compiler/nir: add lowering option for 16-bit fmod
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitscan.h"
38 #include "util/bitset.h"
39 #include "util/macros.h"
40 #include "compiler/nir_types.h"
41 #include "compiler/shader_enums.h"
42 #include "compiler/shader_info.h"
43 #include <stdio.h>
44
45 #ifndef NDEBUG
46 #include "util/debug.h"
47 #endif /* NDEBUG */
48
49 #include "nir_opcodes.h"
50
51 #if defined(_WIN32) && !defined(snprintf)
52 #define snprintf _snprintf
53 #endif
54
55 #ifdef __cplusplus
56 extern "C" {
57 #endif
58
59 #define NIR_FALSE 0u
60 #define NIR_TRUE (~0u)
61 #define NIR_MAX_VEC_COMPONENTS 4
62 #define NIR_MAX_MATRIX_COLUMNS 4
63 typedef uint8_t nir_component_mask_t;
64
65 /** Defines a cast function
66 *
67 * This macro defines a cast function from in_type to out_type where
68 * out_type is some structure type that contains a field of type out_type.
69 *
70 * Note that you have to be a bit careful as the generated cast function
71 * destroys constness.
72 */
73 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
74 type_field, type_value) \
75 static inline out_type * \
76 name(const in_type *parent) \
77 { \
78 assert(parent && parent->type_field == type_value); \
79 return exec_node_data(out_type, parent, field); \
80 }
81
82 struct nir_function;
83 struct nir_shader;
84 struct nir_instr;
85 struct nir_builder;
86
87
88 /**
89 * Description of built-in state associated with a uniform
90 *
91 * \sa nir_variable::state_slots
92 */
93 typedef struct {
94 gl_state_index16 tokens[STATE_LENGTH];
95 int swizzle;
96 } nir_state_slot;
97
98 typedef enum {
99 nir_var_shader_in = (1 << 0),
100 nir_var_shader_out = (1 << 1),
101 nir_var_shader_temp = (1 << 2),
102 nir_var_function_temp = (1 << 3),
103 nir_var_uniform = (1 << 4),
104 nir_var_mem_ubo = (1 << 5),
105 nir_var_system_value = (1 << 6),
106 nir_var_mem_ssbo = (1 << 7),
107 nir_var_mem_shared = (1 << 8),
108 nir_var_mem_global = (1 << 9),
109 nir_var_all = ~0,
110 } nir_variable_mode;
111
112 /**
113 * Rounding modes.
114 */
115 typedef enum {
116 nir_rounding_mode_undef = 0,
117 nir_rounding_mode_rtne = 1, /* round to nearest even */
118 nir_rounding_mode_ru = 2, /* round up */
119 nir_rounding_mode_rd = 3, /* round down */
120 nir_rounding_mode_rtz = 4, /* round towards zero */
121 } nir_rounding_mode;
122
123 typedef union {
124 bool b[NIR_MAX_VEC_COMPONENTS];
125 float f32[NIR_MAX_VEC_COMPONENTS];
126 double f64[NIR_MAX_VEC_COMPONENTS];
127 int8_t i8[NIR_MAX_VEC_COMPONENTS];
128 uint8_t u8[NIR_MAX_VEC_COMPONENTS];
129 int16_t i16[NIR_MAX_VEC_COMPONENTS];
130 uint16_t u16[NIR_MAX_VEC_COMPONENTS];
131 int32_t i32[NIR_MAX_VEC_COMPONENTS];
132 uint32_t u32[NIR_MAX_VEC_COMPONENTS];
133 int64_t i64[NIR_MAX_VEC_COMPONENTS];
134 uint64_t u64[NIR_MAX_VEC_COMPONENTS];
135 } nir_const_value;
136
137 typedef struct nir_constant {
138 /**
139 * Value of the constant.
140 *
141 * The field used to back the values supplied by the constant is determined
142 * by the type associated with the \c nir_variable. Constants may be
143 * scalars, vectors, or matrices.
144 */
145 nir_const_value values[NIR_MAX_MATRIX_COLUMNS];
146
147 /* we could get this from the var->type but makes clone *much* easier to
148 * not have to care about the type.
149 */
150 unsigned num_elements;
151
152 /* Array elements / Structure Fields */
153 struct nir_constant **elements;
154 } nir_constant;
155
156 /**
157 * \brief Layout qualifiers for gl_FragDepth.
158 *
159 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
160 * with a layout qualifier.
161 */
162 typedef enum {
163 nir_depth_layout_none, /**< No depth layout is specified. */
164 nir_depth_layout_any,
165 nir_depth_layout_greater,
166 nir_depth_layout_less,
167 nir_depth_layout_unchanged
168 } nir_depth_layout;
169
170 /**
171 * Enum keeping track of how a variable was declared.
172 */
173 typedef enum {
174 /**
175 * Normal declaration.
176 */
177 nir_var_declared_normally = 0,
178
179 /**
180 * Variable is implicitly generated by the compiler and should not be
181 * visible via the API.
182 */
183 nir_var_hidden,
184 } nir_var_declaration_type;
185
186 /**
187 * Either a uniform, global variable, shader input, or shader output. Based on
188 * ir_variable - it should be easy to translate between the two.
189 */
190
191 typedef struct nir_variable {
192 struct exec_node node;
193
194 /**
195 * Declared type of the variable
196 */
197 const struct glsl_type *type;
198
199 /**
200 * Declared name of the variable
201 */
202 char *name;
203
204 struct nir_variable_data {
205 /**
206 * Storage class of the variable.
207 *
208 * \sa nir_variable_mode
209 */
210 nir_variable_mode mode;
211
212 /**
213 * Is the variable read-only?
214 *
215 * This is set for variables declared as \c const, shader inputs,
216 * and uniforms.
217 */
218 unsigned read_only:1;
219 unsigned centroid:1;
220 unsigned sample:1;
221 unsigned patch:1;
222 unsigned invariant:1;
223
224 /**
225 * When separate shader programs are enabled, only input/outputs between
226 * the stages of a multi-stage separate program can be safely removed
227 * from the shader interface. Other input/outputs must remains active.
228 *
229 * This is also used to make sure xfb varyings that are unused by the
230 * fragment shader are not removed.
231 */
232 unsigned always_active_io:1;
233
234 /**
235 * Interpolation mode for shader inputs / outputs
236 *
237 * \sa glsl_interp_mode
238 */
239 unsigned interpolation:2;
240
241 /**
242 * If non-zero, then this variable may be packed along with other variables
243 * into a single varying slot, so this offset should be applied when
244 * accessing components. For example, an offset of 1 means that the x
245 * component of this variable is actually stored in component y of the
246 * location specified by \c location.
247 */
248 unsigned location_frac:2;
249
250 /**
251 * If true, this variable represents an array of scalars that should
252 * be tightly packed. In other words, consecutive array elements
253 * should be stored one component apart, rather than one slot apart.
254 */
255 unsigned compact:1;
256
257 /**
258 * Whether this is a fragment shader output implicitly initialized with
259 * the previous contents of the specified render target at the
260 * framebuffer location corresponding to this shader invocation.
261 */
262 unsigned fb_fetch_output:1;
263
264 /**
265 * Non-zero if this variable is considered bindless as defined by
266 * ARB_bindless_texture.
267 */
268 unsigned bindless:1;
269
270 /**
271 * Was an explicit binding set in the shader?
272 */
273 unsigned explicit_binding:1;
274
275 /**
276 * Was a transfer feedback buffer set in the shader?
277 */
278 unsigned explicit_xfb_buffer:1;
279
280 /**
281 * Was a transfer feedback stride set in the shader?
282 */
283 unsigned explicit_xfb_stride:1;
284
285 /**
286 * Was an explicit offset set in the shader?
287 */
288 unsigned explicit_offset:1;
289
290 /**
291 * \brief Layout qualifier for gl_FragDepth.
292 *
293 * This is not equal to \c ir_depth_layout_none if and only if this
294 * variable is \c gl_FragDepth and a layout qualifier is specified.
295 */
296 nir_depth_layout depth_layout;
297
298 /**
299 * Storage location of the base of this variable
300 *
301 * The precise meaning of this field depends on the nature of the variable.
302 *
303 * - Vertex shader input: one of the values from \c gl_vert_attrib.
304 * - Vertex shader output: one of the values from \c gl_varying_slot.
305 * - Geometry shader input: one of the values from \c gl_varying_slot.
306 * - Geometry shader output: one of the values from \c gl_varying_slot.
307 * - Fragment shader input: one of the values from \c gl_varying_slot.
308 * - Fragment shader output: one of the values from \c gl_frag_result.
309 * - Uniforms: Per-stage uniform slot number for default uniform block.
310 * - Uniforms: Index within the uniform block definition for UBO members.
311 * - Non-UBO Uniforms: uniform slot number.
312 * - Other: This field is not currently used.
313 *
314 * If the variable is a uniform, shader input, or shader output, and the
315 * slot has not been assigned, the value will be -1.
316 */
317 int location;
318
319 /**
320 * The actual location of the variable in the IR. Only valid for inputs
321 * and outputs.
322 */
323 unsigned int driver_location;
324
325 /**
326 * Vertex stream output identifier.
327 *
328 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
329 * stream of the i-th component.
330 */
331 unsigned stream;
332
333 /**
334 * output index for dual source blending.
335 */
336 int index;
337
338 /**
339 * Descriptor set binding for sampler or UBO.
340 */
341 int descriptor_set;
342
343 /**
344 * Initial binding point for a sampler or UBO.
345 *
346 * For array types, this represents the binding point for the first element.
347 */
348 int binding;
349
350 /**
351 * Location an atomic counter or transform feedback is stored at.
352 */
353 unsigned offset;
354
355 /**
356 * Transform feedback buffer.
357 */
358 unsigned xfb_buffer;
359
360 /**
361 * Transform feedback stride.
362 */
363 unsigned xfb_stride;
364
365 /**
366 * How the variable was declared. See nir_var_declaration_type.
367 *
368 * This is used to detect variables generated by the compiler, so should
369 * not be visible via the API.
370 */
371 unsigned how_declared:2;
372
373 /**
374 * ARB_shader_image_load_store qualifiers.
375 */
376 struct {
377 enum gl_access_qualifier access;
378
379 /** Image internal format if specified explicitly, otherwise GL_NONE. */
380 GLenum format;
381 } image;
382 } data;
383
384 /**
385 * Built-in state that backs this uniform
386 *
387 * Once set at variable creation, \c state_slots must remain invariant.
388 * This is because, ideally, this array would be shared by all clones of
389 * this variable in the IR tree. In other words, we'd really like for it
390 * to be a fly-weight.
391 *
392 * If the variable is not a uniform, \c num_state_slots will be zero and
393 * \c state_slots will be \c NULL.
394 */
395 /*@{*/
396 unsigned num_state_slots; /**< Number of state slots used */
397 nir_state_slot *state_slots; /**< State descriptors. */
398 /*@}*/
399
400 /**
401 * Constant expression assigned in the initializer of the variable
402 *
403 * This field should only be used temporarily by creators of NIR shaders
404 * and then lower_constant_initializers can be used to get rid of them.
405 * Most of the rest of NIR ignores this field or asserts that it's NULL.
406 */
407 nir_constant *constant_initializer;
408
409 /**
410 * For variables that are in an interface block or are an instance of an
411 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
412 *
413 * \sa ir_variable::location
414 */
415 const struct glsl_type *interface_type;
416
417 /**
418 * Description of per-member data for per-member struct variables
419 *
420 * This is used for variables which are actually an amalgamation of
421 * multiple entities such as a struct of built-in values or a struct of
422 * inputs each with their own layout specifier. This is only allowed on
423 * variables with a struct or array of array of struct type.
424 */
425 unsigned num_members;
426 struct nir_variable_data *members;
427 } nir_variable;
428
429 #define nir_foreach_variable(var, var_list) \
430 foreach_list_typed(nir_variable, var, node, var_list)
431
432 #define nir_foreach_variable_safe(var, var_list) \
433 foreach_list_typed_safe(nir_variable, var, node, var_list)
434
435 static inline bool
436 nir_variable_is_global(const nir_variable *var)
437 {
438 return var->data.mode != nir_var_function_temp;
439 }
440
441 typedef struct nir_register {
442 struct exec_node node;
443
444 unsigned num_components; /** < number of vector components */
445 unsigned num_array_elems; /** < size of array (0 for no array) */
446
447 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
448 uint8_t bit_size;
449
450 /** generic register index. */
451 unsigned index;
452
453 /** only for debug purposes, can be NULL */
454 const char *name;
455
456 /** whether this register is local (per-function) or global (per-shader) */
457 bool is_global;
458
459 /**
460 * If this flag is set to true, then accessing channels >= num_components
461 * is well-defined, and simply spills over to the next array element. This
462 * is useful for backends that can do per-component accessing, in
463 * particular scalar backends. By setting this flag and making
464 * num_components equal to 1, structures can be packed tightly into
465 * registers and then registers can be accessed per-component to get to
466 * each structure member, even if it crosses vec4 boundaries.
