glsl: Separate overlapping sentinel nodes in exec_list.
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #pragma once
29
30 #include "util/hash_table.h"
31 #include "compiler/glsl/list.h"
32 #include "GL/gl.h" /* GLenum */
33 #include "util/list.h"
34 #include "util/ralloc.h"
35 #include "util/set.h"
36 #include "util/bitset.h"
37 #include "util/macros.h"
38 #include "compiler/nir_types.h"
39 #include "compiler/shader_enums.h"
40 #include <stdio.h>
41
42 #include "nir_opcodes.h"
43
44 #ifdef __cplusplus
45 extern "C" {
46 #endif
47
48 struct gl_program;
49 struct gl_shader_program;
50
51 #define NIR_FALSE 0u
52 #define NIR_TRUE (~0u)
53
54 /** Defines a cast function
55 *
56 * This macro defines a cast function from in_type to out_type where
57 * out_type is some structure type that contains a field of type out_type.
58 *
59 * Note that you have to be a bit careful as the generated cast function
60 * destroys constness.
61 */
62 #define NIR_DEFINE_CAST(name, in_type, out_type, field) \
63 static inline out_type * \
64 name(const in_type *parent) \
65 { \
66 return exec_node_data(out_type, parent, field); \
67 }
68
69 struct nir_function;
70 struct nir_shader;
71 struct nir_instr;
72
73
74 /**
75 * Description of built-in state associated with a uniform
76 *
77 * \sa nir_variable::state_slots
78 */
79 typedef struct {
80 int tokens[5];
81 int swizzle;
82 } nir_state_slot;
83
84 typedef enum {
85 nir_var_shader_in = (1 << 0),
86 nir_var_shader_out = (1 << 1),
87 nir_var_global = (1 << 2),
88 nir_var_local = (1 << 3),
89 nir_var_uniform = (1 << 4),
90 nir_var_shader_storage = (1 << 5),
91 nir_var_system_value = (1 << 6),
92 nir_var_param = (1 << 7),
93 nir_var_shared = (1 << 8),
94 nir_var_all = ~0,
95 } nir_variable_mode;
96
97 /**
98 * Data stored in an nir_constant
99 */
100 union nir_constant_data {
101 unsigned u[16];
102 int i[16];
103 float f[16];
104 bool b[16];
105 double d[16];
106 };
107
108 typedef struct nir_constant {
109 /**
110 * Value of the constant.
111 *
112 * The field used to back the values supplied by the constant is determined
113 * by the type associated with the \c nir_variable. Constants may be
114 * scalars, vectors, or matrices.
115 */
116 union nir_constant_data value;
117
118 /* we could get this from the var->type but makes clone *much* easier to
119 * not have to care about the type.
120 */
121 unsigned num_elements;
122
123 /* Array elements / Structure Fields */
124 struct nir_constant **elements;
125 } nir_constant;
126
127 /**
128 * \brief Layout qualifiers for gl_FragDepth.
129 *
130 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
131 * with a layout qualifier.
132 */
133 typedef enum {
134 nir_depth_layout_none, /**< No depth layout is specified. */
135 nir_depth_layout_any,
136 nir_depth_layout_greater,
137 nir_depth_layout_less,
138 nir_depth_layout_unchanged
139 } nir_depth_layout;
140
141 /**
142 * Either a uniform, global variable, shader input, or shader output. Based on
143 * ir_variable - it should be easy to translate between the two.
144 */
145
146 typedef struct nir_variable {
147 struct exec_node node;
148
149 /**
150 * Declared type of the variable
151 */
152 const struct glsl_type *type;
153
154 /**
155 * Declared name of the variable
156 */
157 char *name;
158
159 struct nir_variable_data {
160 /**
161 * Storage class of the variable.
162 *
163 * \sa nir_variable_mode
164 */
165 nir_variable_mode mode;
166
167 /**
168 * Is the variable read-only?
169 *
170 * This is set for variables declared as \c const, shader inputs,
171 * and uniforms.
172 */
173 unsigned read_only:1;
174 unsigned centroid:1;
175 unsigned sample:1;
176 unsigned patch:1;
177 unsigned invariant:1;
178
179 /**
180 * Interpolation mode for shader inputs / outputs
181 *
182 * \sa glsl_interp_mode
183 */
184 unsigned interpolation:2;
185
186 /**
187 * \name ARB_fragment_coord_conventions
188 * @{
189 */
190 unsigned origin_upper_left:1;
191 unsigned pixel_center_integer:1;
192 /*@}*/
193
194 /**
195 * Was the location explicitly set in the shader?
196 *
197 * If the location is explicitly set in the shader, it \b cannot be changed
198 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
199 * no effect).
200 */
201 unsigned explicit_location:1;
202 unsigned explicit_index:1;
203
204 /**
205 * Was an initial binding explicitly set in the shader?
206 *
207 * If so, constant_initializer contains an integer nir_constant
208 * representing the initial binding point.
209 */
210 unsigned explicit_binding:1;
211
212 /**
213 * Does this variable have an initializer?
214 *
215 * This is used by the linker to cross-validiate initializers of global
216 * variables.
217 */
218 unsigned has_initializer:1;
219
220 /**
221 * If non-zero, then this variable may be packed along with other variables
222 * into a single varying slot, so this offset should be applied when
223 * accessing components. For example, an offset of 1 means that the x
224 * component of this variable is actually stored in component y of the
225 * location specified by \c location.
226 */
227 unsigned location_frac:2;
228
229 /**
230 * \brief Layout qualifier for gl_FragDepth.
231 *
232 * This is not equal to \c ir_depth_layout_none if and only if this
233 * variable is \c gl_FragDepth and a layout qualifier is specified.
234 */
235 nir_depth_layout depth_layout;
236
237 /**
238 * Storage location of the base of this variable
239 *
240 * The precise meaning of this field depends on the nature of the variable.
241 *
242 * - Vertex shader input: one of the values from \c gl_vert_attrib.
243 * - Vertex shader output: one of the values from \c gl_varying_slot.
244 * - Geometry shader input: one of the values from \c gl_varying_slot.
245 * - Geometry shader output: one of the values from \c gl_varying_slot.
246 * - Fragment shader input: one of the values from \c gl_varying_slot.
247 * - Fragment shader output: one of the values from \c gl_frag_result.
248 * - Uniforms: Per-stage uniform slot number for default uniform block.
249 * - Uniforms: Index within the uniform block definition for UBO members.
250 * - Non-UBO Uniforms: uniform slot number.
251 * - Other: This field is not currently used.
252 *
253 * If the variable is a uniform, shader input, or shader output, and the
254 * slot has not been assigned, the value will be -1.
255 */
256 int location;
257
258 /**
259 * The actual location of the variable in the IR. Only valid for inputs
260 * and outputs.
261 */
262 unsigned int driver_location;
263
264 /**
265 * output index for dual source blending.
266 */
267 int index;
268
269 /**
270 * Descriptor set binding for sampler or UBO.
271 */
272 int descriptor_set;
273
274 /**
275 * Initial binding point for a sampler or UBO.
276 *
277 * For array types, this represents the binding point for the first element.
278 */
279 int binding;
280
281 /**
282 * Location an atomic counter is stored at.
283 */
284 unsigned offset;
285
286 /**
287 * ARB_shader_image_load_store qualifiers.
288 */
289 struct {
290 bool read_only; /**< "readonly" qualifier. */
291 bool write_only; /**< "writeonly" qualifier. */
292 bool coherent;
293 bool _volatile;
294 bool restrict_flag;
295
296 /** Image internal format if specified explicitly, otherwise GL_NONE. */
297 GLenum format;
298 } image;
299
300 /**
301 * Highest element accessed with a constant expression array index
302 *
303 * Not used for non-array variables.
304 */
305 unsigned max_array_access;
306
307 } data;
308
309 /**
310 * Built-in state that backs this uniform
311 *
312 * Once set at variable creation, \c state_slots must remain invariant.
313 * This is because, ideally, this array would be shared by all clones of
314 * this variable in the IR tree. In other words, we'd really like for it
315 * to be a fly-weight.
316 *
317 * If the variable is not a uniform, \c num_state_slots will be zero and
318 * \c state_slots will be \c NULL.
319 */
320 /*@{*/
321 unsigned num_state_slots; /**< Number of state slots used */
322 nir_state_slot *state_slots; /**< State descriptors. */
323 /*@}*/
324
325 /**
326 * Constant expression assigned in the initializer of the variable
327 */
328 nir_constant *constant_initializer;
329
330 /**
331 * For variables that are in an interface block or are an instance of an
332 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
333 *
334 * \sa ir_variable::location
335 */
336 const struct glsl_type *interface_type;
337 } nir_variable;
338
339 #define nir_foreach_variable(var, var_list) \
340 foreach_list_typed(nir_variable, var, node, var_list)
341
342 #define nir_foreach_variable_safe(var, var_list) \
343 foreach_list_typed_safe(nir_variable, var, node, var_list)
344
345 static inline bool
346 nir_variable_is_global(const nir_variable *var)
347 {
348 return var->data.mode != nir_var_local && var->data.mode != nir_var_param;
349 }
350
351 typedef struct nir_register {
352 struct exec_node node;
353
354 unsigned num_components; /** < number of vector components */
355 unsigned num_array_elems; /** < size of array (0 for no array) */
356
357 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
358 uint8_t bit_size;
359
360 /** generic register index. */
361 unsigned index;
362
363 /** only for debug purposes, can be NULL */
364 const char *name;
365
366 /** whether this register is local (per-function) or global (per-shader) */
367 bool is_global;
368
369 /**
370 * If this flag is set to true, then accessing channels >= num_components
371 * is well-defined, and simply spills over to the next array element. This
372 * is useful for backends that can do per-component accessing, in
373 * particular scalar backends. By setting this flag and making
374 * num_components equal to 1, structures can be packed tightly into
375 * registers and then registers can be accessed per-component to get to
376 * each structure member, even if it crosses vec4 boundaries.
