two.
850 */
851 nir_alu_type input_types[4];
852
853 nir_op_algebraic_property algebraic_properties;
854 } nir_op_info;
855
856 extern const nir_op_info nir_op_infos[nir_num_opcodes];
857
858 typedef struct nir_alu_instr {
859 nir_instr instr;
860 nir_op op;
861
862 /** Indicates that this ALU instruction generates an exact value
863 *
864 * This is kind of a mixture of GLSL "precise" and "invariant" and not
865 * really equivalent to either. This indicates that the value generated by
866 * this operation is high-precision and any code transformations that touch
867 * it must ensure that the resulting value is bit-for-bit identical to the
868 * original.
869 */
870 bool exact;
871
872 nir_alu_dest dest;
873 nir_alu_src src[];
874 } nir_alu_instr;
875
876 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
877 nir_alu_instr *instr);
878 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
879 nir_alu_instr *instr);
880
881 /* is this source channel used? */
882 static inline bool
883 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
884 unsigned channel)
885 {
886 if (nir_op_infos[instr->op].input_sizes[src] > 0)
887 return channel < nir_op_infos[instr->op].input_sizes[src];
888
889 return (instr->dest.write_mask >> channel) & 1;
890 }
891
892 /*
893 * For instructions whose destinations are SSA, get the number of channels
894 * used for a source
895 */
896 static inline unsigned
897 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
898 {
899 assert(instr->dest.dest.is_ssa);
900
901 if (nir_op_infos[instr->op].input_sizes[src] > 0)
902 return nir_op_infos[instr->op].input_sizes[src];
903
904 return instr->dest.dest.ssa.num_components;
905 }
906
907 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
908 unsigned src1, unsigned src2);
909
910 typedef enum {
911 nir_deref_type_var,
912 nir_deref_type_array,
913 nir_deref_type_array_wildcard,
914 nir_deref_type_struct,
915 nir_deref_type_cast,
916 } nir_deref_type;
917
918 typedef struct {
919 nir_instr instr;
920
921 /** The type of this deref instruction */
922 nir_deref_type deref_type;
923
924 /** The mode of the underlying variable */
925 nir_variable_mode mode;
926
927 /** The dereferenced type of the resulting pointer value */
928 const struct glsl_type *type;
929
930 union {
931 /** Variable being dereferenced if deref_type is a deref_var */
932 nir_variable *var;
933
934 /** Parent deref if deref_type is not deref_var */
935 nir_src parent;
936 };
937
938 /** Additional deref parameters */
939 union {
940 struct {
941 nir_src index;
942 } arr;
943
944 struct {
945 unsigned index;
946 } strct;
947 };
948
949 /** Destination to store the resulting "pointer" */
950 nir_dest dest;
951 } nir_deref_instr;
952
953 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
954 type, nir_instr_type_deref)
955
956 static inline nir_deref_instr *
957 nir_src_as_deref(nir_src src)
958 {
959 if (!src.is_ssa)
960 return NULL;
961
962 if (src.ssa->parent_instr->type != nir_instr_type_deref)
963 return NULL;
964
965 return nir_instr_as_deref(src.ssa->parent_instr);
966 }
967
968 static inline nir_deref_instr *
969 nir_deref_instr_parent(const nir_deref_instr *instr)
970 {
971 if (instr->deref_type == nir_deref_type_var)
972 return NULL;
973 else
974 return nir_src_as_deref(instr->parent);
975 }
976
977 static inline nir_variable *
978 nir_deref_instr_get_variable(const nir_deref_instr *instr)
979 {
980 while (instr->deref_type != nir_deref_type_var) {
981 if (instr->deref_type == nir_deref_type_cast)
982 return NULL;
983
984 instr = nir_deref_instr_parent(instr);
985 }
986
987 return instr->var;
988 }
989
990 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
991
992 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
993
994 typedef struct {
995 nir_instr instr;
996
997 struct nir_function *callee;
998
999 unsigned num_params;
1000 nir_src params[];
1001 } nir_call_instr;
1002
1003 #include "nir_intrinsics.h"
1004
1005 #define NIR_INTRINSIC_MAX_CONST_INDEX 3
1006
1007 /** Represents an intrinsic
1008 *
1009 * An intrinsic is an instruction type for handling things that are
1010 * more-or-less regular operations but don't just consume and produce SSA
1011 * values like ALU operations do. Intrinsics are not for things that have
1012 * special semantic meaning such as phi nodes and parallel copies.
1013 * Examples of intrinsics include variable load/store operations, system
1014 * value loads, and the like. Even though texturing more-or-less falls
1015 * under this category, texturing is its own instruction type because
1016 * trying to represent texturing with intrinsics would lead to a
1017 * combinatorial explosion of intrinsic opcodes.
1018 *
1019 * By having a single instruction type for handling a lot of different
1020 * cases, optimization passes can look for intrinsics and, for the most
1021 * part, completely ignore them. Each intrinsic type also has a few
1022 * possible flags that govern whether or not they can be reordered or
1023 * eliminated. That way passes like dead code elimination can still work
1024 * on intrisics without understanding the meaning of each.
1025 *
1026 * Each intrinsic has some number of constant indices, some number of
1027 * variables, and some number of sources. What these sources, variables,
1028 * and indices mean depends on the intrinsic and is documented with the
1029 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1030 * instructions are the only types of instruction that can operate on
1031 * variables.
1032 */
1033 typedef struct {
1034 nir_instr instr;
1035
1036 nir_intrinsic_op intrinsic;
1037
1038 nir_dest dest;
1039
1040 /** number of components if this is a vectorized intrinsic
1041 *
1042 * Similarly to ALU operations, some intrinsics are vectorized.
1043 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1044 * For vectorized intrinsics, the num_components field specifies the
1045 * number of destination components and the number of source components
1046 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1047 */
1048 uint8_t num_components;
1049
1050 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1051
1052 nir_src src[];
1053 } nir_intrinsic_instr;
1054
1055 static inline nir_variable *
1056 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1057 {
1058 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1059 }
1060
1061 /**
1062 * \name NIR intrinsics semantic flags
1063 *
1064 * information about what the compiler can do with the intrinsics.
1065 *
1066 * \sa nir_intrinsic_info::flags
1067 */
1068 typedef enum {
1069 /**
1070 * whether the intrinsic can be safely eliminated if none of its output
1071 * value is not being used.
1072 */
1073 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1074
1075 /**
1076 * Whether the intrinsic can be reordered with respect to any other
1077 * intrinsic, i.e. whether the only reordering dependencies of the
1078 * intrinsic are due to the register reads/writes.
1079 */
1080 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1081 } nir_intrinsic_semantic_flag;
1082
1083 /**
1084 * \name NIR intrinsics const-index flag
1085 *
1086 * Indicates the usage of a const_index slot.
1087 *
1088 * \sa nir_intrinsic_info::index_map
1089 */
1090 typedef enum {
1091 /**
1092 * Generally instructions that take a offset src argument, can encode
1093 * a constant 'base' value which is added to the offset.
1094 */
1095 NIR_INTRINSIC_BASE = 1,
1096
1097 /**
1098 * For store instructions, a writemask for the store.
1099 */
1100 NIR_INTRINSIC_WRMASK = 2,
1101
1102 /**
1103 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1104 */
1105 NIR_INTRINSIC_STREAM_ID = 3,
1106
1107 /**
1108 * The clip-plane id for load_user_clip_plane intrinsic.
1109 */
1110 NIR_INTRINSIC_UCP_ID = 4,
1111
1112 /**
1113 * The amount of data, starting from BASE, that this instruction may
1114 * access. This is used to provide bounds if the offset is not constant.
1115 */
1116 NIR_INTRINSIC_RANGE = 5,
1117
1118 /**
1119 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1120 */
1121 NIR_INTRINSIC_DESC_SET = 6,
1122
1123 /**
1124 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1125 */
1126 NIR_INTRINSIC_BINDING = 7,
1127
1128 /**
1129 * Component offset.