467 */
468 bool is_packed;
469
470 /** set of nir_srcs where this register is used (read from) */
471 struct list_head uses;
472
473 /** set of nir_dests where this register is defined (written to) */
474 struct list_head defs;
475
476 /** set of nir_ifs where this register is used as a condition */
477 struct list_head if_uses;
478 } nir_register;
479
480 #define nir_foreach_register(reg, reg_list) \
481 foreach_list_typed(nir_register, reg, node, reg_list)
482 #define nir_foreach_register_safe(reg, reg_list) \
483 foreach_list_typed_safe(nir_register, reg, node, reg_list)
484
485 typedef enum PACKED {
486 nir_instr_type_alu,
487 nir_instr_type_deref,
488 nir_instr_type_call,
489 nir_instr_type_tex,
490 nir_instr_type_intrinsic,
491 nir_instr_type_load_const,
492 nir_instr_type_jump,
493 nir_instr_type_ssa_undef,
494 nir_instr_type_phi,
495 nir_instr_type_parallel_copy,
496 } nir_instr_type;
497
498 typedef struct nir_instr {
499 struct exec_node node;
500 struct nir_block *block;
501 nir_instr_type type;
502
503 /* A temporary for optimization and analysis passes to use for storing
504 * flags. For instance, DCE uses this to store the "dead/live" info.
505 */
506 uint8_t pass_flags;
507
508 /** generic instruction index. */
509 unsigned index;
510 } nir_instr;
511
512 static inline nir_instr *
513 nir_instr_next(nir_instr *instr)
514 {
515 struct exec_node *next = exec_node_get_next(&instr->node);
516 if (exec_node_is_tail_sentinel(next))
517 return NULL;
518 else
519 return exec_node_data(nir_instr, next, node);
520 }
521
522 static inline nir_instr *
523 nir_instr_prev(nir_instr *instr)
524 {
525 struct exec_node *prev = exec_node_get_prev(&instr->node);
526 if (exec_node_is_head_sentinel(prev))
527 return NULL;
528 else
529 return exec_node_data(nir_instr, prev, node);
530 }
531
532 static inline bool
533 nir_instr_is_first(const nir_instr *instr)
534 {
535 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
536 }
537
538 static inline bool
539 nir_instr_is_last(const nir_instr *instr)
540 {
541 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
542 }
543
544 typedef struct nir_ssa_def {
545 /** for debugging only, can be NULL */
546 const char* name;
547
548 /** generic SSA definition index. */
549 unsigned index;
550
551 /** Index into the live_in and live_out bitfields */
552 unsigned live_index;
553
554 /** Instruction which produces this SSA value. */
555 nir_instr *parent_instr;
556
557 /** set of nir_instrs where this register is used (read from) */
558 struct list_head uses;
559
560 /** set of nir_ifs where this register is used as a condition */
561 struct list_head if_uses;
562
563 uint8_t num_components;
564
565 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
566 uint8_t bit_size;
567 } nir_ssa_def;
568
569 struct nir_src;
570
571 typedef struct {
572 nir_register *reg;
573 struct nir_src *indirect; /** < NULL for no indirect offset */
574 unsigned base_offset;
575
576 /* TODO use-def chain goes here */
577 } nir_reg_src;
578
579 typedef struct {
580 nir_instr *parent_instr;
581 struct list_head def_link;
582
583 nir_register *reg;
584 struct nir_src *indirect; /** < NULL for no indirect offset */
585 unsigned base_offset;
586
587 /* TODO def-use chain goes here */
588 } nir_reg_dest;
589
590 struct nir_if;
591
592 typedef struct nir_src {
593 union {
594 /** Instruction that consumes this value as a source. */
595 nir_instr *parent_instr;
596 struct nir_if *parent_if;
597 };
598
599 struct list_head use_link;
600
601 union {
602 nir_reg_src reg;
603 nir_ssa_def *ssa;
604 };
605
606 bool is_ssa;
607 } nir_src;
608
609 static inline nir_src
610 nir_src_init(void)
611 {
612 nir_src src = { { NULL } };
613 return src;
614 }
615
616 #define NIR_SRC_INIT nir_src_init()
617
618 #define nir_foreach_use(src, reg_or_ssa_def) \
619 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
620
621 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
622 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
623
624 #define nir_foreach_if_use(src, reg_or_ssa_def) \
625 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
626
627 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
628 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
629
630 typedef struct {
631 union {
632 nir_reg_dest reg;
633 nir_ssa_def ssa;
634 };
635
636 bool is_ssa;
637 } nir_dest;
638
639 static inline nir_dest
640 nir_dest_init(void)
641 {
642 nir_dest dest = { { { NULL } } };
643 return dest;
644 }
645
646 #define NIR_DEST_INIT nir_dest_init()
647
648 #define nir_foreach_def(dest, reg) \
649 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
650
651 #define nir_foreach_def_safe(dest, reg) \
652 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
653
654 static inline nir_src
655 nir_src_for_ssa(nir_ssa_def *def)
656 {
657 nir_src src = NIR_SRC_INIT;
658
659 src.is_ssa = true;
660 src.ssa = def;
661
662 return src;
663 }
664
665 static inline nir_src
666 nir_src_for_reg(nir_register *reg)
667 {
668 nir_src src = NIR_SRC_INIT;
669
670 src.is_ssa = false;
671 src.reg.reg = reg;
672 src.reg.indirect = NULL;
673 src.reg.base_offset = 0;
674
675 return src;
676 }
677
678 static inline nir_dest
679 nir_dest_for_reg(nir_register *reg)
680 {
681 nir_dest dest = NIR_DEST_INIT;
682
683 dest.reg.reg = reg;
684
685 return dest;
686 }
687
688 static inline unsigned
689 nir_src_bit_size(nir_src src)
690 {
691 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
692 }
693
694 static inline unsigned
695 nir_src_num_components(nir_src src)
696 {
697 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
698 }
699
700 static inline bool
701 nir_src_is_const(nir_src src)
702 {
703 return src.is_ssa &&
704 src.ssa->parent_instr->type == nir_instr_type_load_const;
705 }
706
707 int64_t nir_src_as_int(nir_src src);
708 uint64_t nir_src_as_uint(nir_src src);
709 bool nir_src_as_bool(nir_src src);
710 double nir_src_as_float(nir_src src);
711 int64_t nir_src_comp_as_int(nir_src src, unsigned component);
712 uint64_t nir_src_comp_as_uint(nir_src src, unsigned component);
713 bool nir_src_comp_as_bool(nir_src src, unsigned component);
714 double nir_src_comp_as_float(nir_src src, unsigned component);
715
716 static inline unsigned
717 nir_dest_bit_size(nir_dest dest)
718 {
719 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
720 }
721
722 static inline unsigned
723 nir_dest_num_components(nir_dest dest)
724 {
725 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
726 }
727
728 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
729 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
730
731 typedef struct {
732 nir_src src;
733
734 /**
735 * \name input modifiers
736 */
737 /*@{*/
738 /**
739 * For inputs interpreted as floating point, flips the sign bit. For
740 * inputs interpreted as integers, performs the two's complement negation.
741 */
742 bool negate;
743
744 /**
745 * Clears the sign bit for floating point values, and computes the integer
746 * absolute value for integers. Note that the negate modifier acts after
747 * the absolute value modifier, therefore if both are set then all inputs
748 * will become negative.
749 */
750 bool abs;
751 /*@}*/
752
753 /**
754 * For each input component, says which component of the register it is
755 * chosen from. Note that which elements of the swizzle are used and which
756 * are ignored are based on the write mask for most opcodes - for example,
757 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
758 * a swizzle of {2, x, 1, 0} where x means "don't care."
759 */
760 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
761 } nir_alu_src;
762
763 typedef struct {
764 nir_dest dest;
765
766 /**
767 * \name saturate output modifier
768 *
769 * Only valid for opcodes that output floating-point numbers. Clamps the
770 * output to between 0.0 and 1.0 inclusive.
771 */
772
773 bool saturate;
774
775 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
776 } nir_alu_dest;
777
778 /** NIR sized and unsized types
779 *
780 * The values in this enum are carefully chosen so that the sized type is
781 * just the unsized type OR the number of bits.
782 */
783 typedef enum {
784 nir_type_invalid = 0, /* Not a valid type */
785 nir_type_int = 2,
786 nir_type_uint = 4,
787 nir_type_bool = 6,
788 nir_type_float = 128,
789 nir_type_bool1 = 1 | nir_type_bool,
790 nir_type_bool32 = 32 | nir_type_bool,
791 nir_type_int1 = 1 | nir_type_int,
792 nir_type_int8 = 8 | nir_type_int,
793 nir_type_int16 = 16 | nir_type_int,
794 nir_type_int32 = 32 | nir_type_int,
795 nir_type_int64 = 64 | nir_type_int,
796 nir_type_uint1 = 1 | nir_type_uint,
797 nir_type_uint8 = 8 | nir_type_uint,
798 nir_type_uint16 = 16 | nir_type_uint,
799 nir_type_uint32 = 32 | nir_type_uint,
800 nir_type_uint64 = 64 | nir_type_uint,
801 nir_type_float16 = 16 | nir_type_float,
802 nir_type_float32 = 32 | nir_type_float,
803 nir_type_float64 = 64 | nir_type_float,
804 } nir_alu_type;
805
806 #define NIR_ALU_TYPE_SIZE_MASK 0x79
807 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
808
809 static inline unsigned
810 nir_alu_type_get_type_size(nir_alu_type type)
811 {
812 return type & NIR_ALU_TYPE_SIZE_MASK;
813 }
814
815 static inline unsigned
816 nir_alu_type_get_base_type(nir_alu_type type)
817 {
818 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
819 }
820
821 static inline nir_alu_type
822 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
823 {
824 switch (base_type) {
825 case GLSL_TYPE_BOOL:
826 return nir_type_bool1;
827 break;
828 case GLSL_TYPE_UINT:
829 return nir_type_uint32;
830 break;
831 case GLSL_TYPE_INT:
832 return nir_type_int32;
833 break;
834 case GLSL_TYPE_UINT16:
835 return nir_type_uint16;
836 break;
837 case GLSL_TYPE_INT16:
838 return nir_type_int16;
839 break;
840 case GLSL_TYPE_UINT8:
841 return nir_type_uint8;
842 case GLSL_TYPE_INT8:
843 return nir_type_int8;
844 case GLSL_TYPE_UINT64:
845 return nir_type_uint64;
846 break;
847 case GLSL_TYPE_INT64:
848 return nir_type_int64;
849 break;
850 case GLSL_TYPE_FLOAT:
851 return nir_type_float32;
852 break;
853 case GLSL_TYPE_FLOAT16:
854 return nir_type_float16;
855 break;
856 case GLSL_TYPE_DOUBLE:
857 return nir_type_float64;
858 break;
859 default:
860 unreachable("unknown type");
861 }
862 }
863
864 static inline nir_alu_type
865 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
866 {
867 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
868 }
869
870 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
871 nir_rounding_mode rnd);
872
873 typedef enum {
874 NIR_OP_IS_COMMUTATIVE = (1 << 0),
875 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
876 } nir_op_algebraic_property;
877
878 typedef struct {
879 const char *name;
880
881 unsigned num_inputs;
882
883 /**
884 * The number of components in the output
885 *
886 * If non-zero, this is the size of the output and input sizes are
887 * explicitly given; swizzle and writemask are still in effect, but if
888 * the output component is masked out, then the input component may
889 * still be in use.
890 *
891 * If zero, the opcode acts in the standard, per-component manner; the
892 * operation is performed on each component (except the ones that are
893 * masked out) with the input being taken from the input swizzle for
894 * that component.
895 *
896 * The size of some of the inputs may be given (i.e. non-zero) even
897 * though output_size is zero; in that case, the inputs with a zero
898 * size act per-component, while the inputs with non-zero size don't.
899 */
900 unsigned output_size;
901
902 /**
903 * The type of vector that the instruction outputs. Note that the
904 * staurate modifier is only allowed on outputs with the float type.
905 */
906
907 nir_alu_type output_type;
908
909 /**
910 * The number of components in each input
911 */
912 unsigned input_sizes[NIR_MAX_VEC_COMPONENTS];
913
914 /**
915 * The type of vector that each input takes. Note that negate and
916 * absolute value are only allowed on inputs with int or float type and
917 * behave differently on the two.