377 */
378 bool is_packed;
379
380 /** set of nir_src's where this register is used (read from) */
381 struct list_head uses;
382
383 /** set of nir_dest's where this register is defined (written to) */
384 struct list_head defs;
385
386 /** set of nir_if's where this register is used as a condition */
387 struct list_head if_uses;
388 } nir_register;
389
390 typedef enum {
391 nir_instr_type_alu,
392 nir_instr_type_call,
393 nir_instr_type_tex,
394 nir_instr_type_intrinsic,
395 nir_instr_type_load_const,
396 nir_instr_type_jump,
397 nir_instr_type_ssa_undef,
398 nir_instr_type_phi,
399 nir_instr_type_parallel_copy,
400 } nir_instr_type;
401
402 typedef struct nir_instr {
403 struct exec_node node;
404 nir_instr_type type;
405 struct nir_block *block;
406
407 /** generic instruction index. */
408 unsigned index;
409
410 /* A temporary for optimization and analysis passes to use for storing
411 * flags. For instance, DCE uses this to store the "dead/live" info.
412 */
413 uint8_t pass_flags;
414 } nir_instr;
415
416 static inline nir_instr *
417 nir_instr_next(nir_instr *instr)
418 {
419 struct exec_node *next = exec_node_get_next(&instr->node);
420 if (exec_node_is_tail_sentinel(next))
421 return NULL;
422 else
423 return exec_node_data(nir_instr, next, node);
424 }
425
426 static inline nir_instr *
427 nir_instr_prev(nir_instr *instr)
428 {
429 struct exec_node *prev = exec_node_get_prev(&instr->node);
430 if (exec_node_is_head_sentinel(prev))
431 return NULL;
432 else
433 return exec_node_data(nir_instr, prev, node);
434 }
435
436 static inline bool
437 nir_instr_is_first(nir_instr *instr)
438 {
439 return exec_node_is_head_sentinel(exec_node_get_prev(&instr->node));
440 }
441
442 static inline bool
443 nir_instr_is_last(nir_instr *instr)
444 {
445 return exec_node_is_tail_sentinel(exec_node_get_next(&instr->node));
446 }
447
448 typedef struct nir_ssa_def {
449 /** for debugging only, can be NULL */
450 const char* name;
451
452 /** generic SSA definition index. */
453 unsigned index;
454
455 /** Index into the live_in and live_out bitfields */
456 unsigned live_index;
457
458 nir_instr *parent_instr;
459
460 /** set of nir_instr's where this register is used (read from) */
461 struct list_head uses;
462
463 /** set of nir_if's where this register is used as a condition */
464 struct list_head if_uses;
465
466 uint8_t num_components;
467
468 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
469 uint8_t bit_size;
470 } nir_ssa_def;
471
472 struct nir_src;
473
474 typedef struct {
475 nir_register *reg;
476 struct nir_src *indirect; /** < NULL for no indirect offset */
477 unsigned base_offset;
478
479 /* TODO use-def chain goes here */
480 } nir_reg_src;
481
482 typedef struct {
483 nir_instr *parent_instr;
484 struct list_head def_link;
485
486 nir_register *reg;
487 struct nir_src *indirect; /** < NULL for no indirect offset */
488 unsigned base_offset;
489
490 /* TODO def-use chain goes here */
491 } nir_reg_dest;
492
493 struct nir_if;
494
495 typedef struct nir_src {
496 union {
497 nir_instr *parent_instr;
498 struct nir_if *parent_if;
499 };
500
501 struct list_head use_link;
502
503 union {
504 nir_reg_src reg;
505 nir_ssa_def *ssa;
506 };
507
508 bool is_ssa;
509 } nir_src;
510
511 static inline nir_src
512 nir_src_init(void)
513 {
514 nir_src src = { { NULL } };
515 return src;
516 }
517
518 #define NIR_SRC_INIT nir_src_init()
519
520 #define nir_foreach_use(src, reg_or_ssa_def) \
521 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
522
523 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
524 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
525
526 #define nir_foreach_if_use(src, reg_or_ssa_def) \
527 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
528
529 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
530 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
531
532 typedef struct {
533 union {
534 nir_reg_dest reg;
535 nir_ssa_def ssa;
536 };
537
538 bool is_ssa;
539 } nir_dest;
540
541 static inline nir_dest
542 nir_dest_init(void)
543 {
544 nir_dest dest = { { { NULL } } };
545 return dest;
546 }
547
548 #define NIR_DEST_INIT nir_dest_init()
549
550 #define nir_foreach_def(dest, reg) \
551 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
552
553 #define nir_foreach_def_safe(dest, reg) \
554 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
555
556 static inline nir_src
557 nir_src_for_ssa(nir_ssa_def *def)
558 {
559 nir_src src = NIR_SRC_INIT;
560
561 src.is_ssa = true;
562 src.ssa = def;
563
564 return src;
565 }
566
567 static inline nir_src
568 nir_src_for_reg(nir_register *reg)
569 {
570 nir_src src = NIR_SRC_INIT;
571
572 src.is_ssa = false;
573 src.reg.reg = reg;
574 src.reg.indirect = NULL;
575 src.reg.base_offset = 0;
576
577 return src;
578 }
579
580 static inline nir_dest
581 nir_dest_for_reg(nir_register *reg)
582 {
583 nir_dest dest = NIR_DEST_INIT;
584
585 dest.reg.reg = reg;
586
587 return dest;
588 }
589
590 static inline unsigned
591 nir_src_bit_size(nir_src src)
592 {
593 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
594 }
595
596 static inline unsigned
597 nir_dest_bit_size(nir_dest dest)
598 {
599 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
600 }
601
602 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
603 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
604
605 typedef struct {
606 nir_src src;
607
608 /**
609 * \name input modifiers
610 */
611 /*@{*/
612 /**
613 * For inputs interpreted as floating point, flips the sign bit. For
614 * inputs interpreted as integers, performs the two's complement negation.
615 */
616 bool negate;
617
618 /**
619 * Clears the sign bit for floating point values, and computes the integer
620 * absolute value for integers. Note that the negate modifier acts after
621 * the absolute value modifier, therefore if both are set then all inputs
622 * will become negative.
623 */
624 bool abs;
625 /*@}*/
626
627 /**
628 * For each input component, says which component of the register it is
629 * chosen from. Note that which elements of the swizzle are used and which
630 * are ignored are based on the write mask for most opcodes - for example,
631 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
632 * a swizzle of {2, x, 1, 0} where x means "don't care."
633 */
634 uint8_t swizzle[4];
635 } nir_alu_src;
636
637 typedef struct {
638 nir_dest dest;
639
640 /**
641 * \name saturate output modifier
642 *
643 * Only valid for opcodes that output floating-point numbers. Clamps the
644 * output to between 0.0 and 1.0 inclusive.
645 */
646
647 bool saturate;
648
649 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
650 } nir_alu_dest;
651
652 typedef enum {
653 nir_type_invalid = 0, /* Not a valid type */
654 nir_type_float,
655 nir_type_int,
656 nir_type_uint,
657 nir_type_bool,
658 nir_type_bool32 = 32 | nir_type_bool,
659 nir_type_int8 = 8 | nir_type_int,
660 nir_type_int16 = 16 | nir_type_int,
661 nir_type_int32 = 32 | nir_type_int,
662 nir_type_int64 = 64 | nir_type_int,
663 nir_type_uint8 = 8 | nir_type_uint,
664 nir_type_uint16 = 16 | nir_type_uint,
665 nir_type_uint32 = 32 | nir_type_uint,
666 nir_type_uint64 = 64 | nir_type_uint,
667 nir_type_float16 = 16 | nir_type_float,
668 nir_type_float32 = 32 | nir_type_float,
669 nir_type_float64 = 64 | nir_type_float,
670 } nir_alu_type;
671
672 #define NIR_ALU_TYPE_SIZE_MASK 0xfffffff8
673 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x00000007
674
675 static inline unsigned
676 nir_alu_type_get_type_size(nir_alu_type type)
677 {
678 return type & NIR_ALU_TYPE_SIZE_MASK;
679 }
680
681 static inline unsigned
682 nir_alu_type_get_base_type(nir_alu_type type)
683 {
684 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
685 }
686
687 typedef enum {
688 NIR_OP_IS_COMMUTATIVE = (1 << 0),
689 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
690 } nir_op_algebraic_property;
691
692 typedef struct {
693 const char *name;
694
695 unsigned num_inputs;
696
697 /**
698 * The number of components in the output
699 *
700 * If non-zero, this is the size of the output and input sizes are
701 * explicitly given; swizzle and writemask are still in effect, but if
702 * the output component is masked out, then the input component may
703 * still be in use.
704 *
705 * If zero, the opcode acts in the standard, per-component manner; the
706 * operation is performed on each component (except the ones that are
707 * masked out) with the input being taken from the input swizzle for
708 * that component.
709 *
710 * The size of some of the inputs may be given (i.e. non-zero) even
711 * though output_size is zero; in that case, the inputs with a zero
712 * size act per-component, while the inputs with non-zero size don't.
713 */
714 unsigned output_size;
715
716 /**
717 * The type of vector that the instruction outputs. Note that the
718 * staurate modifier is only allowed on outputs with the float type.