1130 */
1131 NIR_INTRINSIC_COMPONENT = 8,
1132
1133 /**
1134 * Interpolation mode (only meaningful for FS inputs).
1135 */
1136 NIR_INTRINSIC_INTERP_MODE = 9,
1137
1138 /**
1139 * A binary nir_op to use when performing a reduction or scan operation
1140 */
1141 NIR_INTRINSIC_REDUCTION_OP = 10,
1142
1143 /**
1144 * Cluster size for reduction operations
1145 */
1146 NIR_INTRINSIC_CLUSTER_SIZE = 11,
1147
1148 /**
1149 * Parameter index for a load_param intrinsic
1150 */
1151 NIR_INTRINSIC_PARAM_IDX = 12,
1152
1153 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1154
1155 } nir_intrinsic_index_flag;
1156
1157 #define NIR_INTRINSIC_MAX_INPUTS 5
1158
1159 typedef struct {
1160 const char *name;
1161
1162 unsigned num_srcs; /** < number of register/SSA inputs */
1163
1164 /** number of components of each input register
1165 *
1166 * If this value is 0, the number of components is given by the
1167 * num_components field of nir_intrinsic_instr.
1168 */
1169 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
1170
1171 bool has_dest;
1172
1173 /** number of components of the output register
1174 *
1175 * If this value is 0, the number of components is given by the
1176 * num_components field of nir_intrinsic_instr.
1177 */
1178 unsigned dest_components;
1179
1180 /** the number of constant indices used by the intrinsic */
1181 unsigned num_indices;
1182
1183 /** indicates the usage of intr->const_index[n] */
1184 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1185
1186 /** semantic flags for calls to this intrinsic */
1187 nir_intrinsic_semantic_flag flags;
1188 } nir_intrinsic_info;
1189
1190 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1191
1192 static inline unsigned
1193 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1194 {
1195 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1196 assert(srcn < info->num_srcs);
1197 if (info->src_components[srcn])
1198 return info->src_components[srcn];
1199 else
1200 return intr->num_components;
1201 }
1202
1203 static inline unsigned
1204 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1205 {
1206 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1207 if (!info->has_dest)
1208 return 0;
1209 else if (info->dest_components)
1210 return info->dest_components;
1211 else
1212 return intr->num_components;
1213 }
1214
1215 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1216 static inline type \
1217 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1218 { \
1219 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1220 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1221 return instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1222 } \
1223 static inline void \
1224 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1225 { \
1226 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1227 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1228 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1229 }
1230
1231 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1232 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1233 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1234 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1235 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1236 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1237 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1238 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1239 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1240 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1241 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1242 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1243
1244 /**
1245 * \group texture information
1246 *
1247 * This gives semantic information about textures which is useful to the
1248 * frontend, the backend, and lowering passes, but not the optimizer.
1249 */
1250
1251 typedef enum {
1252 nir_tex_src_coord,
1253 nir_tex_src_projector,
1254 nir_tex_src_comparator, /* shadow comparator */
1255 nir_tex_src_offset,
1256 nir_tex_src_bias,
1257 nir_tex_src_lod,
1258 nir_tex_src_ms_index, /* MSAA sample index */
1259 nir_tex_src_ms_mcs, /* MSAA compression value */
1260 nir_tex_src_ddx,
1261 nir_tex_src_ddy,
1262 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1263 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1264 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1265 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1266 nir_tex_src_plane, /* < selects plane for planar textures */
1267 nir_num_tex_src_types
1268 } nir_tex_src_type;
1269
1270 typedef struct {
1271 nir_src src;
1272 nir_tex_src_type src_type;
1273 } nir_tex_src;
1274
1275 typedef enum {
1276 nir_texop_tex, /**< Regular texture look-up */
1277 nir_texop_txb, /**< Texture look-up with LOD bias */
1278 nir_texop_txl, /**< Texture look-up with explicit LOD */
1279 nir_texop_txd, /**< Texture look-up with partial derivatives */
1280 nir_texop_txf, /**< Texel fetch with explicit LOD */
1281 nir_texop_txf_ms, /**< Multisample texture fetch */
1282 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1283 nir_texop_txs, /**< Texture size */
1284 nir_texop_lod, /**< Texture lod query */
1285 nir_texop_tg4, /**< Texture gather */
1286 nir_texop_query_levels, /**< Texture levels query */
1287 nir_texop_texture_samples, /**< Texture samples query */
1288 nir_texop_samples_identical, /**< Query whether all samples are definitely
1289 * identical.
1290 */
1291 } nir_texop;
1292
1293 typedef struct {
1294 nir_instr instr;
1295
1296 enum glsl_sampler_dim sampler_dim;
1297 nir_alu_type dest_type;
1298
1299 nir_texop op;
1300 nir_dest dest;
1301 nir_tex_src *src;
1302 unsigned num_srcs, coord_components;
1303 bool is_array, is_shadow;
1304
1305 /**
1306 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1307 * components or the new-style shadow that outputs 1 component.
1308 */
1309 bool is_new_style_shadow;
1310
1311 /* gather component selector */
1312 unsigned component : 2;
1313
1314 /** The texture index
1315 *
1316 * If this texture instruction has a nir_tex_src_texture_offset source,
1317 * then the texture index is given by texture_index + texture_offset.
1318 */
1319 unsigned texture_index;
1320
1321 /** The size of the texture array or 0 if it's not an array */
1322 unsigned texture_array_size;
1323
1324 /** The sampler index
1325 *
1326 * The following operations do not require a sampler and, as such, this
1327 * field should be ignored:
1328 * - nir_texop_txf
1329 * - nir_texop_txf_ms
1330 * - nir_texop_txs
1331 * - nir_texop_lod
1332 * - nir_texop_query_levels
1333 * - nir_texop_texture_samples
1334 * - nir_texop_samples_identical
1335 *
1336 * If this texture instruction has a nir_tex_src_sampler_offset source,
1337 * then the sampler index is given by sampler_index + sampler_offset.
1338 */
1339 unsigned sampler_index;
1340 } nir_tex_instr;
1341
1342 static inline unsigned
1343 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1344 {
1345 switch (instr->op) {
1346 case nir_texop_txs: {
1347 unsigned ret;
1348 switch (instr->sampler_dim) {
1349 case GLSL_SAMPLER_DIM_1D:
1350 case GLSL_SAMPLER_DIM_BUF:
1351 ret = 1;
1352 break;
1353 case GLSL_SAMPLER_DIM_2D:
1354 case GLSL_SAMPLER_DIM_CUBE:
1355 case GLSL_SAMPLER_DIM_MS:
1356 case GLSL_SAMPLER_DIM_RECT:
1357 case GLSL_SAMPLER_DIM_EXTERNAL:
1358 case GLSL_SAMPLER_DIM_SUBPASS:
1359 ret = 2;
1360 break;
1361 case GLSL_SAMPLER_DIM_3D:
1362 ret = 3;
1363 break;
1364 default:
1365 unreachable("not reached");
1366 }
1367 if (instr->is_array)
1368 ret++;
1369 return ret;
1370 }
1371
1372 case nir_texop_lod:
1373 return 2;
1374
1375 case nir_texop_texture_samples:
1376 case nir_texop_query_levels:
1377 case nir_texop_samples_identical:
1378 return 1;
1379
1380 default:
1381 if (instr->is_shadow && instr->is_new_style_shadow)
1382 return 1;
1383
1384 return 4;
1385 }
1386 }
1387
1388 /* Returns true if this texture operation queries something about the texture
1389 * rather than actually sampling it.