918 */
919 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
920
921 nir_op_algebraic_property algebraic_properties;
922
923 /* Whether this represents a numeric conversion opcode */
924 bool is_conversion;
925 } nir_op_info;
926
927 extern const nir_op_info nir_op_infos[nir_num_opcodes];
928
929 typedef struct nir_alu_instr {
930 nir_instr instr;
931 nir_op op;
932
933 /** Indicates that this ALU instruction generates an exact value
934 *
935 * This is kind of a mixture of GLSL "precise" and "invariant" and not
936 * really equivalent to either. This indicates that the value generated by
937 * this operation is high-precision and any code transformations that touch
938 * it must ensure that the resulting value is bit-for-bit identical to the
939 * original.
940 */
941 bool exact;
942
943 nir_alu_dest dest;
944 nir_alu_src src[];
945 } nir_alu_instr;
946
947 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
948 nir_alu_instr *instr);
949 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
950 nir_alu_instr *instr);
951
952 /* is this source channel used? */
953 static inline bool
954 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
955 unsigned channel)
956 {
957 if (nir_op_infos[instr->op].input_sizes[src] > 0)
958 return channel < nir_op_infos[instr->op].input_sizes[src];
959
960 return (instr->dest.write_mask >> channel) & 1;
961 }
962
963 static inline nir_component_mask_t
964 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
965 {
966 nir_component_mask_t read_mask = 0;
967 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
968 if (!nir_alu_instr_channel_used(instr, src, c))
969 continue;
970
971 read_mask |= (1 << instr->src[src].swizzle[c]);
972 }
973 return read_mask;
974 }
975
976 /*
977 * For instructions whose destinations are SSA, get the number of channels
978 * used for a source
979 */
980 static inline unsigned
981 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
982 {
983 assert(instr->dest.dest.is_ssa);
984
985 if (nir_op_infos[instr->op].input_sizes[src] > 0)
986 return nir_op_infos[instr->op].input_sizes[src];
987
988 return instr->dest.dest.ssa.num_components;
989 }
990
991 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
992 unsigned src1, unsigned src2);
993
994 typedef enum {
995 nir_deref_type_var,
996 nir_deref_type_array,
997 nir_deref_type_array_wildcard,
998 nir_deref_type_ptr_as_array,
999 nir_deref_type_struct,
1000 nir_deref_type_cast,
1001 } nir_deref_type;
1002
1003 typedef struct {
1004 nir_instr instr;
1005
1006 /** The type of this deref instruction */
1007 nir_deref_type deref_type;
1008
1009 /** The mode of the underlying variable */
1010 nir_variable_mode mode;
1011
1012 /** The dereferenced type of the resulting pointer value */
1013 const struct glsl_type *type;
1014
1015 union {
1016 /** Variable being dereferenced if deref_type is a deref_var */
1017 nir_variable *var;
1018
1019 /** Parent deref if deref_type is not deref_var */
1020 nir_src parent;
1021 };
1022
1023 /** Additional deref parameters */
1024 union {
1025 struct {
1026 nir_src index;
1027 } arr;
1028
1029 struct {
1030 unsigned index;
1031 } strct;
1032
1033 struct {
1034 unsigned ptr_stride;
1035 } cast;
1036 };
1037
1038 /** Destination to store the resulting "pointer" */
1039 nir_dest dest;
1040 } nir_deref_instr;
1041
1042 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
1043 type, nir_instr_type_deref)
1044
1045 static inline nir_deref_instr *
1046 nir_src_as_deref(nir_src src)
1047 {
1048 if (!src.is_ssa)
1049 return NULL;
1050
1051 if (src.ssa->parent_instr->type != nir_instr_type_deref)
1052 return NULL;
1053
1054 return nir_instr_as_deref(src.ssa->parent_instr);
1055 }
1056
1057 static inline nir_deref_instr *
1058 nir_deref_instr_parent(const nir_deref_instr *instr)
1059 {
1060 if (instr->deref_type == nir_deref_type_var)
1061 return NULL;
1062 else
1063 return nir_src_as_deref(instr->parent);
1064 }
1065
1066 static inline nir_variable *
1067 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1068 {
1069 while (instr->deref_type != nir_deref_type_var) {
1070 if (instr->deref_type == nir_deref_type_cast)
1071 return NULL;
1072
1073 instr = nir_deref_instr_parent(instr);
1074 }
1075
1076 return instr->var;
1077 }
1078
1079 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1080
1081 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1082
1083 unsigned nir_deref_instr_ptr_as_array_stride(nir_deref_instr *instr);
1084
1085 typedef struct {
1086 nir_instr instr;
1087
1088 struct nir_function *callee;
1089
1090 unsigned num_params;
1091 nir_src params[];
1092 } nir_call_instr;
1093
1094 #include "nir_intrinsics.h"
1095
1096 #define NIR_INTRINSIC_MAX_CONST_INDEX 4
1097
1098 /** Represents an intrinsic
1099 *
1100 * An intrinsic is an instruction type for handling things that are
1101 * more-or-less regular operations but don't just consume and produce SSA
1102 * values like ALU operations do. Intrinsics are not for things that have
1103 * special semantic meaning such as phi nodes and parallel copies.
1104 * Examples of intrinsics include variable load/store operations, system
1105 * value loads, and the like. Even though texturing more-or-less falls
1106 * under this category, texturing is its own instruction type because
1107 * trying to represent texturing with intrinsics would lead to a
1108 * combinatorial explosion of intrinsic opcodes.
1109 *
1110 * By having a single instruction type for handling a lot of different
1111 * cases, optimization passes can look for intrinsics and, for the most
1112 * part, completely ignore them. Each intrinsic type also has a few
1113 * possible flags that govern whether or not they can be reordered or
1114 * eliminated. That way passes like dead code elimination can still work
1115 * on intrisics without understanding the meaning of each.
1116 *
1117 * Each intrinsic has some number of constant indices, some number of
1118 * variables, and some number of sources. What these sources, variables,
1119 * and indices mean depends on the intrinsic and is documented with the
1120 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1121 * instructions are the only types of instruction that can operate on
1122 * variables.
1123 */
1124 typedef struct {
1125 nir_instr instr;
1126
1127 nir_intrinsic_op intrinsic;
1128
1129 nir_dest dest;
1130
1131 /** number of components if this is a vectorized intrinsic
1132 *
1133 * Similarly to ALU operations, some intrinsics are vectorized.
1134 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1135 * For vectorized intrinsics, the num_components field specifies the
1136 * number of destination components and the number of source components
1137 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1138 */
1139 uint8_t num_components;
1140
1141 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1142
1143 nir_src src[];
1144 } nir_intrinsic_instr;
1145
1146 static inline nir_variable *
1147 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1148 {
1149 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1150 }
1151
1152 /**
1153 * \name NIR intrinsics semantic flags
1154 *
1155 * information about what the compiler can do with the intrinsics.
1156 *
1157 * \sa nir_intrinsic_info::flags
1158 */
1159 typedef enum {
1160 /**
1161 * whether the intrinsic can be safely eliminated if none of its output
1162 * value is not being used.
1163 */
1164 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1165
1166 /**
1167 * Whether the intrinsic can be reordered with respect to any other
1168 * intrinsic, i.e. whether the only reordering dependencies of the
1169 * intrinsic are due to the register reads/writes.
1170 */
1171 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1172 } nir_intrinsic_semantic_flag;
1173
1174 /**
1175 * \name NIR intrinsics const-index flag
1176 *
1177 * Indicates the usage of a const_index slot.
1178 *
1179 * \sa nir_intrinsic_info::index_map
1180 */
1181 typedef enum {
1182 /**
1183 * Generally instructions that take a offset src argument, can encode
1184 * a constant 'base' value which is added to the offset.
1185 */
1186 NIR_INTRINSIC_BASE = 1,
1187
1188 /**
1189 * For store instructions, a writemask for the store.
1190 */
1191 NIR_INTRINSIC_WRMASK = 2,
1192
1193 /**
1194 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1195 */
1196 NIR_INTRINSIC_STREAM_ID = 3,
1197
1198 /**
1199 * The clip-plane id for load_user_clip_plane intrinsic.
1200 */
1201 NIR_INTRINSIC_UCP_ID = 4,
1202
1203 /**
1204 * The amount of data, starting from BASE, that this instruction may
1205 * access. This is used to provide bounds if the offset is not constant.
1206 */
1207 NIR_INTRINSIC_RANGE = 5,
1208
1209 /**
1210 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1211 */
1212 NIR_INTRINSIC_DESC_SET = 6,
1213
1214 /**
1215 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1216 */
1217 NIR_INTRINSIC_BINDING = 7,
1218
1219 /**
1220 * Component offset.
1221 */
1222 NIR_INTRINSIC_COMPONENT = 8,
1223
1224 /**
1225 * Interpolation mode (only meaningful for FS inputs).
1226 */
1227 NIR_INTRINSIC_INTERP_MODE = 9,
1228
1229 /**
1230 * A binary nir_op to use when performing a reduction or scan operation
1231 */
1232 NIR_INTRINSIC_REDUCTION_OP = 10,
1233
1234 /**
1235 * Cluster size for reduction operations
1236 */
1237 NIR_INTRINSIC_CLUSTER_SIZE = 11,
1238
1239 /**
1240 * Parameter index for a load_param intrinsic
1241 */
1242 NIR_INTRINSIC_PARAM_IDX = 12,
1243
1244 /**
1245 * Image dimensionality for image intrinsics
1246 *
1247 * One of GLSL_SAMPLER_DIM_*
1248 */
1249 NIR_INTRINSIC_IMAGE_DIM = 13,
1250
1251 /**
1252 * Non-zero if we are accessing an array image
1253 */
1254 NIR_INTRINSIC_IMAGE_ARRAY = 14,
1255
1256 /**
1257 * Image format for image intrinsics
1258 */
1259 NIR_INTRINSIC_FORMAT = 15,
1260
1261 /**
1262 * Access qualifiers for image and memory access intrinsics
1263 */
1264 NIR_INTRINSIC_ACCESS = 16,
1265
1266 /**
1267 * Alignment for offsets and addresses
1268 *
1269 * These two parameters, specify an alignment in terms of a multiplier and
1270 * an offset. The offset or address parameter X of the intrinsic is
1271 * guaranteed to satisfy the following:
1272 *
1273 * (X - align_offset) % align_mul == 0
1274 */
1275 NIR_INTRINSIC_ALIGN_MUL = 17,
1276 NIR_INTRINSIC_ALIGN_OFFSET = 18,
1277
1278 /**
1279 * The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic.
1280 */
1281 NIR_INTRINSIC_DESC_TYPE = 19,
1282
1283 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1284
1285 } nir_intrinsic_index_flag;
1286
1287 #define NIR_INTRINSIC_MAX_INPUTS 5
1288
1289 typedef struct {
1290 const char *name;
1291
1292 unsigned num_srcs; /** < number of register/SSA inputs */
1293
1294 /** number of components of each input register
1295 *
1296 * If this value is 0, the number of components is given by the
1297 * num_components field of nir_intrinsic_instr. If this value is -1, the
1298 * intrinsic consumes however many components are provided and it is not
1299 * validated at all.
1300 */
1301 int src_components[NIR_INTRINSIC_MAX_INPUTS];
1302
1303 bool has_dest;
1304
1305 /** number of components of the output register
1306 *
1307 * If this value is 0, the number of components is given by the
1308 * num_components field of nir_intrinsic_instr.
1309 */
1310 unsigned dest_components;
1311
1312 /** bitfield of legal bit sizes */
1313 unsigned dest_bit_sizes;
1314
1315 /** the number of constant indices used by the intrinsic */
1316 unsigned num_indices;
1317
1318 /** indicates the usage of intr->const_index[n] */
1319 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1320
1321 /** semantic flags for calls to this intrinsic */
1322 nir_intrinsic_semantic_flag flags;
1323 } nir_intrinsic_info;
1324
1325 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1326
1327 static inline unsigned
1328 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1329 {
1330 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1331 assert(srcn < info->num_srcs);
1332 if (info->src_components[srcn] > 0)
1333 return info->src_components[srcn];
1334 else if (info->src_components[srcn] == 0)
1335 return intr->num_components;
1336 else
1337 return nir_src_num_components(intr->src[srcn]);
1338 }
1339
1340 static inline unsigned
1341 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1342 {
1343 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1344 if (!info->has_dest)
1345 return 0;
1346 else if (info->dest_components)
1347 return info->dest_components;
1348 else
1349 return intr->num_components;
1350 }
1351
1352 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1353 static inline type \
1354 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1355 { \
1356 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1357 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1358 return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1359 } \
1360 static inline void \
1361 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1362 { \
1363 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1364 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1365 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1366 }
1367
1368 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1369 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1370 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1371 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1372 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1373 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1374 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1375 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1376 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1377 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1378 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1379 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1380 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1381 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1382 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1383 INTRINSIC_IDX_ACCESSORS(format, FORMAT, unsigned)
1384 INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
1385 INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
1386 INTRINSIC_IDX_ACCESSORS(desc_type, DESC_TYPE, unsigned)
1387
1388 static inline void
1389 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1390 unsigned align_mul, unsigned align_offset)
1391 {
1392 assert(util_is_power_of_two_nonzero(align_mul));
1393 assert(align_offset < align_mul);
1394 nir_intrinsic_set_align_mul(intrin, align_mul);
1395 nir_intrinsic_set_align_offset(intrin, align_offset);
1396 }
1397
1398 /** Returns a simple alignment for a load/store intrinsic offset
1399 *
1400 * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1401 * and ALIGN_OFFSET parameters, this helper takes both into account and
1402 * provides a single simple alignment parameter. The offset X is guaranteed
1403 * to satisfy X % align == 0.