719 */
720
721 nir_alu_type output_type;
722
723 /**
724 * The number of components in each input
725 */
726 unsigned input_sizes[4];
727
728 /**
729 * The type of vector that each input takes. Note that negate and
730 * absolute value are only allowed on inputs with int or float type and
731 * behave differently on the two.
732 */
733 nir_alu_type input_types[4];
734
735 nir_op_algebraic_property algebraic_properties;
736 } nir_op_info;
737
738 extern const nir_op_info nir_op_infos[nir_num_opcodes];
739
740 typedef struct nir_alu_instr {
741 nir_instr instr;
742 nir_op op;
743
744 /** Indicates that this ALU instruction generates an exact value
745 *
746 * This is kind of a mixture of GLSL "precise" and "invariant" and not
747 * really equivalent to either. This indicates that the value generated by
748 * this operation is high-precision and any code transformations that touch
749 * it must ensure that the resulting value is bit-for-bit identical to the
750 * original.
751 */
752 bool exact;
753
754 nir_alu_dest dest;
755 nir_alu_src src[];
756 } nir_alu_instr;
757
758 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
759 nir_alu_instr *instr);
760 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
761 nir_alu_instr *instr);
762
763 /* is this source channel used? */
764 static inline bool
765 nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel)
766 {
767 if (nir_op_infos[instr->op].input_sizes[src] > 0)
768 return channel < nir_op_infos[instr->op].input_sizes[src];
769
770 return (instr->dest.write_mask >> channel) & 1;
771 }
772
773 /*
774 * For instructions whose destinations are SSA, get the number of channels
775 * used for a source
776 */
777 static inline unsigned
778 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
779 {
780 assert(instr->dest.dest.is_ssa);
781
782 if (nir_op_infos[instr->op].input_sizes[src] > 0)
783 return nir_op_infos[instr->op].input_sizes[src];
784
785 return instr->dest.dest.ssa.num_components;
786 }
787
788 typedef enum {
789 nir_deref_type_var,
790 nir_deref_type_array,
791 nir_deref_type_struct
792 } nir_deref_type;
793
794 typedef struct nir_deref {
795 nir_deref_type deref_type;
796 struct nir_deref *child;
797 const struct glsl_type *type;
798 } nir_deref;
799
800 typedef struct {
801 nir_deref deref;
802
803 nir_variable *var;
804 } nir_deref_var;
805
806 /* This enum describes how the array is referenced. If the deref is
807 * direct then the base_offset is used. If the deref is indirect then
808 * offset is given by base_offset + indirect. If the deref is a wildcard
809 * then the deref refers to all of the elements of the array at the same
810 * time. Wildcard dereferences are only ever allowed in copy_var
811 * intrinsics and the source and destination derefs must have matching
812 * wildcards.
813 */
814 typedef enum {
815 nir_deref_array_type_direct,
816 nir_deref_array_type_indirect,
817 nir_deref_array_type_wildcard,
818 } nir_deref_array_type;
819
820 typedef struct {
821 nir_deref deref;
822
823 nir_deref_array_type deref_array_type;
824 unsigned base_offset;
825 nir_src indirect;
826 } nir_deref_array;
827
828 typedef struct {
829 nir_deref deref;
830
831 unsigned index;
832 } nir_deref_struct;
833
834 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref)
835 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref)
836 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref)
837
838 /* Returns the last deref in the chain. */
839 static inline nir_deref *
840 nir_deref_tail(nir_deref *deref)
841 {
842 while (deref->child)
843 deref = deref->child;
844 return deref;
845 }
846
847 typedef struct {
848 nir_instr instr;
849
850 unsigned num_params;
851 nir_deref_var **params;
852 nir_deref_var *return_deref;
853
854 struct nir_function *callee;
855 } nir_call_instr;
856
857 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
858 num_variables, num_indices, idx0, idx1, idx2, flags) \
859 nir_intrinsic_##name,
860
861 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
862
863 typedef enum {
864 #include "nir_intrinsics.h"
865 nir_num_intrinsics = nir_last_intrinsic + 1
866 } nir_intrinsic_op;
867
868 #undef INTRINSIC
869 #undef LAST_INTRINSIC
870
871 #define NIR_INTRINSIC_MAX_CONST_INDEX 3
872
873 /** Represents an intrinsic
874 *
875 * An intrinsic is an instruction type for handling things that are
876 * more-or-less regular operations but don't just consume and produce SSA
877 * values like ALU operations do. Intrinsics are not for things that have
878 * special semantic meaning such as phi nodes and parallel copies.
879 * Examples of intrinsics include variable load/store operations, system
880 * value loads, and the like. Even though texturing more-or-less falls
881 * under this category, texturing is its own instruction type because
882 * trying to represent texturing with intrinsics would lead to a
883 * combinatorial explosion of intrinsic opcodes.
884 *
885 * By having a single instruction type for handling a lot of different
886 * cases, optimization passes can look for intrinsics and, for the most
887 * part, completely ignore them. Each intrinsic type also has a few
888 * possible flags that govern whether or not they can be reordered or
889 * eliminated. That way passes like dead code elimination can still work
890 * on intrisics without understanding the meaning of each.
891 *
892 * Each intrinsic has some number of constant indices, some number of
893 * variables, and some number of sources. What these sources, variables,
894 * and indices mean depends on the intrinsic and is documented with the
895 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
896 * instructions are the only types of instruction that can operate on
897 * variables.
898 */
899 typedef struct {
900 nir_instr instr;
901
902 nir_intrinsic_op intrinsic;
903
904 nir_dest dest;
905
906 /** number of components if this is a vectorized intrinsic
907 *
908 * Similarly to ALU operations, some intrinsics are vectorized.
909 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
910 * For vectorized intrinsics, the num_components field specifies the
911 * number of destination components and the number of source components
912 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
913 */
914 uint8_t num_components;
915
916 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
917
918 nir_deref_var *variables[2];
919
920 nir_src src[];
921 } nir_intrinsic_instr;
922
923 /**
924 * \name NIR intrinsics semantic flags
925 *
926 * information about what the compiler can do with the intrinsics.
927 *
928 * \sa nir_intrinsic_info::flags
929 */
930 typedef enum {
931 /**
932 * whether the intrinsic can be safely eliminated if none of its output
933 * value is not being used.
934 */
935 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
936
937 /**
938 * Whether the intrinsic can be reordered with respect to any other
939 * intrinsic, i.e. whether the only reordering dependencies of the
940 * intrinsic are due to the register reads/writes.
941 */
942 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
943 } nir_intrinsic_semantic_flag;
944
945 /**
946 * \name NIR intrinsics const-index flag
947 *
948 * Indicates the usage of a const_index slot.
949 *
950 * \sa nir_intrinsic_info::index_map
951 */
952 typedef enum {
953 /**
954 * Generally instructions that take a offset src argument, can encode
955 * a constant 'base' value which is added to the offset.
956 */
957 NIR_INTRINSIC_BASE = 1,
958
959 /**
960 * For store instructions, a writemask for the store.
961 */
962 NIR_INTRINSIC_WRMASK = 2,
963
964 /**
965 * The stream-id for GS emit_vertex/end_primitive intrinsics.
966 */
967 NIR_INTRINSIC_STREAM_ID = 3,
968
969 /**
970 * The clip-plane id for load_user_clip_plane intrinsic.
971 */
972 NIR_INTRINSIC_UCP_ID = 4,
973
974 /**
975 * The amount of data, starting from BASE, that this instruction may
976 * access. This is used to provide bounds if the offset is not constant.
977 */
978 NIR_INTRINSIC_RANGE = 5,
979
980 /**
981 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
982 */
983 NIR_INTRINSIC_DESC_SET = 6,
984
985 /**
986 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
987 */
988 NIR_INTRINSIC_BINDING = 7,
989
990 /**
991 * Component offset.
992 */
993 NIR_INTRINSIC_COMPONENT = 8,
994
995 /**
996 * Interpolation mode (only meaningful for FS inputs).
997 */
998 NIR_INTRINSIC_INTERP_MODE = 9,
999
1000 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1001
1002 } nir_intrinsic_index_flag;
1003
1004 #define NIR_INTRINSIC_MAX_INPUTS 4
1005
1006 typedef struct {
1007 const char *name;
1008
1009 unsigned num_srcs; /** < number of register/SSA inputs */
1010
1011 /** number of components of each input register
1012 *
1013 * If this value is 0, the number of components is given by the
1014 * num_components field of nir_intrinsic_instr.
1015 */
1016 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
1017
1018 bool has_dest;
1019
1020 /** number of components of the output register
1021 *
1022 * If this value is 0, the number of components is given by the
1023 * num_components field of nir_intrinsic_instr.
1024 */
1025 unsigned dest_components;
1026
1027 /** the number of inputs/outputs that are variables */
1028 unsigned num_variables;
1029
1030 /** the number of constant indices used by the intrinsic */
1031 unsigned num_indices;
1032
1033 /** indicates the usage of intr->const_index[n] */
1034 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1035
1036 /** semantic flags for calls to this intrinsic */
1037 nir_intrinsic_semantic_flag flags;
1038 } nir_intrinsic_info;
1039
1040 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1041
1042
1043 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1044 static inline type \
1045 nir_intrinsic_##name(nir_intrinsic_instr *instr) \
1046 { \
1047 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1048 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1049 return instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1050 } \
1051 static inline void \
1052 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1053 { \
1054 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1055 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1056 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1057 }
1058
1059 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1060 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1061 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1062 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1063 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1064 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1065 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1066 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1067 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1068
1069 /**
1070 * \group texture information
1071 *
1072 * This gives semantic information about textures which is useful to the
1073 * frontend, the backend, and lowering passes, but not the optimizer.