1390 */
1391 static inline bool
1392 nir_tex_instr_is_query(const nir_tex_instr *instr)
1393 {
1394 switch (instr->op) {
1395 case nir_texop_txs:
1396 case nir_texop_lod:
1397 case nir_texop_texture_samples:
1398 case nir_texop_query_levels:
1399 case nir_texop_txf_ms_mcs:
1400 return true;
1401 case nir_texop_tex:
1402 case nir_texop_txb:
1403 case nir_texop_txl:
1404 case nir_texop_txd:
1405 case nir_texop_txf:
1406 case nir_texop_txf_ms:
1407 case nir_texop_tg4:
1408 return false;
1409 default:
1410 unreachable("Invalid texture opcode");
1411 }
1412 }
1413
1414 static inline bool
1415 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1416 {
1417 switch (instr->op) {
1418 case nir_op_flt:
1419 case nir_op_fge:
1420 case nir_op_feq:
1421 case nir_op_fne:
1422 case nir_op_ilt:
1423 case nir_op_ult:
1424 case nir_op_ige:
1425 case nir_op_uge:
1426 case nir_op_ieq:
1427 case nir_op_ine:
1428 case nir_op_i2b:
1429 case nir_op_f2b:
1430 case nir_op_inot:
1431 case nir_op_fnot:
1432 return true;
1433 default:
1434 return false;
1435 }
1436 }
1437
1438 static inline nir_alu_type
1439 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1440 {
1441 switch (instr->src[src].src_type) {
1442 case nir_tex_src_coord:
1443 switch (instr->op) {
1444 case nir_texop_txf:
1445 case nir_texop_txf_ms:
1446 case nir_texop_txf_ms_mcs:
1447 case nir_texop_samples_identical:
1448 return nir_type_int;
1449
1450 default:
1451 return nir_type_float;
1452 }
1453
1454 case nir_tex_src_lod:
1455 switch (instr->op) {
1456 case nir_texop_txs:
1457 case nir_texop_txf:
1458 return nir_type_int;
1459
1460 default:
1461 return nir_type_float;
1462 }
1463
1464 case nir_tex_src_projector:
1465 case nir_tex_src_comparator:
1466 case nir_tex_src_bias:
1467 case nir_tex_src_ddx:
1468 case nir_tex_src_ddy:
1469 return nir_type_float;
1470
1471 case nir_tex_src_offset:
1472 case nir_tex_src_ms_index:
1473 case nir_tex_src_texture_offset:
1474 case nir_tex_src_sampler_offset:
1475 return nir_type_int;
1476
1477 default:
1478 unreachable("Invalid texture source type");
1479 }
1480 }
1481
1482 static inline unsigned
1483 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1484 {
1485 if (instr->src[src].src_type == nir_tex_src_coord)
1486 return instr->coord_components;
1487
1488 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1489 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1490 return 4;
1491
1492 if (instr->src[src].src_type == nir_tex_src_ddx ||
1493 instr->src[src].src_type == nir_tex_src_ddy) {
1494 if (instr->is_array)
1495 return instr->coord_components - 1;
1496 else
1497 return instr->coord_components;
1498 }
1499
1500 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1501 * the offset, since a cube maps to a single face.
1502 */
1503 if (instr->src[src].src_type == nir_tex_src_offset) {
1504 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1505 return 2;
1506 else if (instr->is_array)
1507 return instr->coord_components - 1;
1508 else
1509 return instr->coord_components;
1510 }
1511
1512 return 1;
1513 }
1514
1515 static inline int
1516 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1517 {
1518 for (unsigned i = 0; i < instr->num_srcs; i++)
1519 if (instr->src[i].src_type == type)
1520 return (int) i;
1521
1522 return -1;
1523 }
1524
1525 void nir_tex_instr_add_src(nir_tex_instr *tex,
1526 nir_tex_src_type src_type,
1527 nir_src src);
1528
1529 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1530
1531 typedef struct {
1532 nir_instr instr;
1533
1534 nir_const_value value;
1535
1536 nir_ssa_def def;
1537 } nir_load_const_instr;
1538
1539 typedef enum {
1540 nir_jump_return,
1541 nir_jump_break,
1542 nir_jump_continue,
1543 } nir_jump_type;
1544
1545 typedef struct {
1546 nir_instr instr;
1547 nir_jump_type type;
1548 } nir_jump_instr;
1549
1550 /* creates a new SSA variable in an undefined state */
1551
1552 typedef struct {
1553 nir_instr instr;
1554 nir_ssa_def def;
1555 } nir_ssa_undef_instr;
1556
1557 typedef struct {
1558 struct exec_node node;
1559
1560 /* The predecessor block corresponding to this source */
1561 struct nir_block *pred;
1562
1563 nir_src src;
1564 } nir_phi_src;
1565
1566 #define nir_foreach_phi_src(phi_src, phi) \
1567 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1568 #define nir_foreach_phi_src_safe(phi_src, phi) \
1569 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1570
1571 typedef struct {
1572 nir_instr instr;
1573
1574 struct exec_list srcs; /** < list of nir_phi_src */
1575
1576 nir_dest dest;
1577 } nir_phi_instr;
1578
1579 typedef struct {
1580 struct exec_node node;
1581 nir_src src;
1582 nir_dest dest;
1583 } nir_parallel_copy_entry;
1584
1585 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1586 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1587
1588 typedef struct {
1589 nir_instr instr;
1590
1591 /* A list of nir_parallel_copy_entrys. The sources of all of the
1592 * entries are copied to the corresponding destinations "in parallel".
1593 * In other words, if we have two entries: a -> b and b -> a, the values
1594 * get swapped.
1595 */
1596 struct exec_list entries;
1597 } nir_parallel_copy_instr;
1598
1599 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1600 type, nir_instr_type_alu)
1601 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1602 type, nir_instr_type_call)
1603 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1604 type, nir_instr_type_jump)
1605 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1606 type, nir_instr_type_tex)
1607 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1608 type, nir_instr_type_intrinsic)
1609 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1610 type, nir_instr_type_load_const)
1611 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1612 type, nir_instr_type_ssa_undef)
1613 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1614 type, nir_instr_type_phi)
1615 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1616 nir_parallel_copy_instr, instr,
1617 type, nir_instr_type_parallel_copy)
1618
1619 /*
1620 * Control flow
1621 *
1622 * Control flow consists of a tree of control flow nodes, which include
1623 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1624 * instructions that always run start-to-finish. Each basic block also keeps
1625 * track of its successors (blocks which may run immediately after the current
1626 * block) and predecessors (blocks which could have run immediately before the
1627 * current block). Each function also has a start block and an end block which
1628 * all return statements point to (which is always empty). Together, all the
1629 * blocks with their predecessors and successors make up the control flow
1630 * graph (CFG) of the function. There are helpers that modify the tree of
1631 * control flow nodes while modifying the CFG appropriately; these should be
1632 * used instead of modifying the tree directly.
1633 */
1634
1635 typedef enum {
1636 nir_cf_node_block,
1637 nir_cf_node_if,
1638 nir_cf_node_loop,
1639 nir_cf_node_function
1640 } nir_cf_node_type;
1641
1642 typedef struct nir_cf_node {
1643 struct exec_node node;
1644 nir_cf_node_type type;
1645 struct nir_cf_node *parent;
1646 } nir_cf_node;
1647
1648 typedef struct nir_block {
1649 nir_cf_node cf_node;
1650
1651 struct exec_list instr_list; /** < list of nir_instr */
1652
1653 /** generic block index; generated by nir_index_blocks */
1654 unsigned index;
1655
1656 /*
1657 * Each block can only have up to 2 successors, so we put them in a simple
1658 * array - no need for anything more complicated.
1659 */
1660 struct nir_block *successors[2];
1661
1662 /* Set of nir_block predecessors in the CFG */
1663 struct set *predecessors;
1664
1665 /*
1666 * this node's immediate dominator in the dominance tree - set to NULL for
1667 * the start block.
1668 */
1669 struct nir_block *imm_dom;
1670
1671 /* This node's children in the dominance tree */
1672 unsigned num_dom_children;
1673 struct nir_block **dom_children;
1674
1675 /* Set of nir_blocks on the dominance frontier of this block */
1676 struct set *dom_frontier;
1677
1678 /*
1679 * These two indices have the property that dom_{pre,post}_index for each
1680 * child of this block in the dominance tree will always be between
1681 * dom_pre_index and dom_post_index for this block, which makes testing if
1682 * a given block is dominated by another block an O(1) operation.