1404 */
1405 static inline unsigned
1406 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
1407 {
1408 const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1409 const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1410 assert(align_offset < align_mul);
1411 return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1412 }
1413
1414 /**
1415 * \group texture information
1416 *
1417 * This gives semantic information about textures which is useful to the
1418 * frontend, the backend, and lowering passes, but not the optimizer.
1419 */
1420
1421 typedef enum {
1422 nir_tex_src_coord,
1423 nir_tex_src_projector,
1424 nir_tex_src_comparator, /* shadow comparator */
1425 nir_tex_src_offset,
1426 nir_tex_src_bias,
1427 nir_tex_src_lod,
1428 nir_tex_src_min_lod,
1429 nir_tex_src_ms_index, /* MSAA sample index */
1430 nir_tex_src_ms_mcs, /* MSAA compression value */
1431 nir_tex_src_ddx,
1432 nir_tex_src_ddy,
1433 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1434 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1435 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1436 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1437 nir_tex_src_plane, /* < selects plane for planar textures */
1438 nir_num_tex_src_types
1439 } nir_tex_src_type;
1440
1441 typedef struct {
1442 nir_src src;
1443 nir_tex_src_type src_type;
1444 } nir_tex_src;
1445
1446 typedef enum {
1447 nir_texop_tex, /**< Regular texture look-up */
1448 nir_texop_txb, /**< Texture look-up with LOD bias */
1449 nir_texop_txl, /**< Texture look-up with explicit LOD */
1450 nir_texop_txd, /**< Texture look-up with partial derivatives */
1451 nir_texop_txf, /**< Texel fetch with explicit LOD */
1452 nir_texop_txf_ms, /**< Multisample texture fetch */
1453 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1454 nir_texop_txs, /**< Texture size */
1455 nir_texop_lod, /**< Texture lod query */
1456 nir_texop_tg4, /**< Texture gather */
1457 nir_texop_query_levels, /**< Texture levels query */
1458 nir_texop_texture_samples, /**< Texture samples query */
1459 nir_texop_samples_identical, /**< Query whether all samples are definitely
1460 * identical.
1461 */
1462 } nir_texop;
1463
1464 typedef struct {
1465 nir_instr instr;
1466
1467 enum glsl_sampler_dim sampler_dim;
1468 nir_alu_type dest_type;
1469
1470 nir_texop op;
1471 nir_dest dest;
1472 nir_tex_src *src;
1473 unsigned num_srcs, coord_components;
1474 bool is_array, is_shadow;
1475
1476 /**
1477 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1478 * components or the new-style shadow that outputs 1 component.
1479 */
1480 bool is_new_style_shadow;
1481
1482 /* gather component selector */
1483 unsigned component : 2;
1484
1485 /* gather offsets */
1486 int8_t tg4_offsets[4][2];
1487
1488 /** The texture index
1489 *
1490 * If this texture instruction has a nir_tex_src_texture_offset source,
1491 * then the texture index is given by texture_index + texture_offset.
1492 */
1493 unsigned texture_index;
1494
1495 /** The size of the texture array or 0 if it's not an array */
1496 unsigned texture_array_size;
1497
1498 /** The sampler index
1499 *
1500 * The following operations do not require a sampler and, as such, this
1501 * field should be ignored:
1502 * - nir_texop_txf
1503 * - nir_texop_txf_ms
1504 * - nir_texop_txs
1505 * - nir_texop_lod
1506 * - nir_texop_query_levels
1507 * - nir_texop_texture_samples
1508 * - nir_texop_samples_identical
1509 *
1510 * If this texture instruction has a nir_tex_src_sampler_offset source,
1511 * then the sampler index is given by sampler_index + sampler_offset.
1512 */
1513 unsigned sampler_index;
1514 } nir_tex_instr;
1515
1516 static inline unsigned
1517 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1518 {
1519 switch (instr->op) {
1520 case nir_texop_txs: {
1521 unsigned ret;
1522 switch (instr->sampler_dim) {
1523 case GLSL_SAMPLER_DIM_1D:
1524 case GLSL_SAMPLER_DIM_BUF:
1525 ret = 1;
1526 break;
1527 case GLSL_SAMPLER_DIM_2D:
1528 case GLSL_SAMPLER_DIM_CUBE:
1529 case GLSL_SAMPLER_DIM_MS:
1530 case GLSL_SAMPLER_DIM_RECT:
1531 case GLSL_SAMPLER_DIM_EXTERNAL:
1532 case GLSL_SAMPLER_DIM_SUBPASS:
1533 ret = 2;
1534 break;
1535 case GLSL_SAMPLER_DIM_3D:
1536 ret = 3;
1537 break;
1538 default:
1539 unreachable("not reached");
1540 }
1541 if (instr->is_array)
1542 ret++;
1543 return ret;
1544 }
1545
1546 case nir_texop_lod:
1547 return 2;
1548
1549 case nir_texop_texture_samples:
1550 case nir_texop_query_levels:
1551 case nir_texop_samples_identical:
1552 return 1;
1553
1554 default:
1555 if (instr->is_shadow && instr->is_new_style_shadow)
1556 return 1;
1557
1558 return 4;
1559 }
1560 }
1561
1562 /* Returns true if this texture operation queries something about the texture
1563 * rather than actually sampling it.
1564 */
1565 static inline bool
1566 nir_tex_instr_is_query(const nir_tex_instr *instr)
1567 {
1568 switch (instr->op) {
1569 case nir_texop_txs:
1570 case nir_texop_lod:
1571 case nir_texop_texture_samples:
1572 case nir_texop_query_levels:
1573 case nir_texop_txf_ms_mcs:
1574 return true;
1575 case nir_texop_tex:
1576 case nir_texop_txb:
1577 case nir_texop_txl:
1578 case nir_texop_txd:
1579 case nir_texop_txf:
1580 case nir_texop_txf_ms:
1581 case nir_texop_tg4:
1582 return false;
1583 default:
1584 unreachable("Invalid texture opcode");
1585 }
1586 }
1587
1588 static inline bool
1589 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1590 {
1591 switch (instr->op) {
1592 case nir_op_flt:
1593 case nir_op_fge:
1594 case nir_op_feq:
1595 case nir_op_fne:
1596 case nir_op_ilt:
1597 case nir_op_ult:
1598 case nir_op_ige:
1599 case nir_op_uge:
1600 case nir_op_ieq:
1601 case nir_op_ine:
1602 case nir_op_i2b1:
1603 case nir_op_f2b1:
1604 case nir_op_inot:
1605 case nir_op_fnot:
1606 return true;
1607 default:
1608 return false;
1609 }
1610 }
1611
1612 static inline nir_alu_type
1613 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1614 {
1615 switch (instr->src[src].src_type) {
1616 case nir_tex_src_coord:
1617 switch (instr->op) {
1618 case nir_texop_txf:
1619 case nir_texop_txf_ms:
1620 case nir_texop_txf_ms_mcs:
1621 case nir_texop_samples_identical:
1622 return nir_type_int;
1623
1624 default:
1625 return nir_type_float;
1626 }
1627
1628 case nir_tex_src_lod:
1629 switch (instr->op) {
1630 case nir_texop_txs:
1631 case nir_texop_txf:
1632 return nir_type_int;
1633
1634 default:
1635 return nir_type_float;
1636 }
1637
1638 case nir_tex_src_projector:
1639 case nir_tex_src_comparator:
1640 case nir_tex_src_bias:
1641 case nir_tex_src_ddx:
1642 case nir_tex_src_ddy:
1643 return nir_type_float;
1644
1645 case nir_tex_src_offset:
1646 case nir_tex_src_ms_index:
1647 case nir_tex_src_texture_offset:
1648 case nir_tex_src_sampler_offset:
1649 return nir_type_int;
1650
1651 default:
1652 unreachable("Invalid texture source type");
1653 }
1654 }
1655
1656 static inline unsigned
1657 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1658 {
1659 if (instr->src[src].src_type == nir_tex_src_coord)
1660 return instr->coord_components;
1661
1662 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1663 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1664 return 4;
1665
1666 if (instr->src[src].src_type == nir_tex_src_ddx ||
1667 instr->src[src].src_type == nir_tex_src_ddy) {
1668 if (instr->is_array)
1669 return instr->coord_components - 1;
1670 else
1671 return instr->coord_components;
1672 }
1673
1674 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1675 * the offset, since a cube maps to a single face.
1676 */
1677 if (instr->src[src].src_type == nir_tex_src_offset) {
1678 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1679 return 2;
1680 else if (instr->is_array)
1681 return instr->coord_components - 1;
1682 else
1683 return instr->coord_components;
1684 }
1685
1686 return 1;
1687 }
1688
1689 static inline int
1690 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1691 {
1692 for (unsigned i = 0; i < instr->num_srcs; i++)
1693 if (instr->src[i].src_type == type)
1694 return (int) i;
1695
1696 return -1;
1697 }
1698
1699 void nir_tex_instr_add_src(nir_tex_instr *tex,
1700 nir_tex_src_type src_type,
1701 nir_src src);
1702
1703 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1704
1705 bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
1706
1707 typedef struct {
1708 nir_instr instr;
1709
1710 nir_const_value value;
1711
1712 nir_ssa_def def;
1713 } nir_load_const_instr;
1714
1715 typedef enum {
1716 nir_jump_return,
1717 nir_jump_break,
1718 nir_jump_continue,
1719 } nir_jump_type;
1720
1721 typedef struct {
1722 nir_instr instr;
1723 nir_jump_type type;
1724 } nir_jump_instr;
1725
1726 /* creates a new SSA variable in an undefined state */
1727
1728 typedef struct {
1729 nir_instr instr;
1730 nir_ssa_def def;
1731 } nir_ssa_undef_instr;
1732
1733 typedef struct {
1734 struct exec_node node;
1735
1736 /* The predecessor block corresponding to this source */
1737 struct nir_block *pred;
1738
1739 nir_src src;
1740 } nir_phi_src;
1741
1742 #define nir_foreach_phi_src(phi_src, phi) \
1743 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1744 #define nir_foreach_phi_src_safe(phi_src, phi) \
1745 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1746
1747 typedef struct {
1748 nir_instr instr;
1749
1750 struct exec_list srcs; /** < list of nir_phi_src */
1751
1752 nir_dest dest;
1753 } nir_phi_instr;
1754
1755 typedef struct {
1756 struct exec_node node;
1757 nir_src src;
1758 nir_dest dest;
1759 } nir_parallel_copy_entry;
1760
1761 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1762 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1763
1764 typedef struct {
1765 nir_instr instr;
1766
1767 /* A list of nir_parallel_copy_entrys. The sources of all of the
1768 * entries are copied to the corresponding destinations "in parallel".
1769 * In other words, if we have two entries: a -> b and b -> a, the values
1770 * get swapped.
1771 */
1772 struct exec_list entries;
1773 } nir_parallel_copy_instr;
1774
1775 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1776 type, nir_instr_type_alu)
1777 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1778 type, nir_instr_type_call)
1779 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1780 type, nir_instr_type_jump)
1781 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1782 type, nir_instr_type_tex)
1783 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1784 type, nir_instr_type_intrinsic)
1785 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1786 type, nir_instr_type_load_const)
1787 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1788 type, nir_instr_type_ssa_undef)
1789 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1790 type, nir_instr_type_phi)
1791 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1792 nir_parallel_copy_instr, instr,
1793 type, nir_instr_type_parallel_copy)
1794
1795 /*
1796 * Control flow
1797 *
1798 * Control flow consists of a tree of control flow nodes, which include
1799 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1800 * instructions that always run start-to-finish. Each basic block also keeps
1801 * track of its successors (blocks which may run immediately after the current
1802 * block) and predecessors (blocks which could have run immediately before the
1803 * current block). Each function also has a start block and an end block which
1804 * all return statements point to (which is always empty). Together, all the
1805 * blocks with their predecessors and successors make up the control flow
1806 * graph (CFG) of the function. There are helpers that modify the tree of
1807 * control flow nodes while modifying the CFG appropriately; these should be
1808 * used instead of modifying the tree directly.
