nir/glsl: make nir_remap_attributes public
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitset.h"
38 #include "util/macros.h"
39 #include "compiler/nir_types.h"
40 #include "compiler/shader_enums.h"
41 #include "compiler/shader_info.h"
42 #include <stdio.h>
43
44 #ifndef NDEBUG
45 #include "util/debug.h"
46 #endif /* NDEBUG */
47
48 #include "nir_opcodes.h"
49
50 #if defined(_WIN32) && !defined(snprintf)
51 #define snprintf _snprintf
52 #endif
53
54 #ifdef __cplusplus
55 extern "C" {
56 #endif
57
58 #define NIR_FALSE 0u
59 #define NIR_TRUE (~0u)
60 #define NIR_MAX_VEC_COMPONENTS 4
61 typedef uint8_t nir_component_mask_t;
62
63 /** Defines a cast function
64 *
65 * This macro defines a cast function from in_type to out_type where
66 * out_type is some structure type that contains a field of type out_type.
67 *
68 * Note that you have to be a bit careful as the generated cast function
69 * destroys constness.
70 */
71 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
72 type_field, type_value) \
73 static inline out_type * \
74 name(const in_type *parent) \
75 { \
76 assert(parent && parent->type_field == type_value); \
77 return exec_node_data(out_type, parent, field); \
78 }
79
80 struct nir_function;
81 struct nir_shader;
82 struct nir_instr;
83 struct nir_builder;
84
85
86 /**
87 * Description of built-in state associated with a uniform
88 *
89 * \sa nir_variable::state_slots
90 */
91 typedef struct {
92 gl_state_index16 tokens[STATE_LENGTH];
93 int swizzle;
94 } nir_state_slot;
95
96 typedef enum {
97 nir_var_shader_in = (1 << 0),
98 nir_var_shader_out = (1 << 1),
99 nir_var_global = (1 << 2),
100 nir_var_local = (1 << 3),
101 nir_var_uniform = (1 << 4),
102 nir_var_shader_storage = (1 << 5),
103 nir_var_system_value = (1 << 6),
104 nir_var_shared = (1 << 8),
105 nir_var_all = ~0,
106 } nir_variable_mode;
107
108 /**
109 * Rounding modes.
110 */
111 typedef enum {
112 nir_rounding_mode_undef = 0,
113 nir_rounding_mode_rtne = 1, /* round to nearest even */
114 nir_rounding_mode_ru = 2, /* round up */
115 nir_rounding_mode_rd = 3, /* round down */
116 nir_rounding_mode_rtz = 4, /* round towards zero */
117 } nir_rounding_mode;
118
119 typedef union {
120 float f32[NIR_MAX_VEC_COMPONENTS];
121 double f64[NIR_MAX_VEC_COMPONENTS];
122 int8_t i8[NIR_MAX_VEC_COMPONENTS];
123 uint8_t u8[NIR_MAX_VEC_COMPONENTS];
124 int16_t i16[NIR_MAX_VEC_COMPONENTS];
125 uint16_t u16[NIR_MAX_VEC_COMPONENTS];
126 int32_t i32[NIR_MAX_VEC_COMPONENTS];
127 uint32_t u32[NIR_MAX_VEC_COMPONENTS];
128 int64_t i64[NIR_MAX_VEC_COMPONENTS];
129 uint64_t u64[NIR_MAX_VEC_COMPONENTS];
130 } nir_const_value;
131
132 typedef struct nir_constant {
133 /**
134 * Value of the constant.
135 *
136 * The field used to back the values supplied by the constant is determined
137 * by the type associated with the \c nir_variable. Constants may be
138 * scalars, vectors, or matrices.
139 */
140 nir_const_value values[NIR_MAX_VEC_COMPONENTS];
141
142 /* we could get this from the var->type but makes clone *much* easier to
143 * not have to care about the type.
144 */
145 unsigned num_elements;
146
147 /* Array elements / Structure Fields */
148 struct nir_constant **elements;
149 } nir_constant;
150
151 /**
152 * \brief Layout qualifiers for gl_FragDepth.
153 *
154 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
155 * with a layout qualifier.
156 */
157 typedef enum {
158 nir_depth_layout_none, /**< No depth layout is specified. */
159 nir_depth_layout_any,
160 nir_depth_layout_greater,
161 nir_depth_layout_less,
162 nir_depth_layout_unchanged
163 } nir_depth_layout;
164
165 /**
166 * Enum keeping track of how a variable was declared.
167 */
168 typedef enum {
169 /**
170 * Normal declaration.
171 */
172 nir_var_declared_normally = 0,
173
174 /**
175 * Variable is implicitly generated by the compiler and should not be
176 * visible via the API.
177 */
178 nir_var_hidden,
179 } nir_var_declaration_type;
180
181 /**
182 * Either a uniform, global variable, shader input, or shader output. Based on
183 * ir_variable - it should be easy to translate between the two.
184 */
185
186 typedef struct nir_variable {
187 struct exec_node node;
188
189 /**
190 * Declared type of the variable
191 */
192 const struct glsl_type *type;
193
194 /**
195 * Declared name of the variable
196 */
197 char *name;
198
199 struct nir_variable_data {
200 /**
201 * Storage class of the variable.
202 *
203 * \sa nir_variable_mode
204 */
205 nir_variable_mode mode;
206
207 /**
208 * Is the variable read-only?
209 *
210 * This is set for variables declared as \c const, shader inputs,
211 * and uniforms.
212 */
213 unsigned read_only:1;
214 unsigned centroid:1;
215 unsigned sample:1;
216 unsigned patch:1;
217 unsigned invariant:1;
218
219 /**
220 * When separate shader programs are enabled, only input/outputs between
221 * the stages of a multi-stage separate program can be safely removed
222 * from the shader interface. Other input/outputs must remains active.
223 *
224 * This is also used to make sure xfb varyings that are unused by the
225 * fragment shader are not removed.
226 */
227 unsigned always_active_io:1;
228
229 /**
230 * Interpolation mode for shader inputs / outputs
231 *
232 * \sa glsl_interp_mode
233 */
234 unsigned interpolation:2;
235
236 /**
237 * \name ARB_fragment_coord_conventions
238 * @{
239 */
240 unsigned origin_upper_left:1;
241 unsigned pixel_center_integer:1;
242 /*@}*/
243
244 /**
245 * If non-zero, then this variable may be packed along with other variables
246 * into a single varying slot, so this offset should be applied when
247 * accessing components. For example, an offset of 1 means that the x
248 * component of this variable is actually stored in component y of the
249 * location specified by \c location.
250 */
251 unsigned location_frac:2;
252
253 /**
254 * If true, this variable represents an array of scalars that should
255 * be tightly packed. In other words, consecutive array elements
256 * should be stored one component apart, rather than one slot apart.
257 */
258 unsigned compact:1;
259
260 /**
261 * Whether this is a fragment shader output implicitly initialized with
262 * the previous contents of the specified render target at the
263 * framebuffer location corresponding to this shader invocation.