1074 */
1075
1076 typedef enum {
1077 nir_tex_src_coord,
1078 nir_tex_src_projector,
1079 nir_tex_src_comparitor, /* shadow comparitor */
1080 nir_tex_src_offset,
1081 nir_tex_src_bias,
1082 nir_tex_src_lod,
1083 nir_tex_src_ms_index, /* MSAA sample index */
1084 nir_tex_src_ms_mcs, /* MSAA compression value */
1085 nir_tex_src_ddx,
1086 nir_tex_src_ddy,
1087 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1088 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1089 nir_tex_src_plane, /* < selects plane for planar textures */
1090 nir_num_tex_src_types
1091 } nir_tex_src_type;
1092
1093 typedef struct {
1094 nir_src src;
1095 nir_tex_src_type src_type;
1096 } nir_tex_src;
1097
1098 typedef enum {
1099 nir_texop_tex, /**< Regular texture look-up */
1100 nir_texop_txb, /**< Texture look-up with LOD bias */
1101 nir_texop_txl, /**< Texture look-up with explicit LOD */
1102 nir_texop_txd, /**< Texture look-up with partial derivatvies */
1103 nir_texop_txf, /**< Texel fetch with explicit LOD */
1104 nir_texop_txf_ms, /**< Multisample texture fetch */
1105 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1106 nir_texop_txs, /**< Texture size */
1107 nir_texop_lod, /**< Texture lod query */
1108 nir_texop_tg4, /**< Texture gather */
1109 nir_texop_query_levels, /**< Texture levels query */
1110 nir_texop_texture_samples, /**< Texture samples query */
1111 nir_texop_samples_identical, /**< Query whether all samples are definitely
1112 * identical.
1113 */
1114 } nir_texop;
1115
1116 typedef struct {
1117 nir_instr instr;
1118
1119 enum glsl_sampler_dim sampler_dim;
1120 nir_alu_type dest_type;
1121
1122 nir_texop op;
1123 nir_dest dest;
1124 nir_tex_src *src;
1125 unsigned num_srcs, coord_components;
1126 bool is_array, is_shadow;
1127
1128 /**
1129 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1130 * components or the new-style shadow that outputs 1 component.
1131 */
1132 bool is_new_style_shadow;
1133
1134 /* gather component selector */
1135 unsigned component : 2;
1136
1137 /** The texture index
1138 *
1139 * If this texture instruction has a nir_tex_src_texture_offset source,
1140 * then the texture index is given by texture_index + texture_offset.
1141 */
1142 unsigned texture_index;
1143
1144 /** The size of the texture array or 0 if it's not an array */
1145 unsigned texture_array_size;
1146
1147 /** The texture deref
1148 *
1149 * If this is null, use texture_index instead.
1150 */
1151 nir_deref_var *texture;
1152
1153 /** The sampler index
1154 *
1155 * The following operations do not require a sampler and, as such, this
1156 * field should be ignored:
1157 * - nir_texop_txf
1158 * - nir_texop_txf_ms
1159 * - nir_texop_txs
1160 * - nir_texop_lod
1161 * - nir_texop_tg4
1162 * - nir_texop_query_levels
1163 * - nir_texop_texture_samples
1164 * - nir_texop_samples_identical
1165 *
1166 * If this texture instruction has a nir_tex_src_sampler_offset source,
1167 * then the sampler index is given by sampler_index + sampler_offset.
1168 */
1169 unsigned sampler_index;
1170
1171 /** The sampler deref
1172 *
1173 * If this is null, use sampler_index instead.
1174 */
1175 nir_deref_var *sampler;
1176 } nir_tex_instr;
1177
1178 static inline unsigned
1179 nir_tex_instr_dest_size(nir_tex_instr *instr)
1180 {
1181 switch (instr->op) {
1182 case nir_texop_txs: {
1183 unsigned ret;
1184 switch (instr->sampler_dim) {
1185 case GLSL_SAMPLER_DIM_1D:
1186 case GLSL_SAMPLER_DIM_BUF:
1187 ret = 1;
1188 break;
1189 case GLSL_SAMPLER_DIM_2D:
1190 case GLSL_SAMPLER_DIM_CUBE:
1191 case GLSL_SAMPLER_DIM_MS:
1192 case GLSL_SAMPLER_DIM_RECT:
1193 case GLSL_SAMPLER_DIM_EXTERNAL:
1194 ret = 2;
1195 break;
1196 case GLSL_SAMPLER_DIM_3D:
1197 ret = 3;
1198 break;
1199 default:
1200 unreachable("not reached");
1201 }
1202 if (instr->is_array)
1203 ret++;
1204 return ret;
1205 }
1206
1207 case nir_texop_lod:
1208 return 2;
1209
1210 case nir_texop_texture_samples:
1211 case nir_texop_query_levels:
1212 case nir_texop_samples_identical:
1213 return 1;
1214
1215 default:
1216 if (instr->is_shadow && instr->is_new_style_shadow)
1217 return 1;
1218
1219 return 4;
1220 }
1221 }
1222
1223 /* Returns true if this texture operation queries something about the texture
1224 * rather than actually sampling it.
1225 */
1226 static inline bool
1227 nir_tex_instr_is_query(nir_tex_instr *instr)
1228 {
1229 switch (instr->op) {
1230 case nir_texop_txs:
1231 case nir_texop_lod:
1232 case nir_texop_texture_samples:
1233 case nir_texop_query_levels:
1234 case nir_texop_txf_ms_mcs:
1235 return true;
1236 case nir_texop_tex:
1237 case nir_texop_txb:
1238 case nir_texop_txl:
1239 case nir_texop_txd:
1240 case nir_texop_txf:
1241 case nir_texop_txf_ms:
1242 case nir_texop_tg4:
1243 return false;
1244 default:
1245 unreachable("Invalid texture opcode");
1246 }
1247 }
1248
1249 static inline nir_alu_type
1250 nir_tex_instr_src_type(nir_tex_instr *instr, unsigned src)
1251 {
1252 switch (instr->src[src].src_type) {
1253 case nir_tex_src_coord:
1254 switch (instr->op) {
1255 case nir_texop_txf:
1256 case nir_texop_txf_ms:
1257 case nir_texop_txf_ms_mcs:
1258 case nir_texop_samples_identical:
1259 return nir_type_int;
1260
1261 default:
1262 return nir_type_float;
1263 }
1264
1265 case nir_tex_src_lod:
1266 switch (instr->op) {
1267 case nir_texop_txs:
1268 case nir_texop_txf:
1269 return nir_type_int;
1270
1271 default:
1272 return nir_type_float;
1273 }
1274
1275 case nir_tex_src_projector:
1276 case nir_tex_src_comparitor:
1277 case nir_tex_src_bias:
1278 case nir_tex_src_ddx:
1279 case nir_tex_src_ddy:
1280 return nir_type_float;
1281
1282 case nir_tex_src_offset:
1283 case nir_tex_src_ms_index:
1284 case nir_tex_src_texture_offset:
1285 case nir_tex_src_sampler_offset:
1286 return nir_type_int;
1287
1288 default:
1289 unreachable("Invalid texture source type");
1290 }
1291 }
1292
1293 static inline unsigned
1294 nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src)
1295 {
1296 if (instr->src[src].src_type == nir_tex_src_coord)
1297 return instr->coord_components;
1298
1299 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1300 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1301 return 4;
1302
1303 if (instr->src[src].src_type == nir_tex_src_offset ||
1304 instr->src[src].src_type == nir_tex_src_ddx ||
1305 instr->src[src].src_type == nir_tex_src_ddy) {
1306 if (instr->is_array)
1307 return instr->coord_components - 1;
1308 else
1309 return instr->coord_components;
1310 }
1311
1312 return 1;
1313 }
1314
1315 static inline int
1316 nir_tex_instr_src_index(nir_tex_instr *instr, nir_tex_src_type type)
1317 {
1318 for (unsigned i = 0; i < instr->num_srcs; i++)
1319 if (instr->src[i].src_type == type)
1320 return (int) i;
1321
1322 return -1;
1323 }
1324
1325 typedef union {
1326 float f32[4];
1327 double f64[4];
1328 int32_t i32[4];
1329 uint32_t u32[4];
1330 int64_t i64[4];
1331 uint64_t u64[4];
1332 } nir_const_value;
1333
1334 typedef struct {
1335 nir_instr instr;
1336
1337 nir_const_value value;
1338
1339 nir_ssa_def def;
1340 } nir_load_const_instr;
1341
1342 typedef enum {
1343 nir_jump_return,
1344 nir_jump_break,
1345 nir_jump_continue,
1346 } nir_jump_type;
1347
1348 typedef struct {
1349 nir_instr instr;
1350 nir_jump_type type;
1351 } nir_jump_instr;
1352
1353 /* creates a new SSA variable in an undefined state */
1354
1355 typedef struct {
1356 nir_instr instr;
1357 nir_ssa_def def;
1358 } nir_ssa_undef_instr;
1359
1360 typedef struct {
1361 struct exec_node node;
1362
1363 /* The predecessor block corresponding to this source */
1364 struct nir_block *pred;
1365
1366 nir_src src;
1367 } nir_phi_src;
1368
1369 #define nir_foreach_phi_src(phi_src, phi) \
1370 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1371 #define nir_foreach_phi_src_safe(phi_src, phi) \
1372 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1373
1374 typedef struct {
1375 nir_instr instr;
1376
1377 struct exec_list srcs; /** < list of nir_phi_src */
1378
1379 nir_dest dest;
1380 } nir_phi_instr;
1381
1382 typedef struct {
1383 struct exec_node node;
1384 nir_src src;
1385 nir_dest dest;
1386 } nir_parallel_copy_entry;
1387
1388 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1389 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1390
1391 typedef struct {
1392 nir_instr instr;
1393
1394 /* A list of nir_parallel_copy_entry's. The sources of all of the
1395 * entries are copied to the corresponding destinations "in parallel".