1809 */
1810
1811 typedef enum {
1812 nir_cf_node_block,
1813 nir_cf_node_if,
1814 nir_cf_node_loop,
1815 nir_cf_node_function
1816 } nir_cf_node_type;
1817
1818 typedef struct nir_cf_node {
1819 struct exec_node node;
1820 nir_cf_node_type type;
1821 struct nir_cf_node *parent;
1822 } nir_cf_node;
1823
1824 typedef struct nir_block {
1825 nir_cf_node cf_node;
1826
1827 struct exec_list instr_list; /** < list of nir_instr */
1828
1829 /** generic block index; generated by nir_index_blocks */
1830 unsigned index;
1831
1832 /*
1833 * Each block can only have up to 2 successors, so we put them in a simple
1834 * array - no need for anything more complicated.
1835 */
1836 struct nir_block *successors[2];
1837
1838 /* Set of nir_block predecessors in the CFG */
1839 struct set *predecessors;
1840
1841 /*
1842 * this node's immediate dominator in the dominance tree - set to NULL for
1843 * the start block.
1844 */
1845 struct nir_block *imm_dom;
1846
1847 /* This node's children in the dominance tree */
1848 unsigned num_dom_children;
1849 struct nir_block **dom_children;
1850
1851 /* Set of nir_blocks on the dominance frontier of this block */
1852 struct set *dom_frontier;
1853
1854 /*
1855 * These two indices have the property that dom_{pre,post}_index for each
1856 * child of this block in the dominance tree will always be between
1857 * dom_pre_index and dom_post_index for this block, which makes testing if
1858 * a given block is dominated by another block an O(1) operation.
1859 */
1860 unsigned dom_pre_index, dom_post_index;
1861
1862 /* live in and out for this block; used for liveness analysis */
1863 BITSET_WORD *live_in;
1864 BITSET_WORD *live_out;
1865 } nir_block;
1866
1867 static inline nir_instr *
1868 nir_block_first_instr(nir_block *block)
1869 {
1870 struct exec_node *head = exec_list_get_head(&block->instr_list);
1871 return exec_node_data(nir_instr, head, node);
1872 }
1873
1874 static inline nir_instr *
1875 nir_block_last_instr(nir_block *block)
1876 {
1877 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1878 return exec_node_data(nir_instr, tail, node);
1879 }
1880
1881 static inline bool
1882 nir_block_ends_in_jump(nir_block *block)
1883 {
1884 return !exec_list_is_empty(&block->instr_list) &&
1885 nir_block_last_instr(block)->type == nir_instr_type_jump;
1886 }
1887
1888 #define nir_foreach_instr(instr, block) \
1889 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1890 #define nir_foreach_instr_reverse(instr, block) \
1891 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1892 #define nir_foreach_instr_safe(instr, block) \
1893 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1894 #define nir_foreach_instr_reverse_safe(instr, block) \
1895 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1896
1897 typedef struct nir_if {
1898 nir_cf_node cf_node;
1899 nir_src condition;
1900
1901 struct exec_list then_list; /** < list of nir_cf_node */
1902 struct exec_list else_list; /** < list of nir_cf_node */
1903 } nir_if;
1904
1905 typedef struct {
1906 nir_if *nif;
1907
1908 /** Instruction that generates nif::condition. */
1909 nir_instr *conditional_instr;
1910
1911 /** Block within ::nif that has the break instruction. */
1912 nir_block *break_block;
1913
1914 /** Last block for the then- or else-path that does not contain the break. */
1915 nir_block *continue_from_block;
1916
1917 /** True when ::break_block is in the else-path of ::nif. */
1918 bool continue_from_then;
1919 bool induction_rhs;
1920
1921 /* This is true if the terminators exact trip count is unknown. For
1922 * example:
1923 *
1924 * for (int i = 0; i < imin(x, 4); i++)
1925 * ...
1926 *
1927 * Here loop analysis would have set a max_trip_count of 4 however we dont
1928 * know for sure that this is the exact trip count.
1929 */
1930 bool exact_trip_count_unknown;
1931
1932 struct list_head loop_terminator_link;
1933 } nir_loop_terminator;
1934
1935 typedef struct {
1936 /* Estimated cost (in number of instructions) of the loop */
1937 unsigned instr_cost;
1938
1939 /* Guessed trip count based on array indexing */
1940 unsigned guessed_trip_count;
1941
1942 /* Maximum number of times the loop is run (if known) */
1943 unsigned max_trip_count;
1944
1945 /* Do we know the exact number of times the loop will be run */
1946 bool exact_trip_count_known;
1947
1948 /* Unroll the loop regardless of its size */
1949 bool force_unroll;
1950
1951 /* Does the loop contain complex loop terminators, continues or other
1952 * complex behaviours? If this is true we can't rely on
1953 * loop_terminator_list to be complete or accurate.
1954 */
1955 bool complex_loop;
1956
1957 nir_loop_terminator *limiting_terminator;
1958
1959 /* A list of loop_terminators terminating this loop. */
1960 struct list_head loop_terminator_list;
1961 } nir_loop_info;
1962
1963 typedef struct {
1964 nir_cf_node cf_node;
1965
1966 struct exec_list body; /** < list of nir_cf_node */
1967
1968 nir_loop_info *info;
1969 bool partially_unrolled;
1970 } nir_loop;
1971
1972 /**
1973 * Various bits of metadata that can may be created or required by
1974 * optimization and analysis passes
1975 */
1976 typedef enum {
1977 nir_metadata_none = 0x0,
1978 nir_metadata_block_index = 0x1,
1979 nir_metadata_dominance = 0x2,
1980 nir_metadata_live_ssa_defs = 0x4,
1981 nir_metadata_not_properly_reset = 0x8,
1982 nir_metadata_loop_analysis = 0x10,
1983 } nir_metadata;
1984
1985 typedef struct {
1986 nir_cf_node cf_node;
1987
1988 /** pointer to the function of which this is an implementation */
1989 struct nir_function *function;
1990
1991 struct exec_list body; /** < list of nir_cf_node */
1992
1993 nir_block *end_block;
1994
1995 /** list for all local variables in the function */
1996 struct exec_list locals;
1997
1998 /** list of local registers in the function */
1999 struct exec_list registers;
2000
2001 /** next available local register index */
2002 unsigned reg_alloc;
2003
2004 /** next available SSA value index */
2005 unsigned ssa_alloc;
2006
2007 /* total number of basic blocks, only valid when block_index_dirty = false */
2008 unsigned num_blocks;
2009
2010 nir_metadata valid_metadata;
2011 } nir_function_impl;
2012
2013 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2014 nir_start_block(nir_function_impl *impl)
2015 {
2016 return (nir_block *) impl->body.head_sentinel.next;
2017 }
2018
2019 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2020 nir_impl_last_block(nir_function_impl *impl)
2021 {
2022 return (nir_block *) impl->body.tail_sentinel.prev;
2023 }
2024
2025 static inline nir_cf_node *
2026 nir_cf_node_next(nir_cf_node *node)
2027 {
2028 struct exec_node *next = exec_node_get_next(&node->node);
2029 if (exec_node_is_tail_sentinel(next))
2030 return NULL;
2031 else
2032 return exec_node_data(nir_cf_node, next, node);
2033 }
2034
2035 static inline nir_cf_node *
2036 nir_cf_node_prev(nir_cf_node *node)
2037 {
2038 struct exec_node *prev = exec_node_get_prev(&node->node);
2039 if (exec_node_is_head_sentinel(prev))
2040 return NULL;
2041 else
2042 return exec_node_data(nir_cf_node, prev, node);
2043 }
2044
2045 static inline bool
2046 nir_cf_node_is_first(const nir_cf_node *node)
2047 {
2048 return exec_node_is_head_sentinel(node->node.prev);
2049 }
2050
2051 static inline bool
2052 nir_cf_node_is_last(const nir_cf_node *node)
2053 {
2054 return exec_node_is_tail_sentinel(node->node.next);
2055 }
2056
2057 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
2058 type, nir_cf_node_block)
2059 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
2060 type, nir_cf_node_if)
2061 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
2062 type, nir_cf_node_loop)
2063 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
2064 nir_function_impl, cf_node, type, nir_cf_node_function)
2065
2066 static inline nir_block *
2067 nir_if_first_then_block(nir_if *if_stmt)
2068 {
2069 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
2070 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2071 }
2072
2073 static inline nir_block *
2074 nir_if_last_then_block(nir_if *if_stmt)
2075 {
2076 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
2077 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2078 }
2079
2080 static inline nir_block *
2081 nir_if_first_else_block(nir_if *if_stmt)
2082 {
2083 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
2084 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2085 }
2086
2087 static inline nir_block *
2088 nir_if_last_else_block(nir_if *if_stmt)
2089 {
2090 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
2091 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2092 }
2093
2094 static inline nir_block *
2095 nir_loop_first_block(nir_loop *loop)
2096 {
2097 struct exec_node *head = exec_list_get_head(&loop->body);
2098 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2099 }
2100
2101 static inline nir_block *
2102 nir_loop_last_block(nir_loop *loop)
2103 {
2104 struct exec_node *tail = exec_list_get_tail(&loop->body);
2105 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2106 }
2107
2108 typedef struct {
2109 uint8_t num_components;
2110 uint8_t bit_size;
2111 } nir_parameter;
2112
2113 typedef struct nir_function {
2114 struct exec_node node;
2115
2116 const char *name;
2117 struct nir_shader *shader;
2118
2119 unsigned num_params;
2120 nir_parameter *params;
2121
2122 /** The implementation of this function.
2123 *
2124 * If the function is only declared and not implemented, this is NULL.
2125 */
2126 nir_function_impl *impl;
2127
2128 bool is_entrypoint;
2129 } nir_function;
2130
2131 typedef enum {
2132 nir_lower_imul64 = (1 << 0),
2133 nir_lower_isign64 = (1 << 1),
2134 /** Lower all int64 modulus and division opcodes */
2135 nir_lower_divmod64 = (1 << 2),
2136 /** Lower all 64-bit umul_high and imul_high opcodes */
2137 nir_lower_imul_high64 = (1 << 3),
2138 nir_lower_mov64 = (1 << 4),
2139 nir_lower_icmp64 = (1 << 5),
2140 nir_lower_iadd64 = (1 << 6),
2141 nir_lower_iabs64 = (1 << 7),
2142 nir_lower_ineg64 = (1 << 8),
2143 nir_lower_logic64 = (1 << 9),
2144 nir_lower_minmax64 = (1 << 10),
2145 nir_lower_shift64 = (1 << 11),
2146 nir_lower_imul_2x32_64 = (1 << 12),
2147 } nir_lower_int64_options;
2148
2149 typedef enum {
2150 nir_lower_drcp = (1 << 0),
2151 nir_lower_dsqrt = (1 << 1),
2152 nir_lower_drsq = (1 << 2),
2153 nir_lower_dtrunc = (1 << 3),
2154 nir_lower_dfloor = (1 << 4),
2155 nir_lower_dceil = (1 << 5),
2156 nir_lower_dfract = (1 << 6),
2157 nir_lower_dround_even = (1 << 7),
2158 nir_lower_dmod = (1 << 8),
2159 nir_lower_fp64_full_software = (1 << 9),
2160 } nir_lower_doubles_options;
2161
2162 typedef struct nir_shader_compiler_options {
2163 bool lower_fdiv;
2164 bool lower_ffma;
2165 bool fuse_ffma;
2166 bool lower_flrp32;
2167 /** Lowers flrp when it does not support doubles */
2168 bool lower_flrp64;
2169 bool lower_fpow;
2170 bool lower_fsat;
2171 bool lower_fsqrt;
2172 bool lower_fmod16;
2173 bool lower_fmod32;
2174 bool lower_fmod64;
2175 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2176 bool lower_bitfield_extract;
2177 /** Lowers ibitfield_extract/ubitfield_extract to bfm, compares, shifts. */
2178 bool lower_bitfield_extract_to_shifts;
2179 /** Lowers bitfield_insert to bfi/bfm */
2180 bool lower_bitfield_insert;
2181 /** Lowers bitfield_insert to bfm, compares, and shifts. */
2182 bool lower_bitfield_insert_to_shifts;
2183 /** Lowers bitfield_reverse to shifts. */
2184 bool lower_bitfield_reverse;
2185 /** Lowers bit_count to shifts. */
2186 bool lower_bit_count;
2187 /** Lowers bfm to shifts and subtracts. */
2188 bool lower_bfm;
2189 /** Lowers ifind_msb to compare and ufind_msb */
2190 bool lower_ifind_msb;
2191 /** Lowers find_lsb to ufind_msb and logic ops */
2192 bool lower_find_lsb;
2193 bool lower_uadd_carry;
2194 bool lower_usub_borrow;
2195 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2196 bool lower_mul_high;
2197 /** lowers fneg and ineg to fsub and isub. */
2198 bool lower_negate;
2199 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2200 bool lower_sub;
2201
2202 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2203 bool lower_scmp;
2204
2205 /** enables rules to lower idiv by power-of-two: */
2206 bool lower_idiv;
2207
2208 /** enables rules to lower isign to imin+imax */
2209 bool lower_isign;
2210
2211 /* Does the native fdot instruction replicate its result for four
2212 * components? If so, then opt_algebraic_late will turn all fdotN
2213 * instructions into fdot_replicatedN instructions.