264 */
265 unsigned fb_fetch_output:1;
266
267 /**
268 * Non-zero if this variable is considered bindless as defined by
269 * ARB_bindless_texture.
270 */
271 unsigned bindless:1;
272
273 /**
274 * Was an explicit binding set in the shader?
275 */
276 unsigned explicit_binding:1;
277
278 /**
279 * Was a transfer feedback buffer set in the shader?
280 */
281 unsigned explicit_xfb_buffer:1;
282
283 /**
284 * Was a transfer feedback stride set in the shader?
285 */
286 unsigned explicit_xfb_stride:1;
287
288 /**
289 * Was an explicit offset set in the shader?
290 */
291 unsigned explicit_offset:1;
292
293 /**
294 * \brief Layout qualifier for gl_FragDepth.
295 *
296 * This is not equal to \c ir_depth_layout_none if and only if this
297 * variable is \c gl_FragDepth and a layout qualifier is specified.
298 */
299 nir_depth_layout depth_layout;
300
301 /**
302 * Storage location of the base of this variable
303 *
304 * The precise meaning of this field depends on the nature of the variable.
305 *
306 * - Vertex shader input: one of the values from \c gl_vert_attrib.
307 * - Vertex shader output: one of the values from \c gl_varying_slot.
308 * - Geometry shader input: one of the values from \c gl_varying_slot.
309 * - Geometry shader output: one of the values from \c gl_varying_slot.
310 * - Fragment shader input: one of the values from \c gl_varying_slot.
311 * - Fragment shader output: one of the values from \c gl_frag_result.
312 * - Uniforms: Per-stage uniform slot number for default uniform block.
313 * - Uniforms: Index within the uniform block definition for UBO members.
314 * - Non-UBO Uniforms: uniform slot number.
315 * - Other: This field is not currently used.
316 *
317 * If the variable is a uniform, shader input, or shader output, and the
318 * slot has not been assigned, the value will be -1.
319 */
320 int location;
321
322 /**
323 * The actual location of the variable in the IR. Only valid for inputs
324 * and outputs.
325 */
326 unsigned int driver_location;
327
328 /**
329 * Vertex stream output identifier.
330 *
331 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
332 * stream of the i-th component.
333 */
334 unsigned stream;
335
336 /**
337 * output index for dual source blending.
338 */
339 int index;
340
341 /**
342 * Descriptor set binding for sampler or UBO.
343 */
344 int descriptor_set;
345
346 /**
347 * Initial binding point for a sampler or UBO.
348 *
349 * For array types, this represents the binding point for the first element.
350 */
351 int binding;
352
353 /**
354 * Location an atomic counter or transform feedback is stored at.
355 */
356 unsigned offset;
357
358 /**
359 * Transform feedback buffer.
360 */
361 unsigned xfb_buffer;
362
363 /**
364 * Transform feedback stride.
365 */
366 unsigned xfb_stride;
367
368 /**
369 * How the variable was declared. See nir_var_declaration_type.
370 *
371 * This is used to detect variables generated by the compiler, so should
372 * not be visible via the API.
373 */
374 unsigned how_declared:2;
375
376 /**
377 * ARB_shader_image_load_store qualifiers.
378 */
379 struct {
380 bool read_only; /**< "readonly" qualifier. */
381 bool write_only; /**< "writeonly" qualifier. */
382 bool coherent;
383 bool _volatile;
384 bool restrict_flag;
385
386 /** Image internal format if specified explicitly, otherwise GL_NONE. */
387 GLenum format;
388 } image;
389 } data;
390
391 /**
392 * Built-in state that backs this uniform
393 *
394 * Once set at variable creation, \c state_slots must remain invariant.
395 * This is because, ideally, this array would be shared by all clones of
396 * this variable in the IR tree. In other words, we'd really like for it
397 * to be a fly-weight.
398 *
399 * If the variable is not a uniform, \c num_state_slots will be zero and
400 * \c state_slots will be \c NULL.
401 */
402 /*@{*/
403 unsigned num_state_slots; /**< Number of state slots used */
404 nir_state_slot *state_slots; /**< State descriptors. */
405 /*@}*/
406
407 /**
408 * Constant expression assigned in the initializer of the variable
409 *
410 * This field should only be used temporarily by creators of NIR shaders
411 * and then lower_constant_initializers can be used to get rid of them.
412 * Most of the rest of NIR ignores this field or asserts that it's NULL.
413 */
414 nir_constant *constant_initializer;
415
416 /**
417 * For variables that are in an interface block or are an instance of an
418 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
419 *
420 * \sa ir_variable::location
421 */
422 const struct glsl_type *interface_type;
423
424 /**
425 * Description of per-member data for per-member struct variables
426 *
427 * This is used for variables which are actually an amalgamation of
428 * multiple entities such as a struct of built-in values or a struct of
429 * inputs each with their own layout specifier. This is only allowed on
430 * variables with a struct or array of array of struct type.
431 */
432 unsigned num_members;
433 struct nir_variable_data *members;
434 } nir_variable;
435
436 #define nir_foreach_variable(var, var_list) \
437 foreach_list_typed(nir_variable, var, node, var_list)
438
439 #define nir_foreach_variable_safe(var, var_list) \
440 foreach_list_typed_safe(nir_variable, var, node, var_list)
441
442 static inline bool
443 nir_variable_is_global(const nir_variable *var)
444 {
445 return var->data.mode != nir_var_local;
446 }
447
448 typedef struct nir_register {
449 struct exec_node node;
450
451 unsigned num_components; /** < number of vector components */
452 unsigned num_array_elems; /** < size of array (0 for no array) */
453
454 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
455 uint8_t bit_size;
456
457 /** generic register index. */
458 unsigned index;
459
460 /** only for debug purposes, can be NULL */
461 const char *name;
462
463 /** whether this register is local (per-function) or global (per-shader) */
464 bool is_global;
465
466 /**
467 * If this flag is set to true, then accessing channels >= num_components
468 * is well-defined, and simply spills over to the next array element. This
469 * is useful for backends that can do per-component accessing, in
470 * particular scalar backends. By setting this flag and making
471 * num_components equal to 1, structures can be packed tightly into
472 * registers and then registers can be accessed per-component to get to
473 * each structure member, even if it crosses vec4 boundaries.
474 */
475 bool is_packed;
476
477 /** set of nir_srcs where this register is used (read from) */
478 struct list_head uses;
479
480 /** set of nir_dests where this register is defined (written to) */
481 struct list_head defs;
482
483 /** set of nir_ifs where this register is used as a condition */
484 struct list_head if_uses;
485 } nir_register;
486
487 #define nir_foreach_register(reg, reg_list) \
488 foreach_list_typed(nir_register, reg, node, reg_list)
489 #define nir_foreach_register_safe(reg, reg_list) \
490 foreach_list_typed_safe(nir_register, reg, node, reg_list)
491
492 typedef enum {
493 nir_instr_type_alu,
494 nir_instr_type_deref,
495 nir_instr_type_call,
496 nir_instr_type_tex,
497 nir_instr_type_intrinsic,
498 nir_instr_type_load_const,
499 nir_instr_type_jump,
500 nir_instr_type_ssa_undef,
501 nir_instr_type_phi,
502 nir_instr_type_parallel_copy,
503 } nir_instr_type;
504
505 typedef struct nir_instr {
506 struct exec_node node;
507 nir_instr_type type;
508 struct nir_block *block;
509
510 /** generic instruction index. */
511 unsigned index;
512
513 /* A temporary for optimization and analysis passes to use for storing
514 * flags. For instance, DCE uses this to store the "dead/live" info.