1396 * In other words, if we have two entries: a -> b and b -> a, the values
1397 * get swapped.
1398 */
1399 struct exec_list entries;
1400 } nir_parallel_copy_instr;
1401
1402 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr)
1403 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr)
1404 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr)
1405 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr)
1406 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr)
1407 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr)
1408 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr)
1409 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr)
1410 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1411 nir_parallel_copy_instr, instr)
1412
1413 /*
1414 * Control flow
1415 *
1416 * Control flow consists of a tree of control flow nodes, which include
1417 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1418 * instructions that always run start-to-finish. Each basic block also keeps
1419 * track of its successors (blocks which may run immediately after the current
1420 * block) and predecessors (blocks which could have run immediately before the
1421 * current block). Each function also has a start block and an end block which
1422 * all return statements point to (which is always empty). Together, all the
1423 * blocks with their predecessors and successors make up the control flow
1424 * graph (CFG) of the function. There are helpers that modify the tree of
1425 * control flow nodes while modifying the CFG appropriately; these should be
1426 * used instead of modifying the tree directly.
1427 */
1428
1429 typedef enum {
1430 nir_cf_node_block,
1431 nir_cf_node_if,
1432 nir_cf_node_loop,
1433 nir_cf_node_function
1434 } nir_cf_node_type;
1435
1436 typedef struct nir_cf_node {
1437 struct exec_node node;
1438 nir_cf_node_type type;
1439 struct nir_cf_node *parent;
1440 } nir_cf_node;
1441
1442 typedef struct nir_block {
1443 nir_cf_node cf_node;
1444
1445 struct exec_list instr_list; /** < list of nir_instr */
1446
1447 /** generic block index; generated by nir_index_blocks */
1448 unsigned index;
1449
1450 /*
1451 * Each block can only have up to 2 successors, so we put them in a simple
1452 * array - no need for anything more complicated.
1453 */
1454 struct nir_block *successors[2];
1455
1456 /* Set of nir_block predecessors in the CFG */
1457 struct set *predecessors;
1458
1459 /*
1460 * this node's immediate dominator in the dominance tree - set to NULL for
1461 * the start block.
1462 */
1463 struct nir_block *imm_dom;
1464
1465 /* This node's children in the dominance tree */
1466 unsigned num_dom_children;
1467 struct nir_block **dom_children;
1468
1469 /* Set of nir_block's on the dominance frontier of this block */
1470 struct set *dom_frontier;
1471
1472 /*
1473 * These two indices have the property that dom_{pre,post}_index for each
1474 * child of this block in the dominance tree will always be between
1475 * dom_pre_index and dom_post_index for this block, which makes testing if
1476 * a given block is dominated by another block an O(1) operation.
1477 */
1478 unsigned dom_pre_index, dom_post_index;
1479
1480 /* live in and out for this block; used for liveness analysis */
1481 BITSET_WORD *live_in;
1482 BITSET_WORD *live_out;
1483 } nir_block;
1484
1485 static inline nir_instr *
1486 nir_block_first_instr(nir_block *block)
1487 {
1488 struct exec_node *head = exec_list_get_head(&block->instr_list);
1489 return exec_node_data(nir_instr, head, node);
1490 }
1491
1492 static inline nir_instr *
1493 nir_block_last_instr(nir_block *block)
1494 {
1495 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1496 return exec_node_data(nir_instr, tail, node);
1497 }
1498
1499 #define nir_foreach_instr(instr, block) \
1500 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1501 #define nir_foreach_instr_reverse(instr, block) \
1502 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1503 #define nir_foreach_instr_safe(instr, block) \
1504 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1505 #define nir_foreach_instr_reverse_safe(instr, block) \
1506 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1507
1508 typedef struct nir_if {
1509 nir_cf_node cf_node;
1510 nir_src condition;
1511
1512 struct exec_list then_list; /** < list of nir_cf_node */
1513 struct exec_list else_list; /** < list of nir_cf_node */
1514 } nir_if;
1515
1516 static inline nir_cf_node *
1517 nir_if_first_then_node(nir_if *if_stmt)
1518 {
1519 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1520 return exec_node_data(nir_cf_node, head, node);
1521 }
1522
1523 static inline nir_cf_node *
1524 nir_if_last_then_node(nir_if *if_stmt)
1525 {
1526 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1527 return exec_node_data(nir_cf_node, tail, node);
1528 }
1529
1530 static inline nir_cf_node *
1531 nir_if_first_else_node(nir_if *if_stmt)
1532 {
1533 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1534 return exec_node_data(nir_cf_node, head, node);
1535 }
1536
1537 static inline nir_cf_node *
1538 nir_if_last_else_node(nir_if *if_stmt)
1539 {
1540 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1541 return exec_node_data(nir_cf_node, tail, node);
1542 }
1543
1544 typedef struct {
1545 nir_cf_node cf_node;
1546
1547 struct exec_list body; /** < list of nir_cf_node */
1548 } nir_loop;
1549
1550 static inline nir_cf_node *
1551 nir_loop_first_cf_node(nir_loop *loop)
1552 {
1553 return exec_node_data(nir_cf_node, exec_list_get_head(&loop->body), node);
1554 }
1555
1556 static inline nir_cf_node *
1557 nir_loop_last_cf_node(nir_loop *loop)
1558 {
1559 return exec_node_data(nir_cf_node, exec_list_get_tail(&loop->body), node);
1560 }
1561
1562 /**
1563 * Various bits of metadata that can may be created or required by
1564 * optimization and analysis passes
1565 */
1566 typedef enum {
1567 nir_metadata_none = 0x0,
1568 nir_metadata_block_index = 0x1,
1569 nir_metadata_dominance = 0x2,
1570 nir_metadata_live_ssa_defs = 0x4,
1571 nir_metadata_not_properly_reset = 0x8,
1572 } nir_metadata;
1573
1574 typedef struct {
1575 nir_cf_node cf_node;
1576
1577 /** pointer to the function of which this is an implementation */
1578 struct nir_function *function;
1579
1580 struct exec_list body; /** < list of nir_cf_node */
1581
1582 nir_block *end_block;
1583
1584 /** list for all local variables in the function */
1585 struct exec_list locals;
1586
1587 /** array of variables used as parameters */
1588 unsigned num_params;
1589 nir_variable **params;
1590
1591 /** variable used to hold the result of the function */
1592 nir_variable *return_var;
1593
1594 /** list of local registers in the function */
1595 struct exec_list registers;
1596
1597 /** next available local register index */
1598 unsigned reg_alloc;
1599
1600 /** next available SSA value index */
1601 unsigned ssa_alloc;
1602
1603 /* total number of basic blocks, only valid when block_index_dirty = false */
1604 unsigned num_blocks;
1605
1606 nir_metadata valid_metadata;
1607 } nir_function_impl;
1608
1609 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1610 nir_start_block(nir_function_impl *impl)
1611 {
1612 return (nir_block *) impl->body.head_sentinel.next;
1613 }
1614
1615 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1616 nir_impl_last_block(nir_function_impl *impl)
1617 {
1618 return (nir_block *) impl->body.tail_sentinel.prev;
1619 }
1620
1621 static inline nir_cf_node *
1622 nir_cf_node_next(nir_cf_node *node)
1623 {
1624 struct exec_node *next = exec_node_get_next(&node->node);
1625 if (exec_node_is_tail_sentinel(next))
1626 return NULL;
1627 else
1628 return exec_node_data(nir_cf_node, next, node);
1629 }
1630
1631 static inline nir_cf_node *
1632 nir_cf_node_prev(nir_cf_node *node)
1633 {
1634 struct exec_node *prev = exec_node_get_prev(&node->node);
1635 if (exec_node_is_head_sentinel(prev))
1636 return NULL;
1637 else
1638 return exec_node_data(nir_cf_node, prev, node);
1639 }
1640
1641 static inline bool
1642 nir_cf_node_is_first(const nir_cf_node *node)
1643 {
1644 return exec_node_is_head_sentinel(node->node.prev);
1645 }
1646
1647 static inline bool
1648 nir_cf_node_is_last(const nir_cf_node *node)
1649 {
1650 return exec_node_is_tail_sentinel(node->node.next);
1651 }
1652
1653 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node)
1654 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node)
1655 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node)
1656 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node, nir_function_impl, cf_node)
1657
1658 typedef enum {
1659 nir_parameter_in,
1660 nir_parameter_out,
1661 nir_parameter_inout,
1662 } nir_parameter_type;
1663
1664 typedef struct {
1665 nir_parameter_type param_type;
1666 const struct glsl_type *type;
1667 } nir_parameter;
1668
1669 typedef struct nir_function {
1670 struct exec_node node;
1671
1672 const char *name;
1673 struct nir_shader *shader;
1674
1675 unsigned num_params;
1676 nir_parameter *params;
1677 const struct glsl_type *return_type;
1678
1679 /** The implementation of this function.
1680 *
1681 * If the function is only declared and not implemented, this is NULL.