2214 */
2215 bool fdot_replicates;
2216
2217 /** lowers ffloor to fsub+ffract: */
2218 bool lower_ffloor;
2219
2220 /** lowers ffract to fsub+ffloor: */
2221 bool lower_ffract;
2222
2223 /** lowers fceil to fneg+ffloor+fneg: */
2224 bool lower_fceil;
2225
2226 bool lower_ldexp;
2227
2228 bool lower_pack_half_2x16;
2229 bool lower_pack_unorm_2x16;
2230 bool lower_pack_snorm_2x16;
2231 bool lower_pack_unorm_4x8;
2232 bool lower_pack_snorm_4x8;
2233 bool lower_unpack_half_2x16;
2234 bool lower_unpack_unorm_2x16;
2235 bool lower_unpack_snorm_2x16;
2236 bool lower_unpack_unorm_4x8;
2237 bool lower_unpack_snorm_4x8;
2238
2239 bool lower_extract_byte;
2240 bool lower_extract_word;
2241
2242 bool lower_all_io_to_temps;
2243
2244 /**
2245 * Does the driver support real 32-bit integers? (Otherwise, integers
2246 * are simulated by floats.)
2247 */
2248 bool native_integers;
2249
2250 /* Indicates that the driver only has zero-based vertex id */
2251 bool vertex_id_zero_based;
2252
2253 /**
2254 * If enabled, gl_BaseVertex will be lowered as:
2255 * is_indexed_draw (~0/0) & firstvertex
2256 */
2257 bool lower_base_vertex;
2258
2259 /**
2260 * If enabled, gl_HelperInvocation will be lowered as:
2261 *
2262 * !((1 << sample_id) & sample_mask_in))
2263 *
2264 * This depends on some possibly hw implementation details, which may
2265 * not be true for all hw. In particular that the FS is only executed
2266 * for covered samples or for helper invocations. So, do not blindly
2267 * enable this option.
2268 *
2269 * Note: See also issue #22 in ARB_shader_image_load_store
2270 */
2271 bool lower_helper_invocation;
2272
2273 bool lower_cs_local_index_from_id;
2274 bool lower_cs_local_id_from_index;
2275
2276 bool lower_device_index_to_zero;
2277
2278 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
2279 bool lower_wpos_pntc;
2280
2281 bool lower_hadd;
2282 bool lower_add_sat;
2283
2284 /**
2285 * Should nir_lower_io() create load_interpolated_input intrinsics?
2286 *
2287 * If not, it generates regular load_input intrinsics and interpolation
2288 * information must be inferred from the list of input nir_variables.
2289 */
2290 bool use_interpolated_input_intrinsics;
2291
2292 /* Lowers when 32x32->64 bit multiplication is not supported */
2293 bool lower_mul_2x32_64;
2294
2295 unsigned max_unroll_iterations;
2296
2297 nir_lower_int64_options lower_int64_options;
2298 nir_lower_doubles_options lower_doubles_options;
2299 } nir_shader_compiler_options;
2300
2301 typedef struct nir_shader {
2302 /** list of uniforms (nir_variable) */
2303 struct exec_list uniforms;
2304
2305 /** list of inputs (nir_variable) */
2306 struct exec_list inputs;
2307
2308 /** list of outputs (nir_variable) */
2309 struct exec_list outputs;
2310
2311 /** list of shared compute variables (nir_variable) */
2312 struct exec_list shared;
2313
2314 /** Set of driver-specific options for the shader.
2315 *
2316 * The memory for the options is expected to be kept in a single static
2317 * copy by the driver.
2318 */
2319 const struct nir_shader_compiler_options *options;
2320
2321 /** Various bits of compile-time information about a given shader */
2322 struct shader_info info;
2323
2324 /** list of global variables in the shader (nir_variable) */
2325 struct exec_list globals;
2326
2327 /** list of system value variables in the shader (nir_variable) */
2328 struct exec_list system_values;
2329
2330 struct exec_list functions; /** < list of nir_function */
2331
2332 /** list of global register in the shader */
2333 struct exec_list registers;
2334
2335 /** next available global register index */
2336 unsigned reg_alloc;
2337
2338 /**
2339 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2340 * access plus one
2341 */
2342 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2343
2344 /** Constant data associated with this shader.
2345 *
2346 * Constant data is loaded through load_constant intrinsics. See also
2347 * nir_opt_large_constants.
2348 */
2349 void *constant_data;
2350 unsigned constant_data_size;
2351 } nir_shader;
2352
2353 #define nir_foreach_function(func, shader) \
2354 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2355
2356 static inline nir_function_impl *
2357 nir_shader_get_entrypoint(nir_shader *shader)
2358 {
2359 nir_function *func = NULL;
2360
2361 nir_foreach_function(function, shader) {
2362 assert(func == NULL);
2363 if (function->is_entrypoint) {
2364 func = function;
2365 #ifndef NDEBUG
2366 break;
2367 #endif
2368 }
2369 }
2370
2371 if (!func)
2372 return NULL;
2373
2374 assert(func->num_params == 0);
2375 assert(func->impl);
2376 return func->impl;
2377 }
2378
2379 nir_shader *nir_shader_create(void *mem_ctx,
2380 gl_shader_stage stage,
2381 const nir_shader_compiler_options *options,
2382 shader_info *si);
2383
2384 /** creates a register, including assigning it an index and adding it to the list */
2385 nir_register *nir_global_reg_create(nir_shader *shader);
2386
2387 nir_register *nir_local_reg_create(nir_function_impl *impl);
2388
2389 void nir_reg_remove(nir_register *reg);
2390
2391 /** Adds a variable to the appropriate list in nir_shader */
2392 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2393
2394 static inline void
2395 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2396 {
2397 assert(var->data.mode == nir_var_function_temp);
2398 exec_list_push_tail(&impl->locals, &var->node);
2399 }
2400
2401 /** creates a variable, sets a few defaults, and adds it to the list */
2402 nir_variable *nir_variable_create(nir_shader *shader,
2403 nir_variable_mode mode,
2404 const struct glsl_type *type,
2405 const char *name);
2406 /** creates a local variable and adds it to the list */
2407 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2408 const struct glsl_type *type,
2409 const char *name);
2410
2411 /** creates a function and adds it to the shader's list of functions */
2412 nir_function *nir_function_create(nir_shader *shader, const char *name);
2413
2414 nir_function_impl *nir_function_impl_create(nir_function *func);
2415 /** creates a function_impl that isn't tied to any particular function */
2416 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2417
2418 nir_block *nir_block_create(nir_shader *shader);
2419 nir_if *nir_if_create(nir_shader *shader);
2420 nir_loop *nir_loop_create(nir_shader *shader);
2421
2422 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2423
2424 /** requests that the given pieces of metadata be generated */
2425 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2426 /** dirties all but the preserved metadata */
2427 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2428
2429 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2430 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2431
2432 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2433 nir_deref_type deref_type);
2434
2435 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2436
2437 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2438 unsigned num_components,
2439 unsigned bit_size);
2440
2441 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2442 nir_intrinsic_op op);
2443
2444 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2445 nir_function *callee);
2446
2447 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2448
2449 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2450
2451 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2452
2453 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2454 unsigned num_components,
2455 unsigned bit_size);
2456
2457 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2458
2459 /**
2460 * NIR Cursors and Instruction Insertion API
2461 * @{
2462 *
2463 * A tiny struct representing a point to insert/extract instructions or
2464 * control flow nodes. Helps reduce the combinatorial explosion of possible
2465 * points to insert/extract.
2466 *
2467 * \sa nir_control_flow.h
2468 */
2469 typedef enum {
2470 nir_cursor_before_block,
2471 nir_cursor_after_block,
2472 nir_cursor_before_instr,
2473 nir_cursor_after_instr,
2474 } nir_cursor_option;
2475
2476 typedef struct {
2477 nir_cursor_option option;
2478 union {
2479 nir_block *block;
2480 nir_instr *instr;
2481 };
2482 } nir_cursor;
2483
2484 static inline nir_block *
2485 nir_cursor_current_block(nir_cursor cursor)
2486 {
2487 if (cursor.option == nir_cursor_before_instr ||
2488 cursor.option == nir_cursor_after_instr) {
2489 return cursor.instr->block;
2490 } else {
2491 return cursor.block;
2492 }
2493 }
2494
2495 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2496
2497 static inline nir_cursor
2498 nir_before_block(nir_block *block)
2499 {
2500 nir_cursor cursor;
2501 cursor.option = nir_cursor_before_block;
2502 cursor.block = block;
2503 return cursor;
2504 }
2505
2506 static inline nir_cursor
2507 nir_after_block(nir_block *block)
2508 {
2509 nir_cursor cursor;
2510 cursor.option = nir_cursor_after_block;
2511 cursor.block = block;
2512 return cursor;
2513 }
2514
2515 static inline nir_cursor
2516 nir_before_instr(nir_instr *instr)
2517 {
2518 nir_cursor cursor;
2519 cursor.option = nir_cursor_before_instr;
2520 cursor.instr = instr;
2521 return cursor;
2522 }
2523
2524 static inline nir_cursor
2525 nir_after_instr(nir_instr *instr)
2526 {
2527 nir_cursor cursor;
2528 cursor.option = nir_cursor_after_instr;
2529 cursor.instr = instr;
2530 return cursor;
2531 }
2532
2533 static inline nir_cursor
2534 nir_after_block_before_jump(nir_block *block)
2535 {
2536 nir_instr *last_instr = nir_block_last_instr(block);
2537 if (last_instr && last_instr->type == nir_instr_type_jump) {
2538 return nir_before_instr(last_instr);
2539 } else {
2540 return nir_after_block(block);
2541 }
2542 }
2543
2544 static inline nir_cursor
2545 nir_before_src(nir_src *src, bool is_if_condition)
2546 {
2547 if (is_if_condition) {
2548 nir_block *prev_block =
2549 nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
2550 assert(!nir_block_ends_in_jump(prev_block));
2551 return nir_after_block(prev_block);
2552 } else if (src->parent_instr->type == nir_instr_type_phi) {
2553 #ifndef NDEBUG
2554 nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
2555 bool found = false;
2556 nir_foreach_phi_src(phi_src, cond_phi) {
2557 if (phi_src->src.ssa == src->ssa) {
2558 found = true;
2559 break;
2560 }
2561 }
2562 assert(found);
2563 #endif
2564 /* The LIST_ENTRY macro is a generic container-of macro, it just happens
2565 * to have a more specific name.
2566 */
2567 nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
2568 return nir_after_block_before_jump(phi_src->pred);
2569 } else {
2570 return nir_before_instr(src->parent_instr);
2571 }
2572 }
2573
2574 static inline nir_cursor
2575 nir_before_cf_node(nir_cf_node *node)
2576 {
2577 if (node->type == nir_cf_node_block)
2578 return nir_before_block(nir_cf_node_as_block(node));
2579
2580 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2581 }
2582
2583 static inline nir_cursor
2584 nir_after_cf_node(nir_cf_node *node)
2585 {
2586 if (node->type == nir_cf_node_block)
2587 return nir_after_block(nir_cf_node_as_block(node));
2588
2589 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2590 }
2591
2592 static inline nir_cursor
2593 nir_after_phis(nir_block *block)
2594 {
2595 nir_foreach_instr(instr, block) {
2596 if (instr->type != nir_instr_type_phi)
2597 return nir_before_instr(instr);
2598 }
2599 return nir_after_block(block);
2600 }
2601
2602 static inline nir_cursor
2603 nir_after_cf_node_and_phis(nir_cf_node *node)
2604 {
2605 if (node->type == nir_cf_node_block)
2606 return nir_after_block(nir_cf_node_as_block(node));
2607
2608 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2609
2610 return nir_after_phis(block);
2611 }
2612
2613 static inline nir_cursor
2614 nir_before_cf_list(struct exec_list *cf_list)
2615 {
2616 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2617 exec_list_get_head(cf_list), node);
2618 return nir_before_cf_node(first_node);
2619 }
2620
2621 static inline nir_cursor
2622 nir_after_cf_list(struct exec_list *cf_list)
2623 {
2624 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2625 exec_list_get_tail(cf_list), node);
2626 return nir_after_cf_node(last_node);
2627 }
2628
2629 /**
2630 * Insert a NIR instruction at the given cursor.