515 */
516 uint8_t pass_flags;
517 } nir_instr;
518
519 static inline nir_instr *
520 nir_instr_next(nir_instr *instr)
521 {
522 struct exec_node *next = exec_node_get_next(&instr->node);
523 if (exec_node_is_tail_sentinel(next))
524 return NULL;
525 else
526 return exec_node_data(nir_instr, next, node);
527 }
528
529 static inline nir_instr *
530 nir_instr_prev(nir_instr *instr)
531 {
532 struct exec_node *prev = exec_node_get_prev(&instr->node);
533 if (exec_node_is_head_sentinel(prev))
534 return NULL;
535 else
536 return exec_node_data(nir_instr, prev, node);
537 }
538
539 static inline bool
540 nir_instr_is_first(const nir_instr *instr)
541 {
542 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
543 }
544
545 static inline bool
546 nir_instr_is_last(const nir_instr *instr)
547 {
548 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
549 }
550
551 typedef struct nir_ssa_def {
552 /** for debugging only, can be NULL */
553 const char* name;
554
555 /** generic SSA definition index. */
556 unsigned index;
557
558 /** Index into the live_in and live_out bitfields */
559 unsigned live_index;
560
561 /** Instruction which produces this SSA value. */
562 nir_instr *parent_instr;
563
564 /** set of nir_instrs where this register is used (read from) */
565 struct list_head uses;
566
567 /** set of nir_ifs where this register is used as a condition */
568 struct list_head if_uses;
569
570 uint8_t num_components;
571
572 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
573 uint8_t bit_size;
574 } nir_ssa_def;
575
576 struct nir_src;
577
578 typedef struct {
579 nir_register *reg;
580 struct nir_src *indirect; /** < NULL for no indirect offset */
581 unsigned base_offset;
582
583 /* TODO use-def chain goes here */
584 } nir_reg_src;
585
586 typedef struct {
587 nir_instr *parent_instr;
588 struct list_head def_link;
589
590 nir_register *reg;
591 struct nir_src *indirect; /** < NULL for no indirect offset */
592 unsigned base_offset;
593
594 /* TODO def-use chain goes here */
595 } nir_reg_dest;
596
597 struct nir_if;
598
599 typedef struct nir_src {
600 union {
601 /** Instruction that consumes this value as a source. */
602 nir_instr *parent_instr;
603 struct nir_if *parent_if;
604 };
605
606 struct list_head use_link;
607
608 union {
609 nir_reg_src reg;
610 nir_ssa_def *ssa;
611 };
612
613 bool is_ssa;
614 } nir_src;
615
616 static inline nir_src
617 nir_src_init(void)
618 {
619 nir_src src = { { NULL } };
620 return src;
621 }
622
623 #define NIR_SRC_INIT nir_src_init()
624
625 #define nir_foreach_use(src, reg_or_ssa_def) \
626 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
627
628 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
629 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
630
631 #define nir_foreach_if_use(src, reg_or_ssa_def) \
632 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
633
634 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
635 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
636
637 typedef struct {
638 union {
639 nir_reg_dest reg;
640 nir_ssa_def ssa;
641 };
642
643 bool is_ssa;
644 } nir_dest;
645
646 static inline nir_dest
647 nir_dest_init(void)
648 {
649 nir_dest dest = { { { NULL } } };
650 return dest;
651 }
652
653 #define NIR_DEST_INIT nir_dest_init()
654
655 #define nir_foreach_def(dest, reg) \
656 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
657
658 #define nir_foreach_def_safe(dest, reg) \
659 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
660
661 static inline nir_src
662 nir_src_for_ssa(nir_ssa_def *def)
663 {
664 nir_src src = NIR_SRC_INIT;
665
666 src.is_ssa = true;
667 src.ssa = def;
668
669 return src;
670 }
671
672 static inline nir_src
673 nir_src_for_reg(nir_register *reg)
674 {
675 nir_src src = NIR_SRC_INIT;
676
677 src.is_ssa = false;
678 src.reg.reg = reg;
679 src.reg.indirect = NULL;
680 src.reg.base_offset = 0;
681
682 return src;
683 }
684
685 static inline nir_dest
686 nir_dest_for_reg(nir_register *reg)
687 {
688 nir_dest dest = NIR_DEST_INIT;
689
690 dest.reg.reg = reg;
691
692 return dest;
693 }
694
695 static inline unsigned
696 nir_src_bit_size(nir_src src)
697 {
698 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
699 }
700
701 static inline unsigned
702 nir_src_num_components(nir_src src)
703 {
704 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
705 }
706
707 static inline unsigned
708 nir_dest_bit_size(nir_dest dest)
709 {
710 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
711 }
712
713 static inline unsigned
714 nir_dest_num_components(nir_dest dest)
715 {
716 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
717 }
718
719 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
720 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
721
722 typedef struct {
723 nir_src src;
724
725 /**
726 * \name input modifiers
727 */
728 /*@{*/
729 /**
730 * For inputs interpreted as floating point, flips the sign bit. For
731 * inputs interpreted as integers, performs the two's complement negation.
732 */
733 bool negate;
734
735 /**
736 * Clears the sign bit for floating point values, and computes the integer
737 * absolute value for integers. Note that the negate modifier acts after
738 * the absolute value modifier, therefore if both are set then all inputs
739 * will become negative.
740 */
741 bool abs;
742 /*@}*/
743
744 /**
745 * For each input component, says which component of the register it is
746 * chosen from. Note that which elements of the swizzle are used and which
747 * are ignored are based on the write mask for most opcodes - for example,
748 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
749 * a swizzle of {2, x, 1, 0} where x means "don't care."
750 */
751 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
752 } nir_alu_src;
753
754 typedef struct {
755 nir_dest dest;
756
757 /**
758 * \name saturate output modifier
759 *
760 * Only valid for opcodes that output floating-point numbers. Clamps the
761 * output to between 0.0 and 1.0 inclusive.