1682 */
1683 nir_function_impl *impl;
1684 } nir_function;
1685
1686 typedef struct nir_shader_compiler_options {
1687 bool lower_fdiv;
1688 bool lower_ffma;
1689 bool fuse_ffma;
1690 bool lower_flrp32;
1691 /** Lowers flrp when it does not support doubles */
1692 bool lower_flrp64;
1693 bool lower_fpow;
1694 bool lower_fsat;
1695 bool lower_fsqrt;
1696 bool lower_fmod32;
1697 bool lower_fmod64;
1698 bool lower_bitfield_extract;
1699 bool lower_bitfield_insert;
1700 bool lower_uadd_carry;
1701 bool lower_usub_borrow;
1702 /** lowers fneg and ineg to fsub and isub. */
1703 bool lower_negate;
1704 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1705 bool lower_sub;
1706
1707 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1708 bool lower_scmp;
1709
1710 /** enables rules to lower idiv by power-of-two: */
1711 bool lower_idiv;
1712
1713 /* Does the native fdot instruction replicate its result for four
1714 * components? If so, then opt_algebraic_late will turn all fdotN
1715 * instructions into fdot_replicatedN instructions.
1716 */
1717 bool fdot_replicates;
1718
1719 /** lowers ffract to fsub+ffloor: */
1720 bool lower_ffract;
1721
1722 bool lower_pack_half_2x16;
1723 bool lower_pack_unorm_2x16;
1724 bool lower_pack_snorm_2x16;
1725 bool lower_pack_unorm_4x8;
1726 bool lower_pack_snorm_4x8;
1727 bool lower_unpack_half_2x16;
1728 bool lower_unpack_unorm_2x16;
1729 bool lower_unpack_snorm_2x16;
1730 bool lower_unpack_unorm_4x8;
1731 bool lower_unpack_snorm_4x8;
1732
1733 bool lower_extract_byte;
1734 bool lower_extract_word;
1735
1736 /**
1737 * Does the driver support real 32-bit integers? (Otherwise, integers
1738 * are simulated by floats.)
1739 */
1740 bool native_integers;
1741
1742 /* Indicates that the driver only has zero-based vertex id */
1743 bool vertex_id_zero_based;
1744
1745 bool lower_cs_local_index_from_id;
1746
1747 /**
1748 * Should nir_lower_io() create load_interpolated_input intrinsics?
1749 *
1750 * If not, it generates regular load_input intrinsics and interpolation
1751 * information must be inferred from the list of input nir_variables.
1752 */
1753 bool use_interpolated_input_intrinsics;
1754 } nir_shader_compiler_options;
1755
1756 typedef struct nir_shader_info {
1757 const char *name;
1758
1759 /* Descriptive name provided by the client; may be NULL */
1760 const char *label;
1761
1762 /* Number of textures used by this shader */
1763 unsigned num_textures;
1764 /* Number of uniform buffers used by this shader */
1765 unsigned num_ubos;
1766 /* Number of atomic buffers used by this shader */
1767 unsigned num_abos;
1768 /* Number of shader storage buffers used by this shader */
1769 unsigned num_ssbos;
1770 /* Number of images used by this shader */
1771 unsigned num_images;
1772
1773 /* Which inputs are actually read */
1774 uint64_t inputs_read;
1775 /* Which inputs are actually read and are double */
1776 uint64_t double_inputs_read;
1777 /* Which outputs are actually written */
1778 uint64_t outputs_written;
1779 /* Which system values are actually read */
1780 uint64_t system_values_read;
1781
1782 /* Which patch inputs are actually read */
1783 uint32_t patch_inputs_read;
1784 /* Which patch outputs are actually written */
1785 uint32_t patch_outputs_written;
1786
1787 /* Whether or not this shader ever uses textureGather() */
1788 bool uses_texture_gather;
1789
1790 /* Whether or not this shader uses the gl_ClipDistance output */
1791 bool uses_clip_distance_out;
1792
1793 /* Whether or not separate shader objects were used */
1794 bool separate_shader;
1795
1796 /** Was this shader linked with any transform feedback varyings? */
1797 bool has_transform_feedback_varyings;
1798
1799 union {
1800 struct {
1801 /** The number of vertices recieves per input primitive */
1802 unsigned vertices_in;
1803
1804 /** The output primitive type (GL enum value) */
1805 unsigned output_primitive;
1806
1807 /** The maximum number of vertices the geometry shader might write. */
1808 unsigned vertices_out;
1809
1810 /** 1 .. MAX_GEOMETRY_SHADER_INVOCATIONS */
1811 unsigned invocations;
1812
1813 /** Whether or not this shader uses EndPrimitive */
1814 bool uses_end_primitive;
1815
1816 /** Whether or not this shader uses non-zero streams */
1817 bool uses_streams;
1818 } gs;
1819
1820 struct {
1821 bool uses_discard;
1822
1823 /**
1824 * Whether any inputs are declared with the "sample" qualifier.
1825 */
1826 bool uses_sample_qualifier;
1827
1828 /**
1829 * Whether early fragment tests are enabled as defined by
1830 * ARB_shader_image_load_store.
1831 */
1832 bool early_fragment_tests;
1833
1834 /** gl_FragDepth layout for ARB_conservative_depth. */
1835 enum gl_frag_depth_layout depth_layout;
1836 } fs;
1837
1838 struct {
1839 unsigned local_size[3];
1840 } cs;
1841
1842 struct {
1843 /** The number of vertices in the TCS output patch. */
1844 unsigned vertices_out;
1845 } tcs;
1846 };
1847 } nir_shader_info;
1848
1849 typedef struct nir_shader {
1850 /** list of uniforms (nir_variable) */
1851 struct exec_list uniforms;
1852
1853 /** list of inputs (nir_variable) */
1854 struct exec_list inputs;
1855
1856 /** list of outputs (nir_variable) */
1857 struct exec_list outputs;
1858
1859 /** list of shared compute variables (nir_variable) */
1860 struct exec_list shared;
1861
1862 /** Set of driver-specific options for the shader.
1863 *
1864 * The memory for the options is expected to be kept in a single static
1865 * copy by the driver.
1866 */
1867 const struct nir_shader_compiler_options *options;
1868
1869 /** Various bits of compile-time information about a given shader */
1870 struct nir_shader_info info;
1871
1872 /** list of global variables in the shader (nir_variable) */
1873 struct exec_list globals;
1874
1875 /** list of system value variables in the shader (nir_variable) */
1876 struct exec_list system_values;
1877
1878 struct exec_list functions; /** < list of nir_function */
1879
1880 /** list of global register in the shader */
1881 struct exec_list registers;
1882
1883 /** next available global register index */
1884 unsigned reg_alloc;
1885
1886 /**
1887 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1888 * access plus one
1889 */
1890 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
1891
1892 /** The shader stage, such as MESA_SHADER_VERTEX. */
1893 gl_shader_stage stage;
1894 } nir_shader;
1895
1896 static inline nir_function *
1897 nir_shader_get_entrypoint(nir_shader *shader)
1898 {
1899 assert(exec_list_length(&shader->functions) == 1);
1900 struct exec_node *func_node = exec_list_get_head(&shader->functions);
1901 nir_function *func = exec_node_data(nir_function, func_node, node);
1902 assert(func->return_type == glsl_void_type());
1903 assert(func->num_params == 0);
1904 return func;
1905 }
1906
1907 #define nir_foreach_function(func, shader) \
1908 foreach_list_typed(nir_function, func, node, &(shader)->functions)
1909
1910 nir_shader *nir_shader_create(void *mem_ctx,
1911 gl_shader_stage stage,
1912 const nir_shader_compiler_options *options);
1913
1914 /** creates a register, including assigning it an index and adding it to the list */
1915 nir_register *nir_global_reg_create(nir_shader *shader);
1916
1917 nir_register *nir_local_reg_create(nir_function_impl *impl);
1918
1919 void nir_reg_remove(nir_register *reg);
1920
1921 /** Adds a variable to the appropreate list in nir_shader */
1922 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
1923
1924 static inline void
1925 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
1926 {
1927 assert(var->data.mode == nir_var_local);
1928 exec_list_push_tail(&impl->locals, &var->node);
1929 }
1930
1931 /** creates a variable, sets a few defaults, and adds it to the list */
1932 nir_variable *nir_variable_create(nir_shader *shader,
1933 nir_variable_mode mode,
1934 const struct glsl_type *type,
1935 const char *name);
1936 /** creates a local variable and adds it to the list */
1937 nir_variable *nir_local_variable_create(nir_function_impl *impl,
1938 const struct glsl_type *type,
1939 const char *name);
1940
1941 /** creates a function and adds it to the shader's list of functions */
1942 nir_function *nir_function_create(nir_shader *shader, const char *name);
1943
1944 nir_function_impl *nir_function_impl_create(nir_function *func);
1945 /** creates a function_impl that isn't tied to any particular function */
1946 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
1947
1948 nir_block *nir_block_create(nir_shader *shader);
1949 nir_if *nir_if_create(nir_shader *shader);
1950 nir_loop *nir_loop_create(nir_shader *shader);
1951
1952 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1953
1954 /** requests that the given pieces of metadata be generated */
1955 void nir_metadata_require(nir_function_impl *impl, nir_metadata required);
1956 /** dirties all but the preserved metadata */
1957 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1958
1959 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1960 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
1961
1962 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
1963
1964 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
1965 unsigned num_components,
1966 unsigned bit_size);
1967
1968 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
1969 nir_intrinsic_op op);
1970
1971 nir_call_instr *nir_call_instr_create(nir_shader *shader,
1972 nir_function *callee);
1973
1974 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
1975
1976 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
1977
1978 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
1979
1980 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
1981 unsigned num_components,
1982 unsigned bit_size);
1983
1984 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1985 nir_deref_array *nir_deref_array_create(void *mem_ctx);
1986 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
1987
1988 nir_deref *nir_copy_deref(void *mem_ctx, nir_deref *deref);
1989
1990 typedef bool (*nir_deref_foreach_leaf_cb)(nir_deref_var *deref, void *state);
1991 bool nir_deref_foreach_leaf(nir_deref_var *deref,
1992 nir_deref_foreach_leaf_cb cb, void *state);
1993
1994 nir_load_const_instr *
1995 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
1996
1997 /**
1998 * NIR Cursors and Instruction Insertion API
1999 * @{
2000 *
2001 * A tiny struct representing a point to insert/extract instructions or
2002 * control flow nodes. Helps reduce the combinatorial explosion of possible
2003 * points to insert/extract.