1683 */
1684 unsigned dom_pre_index, dom_post_index;
1685
1686 /* live in and out for this block; used for liveness analysis */
1687 BITSET_WORD *live_in;
1688 BITSET_WORD *live_out;
1689 } nir_block;
1690
1691 static inline nir_instr *
1692 nir_block_first_instr(nir_block *block)
1693 {
1694 struct exec_node *head = exec_list_get_head(&block->instr_list);
1695 return exec_node_data(nir_instr, head, node);
1696 }
1697
1698 static inline nir_instr *
1699 nir_block_last_instr(nir_block *block)
1700 {
1701 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1702 return exec_node_data(nir_instr, tail, node);
1703 }
1704
1705 #define nir_foreach_instr(instr, block) \
1706 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1707 #define nir_foreach_instr_reverse(instr, block) \
1708 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1709 #define nir_foreach_instr_safe(instr, block) \
1710 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1711 #define nir_foreach_instr_reverse_safe(instr, block) \
1712 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1713
1714 typedef struct nir_if {
1715 nir_cf_node cf_node;
1716 nir_src condition;
1717
1718 struct exec_list then_list; /** < list of nir_cf_node */
1719 struct exec_list else_list; /** < list of nir_cf_node */
1720 } nir_if;
1721
1722 typedef struct {
1723 nir_if *nif;
1724
1725 nir_instr *conditional_instr;
1726
1727 nir_block *break_block;
1728 nir_block *continue_from_block;
1729
1730 bool continue_from_then;
1731
1732 struct list_head loop_terminator_link;
1733 } nir_loop_terminator;
1734
1735 typedef struct {
1736 /* Number of instructions in the loop */
1737 unsigned num_instructions;
1738
1739 /* How many times the loop is run (if known) */
1740 unsigned trip_count;
1741 bool is_trip_count_known;
1742
1743 /* Unroll the loop regardless of its size */
1744 bool force_unroll;
1745
1746 nir_loop_terminator *limiting_terminator;
1747
1748 /* A list of loop_terminators terminating this loop. */
1749 struct list_head loop_terminator_list;
1750 } nir_loop_info;
1751
1752 typedef struct {
1753 nir_cf_node cf_node;
1754
1755 struct exec_list body; /** < list of nir_cf_node */
1756
1757 nir_loop_info *info;
1758 } nir_loop;
1759
1760 /**
1761 * Various bits of metadata that can may be created or required by
1762 * optimization and analysis passes
1763 */
1764 typedef enum {
1765 nir_metadata_none = 0x0,
1766 nir_metadata_block_index = 0x1,
1767 nir_metadata_dominance = 0x2,
1768 nir_metadata_live_ssa_defs = 0x4,
1769 nir_metadata_not_properly_reset = 0x8,
1770 nir_metadata_loop_analysis = 0x10,
1771 } nir_metadata;
1772
1773 typedef struct {
1774 nir_cf_node cf_node;
1775
1776 /** pointer to the function of which this is an implementation */
1777 struct nir_function *function;
1778
1779 struct exec_list body; /** < list of nir_cf_node */
1780
1781 nir_block *end_block;
1782
1783 /** list for all local variables in the function */
1784 struct exec_list locals;
1785
1786 /** list of local registers in the function */
1787 struct exec_list registers;
1788
1789 /** next available local register index */
1790 unsigned reg_alloc;
1791
1792 /** next available SSA value index */
1793 unsigned ssa_alloc;
1794
1795 /* total number of basic blocks, only valid when block_index_dirty = false */
1796 unsigned num_blocks;
1797
1798 nir_metadata valid_metadata;
1799 } nir_function_impl;
1800
1801 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1802 nir_start_block(nir_function_impl *impl)
1803 {
1804 return (nir_block *) impl->body.head_sentinel.next;
1805 }
1806
1807 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1808 nir_impl_last_block(nir_function_impl *impl)
1809 {
1810 return (nir_block *) impl->body.tail_sentinel.prev;
1811 }
1812
1813 static inline nir_cf_node *
1814 nir_cf_node_next(nir_cf_node *node)
1815 {
1816 struct exec_node *next = exec_node_get_next(&node->node);
1817 if (exec_node_is_tail_sentinel(next))
1818 return NULL;
1819 else
1820 return exec_node_data(nir_cf_node, next, node);
1821 }
1822
1823 static inline nir_cf_node *
1824 nir_cf_node_prev(nir_cf_node *node)
1825 {
1826 struct exec_node *prev = exec_node_get_prev(&node->node);
1827 if (exec_node_is_head_sentinel(prev))
1828 return NULL;
1829 else
1830 return exec_node_data(nir_cf_node, prev, node);
1831 }
1832
1833 static inline bool
1834 nir_cf_node_is_first(const nir_cf_node *node)
1835 {
1836 return exec_node_is_head_sentinel(node->node.prev);
1837 }
1838
1839 static inline bool
1840 nir_cf_node_is_last(const nir_cf_node *node)
1841 {
1842 return exec_node_is_tail_sentinel(node->node.next);
1843 }
1844
1845 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
1846 type, nir_cf_node_block)
1847 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
1848 type, nir_cf_node_if)
1849 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
1850 type, nir_cf_node_loop)
1851 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
1852 nir_function_impl, cf_node, type, nir_cf_node_function)
1853
1854 static inline nir_block *
1855 nir_if_first_then_block(nir_if *if_stmt)
1856 {
1857 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1858 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1859 }
1860
1861 static inline nir_block *
1862 nir_if_last_then_block(nir_if *if_stmt)
1863 {
1864 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1865 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1866 }
1867
1868 static inline nir_block *
1869 nir_if_first_else_block(nir_if *if_stmt)
1870 {
1871 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1872 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1873 }
1874
1875 static inline nir_block *
1876 nir_if_last_else_block(nir_if *if_stmt)
1877 {
1878 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1879 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1880 }
1881
1882 static inline nir_block *
1883 nir_loop_first_block(nir_loop *loop)
1884 {
1885 struct exec_node *head = exec_list_get_head(&loop->body);
1886 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1887 }
1888
1889 static inline nir_block *
1890 nir_loop_last_block(nir_loop *loop)
1891 {
1892 struct exec_node *tail = exec_list_get_tail(&loop->body);
1893 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1894 }
1895
1896 typedef struct {
1897 uint8_t num_components;
1898 uint8_t bit_size;
1899 } nir_parameter;
1900
1901 typedef struct nir_function {
1902 struct exec_node node;
1903
1904 const char *name;
1905 struct nir_shader *shader;
1906
1907 unsigned num_params;
1908 nir_parameter *params;
1909
1910 /** The implementation of this function.
1911 *
1912 * If the function is only declared and not implemented, this is NULL.