762 */
763
764 bool saturate;
765
766 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
767 } nir_alu_dest;
768
769 typedef enum {
770 nir_type_invalid = 0, /* Not a valid type */
771 nir_type_float,
772 nir_type_int,
773 nir_type_uint,
774 nir_type_bool,
775 nir_type_bool32 = 32 | nir_type_bool,
776 nir_type_int8 = 8 | nir_type_int,
777 nir_type_int16 = 16 | nir_type_int,
778 nir_type_int32 = 32 | nir_type_int,
779 nir_type_int64 = 64 | nir_type_int,
780 nir_type_uint8 = 8 | nir_type_uint,
781 nir_type_uint16 = 16 | nir_type_uint,
782 nir_type_uint32 = 32 | nir_type_uint,
783 nir_type_uint64 = 64 | nir_type_uint,
784 nir_type_float16 = 16 | nir_type_float,
785 nir_type_float32 = 32 | nir_type_float,
786 nir_type_float64 = 64 | nir_type_float,
787 } nir_alu_type;
788
789 #define NIR_ALU_TYPE_SIZE_MASK 0xfffffff8
790 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x00000007
791
792 static inline unsigned
793 nir_alu_type_get_type_size(nir_alu_type type)
794 {
795 return type & NIR_ALU_TYPE_SIZE_MASK;
796 }
797
798 static inline unsigned
799 nir_alu_type_get_base_type(nir_alu_type type)
800 {
801 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
802 }
803
804 static inline nir_alu_type
805 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
806 {
807 switch (base_type) {
808 case GLSL_TYPE_BOOL:
809 return nir_type_bool32;
810 break;
811 case GLSL_TYPE_UINT:
812 return nir_type_uint32;
813 break;
814 case GLSL_TYPE_INT:
815 return nir_type_int32;
816 break;
817 case GLSL_TYPE_UINT16:
818 return nir_type_uint16;
819 break;
820 case GLSL_TYPE_INT16:
821 return nir_type_int16;
822 break;
823 case GLSL_TYPE_UINT8:
824 return nir_type_uint8;
825 case GLSL_TYPE_INT8:
826 return nir_type_int8;
827 case GLSL_TYPE_UINT64:
828 return nir_type_uint64;
829 break;
830 case GLSL_TYPE_INT64:
831 return nir_type_int64;
832 break;
833 case GLSL_TYPE_FLOAT:
834 return nir_type_float32;
835 break;
836 case GLSL_TYPE_FLOAT16:
837 return nir_type_float16;
838 break;
839 case GLSL_TYPE_DOUBLE:
840 return nir_type_float64;
841 break;
842 default:
843 unreachable("unknown type");
844 }
845 }
846
847 static inline nir_alu_type
848 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
849 {
850 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
851 }
852
853 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
854 nir_rounding_mode rnd);
855
856 typedef enum {
857 NIR_OP_IS_COMMUTATIVE = (1 << 0),
858 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
859 } nir_op_algebraic_property;
860
861 typedef struct {
862 const char *name;
863
864 unsigned num_inputs;
865
866 /**
867 * The number of components in the output
868 *
869 * If non-zero, this is the size of the output and input sizes are
870 * explicitly given; swizzle and writemask are still in effect, but if
871 * the output component is masked out, then the input component may
872 * still be in use.
873 *
874 * If zero, the opcode acts in the standard, per-component manner; the
875 * operation is performed on each component (except the ones that are
876 * masked out) with the input being taken from the input swizzle for
877 * that component.
878 *
879 * The size of some of the inputs may be given (i.e. non-zero) even
880 * though output_size is zero; in that case, the inputs with a zero
881 * size act per-component, while the inputs with non-zero size don't.
882 */
883 unsigned output_size;
884
885 /**
886 * The type of vector that the instruction outputs. Note that the
887 * staurate modifier is only allowed on outputs with the float type.
888 */
889
890 nir_alu_type output_type;
891
892 /**
893 * The number of components in each input
894 */
895 unsigned input_sizes[NIR_MAX_VEC_COMPONENTS];
896
897 /**
898 * The type of vector that each input takes. Note that negate and
899 * absolute value are only allowed on inputs with int or float type and
900 * behave differently on the two.
901 */
902 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
903
904 nir_op_algebraic_property algebraic_properties;
905 } nir_op_info;
906
907 extern const nir_op_info nir_op_infos[nir_num_opcodes];
908
909 typedef struct nir_alu_instr {
910 nir_instr instr;
911 nir_op op;
912
913 /** Indicates that this ALU instruction generates an exact value
914 *
915 * This is kind of a mixture of GLSL "precise" and "invariant" and not
916 * really equivalent to either. This indicates that the value generated by
917 * this operation is high-precision and any code transformations that touch
918 * it must ensure that the resulting value is bit-for-bit identical to the
919 * original.
920 */
921 bool exact;
922
923 nir_alu_dest dest;
924 nir_alu_src src[];
925 } nir_alu_instr;
926
927 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
928 nir_alu_instr *instr);
929 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
930 nir_alu_instr *instr);
931
932 /* is this source channel used? */
933 static inline bool
934 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
935 unsigned channel)
936 {
937 if (nir_op_infos[instr->op].input_sizes[src] > 0)
938 return channel < nir_op_infos[instr->op].input_sizes[src];
939
940 return (instr->dest.write_mask >> channel) & 1;
941 }
942
943 /*
944 * For instructions whose destinations are SSA, get the number of channels
945 * used for a source
946 */
947 static inline unsigned
948 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
949 {
950 assert(instr->dest.dest.is_ssa);
951
952 if (nir_op_infos[instr->op].input_sizes[src] > 0)
953 return nir_op_infos[instr->op].input_sizes[src];
954
955 return instr->dest.dest.ssa.num_components;
956 }
957
958 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
959 unsigned src1, unsigned src2);
960
961 typedef enum {
962 nir_deref_type_var,
963 nir_deref_type_array,
964 nir_deref_type_array_wildcard,
965 nir_deref_type_struct,
966 nir_deref_type_cast,
967 } nir_deref_type;
968
969 typedef struct {
970 nir_instr instr;
971
972 /** The type of this deref instruction */
973 nir_deref_type deref_type;
974
975 /** The mode of the underlying variable */
976 nir_variable_mode mode;
977
978 /** The dereferenced type of the resulting pointer value */
979 const struct glsl_type *type;
980
981 union {
982 /** Variable being dereferenced if deref_type is a deref_var */
983 nir_variable *var;
984
985 /** Parent deref if deref_type is not deref_var */
986 nir_src parent;
987 };
988
989 /** Additional deref parameters */
990 union {
991 struct {
992 nir_src index;
993 } arr;
994
995 struct {
996 unsigned index;
997 } strct;
998 };
999
1000 /** Destination to store the resulting "pointer" */
1001 nir_dest dest;
1002 } nir_deref_instr;
1003
1004 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
1005 type, nir_instr_type_deref)
1006
1007 static inline nir_deref_instr *
1008 nir_src_as_deref(nir_src src)
1009 {
1010 if (!src.is_ssa)
1011 return NULL;
1012
1013 if (src.ssa->parent_instr->type != nir_instr_type_deref)
1014 return NULL;
1015
1016 return nir_instr_as_deref(src.ssa->parent_instr);
1017 }
1018
1019 static inline nir_deref_instr *
1020 nir_deref_instr_parent(const nir_deref_instr *instr)
1021 {
1022 if (instr->deref_type == nir_deref_type_var)
1023 return NULL;
1024 else
1025 return nir_src_as_deref(instr->parent);
1026 }
1027
1028 static inline nir_variable *
1029 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1030 {
1031 while (instr->deref_type != nir_deref_type_var) {
1032 if (instr->deref_type == nir_deref_type_cast)
1033 return NULL;
1034
1035 instr = nir_deref_instr_parent(instr);
1036 }
1037
1038 return instr->var;
1039 }
1040
1041 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1042
1043 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1044
1045 typedef struct {
1046 nir_instr instr;
1047
1048 struct nir_function *callee;
1049
1050 unsigned num_params;
1051 nir_src params[];
1052 } nir_call_instr;
1053
1054 #include "nir_intrinsics.h"
1055
1056 #define NIR_INTRINSIC_MAX_CONST_INDEX 3
1057
1058 /** Represents an intrinsic
1059 *
1060 * An intrinsic is an instruction type for handling things that are
1061 * more-or-less regular operations but don't just consume and produce SSA
1062 * values like ALU operations do. Intrinsics are not for things that have
1063 * special semantic meaning such as phi nodes and parallel copies.