2004 *
2005 * \sa nir_control_flow.h
2006 */
2007 typedef enum {
2008 nir_cursor_before_block,
2009 nir_cursor_after_block,
2010 nir_cursor_before_instr,
2011 nir_cursor_after_instr,
2012 } nir_cursor_option;
2013
2014 typedef struct {
2015 nir_cursor_option option;
2016 union {
2017 nir_block *block;
2018 nir_instr *instr;
2019 };
2020 } nir_cursor;
2021
2022 static inline nir_block *
2023 nir_cursor_current_block(nir_cursor cursor)
2024 {
2025 if (cursor.option == nir_cursor_before_instr ||
2026 cursor.option == nir_cursor_after_instr) {
2027 return cursor.instr->block;
2028 } else {
2029 return cursor.block;
2030 }
2031 }
2032
2033 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2034
2035 static inline nir_cursor
2036 nir_before_block(nir_block *block)
2037 {
2038 nir_cursor cursor;
2039 cursor.option = nir_cursor_before_block;
2040 cursor.block = block;
2041 return cursor;
2042 }
2043
2044 static inline nir_cursor
2045 nir_after_block(nir_block *block)
2046 {
2047 nir_cursor cursor;
2048 cursor.option = nir_cursor_after_block;
2049 cursor.block = block;
2050 return cursor;
2051 }
2052
2053 static inline nir_cursor
2054 nir_before_instr(nir_instr *instr)
2055 {
2056 nir_cursor cursor;
2057 cursor.option = nir_cursor_before_instr;
2058 cursor.instr = instr;
2059 return cursor;
2060 }
2061
2062 static inline nir_cursor
2063 nir_after_instr(nir_instr *instr)
2064 {
2065 nir_cursor cursor;
2066 cursor.option = nir_cursor_after_instr;
2067 cursor.instr = instr;
2068 return cursor;
2069 }
2070
2071 static inline nir_cursor
2072 nir_after_block_before_jump(nir_block *block)
2073 {
2074 nir_instr *last_instr = nir_block_last_instr(block);
2075 if (last_instr && last_instr->type == nir_instr_type_jump) {
2076 return nir_before_instr(last_instr);
2077 } else {
2078 return nir_after_block(block);
2079 }
2080 }
2081
2082 static inline nir_cursor
2083 nir_before_cf_node(nir_cf_node *node)
2084 {
2085 if (node->type == nir_cf_node_block)
2086 return nir_before_block(nir_cf_node_as_block(node));
2087
2088 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2089 }
2090
2091 static inline nir_cursor
2092 nir_after_cf_node(nir_cf_node *node)
2093 {
2094 if (node->type == nir_cf_node_block)
2095 return nir_after_block(nir_cf_node_as_block(node));
2096
2097 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2098 }
2099
2100 static inline nir_cursor
2101 nir_after_cf_node_and_phis(nir_cf_node *node)
2102 {
2103 if (node->type == nir_cf_node_block)
2104 return nir_after_block(nir_cf_node_as_block(node));
2105
2106 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2107 assert(block->cf_node.type == nir_cf_node_block);
2108
2109 nir_foreach_instr(instr, block) {
2110 if (instr->type != nir_instr_type_phi)
2111 return nir_before_instr(instr);
2112 }
2113 return nir_after_block(block);
2114 }
2115
2116 static inline nir_cursor
2117 nir_before_cf_list(struct exec_list *cf_list)
2118 {
2119 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2120 exec_list_get_head(cf_list), node);
2121 return nir_before_cf_node(first_node);
2122 }
2123
2124 static inline nir_cursor
2125 nir_after_cf_list(struct exec_list *cf_list)
2126 {
2127 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2128 exec_list_get_tail(cf_list), node);
2129 return nir_after_cf_node(last_node);
2130 }
2131
2132 /**
2133 * Insert a NIR instruction at the given cursor.
2134 *
2135 * Note: This does not update the cursor.
2136 */
2137 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2138
2139 static inline void
2140 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2141 {
2142 nir_instr_insert(nir_before_instr(instr), before);
2143 }
2144
2145 static inline void
2146 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2147 {
2148 nir_instr_insert(nir_after_instr(instr), after);
2149 }
2150
2151 static inline void
2152 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2153 {
2154 nir_instr_insert(nir_before_block(block), before);
2155 }
2156
2157 static inline void
2158 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2159 {
2160 nir_instr_insert(nir_after_block(block), after);
2161 }
2162
2163 static inline void
2164 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2165 {
2166 nir_instr_insert(nir_before_cf_node(node), before);
2167 }
2168
2169 static inline void
2170 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2171 {
2172 nir_instr_insert(nir_after_cf_node(node), after);
2173 }
2174
2175 static inline void
2176 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2177 {
2178 nir_instr_insert(nir_before_cf_list(list), before);
2179 }
2180
2181 static inline void
2182 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2183 {
2184 nir_instr_insert(nir_after_cf_list(list), after);
2185 }
2186
2187 void nir_instr_remove(nir_instr *instr);
2188
2189 /** @} */
2190
2191 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2192 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2193 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2194 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2195 void *state);
2196 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2197 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2198
2199 nir_const_value *nir_src_as_const_value(nir_src src);
2200 bool nir_src_is_dynamically_uniform(nir_src src);
2201 bool nir_srcs_equal(nir_src src1, nir_src src2);
2202 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2203 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2204 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2205 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2206 nir_dest new_dest);
2207
2208 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2209 unsigned num_components, unsigned bit_size,
2210 const char *name);
2211 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2212 unsigned num_components, unsigned bit_size,
2213 const char *name);
2214 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2215 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2216 nir_instr *after_me);
2217
2218 uint8_t nir_ssa_def_components_read(nir_ssa_def *def);
2219
2220 /*
2221 * finds the next basic block in source-code order, returns NULL if there is
2222 * none
2223 */
2224
2225 nir_block *nir_block_cf_tree_next(nir_block *block);
2226
2227 /* Performs the opposite of nir_block_cf_tree_next() */
2228
2229 nir_block *nir_block_cf_tree_prev(nir_block *block);
2230
2231 /* Gets the first block in a CF node in source-code order */
2232
2233 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2234
2235 /* Gets the last block in a CF node in source-code order */
2236
2237 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2238
2239 /* Gets the next block after a CF node in source-code order */
2240
2241 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2242
2243 /* Macros for loops that visit blocks in source-code order */
2244
2245 #define nir_foreach_block(block, impl) \
2246 for (nir_block *block = nir_start_block(impl); block != NULL; \
2247 block = nir_block_cf_tree_next(block))
2248
2249 #define nir_foreach_block_safe(block, impl) \
2250 for (nir_block *block = nir_start_block(impl), \
2251 *next = nir_block_cf_tree_next(block); \
2252 block != NULL; \
2253 block = next, next = nir_block_cf_tree_next(block))
2254
2255 #define nir_foreach_block_reverse(block, impl) \
2256 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2257 block = nir_block_cf_tree_prev(block))
2258
2259 #define nir_foreach_block_reverse_safe(block, impl) \
2260 for (nir_block *block = nir_impl_last_block(impl), \
2261 *prev = nir_block_cf_tree_prev(block); \
2262 block != NULL; \
2263 block = prev, prev = nir_block_cf_tree_prev(block))
2264
2265 #define nir_foreach_block_in_cf_node(block, node) \
2266 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2267 block != nir_cf_node_cf_tree_next(node); \
2268 block = nir_block_cf_tree_next(block))
2269
2270 /* If the following CF node is an if, this function returns that if.
2271 * Otherwise, it returns NULL.