1913 */
1914 nir_function_impl *impl;
1915 } nir_function;
1916
1917 typedef struct nir_shader_compiler_options {
1918 bool lower_fdiv;
1919 bool lower_ffma;
1920 bool fuse_ffma;
1921 bool lower_flrp32;
1922 /** Lowers flrp when it does not support doubles */
1923 bool lower_flrp64;
1924 bool lower_fpow;
1925 bool lower_fsat;
1926 bool lower_fsqrt;
1927 bool lower_fmod32;
1928 bool lower_fmod64;
1929 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
1930 bool lower_bitfield_extract;
1931 /** Lowers ibitfield_extract/ubitfield_extract to bfm, compares, shifts. */
1932 bool lower_bitfield_extract_to_shifts;
1933 /** Lowers bitfield_insert to bfi/bfm */
1934 bool lower_bitfield_insert;
1935 /** Lowers bitfield_insert to bfm, compares, and shifts. */
1936 bool lower_bitfield_insert_to_shifts;
1937 /** Lowers bitfield_reverse to shifts. */
1938 bool lower_bitfield_reverse;
1939 /** Lowers bit_count to shifts. */
1940 bool lower_bit_count;
1941 /** Lowers bfm to shifts and subtracts. */
1942 bool lower_bfm;
1943 /** Lowers ifind_msb to compare and ufind_msb */
1944 bool lower_ifind_msb;
1945 /** Lowers find_lsb to ufind_msb and logic ops */
1946 bool lower_find_lsb;
1947 bool lower_uadd_carry;
1948 bool lower_usub_borrow;
1949 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
1950 bool lower_mul_high;
1951 /** lowers fneg and ineg to fsub and isub. */
1952 bool lower_negate;
1953 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1954 bool lower_sub;
1955
1956 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1957 bool lower_scmp;
1958
1959 /** enables rules to lower idiv by power-of-two: */
1960 bool lower_idiv;
1961
1962 /* lower b2f to iand */
1963 bool lower_b2f;
1964
1965 /* Does the native fdot instruction replicate its result for four
1966 * components? If so, then opt_algebraic_late will turn all fdotN
1967 * instructions into fdot_replicatedN instructions.
1968 */
1969 bool fdot_replicates;
1970
1971 /** lowers ffract to fsub+ffloor: */
1972 bool lower_ffract;
1973
1974 bool lower_ldexp;
1975
1976 bool lower_pack_half_2x16;
1977 bool lower_pack_unorm_2x16;
1978 bool lower_pack_snorm_2x16;
1979 bool lower_pack_unorm_4x8;
1980 bool lower_pack_snorm_4x8;
1981 bool lower_unpack_half_2x16;
1982 bool lower_unpack_unorm_2x16;
1983 bool lower_unpack_snorm_2x16;
1984 bool lower_unpack_unorm_4x8;
1985 bool lower_unpack_snorm_4x8;
1986
1987 bool lower_extract_byte;
1988 bool lower_extract_word;
1989
1990 bool lower_all_io_to_temps;
1991
1992 /**
1993 * Does the driver support real 32-bit integers? (Otherwise, integers
1994 * are simulated by floats.)
1995 */
1996 bool native_integers;
1997
1998 /* Indicates that the driver only has zero-based vertex id */
1999 bool vertex_id_zero_based;
2000
2001 /**
2002 * If enabled, gl_BaseVertex will be lowered as:
2003 * is_indexed_draw (~0/0) & firstvertex
2004 */
2005 bool lower_base_vertex;
2006
2007 bool lower_cs_local_index_from_id;
2008
2009 bool lower_device_index_to_zero;
2010
2011 /**
2012 * Should nir_lower_io() create load_interpolated_input intrinsics?
2013 *
2014 * If not, it generates regular load_input intrinsics and interpolation
2015 * information must be inferred from the list of input nir_variables.
2016 */
2017 bool use_interpolated_input_intrinsics;
2018
2019 /**
2020 * Do vertex shader double inputs use two locations? The Vulkan spec
2021 * requires two locations to be used, OpenGL allows a single location.
2022 */
2023 bool vs_inputs_dual_locations;
2024
2025 unsigned max_unroll_iterations;
2026 } nir_shader_compiler_options;
2027
2028 typedef struct nir_shader {
2029 /** list of uniforms (nir_variable) */
2030 struct exec_list uniforms;
2031
2032 /** list of inputs (nir_variable) */
2033 struct exec_list inputs;
2034
2035 /** list of outputs (nir_variable) */
2036 struct exec_list outputs;
2037
2038 /** list of shared compute variables (nir_variable) */
2039 struct exec_list shared;
2040
2041 /** Set of driver-specific options for the shader.
2042 *
2043 * The memory for the options is expected to be kept in a single static
2044 * copy by the driver.
2045 */
2046 const struct nir_shader_compiler_options *options;
2047
2048 /** Various bits of compile-time information about a given shader */
2049 struct shader_info info;
2050
2051 /** list of global variables in the shader (nir_variable) */
2052 struct exec_list globals;
2053
2054 /** list of system value variables in the shader (nir_variable) */
2055 struct exec_list system_values;
2056
2057 struct exec_list functions; /** < list of nir_function */
2058
2059 /** list of global register in the shader */
2060 struct exec_list registers;
2061
2062 /** next available global register index */
2063 unsigned reg_alloc;
2064
2065 /**
2066 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2067 * access plus one
2068 */
2069 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2070
2071 /** Constant data associated with this shader.
2072 *
2073 * Constant data is loaded through load_constant intrinsics. See also
2074 * nir_opt_large_constants.
2075 */
2076 void *constant_data;
2077 unsigned constant_data_size;
2078 } nir_shader;
2079
2080 static inline nir_function_impl *
2081 nir_shader_get_entrypoint(nir_shader *shader)
2082 {
2083 assert(exec_list_length(&shader->functions) == 1);
2084 struct exec_node *func_node = exec_list_get_head(&shader->functions);
2085 nir_function *func = exec_node_data(nir_function, func_node, node);
2086 assert(func->num_params == 0);
2087 assert(func->impl);
2088 return func->impl;
2089 }
2090
2091 #define nir_foreach_function(func, shader) \
2092 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2093
2094 nir_shader *nir_shader_create(void *mem_ctx,
2095 gl_shader_stage stage,
2096 const nir_shader_compiler_options *options,
2097 shader_info *si);
2098
2099 /** creates a register, including assigning it an index and adding it to the list */
2100 nir_register *nir_global_reg_create(nir_shader *shader);
2101
2102 nir_register *nir_local_reg_create(nir_function_impl *impl);
2103
2104 void nir_reg_remove(nir_register *reg);
2105
2106 /** Adds a variable to the appropriate list in nir_shader */
2107 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2108
2109 static inline void
2110 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2111 {
2112 assert(var->data.mode == nir_var_local);
2113 exec_list_push_tail(&impl->locals, &var->node);
2114 }
2115
2116 /** creates a variable, sets a few defaults, and adds it to the list */
2117 nir_variable *nir_variable_create(nir_shader *shader,
2118 nir_variable_mode mode,
2119 const struct glsl_type *type,
2120 const char *name);
2121 /** creates a local variable and adds it to the list */
2122 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2123 const struct glsl_type *type,
2124 const char *name);
2125
2126 /** creates a function and adds it to the shader's list of functions */
2127 nir_function *nir_function_create(nir_shader *shader, const char *name);
2128
2129 nir_function_impl *nir_function_impl_create(nir_function *func);
2130 /** creates a function_impl that isn't tied to any particular function */
2131 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2132
2133 nir_block *nir_block_create(nir_shader *shader);
2134 nir_if *nir_if_create(nir_shader *shader);
2135 nir_loop *nir_loop_create(nir_shader *shader);
2136
2137 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2138
2139 /** requests that the given pieces of metadata be generated */
2140 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2141 /** dirties all but the preserved metadata */
2142 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2143
2144 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2145 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2146
2147 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2148 nir_deref_type deref_type);
2149
2150 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2151
2152 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2153 unsigned num_components,
2154 unsigned bit_size);
2155
2156 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2157 nir_intrinsic_op op);
2158
2159 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2160 nir_function *callee);
2161
2162 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2163
2164 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2165
2166 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2167
2168 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2169 unsigned num_components,
2170 unsigned bit_size);
2171
2172 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2173
2174 /**
2175 * NIR Cursors and Instruction Insertion API
2176 * @{
2177 *
2178 * A tiny struct representing a point to insert/extract instructions or
2179 * control flow nodes. Helps reduce the combinatorial explosion of possible
2180 * points to insert/extract.