1064 * Examples of intrinsics include variable load/store operations, system
1065 * value loads, and the like. Even though texturing more-or-less falls
1066 * under this category, texturing is its own instruction type because
1067 * trying to represent texturing with intrinsics would lead to a
1068 * combinatorial explosion of intrinsic opcodes.
1069 *
1070 * By having a single instruction type for handling a lot of different
1071 * cases, optimization passes can look for intrinsics and, for the most
1072 * part, completely ignore them. Each intrinsic type also has a few
1073 * possible flags that govern whether or not they can be reordered or
1074 * eliminated. That way passes like dead code elimination can still work
1075 * on intrisics without understanding the meaning of each.
1076 *
1077 * Each intrinsic has some number of constant indices, some number of
1078 * variables, and some number of sources. What these sources, variables,
1079 * and indices mean depends on the intrinsic and is documented with the
1080 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1081 * instructions are the only types of instruction that can operate on
1082 * variables.
1083 */
1084 typedef struct {
1085 nir_instr instr;
1086
1087 nir_intrinsic_op intrinsic;
1088
1089 nir_dest dest;
1090
1091 /** number of components if this is a vectorized intrinsic
1092 *
1093 * Similarly to ALU operations, some intrinsics are vectorized.
1094 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1095 * For vectorized intrinsics, the num_components field specifies the
1096 * number of destination components and the number of source components
1097 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1098 */
1099 uint8_t num_components;
1100
1101 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1102
1103 nir_src src[];
1104 } nir_intrinsic_instr;
1105
1106 static inline nir_variable *
1107 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1108 {
1109 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1110 }
1111
1112 /**
1113 * \name NIR intrinsics semantic flags
1114 *
1115 * information about what the compiler can do with the intrinsics.
1116 *
1117 * \sa nir_intrinsic_info::flags
1118 */
1119 typedef enum {
1120 /**
1121 * whether the intrinsic can be safely eliminated if none of its output
1122 * value is not being used.
1123 */
1124 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1125
1126 /**
1127 * Whether the intrinsic can be reordered with respect to any other
1128 * intrinsic, i.e. whether the only reordering dependencies of the
1129 * intrinsic are due to the register reads/writes.
1130 */
1131 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1132 } nir_intrinsic_semantic_flag;
1133
1134 /**
1135 * \name NIR intrinsics const-index flag
1136 *
1137 * Indicates the usage of a const_index slot.
1138 *
1139 * \sa nir_intrinsic_info::index_map
1140 */
1141 typedef enum {
1142 /**
1143 * Generally instructions that take a offset src argument, can encode
1144 * a constant 'base' value which is added to the offset.
1145 */
1146 NIR_INTRINSIC_BASE = 1,
1147
1148 /**
1149 * For store instructions, a writemask for the store.
1150 */
1151 NIR_INTRINSIC_WRMASK = 2,
1152
1153 /**
1154 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1155 */
1156 NIR_INTRINSIC_STREAM_ID = 3,
1157
1158 /**
1159 * The clip-plane id for load_user_clip_plane intrinsic.
1160 */
1161 NIR_INTRINSIC_UCP_ID = 4,
1162
1163 /**
1164 * The amount of data, starting from BASE, that this instruction may
1165 * access. This is used to provide bounds if the offset is not constant.
1166 */
1167 NIR_INTRINSIC_RANGE = 5,
1168
1169 /**
1170 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1171 */
1172 NIR_INTRINSIC_DESC_SET = 6,
1173
1174 /**
1175 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1176 */
1177 NIR_INTRINSIC_BINDING = 7,
1178
1179 /**
1180 * Component offset.
1181 */
1182 NIR_INTRINSIC_COMPONENT = 8,
1183
1184 /**
1185 * Interpolation mode (only meaningful for FS inputs).
1186 */
1187 NIR_INTRINSIC_INTERP_MODE = 9,
1188
1189 /**
1190 * A binary nir_op to use when performing a reduction or scan operation
1191 */
1192 NIR_INTRINSIC_REDUCTION_OP = 10,
1193
1194 /**
1195 * Cluster size for reduction operations
1196 */
1197 NIR_INTRINSIC_CLUSTER_SIZE = 11,
1198
1199 /**
1200 * Parameter index for a load_param intrinsic
1201 */
1202 NIR_INTRINSIC_PARAM_IDX = 12,
1203
1204 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1205
1206 } nir_intrinsic_index_flag;
1207
1208 #define NIR_INTRINSIC_MAX_INPUTS 5
1209
1210 typedef struct {
1211 const char *name;
1212
1213 unsigned num_srcs; /** < number of register/SSA inputs */
1214
1215 /** number of components of each input register
1216 *
1217 * If this value is 0, the number of components is given by the
1218 * num_components field of nir_intrinsic_instr.
1219 */
1220 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
1221
1222 bool has_dest;
1223
1224 /** number of components of the output register
1225 *
1226 * If this value is 0, the number of components is given by the
1227 * num_components field of nir_intrinsic_instr.
1228 */
1229 unsigned dest_components;
1230
1231 /** the number of constant indices used by the intrinsic */
1232 unsigned num_indices;
1233
1234 /** indicates the usage of intr->const_index[n] */
1235 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1236
1237 /** semantic flags for calls to this intrinsic */
1238 nir_intrinsic_semantic_flag flags;
1239 } nir_intrinsic_info;
1240
1241 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1242
1243 static inline unsigned
1244 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1245 {
1246 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1247 assert(srcn < info->num_srcs);
1248 if (info->src_components[srcn])
1249 return info->src_components[srcn];
1250 else
1251 return intr->num_components;
1252 }
1253
1254 static inline unsigned
1255 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1256 {
1257 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1258 if (!info->has_dest)
1259 return 0;
1260 else if (info->dest_components)
1261 return info->dest_components;
1262 else
1263 return intr->num_components;
1264 }
1265
1266 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1267 static inline type \
1268 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1269 { \
1270 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1271 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1272 return instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1273 } \
1274 static inline void \
1275 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1276 { \
1277 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1278 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1279 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1280 }
1281
1282 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1283 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1284 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1285 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1286 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1287 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1288 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1289 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1290 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1291 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1292 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1293 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1294
1295 /**
1296 * \group texture information
1297 *
1298 * This gives semantic information about textures which is useful to the
1299 * frontend, the backend, and lowering passes, but not the optimizer.