2631 *
2632 * Note: This does not update the cursor.
2633 */
2634 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2635
2636 static inline void
2637 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2638 {
2639 nir_instr_insert(nir_before_instr(instr), before);
2640 }
2641
2642 static inline void
2643 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2644 {
2645 nir_instr_insert(nir_after_instr(instr), after);
2646 }
2647
2648 static inline void
2649 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2650 {
2651 nir_instr_insert(nir_before_block(block), before);
2652 }
2653
2654 static inline void
2655 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2656 {
2657 nir_instr_insert(nir_after_block(block), after);
2658 }
2659
2660 static inline void
2661 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2662 {
2663 nir_instr_insert(nir_before_cf_node(node), before);
2664 }
2665
2666 static inline void
2667 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2668 {
2669 nir_instr_insert(nir_after_cf_node(node), after);
2670 }
2671
2672 static inline void
2673 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2674 {
2675 nir_instr_insert(nir_before_cf_list(list), before);
2676 }
2677
2678 static inline void
2679 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2680 {
2681 nir_instr_insert(nir_after_cf_list(list), after);
2682 }
2683
2684 void nir_instr_remove_v(nir_instr *instr);
2685
2686 static inline nir_cursor
2687 nir_instr_remove(nir_instr *instr)
2688 {
2689 nir_cursor cursor;
2690 nir_instr *prev = nir_instr_prev(instr);
2691 if (prev) {
2692 cursor = nir_after_instr(prev);
2693 } else {
2694 cursor = nir_before_block(instr->block);
2695 }
2696 nir_instr_remove_v(instr);
2697 return cursor;
2698 }
2699
2700 /** @} */
2701
2702 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2703 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2704 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2705 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2706 void *state);
2707 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2708 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2709
2710 nir_const_value *nir_src_as_const_value(nir_src src);
2711
2712 static inline struct nir_instr *
2713 nir_src_instr(const struct nir_src *src)
2714 {
2715 return src->is_ssa ? src->ssa->parent_instr : NULL;
2716 }
2717
2718 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
2719 static inline c_type * \
2720 nir_src_as_ ## name (struct nir_src *src) \
2721 { \
2722 return src->is_ssa && src->ssa->parent_instr->type == type_enum \
2723 ? cast_macro(src->ssa->parent_instr) : NULL; \
2724 } \
2725 static inline const c_type * \
2726 nir_src_as_ ## name ## _const(const struct nir_src *src) \
2727 { \
2728 return src->is_ssa && src->ssa->parent_instr->type == type_enum \
2729 ? cast_macro(src->ssa->parent_instr) : NULL; \
2730 }
2731
2732 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
2733
2734 bool nir_src_is_dynamically_uniform(nir_src src);
2735 bool nir_srcs_equal(nir_src src1, nir_src src2);
2736 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2737 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2738 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2739 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2740 nir_dest new_dest);
2741
2742 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2743 unsigned num_components, unsigned bit_size,
2744 const char *name);
2745 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2746 unsigned num_components, unsigned bit_size,
2747 const char *name);
2748 static inline void
2749 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
2750 const struct glsl_type *type,
2751 const char *name)
2752 {
2753 assert(glsl_type_is_vector_or_scalar(type));
2754 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
2755 glsl_get_bit_size(type), name);
2756 }
2757 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2758 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2759 nir_instr *after_me);
2760
2761 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
2762
2763 /*
2764 * finds the next basic block in source-code order, returns NULL if there is
2765 * none
2766 */
2767
2768 nir_block *nir_block_cf_tree_next(nir_block *block);
2769
2770 /* Performs the opposite of nir_block_cf_tree_next() */
2771
2772 nir_block *nir_block_cf_tree_prev(nir_block *block);
2773
2774 /* Gets the first block in a CF node in source-code order */
2775
2776 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2777
2778 /* Gets the last block in a CF node in source-code order */
2779
2780 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2781
2782 /* Gets the next block after a CF node in source-code order */
2783
2784 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2785
2786 /* Macros for loops that visit blocks in source-code order */
2787
2788 #define nir_foreach_block(block, impl) \
2789 for (nir_block *block = nir_start_block(impl); block != NULL; \
2790 block = nir_block_cf_tree_next(block))
2791
2792 #define nir_foreach_block_safe(block, impl) \
2793 for (nir_block *block = nir_start_block(impl), \
2794 *next = nir_block_cf_tree_next(block); \
2795 block != NULL; \
2796 block = next, next = nir_block_cf_tree_next(block))
2797
2798 #define nir_foreach_block_reverse(block, impl) \
2799 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2800 block = nir_block_cf_tree_prev(block))
2801
2802 #define nir_foreach_block_reverse_safe(block, impl) \
2803 for (nir_block *block = nir_impl_last_block(impl), \
2804 *prev = nir_block_cf_tree_prev(block); \
2805 block != NULL; \
2806 block = prev, prev = nir_block_cf_tree_prev(block))
2807
2808 #define nir_foreach_block_in_cf_node(block, node) \
2809 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2810 block != nir_cf_node_cf_tree_next(node); \
2811 block = nir_block_cf_tree_next(block))
2812
2813 /* If the following CF node is an if, this function returns that if.
2814 * Otherwise, it returns NULL.
2815 */
2816 nir_if *nir_block_get_following_if(nir_block *block);
2817
2818 nir_loop *nir_block_get_following_loop(nir_block *block);
2819
2820 void nir_index_local_regs(nir_function_impl *impl);
2821 void nir_index_global_regs(nir_shader *shader);
2822 void nir_index_ssa_defs(nir_function_impl *impl);
2823 unsigned nir_index_instrs(nir_function_impl *impl);
2824
2825 void nir_index_blocks(nir_function_impl *impl);
2826
2827 void nir_print_shader(nir_shader *shader, FILE *fp);
2828 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2829 void nir_print_instr(const nir_instr *instr, FILE *fp);
2830 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
2831
2832 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2833 nir_function_impl *nir_function_impl_clone(nir_shader *shader,
2834 const nir_function_impl *fi);
2835 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2836 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2837
2838 nir_shader *nir_shader_serialize_deserialize(void *mem_ctx, nir_shader *s);
2839
2840 #ifndef NDEBUG
2841 void nir_validate_shader(nir_shader *shader, const char *when);
2842 void nir_metadata_set_validation_flag(nir_shader *shader);
2843 void nir_metadata_check_validation_flag(nir_shader *shader);
2844
2845 static inline bool
2846 should_skip_nir(const char *name)
2847 {
2848 static const char *list = NULL;
2849 if (!list) {
2850 /* Comma separated list of names to skip. */
2851 list = getenv("NIR_SKIP");
2852 if (!list)
2853 list = "";
2854 }
2855
2856 if (!list[0])
2857 return false;
2858
2859 return comma_separated_list_contains(list, name);
2860 }
2861
2862 static inline bool
2863 should_clone_nir(void)
2864 {
2865 static int should_clone = -1;
2866 if (should_clone < 0)
2867 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2868
2869 return should_clone;
2870 }
2871
2872 static inline bool
2873 should_serialize_deserialize_nir(void)
2874 {
2875 static int test_serialize = -1;
2876 if (test_serialize < 0)
2877 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
2878
2879 return test_serialize;
2880 }
2881
2882 static inline bool
2883 should_print_nir(void)
2884 {
2885 static int should_print = -1;
2886 if (should_print < 0)
2887 should_print = env_var_as_boolean("NIR_PRINT", false);
2888
2889 return should_print;
2890 }
2891 #else
2892 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
2893 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2894 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2895 static inline bool should_skip_nir(UNUSED const char *pass_name) { return false; }
2896 static inline bool should_clone_nir(void) { return false; }
2897 static inline bool should_serialize_deserialize_nir(void) { return false; }
2898 static inline bool should_print_nir(void) { return false; }
2899 #endif /* NDEBUG */
2900
2901 #define _PASS(pass, nir, do_pass) do { \
2902 if (should_skip_nir(#pass)) { \
2903 printf("skipping %s\n", #pass); \
2904 break; \
2905 } \
2906 do_pass \
2907 nir_validate_shader(nir, "after " #pass); \
2908 if (should_clone_nir()) { \
2909 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2910 ralloc_free(nir); \
2911 nir = clone; \
2912 } \
2913 if (should_serialize_deserialize_nir()) { \
2914 void *mem_ctx = ralloc_parent(nir); \
2915 nir = nir_shader_serialize_deserialize(mem_ctx, nir); \
2916 } \
2917 } while (0)
2918
2919 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, \
2920 nir_metadata_set_validation_flag(nir); \
2921 if (should_print_nir()) \
2922 printf("%s\n", #pass); \
2923 if (pass(nir, ##__VA_ARGS__)) { \
2924 progress = true; \
2925 if (should_print_nir()) \
2926 nir_print_shader(nir, stdout); \
2927 nir_metadata_check_validation_flag(nir); \
2928 } \
2929 )
2930
2931 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, \
2932 if (should_print_nir()) \
2933 printf("%s\n", #pass); \
2934 pass(nir, ##__VA_ARGS__); \
2935 if (should_print_nir()) \
2936 nir_print_shader(nir, stdout); \
2937 )
2938
2939 #define NIR_SKIP(name) should_skip_nir(#name)
2940
2941 void nir_calc_dominance_impl(nir_function_impl *impl);
2942 void nir_calc_dominance(nir_shader *shader);
2943
2944 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2945 bool nir_block_dominates(nir_block *parent, nir_block *child);
2946
2947 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2948 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2949
2950 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2951 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2952
2953 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2954 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2955
2956 int nir_gs_count_vertices(const nir_shader *shader);
2957
2958 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
2959 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
2960 bool nir_split_var_copies(nir_shader *shader);
2961 bool nir_split_per_member_structs(nir_shader *shader);
2962 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
2963
2964 bool nir_lower_returns_impl(nir_function_impl *impl);
2965 bool nir_lower_returns(nir_shader *shader);
2966
2967 void nir_inline_function_impl(struct nir_builder *b,
2968 const nir_function_impl *impl,
2969 nir_ssa_def **params);
2970 bool nir_inline_functions(nir_shader *shader);
2971
2972 bool nir_propagate_invariant(nir_shader *shader);
2973
2974 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
2975 void nir_lower_deref_copy_instr(struct nir_builder *b,
2976 nir_intrinsic_instr *copy);
2977 bool nir_lower_var_copies(nir_shader *shader);
2978
2979 void nir_fixup_deref_modes(nir_shader *shader);
2980
2981 bool nir_lower_global_vars_to_local(nir_shader *shader);
2982
2983 typedef enum {
2984 nir_lower_direct_array_deref_of_vec_load = (1 << 0),
2985 nir_lower_indirect_array_deref_of_vec_load = (1 << 1),
2986 nir_lower_direct_array_deref_of_vec_store = (1 << 2),
2987 nir_lower_indirect_array_deref_of_vec_store = (1 << 3),
2988 } nir_lower_array_deref_of_vec_options;
2989
2990 bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
2991 nir_lower_array_deref_of_vec_options options);
2992
2993 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
2994
2995 bool nir_lower_locals_to_regs(nir_shader *shader);
2996
2997 void nir_lower_io_to_temporaries(nir_shader *shader,
2998 nir_function_impl *entrypoint,
2999 bool outputs, bool inputs);
3000
3001 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
3002
3003 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
3004 int (*type_size)(const struct glsl_type *));
3005
3006 /* Some helpers to do very simple linking */
3007 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
3008 bool nir_remove_unused_io_vars(nir_shader *shader, struct exec_list *var_list,
3009 uint64_t *used_by_other_stage,
3010 uint64_t *used_by_other_stage_patches);
3011 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
3012 bool default_to_smooth_interp);
3013 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
3014 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
3015
3016 typedef enum {
3017 /* If set, this forces all non-flat fragment shader inputs to be
3018 * interpolated as if with the "sample" qualifier. This requires
3019 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
3020 */
3021 nir_lower_io_force_sample_interpolation = (1 << 1),
3022 } nir_lower_io_options;
3023 bool nir_lower_io(nir_shader *shader,
3024 nir_variable_mode modes,
3025 int (*type_size)(const struct glsl_type *),
3026 nir_lower_io_options);
3027
3028 typedef enum {
3029 /**
3030 * An address format which is a simple 32-bit global GPU address.