2181 *
2182 * \sa nir_control_flow.h
2183 */
2184 typedef enum {
2185 nir_cursor_before_block,
2186 nir_cursor_after_block,
2187 nir_cursor_before_instr,
2188 nir_cursor_after_instr,
2189 } nir_cursor_option;
2190
2191 typedef struct {
2192 nir_cursor_option option;
2193 union {
2194 nir_block *block;
2195 nir_instr *instr;
2196 };
2197 } nir_cursor;
2198
2199 static inline nir_block *
2200 nir_cursor_current_block(nir_cursor cursor)
2201 {
2202 if (cursor.option == nir_cursor_before_instr ||
2203 cursor.option == nir_cursor_after_instr) {
2204 return cursor.instr->block;
2205 } else {
2206 return cursor.block;
2207 }
2208 }
2209
2210 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2211
2212 static inline nir_cursor
2213 nir_before_block(nir_block *block)
2214 {
2215 nir_cursor cursor;
2216 cursor.option = nir_cursor_before_block;
2217 cursor.block = block;
2218 return cursor;
2219 }
2220
2221 static inline nir_cursor
2222 nir_after_block(nir_block *block)
2223 {
2224 nir_cursor cursor;
2225 cursor.option = nir_cursor_after_block;
2226 cursor.block = block;
2227 return cursor;
2228 }
2229
2230 static inline nir_cursor
2231 nir_before_instr(nir_instr *instr)
2232 {
2233 nir_cursor cursor;
2234 cursor.option = nir_cursor_before_instr;
2235 cursor.instr = instr;
2236 return cursor;
2237 }
2238
2239 static inline nir_cursor
2240 nir_after_instr(nir_instr *instr)
2241 {
2242 nir_cursor cursor;
2243 cursor.option = nir_cursor_after_instr;
2244 cursor.instr = instr;
2245 return cursor;
2246 }
2247
2248 static inline nir_cursor
2249 nir_after_block_before_jump(nir_block *block)
2250 {
2251 nir_instr *last_instr = nir_block_last_instr(block);
2252 if (last_instr && last_instr->type == nir_instr_type_jump) {
2253 return nir_before_instr(last_instr);
2254 } else {
2255 return nir_after_block(block);
2256 }
2257 }
2258
2259 static inline nir_cursor
2260 nir_before_cf_node(nir_cf_node *node)
2261 {
2262 if (node->type == nir_cf_node_block)
2263 return nir_before_block(nir_cf_node_as_block(node));
2264
2265 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2266 }
2267
2268 static inline nir_cursor
2269 nir_after_cf_node(nir_cf_node *node)
2270 {
2271 if (node->type == nir_cf_node_block)
2272 return nir_after_block(nir_cf_node_as_block(node));
2273
2274 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2275 }
2276
2277 static inline nir_cursor
2278 nir_after_phis(nir_block *block)
2279 {
2280 nir_foreach_instr(instr, block) {
2281 if (instr->type != nir_instr_type_phi)
2282 return nir_before_instr(instr);
2283 }
2284 return nir_after_block(block);
2285 }
2286
2287 static inline nir_cursor
2288 nir_after_cf_node_and_phis(nir_cf_node *node)
2289 {
2290 if (node->type == nir_cf_node_block)
2291 return nir_after_block(nir_cf_node_as_block(node));
2292
2293 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2294
2295 return nir_after_phis(block);
2296 }
2297
2298 static inline nir_cursor
2299 nir_before_cf_list(struct exec_list *cf_list)
2300 {
2301 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2302 exec_list_get_head(cf_list), node);
2303 return nir_before_cf_node(first_node);
2304 }
2305
2306 static inline nir_cursor
2307 nir_after_cf_list(struct exec_list *cf_list)
2308 {
2309 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2310 exec_list_get_tail(cf_list), node);
2311 return nir_after_cf_node(last_node);
2312 }
2313
2314 /**
2315 * Insert a NIR instruction at the given cursor.
2316 *
2317 * Note: This does not update the cursor.
2318 */
2319 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2320
2321 static inline void
2322 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2323 {
2324 nir_instr_insert(nir_before_instr(instr), before);
2325 }
2326
2327 static inline void
2328 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2329 {
2330 nir_instr_insert(nir_after_instr(instr), after);
2331 }
2332
2333 static inline void
2334 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2335 {
2336 nir_instr_insert(nir_before_block(block), before);
2337 }
2338
2339 static inline void
2340 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2341 {
2342 nir_instr_insert(nir_after_block(block), after);
2343 }
2344
2345 static inline void
2346 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2347 {
2348 nir_instr_insert(nir_before_cf_node(node), before);
2349 }
2350
2351 static inline void
2352 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2353 {
2354 nir_instr_insert(nir_after_cf_node(node), after);
2355 }
2356
2357 static inline void
2358 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2359 {
2360 nir_instr_insert(nir_before_cf_list(list), before);
2361 }
2362
2363 static inline void
2364 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2365 {
2366 nir_instr_insert(nir_after_cf_list(list), after);
2367 }
2368
2369 void nir_instr_remove_v(nir_instr *instr);
2370
2371 static inline nir_cursor
2372 nir_instr_remove(nir_instr *instr)
2373 {
2374 nir_cursor cursor;
2375 nir_instr *prev = nir_instr_prev(instr);
2376 if (prev) {
2377 cursor = nir_after_instr(prev);
2378 } else {
2379 cursor = nir_before_block(instr->block);
2380 }
2381 nir_instr_remove_v(instr);
2382 return cursor;
2383 }
2384
2385 /** @} */
2386
2387 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2388 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2389 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2390 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2391 void *state);
2392 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2393 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2394
2395 nir_const_value *nir_src_as_const_value(nir_src src);
2396 bool nir_src_is_dynamically_uniform(nir_src src);
2397 bool nir_srcs_equal(nir_src src1, nir_src src2);
2398 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2399 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2400 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2401 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2402 nir_dest new_dest);
2403
2404 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2405 unsigned num_components, unsigned bit_size,
2406 const char *name);
2407 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2408 unsigned num_components, unsigned bit_size,
2409 const char *name);
2410 static inline void
2411 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
2412 const struct glsl_type *type,
2413 const char *name)
2414 {
2415 assert(glsl_type_is_vector_or_scalar(type));
2416 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
2417 glsl_get_bit_size(type), name);
2418 }
2419 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2420 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2421 nir_instr *after_me);
2422
2423 uint8_t nir_ssa_def_components_read(const nir_ssa_def *def);
2424
2425 /*
2426 * finds the next basic block in source-code order, returns NULL if there is
2427 * none
2428 */
2429
2430 nir_block *nir_block_cf_tree_next(nir_block *block);
2431
2432 /* Performs the opposite of nir_block_cf_tree_next() */
2433
2434 nir_block *nir_block_cf_tree_prev(nir_block *block);
2435
2436 /* Gets the first block in a CF node in source-code order */
2437
2438 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2439
2440 /* Gets the last block in a CF node in source-code order */
2441
2442 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2443
2444 /* Gets the next block after a CF node in source-code order */
2445
2446 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2447
2448 /* Macros for loops that visit blocks in source-code order */
2449
2450 #define nir_foreach_block(block, impl) \
2451 for (nir_block *block = nir_start_block(impl); block != NULL; \
2452 block = nir_block_cf_tree_next(block))
2453
2454 #define nir_foreach_block_safe(block, impl) \
2455 for (nir_block *block = nir_start_block(impl), \
2456 *next = nir_block_cf_tree_next(block); \
2457 block != NULL; \
2458 block = next, next = nir_block_cf_tree_next(block))
2459
2460 #define nir_foreach_block_reverse(block, impl) \
2461 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2462 block = nir_block_cf_tree_prev(block))
2463
2464 #define nir_foreach_block_reverse_safe(block, impl) \
2465 for (nir_block *block = nir_impl_last_block(impl), \
2466 *prev = nir_block_cf_tree_prev(block); \
2467 block != NULL; \
2468 block = prev, prev = nir_block_cf_tree_prev(block))
2469
2470 #define nir_foreach_block_in_cf_node(block, node) \
2471 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2472 block != nir_cf_node_cf_tree_next(node); \
2473 block = nir_block_cf_tree_next(block))
2474
2475 /* If the following CF node is an if, this function returns that if.