1300 */
1301
1302 typedef enum {
1303 nir_tex_src_coord,
1304 nir_tex_src_projector,
1305 nir_tex_src_comparator, /* shadow comparator */
1306 nir_tex_src_offset,
1307 nir_tex_src_bias,
1308 nir_tex_src_lod,
1309 nir_tex_src_ms_index, /* MSAA sample index */
1310 nir_tex_src_ms_mcs, /* MSAA compression value */
1311 nir_tex_src_ddx,
1312 nir_tex_src_ddy,
1313 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1314 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1315 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1316 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1317 nir_tex_src_plane, /* < selects plane for planar textures */
1318 nir_num_tex_src_types
1319 } nir_tex_src_type;
1320
1321 typedef struct {
1322 nir_src src;
1323 nir_tex_src_type src_type;
1324 } nir_tex_src;
1325
1326 typedef enum {
1327 nir_texop_tex, /**< Regular texture look-up */
1328 nir_texop_txb, /**< Texture look-up with LOD bias */
1329 nir_texop_txl, /**< Texture look-up with explicit LOD */
1330 nir_texop_txd, /**< Texture look-up with partial derivatives */
1331 nir_texop_txf, /**< Texel fetch with explicit LOD */
1332 nir_texop_txf_ms, /**< Multisample texture fetch */
1333 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1334 nir_texop_txs, /**< Texture size */
1335 nir_texop_lod, /**< Texture lod query */
1336 nir_texop_tg4, /**< Texture gather */
1337 nir_texop_query_levels, /**< Texture levels query */
1338 nir_texop_texture_samples, /**< Texture samples query */
1339 nir_texop_samples_identical, /**< Query whether all samples are definitely
1340 * identical.
1341 */
1342 } nir_texop;
1343
1344 typedef struct {
1345 nir_instr instr;
1346
1347 enum glsl_sampler_dim sampler_dim;
1348 nir_alu_type dest_type;
1349
1350 nir_texop op;
1351 nir_dest dest;
1352 nir_tex_src *src;
1353 unsigned num_srcs, coord_components;
1354 bool is_array, is_shadow;
1355
1356 /**
1357 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1358 * components or the new-style shadow that outputs 1 component.
1359 */
1360 bool is_new_style_shadow;
1361
1362 /* gather component selector */
1363 unsigned component : 2;
1364
1365 /** The texture index
1366 *
1367 * If this texture instruction has a nir_tex_src_texture_offset source,
1368 * then the texture index is given by texture_index + texture_offset.
1369 */
1370 unsigned texture_index;
1371
1372 /** The size of the texture array or 0 if it's not an array */
1373 unsigned texture_array_size;
1374
1375 /** The sampler index
1376 *
1377 * The following operations do not require a sampler and, as such, this
1378 * field should be ignored:
1379 * - nir_texop_txf
1380 * - nir_texop_txf_ms
1381 * - nir_texop_txs
1382 * - nir_texop_lod
1383 * - nir_texop_query_levels
1384 * - nir_texop_texture_samples
1385 * - nir_texop_samples_identical
1386 *
1387 * If this texture instruction has a nir_tex_src_sampler_offset source,
1388 * then the sampler index is given by sampler_index + sampler_offset.
1389 */
1390 unsigned sampler_index;
1391 } nir_tex_instr;
1392
1393 static inline unsigned
1394 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1395 {
1396 switch (instr->op) {
1397 case nir_texop_txs: {
1398 unsigned ret;
1399 switch (instr->sampler_dim) {
1400 case GLSL_SAMPLER_DIM_1D:
1401 case GLSL_SAMPLER_DIM_BUF:
1402 ret = 1;
1403 break;
1404 case GLSL_SAMPLER_DIM_2D:
1405 case GLSL_SAMPLER_DIM_CUBE:
1406 case GLSL_SAMPLER_DIM_MS:
1407 case GLSL_SAMPLER_DIM_RECT:
1408 case GLSL_SAMPLER_DIM_EXTERNAL:
1409 case GLSL_SAMPLER_DIM_SUBPASS:
1410 ret = 2;
1411 break;
1412 case GLSL_SAMPLER_DIM_3D:
1413 ret = 3;
1414 break;
1415 default:
1416 unreachable("not reached");
1417 }
1418 if (instr->is_array)
1419 ret++;
1420 return ret;
1421 }
1422
1423 case nir_texop_lod:
1424 return 2;
1425
1426 case nir_texop_texture_samples:
1427 case nir_texop_query_levels:
1428 case nir_texop_samples_identical:
1429 return 1;
1430
1431 default:
1432 if (instr->is_shadow && instr->is_new_style_shadow)
1433 return 1;
1434
1435 return 4;
1436 }
1437 }
1438
1439 /* Returns true if this texture operation queries something about the texture
1440 * rather than actually sampling it.
1441 */
1442 static inline bool
1443 nir_tex_instr_is_query(const nir_tex_instr *instr)
1444 {
1445 switch (instr->op) {
1446 case nir_texop_txs:
1447 case nir_texop_lod:
1448 case nir_texop_texture_samples:
1449 case nir_texop_query_levels:
1450 case nir_texop_txf_ms_mcs:
1451 return true;
1452 case nir_texop_tex:
1453 case nir_texop_txb:
1454 case nir_texop_txl:
1455 case nir_texop_txd:
1456 case nir_texop_txf:
1457 case nir_texop_txf_ms:
1458 case nir_texop_tg4:
1459 return false;
1460 default:
1461 unreachable("Invalid texture opcode");
1462 }
1463 }
1464
1465 static inline bool
1466 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1467 {
1468 switch (instr->op) {
1469 case nir_op_flt:
1470 case nir_op_fge:
1471 case nir_op_feq:
1472 case nir_op_fne:
1473 case nir_op_ilt:
1474 case nir_op_ult:
1475 case nir_op_ige:
1476 case nir_op_uge:
1477 case nir_op_ieq:
1478 case nir_op_ine:
1479 case nir_op_i2b:
1480 case nir_op_f2b:
1481 case nir_op_inot:
1482 case nir_op_fnot:
1483 return true;
1484 default:
1485 return false;
1486 }
1487 }
1488
1489 static inline nir_alu_type
1490 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1491 {
1492 switch (instr->src[src].src_type) {
1493 case nir_tex_src_coord:
1494 switch (instr->op) {
1495 case nir_texop_txf:
1496 case nir_texop_txf_ms:
1497 case nir_texop_txf_ms_mcs:
1498 case nir_texop_samples_identical:
1499 return nir_type_int;
1500
1501 default:
1502 return nir_type_float;
1503 }
1504
1505 case nir_tex_src_lod:
1506 switch (instr->op) {
1507 case nir_texop_txs:
1508 case nir_texop_txf:
1509 return nir_type_int;
1510
1511 default:
1512 return nir_type_float;
1513 }
1514
1515 case nir_tex_src_projector:
1516 case nir_tex_src_comparator:
1517 case nir_tex_src_bias:
1518 case nir_tex_src_ddx:
1519 case nir_tex_src_ddy:
1520 return nir_type_float;
1521
1522 case nir_tex_src_offset:
1523 case nir_tex_src_ms_index:
1524 case nir_tex_src_texture_offset:
1525 case nir_tex_src_sampler_offset:
1526 return nir_type_int;
1527
1528 default:
1529 unreachable("Invalid texture source type");
1530 }
1531 }
1532
1533 static inline unsigned
1534 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1535 {
1536 if (instr->src[src].src_type == nir_tex_src_coord)
1537 return instr->coord_components;
1538
1539 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1540 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1541 return 4;
1542
1543 if (instr->src[src].src_type == nir_tex_src_ddx ||
1544 instr->src[src].src_type == nir_tex_src_ddy) {
1545 if (instr->is_array)
1546 return instr->coord_components - 1;
1547 else
1548 return instr->coord_components;
1549 }
1550
1551 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1552 * the offset, since a cube maps to a single face.