2272 */
2273 nir_if *nir_block_get_following_if(nir_block *block);
2274
2275 nir_loop *nir_block_get_following_loop(nir_block *block);
2276
2277 void nir_index_local_regs(nir_function_impl *impl);
2278 void nir_index_global_regs(nir_shader *shader);
2279 void nir_index_ssa_defs(nir_function_impl *impl);
2280 unsigned nir_index_instrs(nir_function_impl *impl);
2281
2282 void nir_index_blocks(nir_function_impl *impl);
2283
2284 void nir_print_shader(nir_shader *shader, FILE *fp);
2285 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2286 void nir_print_instr(const nir_instr *instr, FILE *fp);
2287
2288 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2289 nir_function_impl *nir_function_impl_clone(const nir_function_impl *fi);
2290 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2291 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2292
2293 #ifdef DEBUG
2294 void nir_validate_shader(nir_shader *shader);
2295 void nir_metadata_set_validation_flag(nir_shader *shader);
2296 void nir_metadata_check_validation_flag(nir_shader *shader);
2297
2298 #include "util/debug.h"
2299 static inline bool
2300 should_clone_nir(void)
2301 {
2302 static int should_clone = -1;
2303 if (should_clone < 0)
2304 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2305
2306 return should_clone;
2307 }
2308 #else
2309 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
2310 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2311 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2312 static inline bool should_clone_nir(void) { return false; }
2313 #endif /* DEBUG */
2314
2315 #define _PASS(nir, do_pass) do { \
2316 do_pass \
2317 nir_validate_shader(nir); \
2318 if (should_clone_nir()) { \
2319 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2320 ralloc_free(nir); \
2321 nir = clone; \
2322 } \
2323 } while (0)
2324
2325 #define NIR_PASS(progress, nir, pass, ...) _PASS(nir, \
2326 nir_metadata_set_validation_flag(nir); \
2327 if (pass(nir, ##__VA_ARGS__)) { \
2328 progress = true; \
2329 nir_metadata_check_validation_flag(nir); \
2330 } \
2331 )
2332
2333 #define NIR_PASS_V(nir, pass, ...) _PASS(nir, \
2334 pass(nir, ##__VA_ARGS__); \
2335 )
2336
2337 void nir_calc_dominance_impl(nir_function_impl *impl);
2338 void nir_calc_dominance(nir_shader *shader);
2339
2340 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2341 bool nir_block_dominates(nir_block *parent, nir_block *child);
2342
2343 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2344 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2345
2346 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2347 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2348
2349 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2350 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2351
2352 int nir_gs_count_vertices(const nir_shader *shader);
2353
2354 bool nir_split_var_copies(nir_shader *shader);
2355
2356 bool nir_lower_returns_impl(nir_function_impl *impl);
2357 bool nir_lower_returns(nir_shader *shader);
2358
2359 bool nir_inline_functions(nir_shader *shader);
2360
2361 bool nir_propagate_invariant(nir_shader *shader);
2362
2363 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, void *mem_ctx);
2364 void nir_lower_var_copies(nir_shader *shader);
2365
2366 bool nir_lower_global_vars_to_local(nir_shader *shader);
2367
2368 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
2369
2370 bool nir_lower_locals_to_regs(nir_shader *shader);
2371
2372 void nir_lower_io_to_temporaries(nir_shader *shader, nir_function *entrypoint,
2373 bool outputs, bool inputs);
2374
2375 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2376
2377 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
2378 unsigned base_offset,
2379 int (*type_size)(const struct glsl_type *));
2380
2381 void nir_lower_io(nir_shader *shader,
2382 nir_variable_mode modes,
2383 int (*type_size)(const struct glsl_type *));
2384 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2385 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2386
2387 void nir_lower_io_types(nir_shader *shader);
2388 void nir_lower_vars_to_ssa(nir_shader *shader);
2389
2390 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
2391
2392 void nir_move_vec_src_uses_to_dest(nir_shader *shader);
2393 bool nir_lower_vec_to_movs(nir_shader *shader);
2394 void nir_lower_alu_to_scalar(nir_shader *shader);
2395 void nir_lower_load_const_to_scalar(nir_shader *shader);
2396
2397 void nir_lower_phis_to_scalar(nir_shader *shader);
2398
2399 void nir_lower_samplers(nir_shader *shader,
2400 const struct gl_shader_program *shader_program);
2401
2402 bool nir_lower_system_values(nir_shader *shader);
2403
2404 typedef struct nir_lower_tex_options {
2405 /**
2406 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2407 * sampler types a texture projector is lowered.
2408 */
2409 unsigned lower_txp;
2410
2411 /**
2412 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
2413 */
2414 bool lower_txf_offset;
2415
2416 /**
2417 * If true, lower away nir_tex_src_offset for all rect textures.
2418 */
2419 bool lower_rect_offset;
2420
2421 /**
2422 * If true, lower rect textures to 2D, using txs to fetch the
2423 * texture dimensions and dividing the texture coords by the
2424 * texture dims to normalize.
2425 */
2426 bool lower_rect;
2427
2428 /**
2429 * If true, convert yuv to rgb.
2430 */
2431 unsigned lower_y_uv_external;
2432 unsigned lower_y_u_v_external;
2433 unsigned lower_yx_xuxv_external;
2434
2435 /**
2436 * To emulate certain texture wrap modes, this can be used
2437 * to saturate the specified tex coord to [0.0, 1.0]. The
2438 * bits are according to sampler #, ie. if, for example:
2439 *
2440 * (conf->saturate_s & (1 << n))
2441 *
2442 * is true, then the s coord for sampler n is saturated.
2443 *
2444 * Note that clamping must happen *after* projector lowering
2445 * so any projected texture sample instruction with a clamped
2446 * coordinate gets automatically lowered, regardless of the
2447 * 'lower_txp' setting.
2448 */
2449 unsigned saturate_s;
2450 unsigned saturate_t;
2451 unsigned saturate_r;
2452
2453 /* Bitmask of textures that need swizzling.
2454 *
2455 * If (swizzle_result & (1 << texture_index)), then the swizzle in
2456 * swizzles[texture_index] is applied to the result of the texturing
2457 * operation.
2458 */
2459 unsigned swizzle_result;
2460
2461 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
2462 * while 4 and 5 represent 0 and 1 respectively.
2463 */
2464 uint8_t swizzles[32][4];
2465
2466 /**
2467 * Bitmap of textures that need srgb to linear conversion. If
2468 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
2469 * of the texture are lowered to linear.
2470 */
2471 unsigned lower_srgb;
2472 } nir_lower_tex_options;
2473
2474 bool nir_lower_tex(nir_shader *shader,
2475 const nir_lower_tex_options *options);
2476
2477 bool nir_lower_idiv(nir_shader *shader);
2478
2479 void nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
2480 void nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
2481
2482 void nir_lower_two_sided_color(nir_shader *shader);
2483
2484 void nir_lower_clamp_color_outputs(nir_shader *shader);
2485
2486 void nir_lower_passthrough_edgeflags(nir_shader *shader);
2487
2488 typedef struct nir_lower_wpos_ytransform_options {
2489 int state_tokens[5];
2490 bool fs_coord_origin_upper_left :1;
2491 bool fs_coord_origin_lower_left :1;
2492 bool fs_coord_pixel_center_integer :1;
2493 bool fs_coord_pixel_center_half_integer :1;
2494 } nir_lower_wpos_ytransform_options;
2495
2496 bool nir_lower_wpos_ytransform(nir_shader *shader,
2497 const nir_lower_wpos_ytransform_options *options);
2498 bool nir_lower_wpos_center(nir_shader *shader);
2499
2500 typedef struct nir_lower_drawpixels_options {
2501 int texcoord_state_tokens[5];
2502 int scale_state_tokens[5];
2503 int bias_state_tokens[5];
2504 unsigned drawpix_sampler;
2505 unsigned pixelmap_sampler;
2506 bool pixel_maps :1;
2507 bool scale_and_bias :1;
2508 } nir_lower_drawpixels_options;
2509
2510 void nir_lower_drawpixels(nir_shader *shader,
2511 const nir_lower_drawpixels_options *options);
2512
2513 typedef struct nir_lower_bitmap_options {
2514 unsigned sampler;
2515 bool swizzle_xxxx;
2516 } nir_lower_bitmap_options;
2517
2518 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
2519
2520 void nir_lower_atomics(nir_shader *shader,
2521 const struct gl_shader_program *shader_program);
2522 void nir_lower_to_source_mods(nir_shader *shader);
2523
2524 bool nir_lower_gs_intrinsics(nir_shader *shader);
2525
2526 typedef enum {
2527 nir_lower_drcp = (1 << 0),
2528 nir_lower_dsqrt = (1 << 1),
2529 nir_lower_drsq = (1 << 2),
2530 nir_lower_dtrunc = (1 << 3),
2531 nir_lower_dfloor = (1 << 4),
2532 nir_lower_dceil = (1 << 5),
2533 nir_lower_dfract = (1 << 6),
2534 nir_lower_dround_even = (1 << 7),
2535 nir_lower_dmod = (1 << 8)
2536 } nir_lower_doubles_options;
2537
2538 void nir_lower_doubles(nir_shader *shader, nir_lower_doubles_options options);
2539 void nir_lower_double_pack(nir_shader *shader);
2540
2541 bool nir_normalize_cubemap_coords(nir_shader *shader);
2542
2543 void nir_live_ssa_defs_impl(nir_function_impl *impl);
2544 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
2545
2546 void nir_convert_to_ssa_impl(nir_function_impl *impl);
2547 void nir_convert_to_ssa(nir_shader *shader);
2548
2549 bool nir_repair_ssa_impl(nir_function_impl *impl);
2550 bool nir_repair_ssa(nir_shader *shader);
2551
2552 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
2553 * registers. If false, convert all values (even those not involved in a phi
2554 * node) to registers.
2555 */
2556 void nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
2557
2558 bool nir_opt_algebraic(nir_shader *shader);
2559 bool nir_opt_algebraic_late(nir_shader *shader);
2560 bool nir_opt_constant_folding(nir_shader *shader);
2561
2562 bool nir_opt_global_to_local(nir_shader *shader);
2563
2564 bool nir_copy_prop(nir_shader *shader);
2565
2566 bool nir_opt_cse(nir_shader *shader);
2567
2568 bool nir_opt_dce(nir_shader *shader);
2569
2570 bool nir_opt_dead_cf(nir_shader *shader);
2571
2572 void nir_opt_gcm(nir_shader *shader);
2573
2574 bool nir_opt_peephole_select(nir_shader *shader);
2575
2576 bool nir_opt_remove_phis(nir_shader *shader);
2577
2578 bool nir_opt_undef(nir_shader *shader);
2579
2580 void nir_sweep(nir_shader *shader);
2581
2582 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
2583 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
2584
2585 #ifdef __cplusplus
2586 } /* extern "C" */
2587 #endif