2476 * Otherwise, it returns NULL.
2477 */
2478 nir_if *nir_block_get_following_if(nir_block *block);
2479
2480 nir_loop *nir_block_get_following_loop(nir_block *block);
2481
2482 void nir_index_local_regs(nir_function_impl *impl);
2483 void nir_index_global_regs(nir_shader *shader);
2484 void nir_index_ssa_defs(nir_function_impl *impl);
2485 unsigned nir_index_instrs(nir_function_impl *impl);
2486
2487 void nir_index_blocks(nir_function_impl *impl);
2488
2489 void nir_print_shader(nir_shader *shader, FILE *fp);
2490 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2491 void nir_print_instr(const nir_instr *instr, FILE *fp);
2492
2493 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2494 nir_function_impl *nir_function_impl_clone(const nir_function_impl *fi);
2495 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2496 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2497
2498 nir_shader *nir_shader_serialize_deserialize(void *mem_ctx, nir_shader *s);
2499
2500 #ifndef NDEBUG
2501 void nir_validate_shader(nir_shader *shader);
2502 void nir_metadata_set_validation_flag(nir_shader *shader);
2503 void nir_metadata_check_validation_flag(nir_shader *shader);
2504
2505 static inline bool
2506 should_clone_nir(void)
2507 {
2508 static int should_clone = -1;
2509 if (should_clone < 0)
2510 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2511
2512 return should_clone;
2513 }
2514
2515 static inline bool
2516 should_serialize_deserialize_nir(void)
2517 {
2518 static int test_serialize = -1;
2519 if (test_serialize < 0)
2520 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
2521
2522 return test_serialize;
2523 }
2524
2525 static inline bool
2526 should_print_nir(void)
2527 {
2528 static int should_print = -1;
2529 if (should_print < 0)
2530 should_print = env_var_as_boolean("NIR_PRINT", false);
2531
2532 return should_print;
2533 }
2534 #else
2535 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
2536 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2537 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2538 static inline bool should_clone_nir(void) { return false; }
2539 static inline bool should_serialize_deserialize_nir(void) { return false; }
2540 static inline bool should_print_nir(void) { return false; }
2541 #endif /* NDEBUG */
2542
2543 #define _PASS(nir, do_pass) do { \
2544 do_pass \
2545 nir_validate_shader(nir); \
2546 if (should_clone_nir()) { \
2547 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2548 ralloc_free(nir); \
2549 nir = clone; \
2550 } \
2551 if (should_serialize_deserialize_nir()) { \
2552 void *mem_ctx = ralloc_parent(nir); \
2553 nir = nir_shader_serialize_deserialize(mem_ctx, nir); \
2554 } \
2555 } while (0)
2556
2557 #define NIR_PASS(progress, nir, pass, ...) _PASS(nir, \
2558 nir_metadata_set_validation_flag(nir); \
2559 if (should_print_nir()) \
2560 printf("%s\n", #pass); \
2561 if (pass(nir, ##__VA_ARGS__)) { \
2562 progress = true; \
2563 if (should_print_nir()) \
2564 nir_print_shader(nir, stdout); \
2565 nir_metadata_check_validation_flag(nir); \
2566 } \
2567 )
2568
2569 #define NIR_PASS_V(nir, pass, ...) _PASS(nir, \
2570 if (should_print_nir()) \
2571 printf("%s\n", #pass); \
2572 pass(nir, ##__VA_ARGS__); \
2573 if (should_print_nir()) \
2574 nir_print_shader(nir, stdout); \
2575 )
2576
2577 void nir_calc_dominance_impl(nir_function_impl *impl);
2578 void nir_calc_dominance(nir_shader *shader);
2579
2580 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2581 bool nir_block_dominates(nir_block *parent, nir_block *child);
2582
2583 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2584 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2585
2586 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2587 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2588
2589 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2590 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2591
2592 int nir_gs_count_vertices(const nir_shader *shader);
2593
2594 bool nir_split_var_copies(nir_shader *shader);
2595 bool nir_split_per_member_structs(nir_shader *shader);
2596
2597 bool nir_lower_returns_impl(nir_function_impl *impl);
2598 bool nir_lower_returns(nir_shader *shader);
2599
2600 bool nir_inline_functions(nir_shader *shader);
2601
2602 bool nir_propagate_invariant(nir_shader *shader);
2603
2604 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
2605 void nir_lower_deref_copy_instr(struct nir_builder *b,
2606 nir_intrinsic_instr *copy);
2607 bool nir_lower_var_copies(nir_shader *shader);
2608
2609 void nir_fixup_deref_modes(nir_shader *shader);
2610
2611 bool nir_lower_global_vars_to_local(nir_shader *shader);
2612
2613 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
2614
2615 bool nir_lower_locals_to_regs(nir_shader *shader);
2616
2617 void nir_lower_io_to_temporaries(nir_shader *shader,
2618 nir_function_impl *entrypoint,
2619 bool outputs, bool inputs);
2620
2621 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2622
2623 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
2624 int (*type_size)(const struct glsl_type *));
2625
2626 /* Some helpers to do very simple linking */
2627 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
2628 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
2629 bool default_to_smooth_interp);
2630
2631 typedef enum {
2632 /* If set, this forces all non-flat fragment shader inputs to be
2633 * interpolated as if with the "sample" qualifier. This requires
2634 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
2635 */
2636 nir_lower_io_force_sample_interpolation = (1 << 1),
2637 } nir_lower_io_options;
2638 bool nir_lower_io(nir_shader *shader,
2639 nir_variable_mode modes,
2640 int (*type_size)(const struct glsl_type *),
2641 nir_lower_io_options);
2642 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2643 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2644
2645 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
2646
2647 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
2648 bool nir_lower_regs_to_ssa(nir_shader *shader);
2649 bool nir_lower_vars_to_ssa(nir_shader *shader);
2650
2651 bool nir_remove_dead_derefs(nir_shader *shader);
2652 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
2653 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
2654 bool nir_lower_constant_initializers(nir_shader *shader,
2655 nir_variable_mode modes);
2656
2657 bool nir_move_load_const(nir_shader *shader);
2658 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
2659 bool nir_lower_vec_to_movs(nir_shader *shader);
2660 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
2661 bool alpha_to_one);
2662 bool nir_lower_alu(nir_shader *shader);
2663 bool nir_lower_alu_to_scalar(nir_shader *shader);
2664 bool nir_lower_load_const_to_scalar(nir_shader *shader);
2665 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
2666 bool nir_lower_phis_to_scalar(nir_shader *shader);
2667 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
2668 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
2669 bool outputs_only);
2670 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
2671 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
2672
2673 typedef struct nir_lower_subgroups_options {
2674 uint8_t subgroup_size;
2675 uint8_t ballot_bit_size;
2676 bool lower_to_scalar:1;
2677 bool lower_vote_trivial:1;
2678 bool lower_vote_eq_to_ballot:1;
2679 bool lower_subgroup_masks:1;
2680 bool lower_shuffle:1;
2681 bool lower_shuffle_to_32bit:1;
2682 bool lower_quad:1;
2683 } nir_lower_subgroups_options;
2684
2685 bool nir_lower_subgroups(nir_shader *shader,
2686 const nir_lower_subgroups_options *options);
2687
2688 bool nir_lower_system_values(nir_shader *shader);
2689
2690 typedef struct nir_lower_tex_options {
2691 /**
2692 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2693 * sampler types a texture projector is lowered.
2694 */
2695 unsigned lower_txp;
2696
2697 /**
2698 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
2699 */
2700 bool lower_txf_offset;
2701
2702 /**
2703 * If true, lower away nir_tex_src_offset for all rect textures.
2704 */
2705 bool lower_rect_offset;
2706
2707 /**
2708 * If true, lower rect textures to 2D, using txs to fetch the
2709 * texture dimensions and dividing the texture coords by the
2710 * texture dims to normalize.