1553 */
1554 if (instr->src[src].src_type == nir_tex_src_offset) {
1555 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1556 return 2;
1557 else if (instr->is_array)
1558 return instr->coord_components - 1;
1559 else
1560 return instr->coord_components;
1561 }
1562
1563 return 1;
1564 }
1565
1566 static inline int
1567 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1568 {
1569 for (unsigned i = 0; i < instr->num_srcs; i++)
1570 if (instr->src[i].src_type == type)
1571 return (int) i;
1572
1573 return -1;
1574 }
1575
1576 void nir_tex_instr_add_src(nir_tex_instr *tex,
1577 nir_tex_src_type src_type,
1578 nir_src src);
1579
1580 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1581
1582 typedef struct {
1583 nir_instr instr;
1584
1585 nir_const_value value;
1586
1587 nir_ssa_def def;
1588 } nir_load_const_instr;
1589
1590 typedef enum {
1591 nir_jump_return,
1592 nir_jump_break,
1593 nir_jump_continue,
1594 } nir_jump_type;
1595
1596 typedef struct {
1597 nir_instr instr;
1598 nir_jump_type type;
1599 } nir_jump_instr;
1600
1601 /* creates a new SSA variable in an undefined state */
1602
1603 typedef struct {
1604 nir_instr instr;
1605 nir_ssa_def def;
1606 } nir_ssa_undef_instr;
1607
1608 typedef struct {
1609 struct exec_node node;
1610
1611 /* The predecessor block corresponding to this source */
1612 struct nir_block *pred;
1613
1614 nir_src src;
1615 } nir_phi_src;
1616
1617 #define nir_foreach_phi_src(phi_src, phi) \
1618 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1619 #define nir_foreach_phi_src_safe(phi_src, phi) \
1620 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1621
1622 typedef struct {
1623 nir_instr instr;
1624
1625 struct exec_list srcs; /** < list of nir_phi_src */
1626
1627 nir_dest dest;
1628 } nir_phi_instr;
1629
1630 typedef struct {
1631 struct exec_node node;
1632 nir_src src;
1633 nir_dest dest;
1634 } nir_parallel_copy_entry;
1635
1636 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1637 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1638
1639 typedef struct {
1640 nir_instr instr;
1641
1642 /* A list of nir_parallel_copy_entrys. The sources of all of the
1643 * entries are copied to the corresponding destinations "in parallel".
1644 * In other words, if we have two entries: a -> b and b -> a, the values
1645 * get swapped.
1646 */
1647 struct exec_list entries;
1648 } nir_parallel_copy_instr;
1649
1650 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1651 type, nir_instr_type_alu)
1652 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1653 type, nir_instr_type_call)
1654 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1655 type, nir_instr_type_jump)
1656 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1657 type, nir_instr_type_tex)
1658 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1659 type, nir_instr_type_intrinsic)
1660 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1661 type, nir_instr_type_load_const)
1662 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1663 type, nir_instr_type_ssa_undef)
1664 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1665 type, nir_instr_type_phi)
1666 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1667 nir_parallel_copy_instr, instr,
1668 type, nir_instr_type_parallel_copy)
1669
1670 /*
1671 * Control flow
1672 *
1673 * Control flow consists of a tree of control flow nodes, which include
1674 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1675 * instructions that always run start-to-finish. Each basic block also keeps
1676 * track of its successors (blocks which may run immediately after the current
1677 * block) and predecessors (blocks which could have run immediately before the
1678 * current block). Each function also has a start block and an end block which
1679 * all return statements point to (which is always empty). Together, all the
1680 * blocks with their predecessors and successors make up the control flow
1681 * graph (CFG) of the function. There are helpers that modify the tree of
1682 * control flow nodes while modifying the CFG appropriately; these should be
1683 * used instead of modifying the tree directly.
1684 */
1685
1686 typedef enum {
1687 nir_cf_node_block,
1688 nir_cf_node_if,
1689 nir_cf_node_loop,
1690 nir_cf_node_function
1691 } nir_cf_node_type;
1692
1693 typedef struct nir_cf_node {
1694 struct exec_node node;
1695 nir_cf_node_type type;
1696 struct nir_cf_node *parent;
1697 } nir_cf_node;
1698
1699 typedef struct nir_block {
1700 nir_cf_node cf_node;
1701
1702 struct exec_list instr_list; /** < list of nir_instr */
1703
1704 /** generic block index; generated by nir_index_blocks */
1705 unsigned index;
1706
1707 /*
1708 * Each block can only have up to 2 successors, so we put them in a simple
1709 * array - no need for anything more complicated.
1710 */
1711 struct nir_block *successors[2];
1712
1713 /* Set of nir_block predecessors in the CFG */
1714 struct set *predecessors;
1715
1716 /*
1717 * this node's immediate dominator in the dominance tree - set to NULL for
1718 * the start block.
1719 */
1720 struct nir_block *imm_dom;
1721
1722 /* This node's children in the dominance tree */
1723 unsigned num_dom_children;
1724 struct nir_block **dom_children;
1725
1726 /* Set of nir_blocks on the dominance frontier of this block */
1727 struct set *dom_frontier;
1728
1729 /*
1730 * These two indices have the property that dom_{pre,post}_index for each
1731 * child of this block in the dominance tree will always be between
1732 * dom_pre_index and dom_post_index for this block, which makes testing if
1733 * a given block is dominated by another block an O(1) operation.