3031 */
3032 nir_address_format_32bit_global,
3033
3034 /**
3035 * An address format which is a simple 64-bit global GPU address.
3036 */
3037 nir_address_format_64bit_global,
3038
3039 /**
3040 * An address format which is comprised of a vec2 where the first
3041 * component is a buffer index and the second is an offset.
3042 */
3043 nir_address_format_32bit_index_offset,
3044 } nir_address_format;
3045 bool nir_lower_explicit_io(nir_shader *shader,
3046 nir_variable_mode modes,
3047 nir_address_format);
3048
3049 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
3050 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
3051
3052 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
3053
3054 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
3055 bool nir_lower_regs_to_ssa(nir_shader *shader);
3056 bool nir_lower_vars_to_ssa(nir_shader *shader);
3057
3058 bool nir_remove_dead_derefs(nir_shader *shader);
3059 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
3060 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
3061 bool nir_lower_constant_initializers(nir_shader *shader,
3062 nir_variable_mode modes);
3063
3064 bool nir_move_load_const(nir_shader *shader);
3065 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
3066 bool nir_lower_vec_to_movs(nir_shader *shader);
3067 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
3068 bool alpha_to_one);
3069 bool nir_lower_alu(nir_shader *shader);
3070 bool nir_lower_alu_to_scalar(nir_shader *shader);
3071 bool nir_lower_bool_to_float(nir_shader *shader);
3072 bool nir_lower_bool_to_int32(nir_shader *shader);
3073 bool nir_lower_load_const_to_scalar(nir_shader *shader);
3074 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
3075 bool nir_lower_phis_to_scalar(nir_shader *shader);
3076 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
3077 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
3078 bool outputs_only);
3079 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
3080 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
3081 bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
3082
3083 bool nir_lower_uniforms_to_ubo(nir_shader *shader, int multiplier);
3084
3085 typedef struct nir_lower_subgroups_options {
3086 uint8_t subgroup_size;
3087 uint8_t ballot_bit_size;
3088 bool lower_to_scalar:1;
3089 bool lower_vote_trivial:1;
3090 bool lower_vote_eq_to_ballot:1;
3091 bool lower_subgroup_masks:1;
3092 bool lower_shuffle:1;
3093 bool lower_shuffle_to_32bit:1;
3094 bool lower_quad:1;
3095 } nir_lower_subgroups_options;
3096
3097 bool nir_lower_subgroups(nir_shader *shader,
3098 const nir_lower_subgroups_options *options);
3099
3100 bool nir_lower_system_values(nir_shader *shader);
3101
3102 enum PACKED nir_lower_tex_packing {
3103 nir_lower_tex_packing_none = 0,
3104 /* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
3105 * or unsigned ints based on the sampler type
3106 */
3107 nir_lower_tex_packing_16,
3108 /* The sampler returns 1 32-bit word of 4x8 unorm */
3109 nir_lower_tex_packing_8,
3110 };
3111
3112 typedef struct nir_lower_tex_options {
3113 /**
3114 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
3115 * sampler types a texture projector is lowered.
3116 */
3117 unsigned lower_txp;
3118
3119 /**
3120 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
3121 */
3122 bool lower_txf_offset;
3123
3124 /**
3125 * If true, lower away nir_tex_src_offset for all rect textures.
3126 */
3127 bool lower_rect_offset;
3128
3129 /**
3130 * If true, lower rect textures to 2D, using txs to fetch the
3131 * texture dimensions and dividing the texture coords by the
3132 * texture dims to normalize.
3133 */
3134 bool lower_rect;
3135
3136 /**
3137 * If true, convert yuv to rgb.
3138 */
3139 unsigned lower_y_uv_external;
3140 unsigned lower_y_u_v_external;
3141 unsigned lower_yx_xuxv_external;
3142 unsigned lower_xy_uxvx_external;
3143 unsigned lower_ayuv_external;
3144 unsigned lower_xyuv_external;
3145
3146 /**
3147 * To emulate certain texture wrap modes, this can be used
3148 * to saturate the specified tex coord to [0.0, 1.0]. The
3149 * bits are according to sampler #, ie. if, for example:
3150 *
3151 * (conf->saturate_s & (1 << n))
3152 *
3153 * is true, then the s coord for sampler n is saturated.
3154 *
3155 * Note that clamping must happen *after* projector lowering
3156 * so any projected texture sample instruction with a clamped
3157 * coordinate gets automatically lowered, regardless of the
3158 * 'lower_txp' setting.
3159 */
3160 unsigned saturate_s;
3161 unsigned saturate_t;
3162 unsigned saturate_r;
3163
3164 /* Bitmask of textures that need swizzling.
3165 *
3166 * If (swizzle_result & (1 << texture_index)), then the swizzle in
3167 * swizzles[texture_index] is applied to the result of the texturing
3168 * operation.
3169 */
3170 unsigned swizzle_result;
3171
3172 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
3173 * while 4 and 5 represent 0 and 1 respectively.
3174 */
3175 uint8_t swizzles[32][4];
3176
3177 /* Can be used to scale sampled values in range required by the format. */
3178 float scale_factors[32];
3179
3180 /**
3181 * Bitmap of textures that need srgb to linear conversion. If
3182 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
3183 * of the texture are lowered to linear.
3184 */
3185 unsigned lower_srgb;
3186
3187 /**
3188 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
3189 */
3190 bool lower_txd_cube_map;
3191
3192 /**
3193 * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
3194 */
3195 bool lower_txd_3d;
3196
3197 /**
3198 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
3199 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
3200 * with lower_txd_cube_map.
3201 */
3202 bool lower_txd_shadow;
3203
3204 /**
3205 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
3206 * Implies lower_txd_cube_map and lower_txd_shadow.
3207 */
3208 bool lower_txd;
3209
3210 /**
3211 * If true, lower nir_texop_txb that try to use shadow compare and min_lod
3212 * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
3213 */
3214 bool lower_txb_shadow_clamp;
3215
3216 /**
3217 * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
3218 * with nir_texop_txl. This includes cube maps.
3219 */
3220 bool lower_txd_shadow_clamp;
3221
3222 /**
3223 * If true, lower nir_texop_txd on when it uses both offset and min_lod
3224 * with nir_texop_txl. This includes cube maps.
3225 */
3226 bool lower_txd_offset_clamp;
3227
3228 /**
3229 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3230 * sampler index is not statically determinable to be less than 16.
3231 */
3232 bool lower_txd_clamp_if_sampler_index_not_lt_16;
3233
3234 /**
3235 * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
3236 * mixed-up tg4 locations.
3237 */
3238 bool lower_tg4_broadcom_swizzle;
3239
3240 /**
3241 * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
3242 */
3243 bool lower_tg4_offsets;
3244
3245 enum nir_lower_tex_packing lower_tex_packing[32];
3246 } nir_lower_tex_options;
3247
3248 bool nir_lower_tex(nir_shader *shader,
3249 const nir_lower_tex_options *options);
3250
3251 bool nir_lower_idiv(nir_shader *shader);
3252
3253 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables, bool use_vars);
3254 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
3255 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
3256
3257 bool nir_lower_frexp(nir_shader *nir);
3258
3259 void nir_lower_two_sided_color(nir_shader *shader);
3260
3261 bool nir_lower_clamp_color_outputs(nir_shader *shader);
3262
3263 void nir_lower_passthrough_edgeflags(nir_shader *shader);
3264 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
3265 const gl_state_index16 *uniform_state_tokens);
3266
3267 typedef struct nir_lower_wpos_ytransform_options {
3268 gl_state_index16 state_tokens[STATE_LENGTH];
3269 bool fs_coord_origin_upper_left :1;
3270 bool fs_coord_origin_lower_left :1;
3271 bool fs_coord_pixel_center_integer :1;
3272 bool fs_coord_pixel_center_half_integer :1;
3273 } nir_lower_wpos_ytransform_options;
3274
3275 bool nir_lower_wpos_ytransform(nir_shader *shader,
3276 const nir_lower_wpos_ytransform_options *options);
3277 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
3278
3279 typedef struct nir_lower_drawpixels_options {
3280 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
3281 gl_state_index16 scale_state_tokens[STATE_LENGTH];
3282 gl_state_index16 bias_state_tokens[STATE_LENGTH];
3283 unsigned drawpix_sampler;
3284 unsigned pixelmap_sampler;
3285 bool pixel_maps :1;
3286 bool scale_and_bias :1;
3287 } nir_lower_drawpixels_options;
3288
3289 void nir_lower_drawpixels(nir_shader *shader,
3290 const nir_lower_drawpixels_options *options);
3291
3292 typedef struct nir_lower_bitmap_options {
3293 unsigned sampler;
3294 bool swizzle_xxxx;
3295 } nir_lower_bitmap_options;
3296
3297 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
3298
3299 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
3300
3301 typedef enum {
3302 nir_lower_int_source_mods = 1 << 0,
3303 nir_lower_float_source_mods = 1 << 1,
3304 nir_lower_triop_abs = 1 << 2,
3305 nir_lower_all_source_mods = (1 << 3) - 1
3306 } nir_lower_to_source_mods_flags;
3307
3308
3309 bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
3310
3311 bool nir_lower_gs_intrinsics(nir_shader *shader);
3312
3313 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
3314
3315 bool nir_lower_bit_size(nir_shader *shader,
3316 nir_lower_bit_size_callback callback,
3317 void *callback_data);
3318
3319 nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
3320 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
3321
3322 nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
3323 bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
3324 nir_lower_doubles_options options);
3325 bool nir_lower_pack(nir_shader *shader);
3326
3327 bool nir_normalize_cubemap_coords(nir_shader *shader);
3328
3329 void nir_live_ssa_defs_impl(nir_function_impl *impl);
3330
3331 void nir_loop_analyze_impl(nir_function_impl *impl,
3332 nir_variable_mode indirect_mask);
3333
3334 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
3335
3336 bool nir_repair_ssa_impl(nir_function_impl *impl);
3337 bool nir_repair_ssa(nir_shader *shader);
3338
3339 void nir_convert_loop_to_lcssa(nir_loop *loop);
3340
3341 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
3342 * registers. If false, convert all values (even those not involved in a phi
3343 * node) to registers.
3344 */
3345 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
3346
3347 bool nir_lower_phis_to_regs_block(nir_block *block);
3348 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
3349 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
3350
3351 bool nir_opt_algebraic(nir_shader *shader);
3352 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
3353 bool nir_opt_algebraic_late(nir_shader *shader);
3354 bool nir_opt_constant_folding(nir_shader *shader);
3355
3356 bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
3357
3358 bool nir_opt_global_to_local(nir_shader *shader);
3359
3360 bool nir_copy_prop(nir_shader *shader);
3361
3362 bool nir_opt_copy_prop_vars(nir_shader *shader);
3363
3364 bool nir_opt_cse(nir_shader *shader);
3365
3366 bool nir_opt_dce(nir_shader *shader);
3367
3368 bool nir_opt_dead_cf(nir_shader *shader);
3369
3370 bool nir_opt_dead_write_vars(nir_shader *shader);
3371
3372 bool nir_opt_deref_impl(nir_function_impl *impl);
3373 bool nir_opt_deref(nir_shader *shader);
3374
3375 bool nir_opt_find_array_copies(nir_shader *shader);
3376
3377 bool nir_opt_gcm(nir_shader *shader, bool value_number);
3378
3379 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
3380
3381 bool nir_opt_if(nir_shader *shader);
3382
3383 bool nir_opt_intrinsics(nir_shader *shader);
3384
3385 bool nir_opt_large_constants(nir_shader *shader,
3386 glsl_type_size_align_func size_align,
3387 unsigned threshold);
3388
3389 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
3390
3391 bool nir_opt_move_comparisons(nir_shader *shader);
3392
3393 bool nir_opt_move_load_ubo(nir_shader *shader);
3394
3395 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
3396 bool indirect_load_ok, bool expensive_alu_ok);
3397
3398 bool nir_opt_remove_phis(nir_shader *shader);
3399
3400 bool nir_opt_shrink_load(nir_shader *shader);
3401
3402 bool nir_opt_trivial_continues(nir_shader *shader);
3403
3404 bool nir_opt_undef(nir_shader *shader);
3405
3406 bool nir_opt_conditional_discard(nir_shader *shader);
3407
3408 void nir_strip(nir_shader *shader);
3409
3410 void nir_sweep(nir_shader *shader);
3411
3412 void nir_remap_dual_slot_attributes(nir_shader *shader,
3413 uint64_t *dual_slot_inputs);
3414 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
3415
3416 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
3417 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
3418
3419 #ifdef __cplusplus
3420 } /* extern "C" */
3421 #endif
3422
3423 #endif /* NIR_H */