2711 */
2712 bool lower_rect;
2713
2714 /**
2715 * If true, convert yuv to rgb.
2716 */
2717 unsigned lower_y_uv_external;
2718 unsigned lower_y_u_v_external;
2719 unsigned lower_yx_xuxv_external;
2720 unsigned lower_xy_uxvx_external;
2721
2722 /**
2723 * To emulate certain texture wrap modes, this can be used
2724 * to saturate the specified tex coord to [0.0, 1.0]. The
2725 * bits are according to sampler #, ie. if, for example:
2726 *
2727 * (conf->saturate_s & (1 << n))
2728 *
2729 * is true, then the s coord for sampler n is saturated.
2730 *
2731 * Note that clamping must happen *after* projector lowering
2732 * so any projected texture sample instruction with a clamped
2733 * coordinate gets automatically lowered, regardless of the
2734 * 'lower_txp' setting.
2735 */
2736 unsigned saturate_s;
2737 unsigned saturate_t;
2738 unsigned saturate_r;
2739
2740 /* Bitmask of textures that need swizzling.
2741 *
2742 * If (swizzle_result & (1 << texture_index)), then the swizzle in
2743 * swizzles[texture_index] is applied to the result of the texturing
2744 * operation.
2745 */
2746 unsigned swizzle_result;
2747
2748 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
2749 * while 4 and 5 represent 0 and 1 respectively.
2750 */
2751 uint8_t swizzles[32][4];
2752
2753 /**
2754 * Bitmap of textures that need srgb to linear conversion. If
2755 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
2756 * of the texture are lowered to linear.
2757 */
2758 unsigned lower_srgb;
2759
2760 /**
2761 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
2762 */
2763 bool lower_txd_cube_map;
2764
2765 /**
2766 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
2767 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
2768 * with lower_txd_cube_map.
2769 */
2770 bool lower_txd_shadow;
2771
2772 /**
2773 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
2774 * Implies lower_txd_cube_map and lower_txd_shadow.
2775 */
2776 bool lower_txd;
2777 } nir_lower_tex_options;
2778
2779 bool nir_lower_tex(nir_shader *shader,
2780 const nir_lower_tex_options *options);
2781
2782 bool nir_lower_idiv(nir_shader *shader);
2783
2784 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
2785 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
2786 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
2787
2788 void nir_lower_two_sided_color(nir_shader *shader);
2789
2790 bool nir_lower_clamp_color_outputs(nir_shader *shader);
2791
2792 void nir_lower_passthrough_edgeflags(nir_shader *shader);
2793 void nir_lower_tes_patch_vertices(nir_shader *tes, unsigned patch_vertices);
2794
2795 typedef struct nir_lower_wpos_ytransform_options {
2796 gl_state_index16 state_tokens[STATE_LENGTH];
2797 bool fs_coord_origin_upper_left :1;
2798 bool fs_coord_origin_lower_left :1;
2799 bool fs_coord_pixel_center_integer :1;
2800 bool fs_coord_pixel_center_half_integer :1;
2801 } nir_lower_wpos_ytransform_options;
2802
2803 bool nir_lower_wpos_ytransform(nir_shader *shader,
2804 const nir_lower_wpos_ytransform_options *options);
2805 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
2806
2807 typedef struct nir_lower_drawpixels_options {
2808 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
2809 gl_state_index16 scale_state_tokens[STATE_LENGTH];
2810 gl_state_index16 bias_state_tokens[STATE_LENGTH];
2811 unsigned drawpix_sampler;
2812 unsigned pixelmap_sampler;
2813 bool pixel_maps :1;
2814 bool scale_and_bias :1;
2815 } nir_lower_drawpixels_options;
2816
2817 void nir_lower_drawpixels(nir_shader *shader,
2818 const nir_lower_drawpixels_options *options);
2819
2820 typedef struct nir_lower_bitmap_options {
2821 unsigned sampler;
2822 bool swizzle_xxxx;
2823 } nir_lower_bitmap_options;
2824
2825 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
2826
2827 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
2828 bool nir_lower_to_source_mods(nir_shader *shader);
2829
2830 bool nir_lower_gs_intrinsics(nir_shader *shader);
2831
2832 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
2833
2834 bool nir_lower_bit_size(nir_shader *shader,
2835 nir_lower_bit_size_callback callback,
2836 void *callback_data);
2837
2838 typedef enum {
2839 nir_lower_imul64 = (1 << 0),
2840 nir_lower_isign64 = (1 << 1),
2841 /** Lower all int64 modulus and division opcodes */
2842 nir_lower_divmod64 = (1 << 2),
2843 } nir_lower_int64_options;
2844
2845 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
2846
2847 typedef enum {
2848 nir_lower_drcp = (1 << 0),
2849 nir_lower_dsqrt = (1 << 1),
2850 nir_lower_drsq = (1 << 2),
2851 nir_lower_dtrunc = (1 << 3),
2852 nir_lower_dfloor = (1 << 4),
2853 nir_lower_dceil = (1 << 5),
2854 nir_lower_dfract = (1 << 6),
2855 nir_lower_dround_even = (1 << 7),
2856 nir_lower_dmod = (1 << 8)
2857 } nir_lower_doubles_options;
2858
2859 bool nir_lower_doubles(nir_shader *shader, nir_lower_doubles_options options);
2860 bool nir_lower_pack(nir_shader *shader);
2861
2862 bool nir_normalize_cubemap_coords(nir_shader *shader);
2863
2864 void nir_live_ssa_defs_impl(nir_function_impl *impl);
2865
2866 void nir_loop_analyze_impl(nir_function_impl *impl,
2867 nir_variable_mode indirect_mask);
2868
2869 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
2870
2871 bool nir_repair_ssa_impl(nir_function_impl *impl);
2872 bool nir_repair_ssa(nir_shader *shader);
2873
2874 void nir_convert_loop_to_lcssa(nir_loop *loop);
2875
2876 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
2877 * registers. If false, convert all values (even those not involved in a phi
2878 * node) to registers.
2879 */
2880 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
2881
2882 bool nir_lower_phis_to_regs_block(nir_block *block);
2883 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
2884
2885 bool nir_opt_algebraic(nir_shader *shader);
2886 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
2887 bool nir_opt_algebraic_late(nir_shader *shader);
2888 bool nir_opt_constant_folding(nir_shader *shader);
2889
2890 bool nir_opt_global_to_local(nir_shader *shader);
2891
2892 bool nir_copy_prop(nir_shader *shader);
2893
2894 bool nir_opt_copy_prop_vars(nir_shader *shader);
2895
2896 bool nir_opt_cse(nir_shader *shader);
2897
2898 bool nir_opt_dce(nir_shader *shader);
2899
2900 bool nir_opt_dead_cf(nir_shader *shader);
2901
2902 bool nir_opt_gcm(nir_shader *shader, bool value_number);
2903
2904 bool nir_opt_if(nir_shader *shader);
2905
2906 bool nir_opt_intrinsics(nir_shader *shader);
2907
2908 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
2909
2910 bool nir_opt_move_comparisons(nir_shader *shader);
2911
2912 bool nir_opt_move_load_ubo(nir_shader *shader);
2913
2914 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit);
2915
2916 bool nir_opt_remove_phis_impl(nir_function_impl *impl);
2917 bool nir_opt_remove_phis(nir_shader *shader);
2918
2919 bool nir_opt_shrink_load(nir_shader *shader);
2920
2921 bool nir_opt_trivial_continues(nir_shader *shader);
2922
2923 bool nir_opt_undef(nir_shader *shader);
2924
2925 bool nir_opt_conditional_discard(nir_shader *shader);
2926
2927 void nir_sweep(nir_shader *shader);
2928
2929 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
2930 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
2931
2932 #ifdef __cplusplus
2933 } /* extern "C" */
2934 #endif
2935
2936 #endif /* NIR_H */