1734 */
1735 unsigned dom_pre_index, dom_post_index;
1736
1737 /* live in and out for this block; used for liveness analysis */
1738 BITSET_WORD *live_in;
1739 BITSET_WORD *live_out;
1740 } nir_block;
1741
1742 static inline nir_instr *
1743 nir_block_first_instr(nir_block *block)
1744 {
1745 struct exec_node *head = exec_list_get_head(&block->instr_list);
1746 return exec_node_data(nir_instr, head, node);
1747 }
1748
1749 static inline nir_instr *
1750 nir_block_last_instr(nir_block *block)
1751 {
1752 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1753 return exec_node_data(nir_instr, tail, node);
1754 }
1755
1756 #define nir_foreach_instr(instr, block) \
1757 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1758 #define nir_foreach_instr_reverse(instr, block) \
1759 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1760 #define nir_foreach_instr_safe(instr, block) \
1761 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1762 #define nir_foreach_instr_reverse_safe(instr, block) \
1763 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1764
1765 typedef struct nir_if {
1766 nir_cf_node cf_node;
1767 nir_src condition;
1768
1769 struct exec_list then_list; /** < list of nir_cf_node */
1770 struct exec_list else_list; /** < list of nir_cf_node */
1771 } nir_if;
1772
1773 typedef struct {
1774 nir_if *nif;
1775
1776 nir_instr *conditional_instr;
1777
1778 nir_block *break_block;
1779 nir_block *continue_from_block;
1780
1781 bool continue_from_then;
1782
1783 struct list_head loop_terminator_link;
1784 } nir_loop_terminator;
1785
1786 typedef struct {
1787 /* Number of instructions in the loop */
1788 unsigned num_instructions;
1789
1790 /* How many times the loop is run (if known) */
1791 unsigned trip_count;
1792 bool is_trip_count_known;
1793
1794 /* Unroll the loop regardless of its size */
1795 bool force_unroll;
1796
1797 nir_loop_terminator *limiting_terminator;
1798
1799 /* A list of loop_terminators terminating this loop. */
1800 struct list_head loop_terminator_list;
1801 } nir_loop_info;
1802
1803 typedef struct {
1804 nir_cf_node cf_node;
1805
1806 struct exec_list body; /** < list of nir_cf_node */
1807
1808 nir_loop_info *info;
1809 } nir_loop;
1810
1811 /**
1812 * Various bits of metadata that can may be created or required by
1813 * optimization and analysis passes
1814 */
1815 typedef enum {
1816 nir_metadata_none = 0x0,
1817 nir_metadata_block_index = 0x1,
1818 nir_metadata_dominance = 0x2,
1819 nir_metadata_live_ssa_defs = 0x4,
1820 nir_metadata_not_properly_reset = 0x8,
1821 nir_metadata_loop_analysis = 0x10,
1822 } nir_metadata;
1823
1824 typedef struct {
1825 nir_cf_node cf_node;
1826
1827 /** pointer to the function of which this is an implementation */
1828 struct nir_function *function;
1829
1830 struct exec_list body; /** < list of nir_cf_node */
1831
1832 nir_block *end_block;
1833
1834 /** list for all local variables in the function */
1835 struct exec_list locals;
1836
1837 /** list of local registers in the function */
1838 struct exec_list registers;
1839
1840 /** next available local register index */
1841 unsigned reg_alloc;
1842
1843 /** next available SSA value index */
1844 unsigned ssa_alloc;
1845
1846 /* total number of basic blocks, only valid when block_index_dirty = false */
1847 unsigned num_blocks;
1848
1849 nir_metadata valid_metadata;
1850 } nir_function_impl;
1851
1852 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1853 nir_start_block(nir_function_impl *impl)
1854 {
1855 return (nir_block *) impl->body.head_sentinel.next;
1856 }
1857
1858 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1859 nir_impl_last_block(nir_function_impl *impl)
1860 {
1861 return (nir_block *) impl->body.tail_sentinel.prev;
1862 }
1863
1864 static inline nir_cf_node *
1865 nir_cf_node_next(nir_cf_node *node)
1866 {
1867 struct exec_node *next = exec_node_get_next(&node->node);
1868 if (exec_node_is_tail_sentinel(next))
1869 return NULL;
1870 else
1871 return exec_node_data(nir_cf_node, next, node);
1872 }
1873
1874 static inline nir_cf_node *
1875 nir_cf_node_prev(nir_cf_node *node)
1876 {
1877 struct exec_node *prev = exec_node_get_prev(&node->node);
1878 if (exec_node_is_head_sentinel(prev))
1879 return NULL;
1880 else
1881 return exec_node_data(nir_cf_node, prev, node);
1882 }
1883
1884 static inline bool
1885 nir_cf_node_is_first(const nir_cf_node *node)
1886 {
1887 return exec_node_is_head_sentinel(node->node.prev);
1888 }
1889
1890 static inline bool
1891 nir_cf_node_is_last(const nir_cf_node *node)
1892 {
1893 return exec_node_is_tail_sentinel(node->node.next);
1894 }
1895
1896 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
1897 type, nir_cf_node_block)
1898 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
1899 type, nir_cf_node_if)
1900 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
1901 type, nir_cf_node_loop)
1902 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
1903 nir_function_impl, cf_node, type, nir_cf_node_function)
1904
1905 static inline nir_block *
1906 nir_if_first_then_block(nir_if *if_stmt)
1907 {
1908 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1909 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1910 }
1911
1912 static inline nir_block *
1913 nir_if_last_then_block(nir_if *if_stmt)
1914 {
1915 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1916 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1917 }
1918
1919 static inline nir_block *
1920 nir_if_first_else_block(nir_if *if_stmt)
1921 {
1922 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1923 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1924 }
1925
1926 static inline nir_block *
1927 nir_if_last_else_block(nir_if *if_stmt)
1928 {
1929 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1930 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1931 }
1932
1933 static inline nir_block *
1934 nir_loop_first_block(nir_loop *loop)
1935 {
1936 struct exec_node *head = exec_list_get_head(&loop->body);
1937 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1938 }
1939
1940 static inline nir_block *
1941 nir_loop_last_block(nir_loop *loop)
1942 {
1943 struct exec_node *tail = exec_list_get_tail(&loop->body);
1944 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1945 }
1946
1947 typedef struct {
1948 uint8_t num_components;
1949 uint8_t bit_size;
1950 } nir_parameter;
1951
1952 typedef struct nir_function {
1953 struct exec_node node;
1954
1955 const char *name;
1956 struct nir_shader *shader;
1957
1958 unsigned num_params;
1959 nir_parameter *params;
1960
1961 /** The implementation of this function.
1962 *
1963 * If the function is only declared and not implemented, this is NULL.
1964 */
1965 nir_function_impl *impl;
1966 } nir_function;
1967
1968 typedef struct nir_shader_compiler_options {
1969 bool lower_fdiv;
1970 bool lower_ffma;
1971 bool fuse_ffma;
1972 bool lower_flrp32;
1973 /** Lowers flrp when it does not support doubles */
1974 bool lower_flrp64;
1975 bool lower_fpow;
1976 bool lower_fsat;
1977 bool lower_fsqrt;
1978 bool lower_fmod32;
1979 bool lower_fmod64;
1980 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
1981 bool lower_bitfield_extract;
1982 /** Lowers ibitfield_extract/ubitfield_extract to bfm, compares, shifts. */
1983 bool lower_bitfield_extract_to_shifts;
1984 /** Lowers bitfield_insert to bfi/bfm */
1985 bool lower_bitfield_insert;
1986 /** Lowers bitfield_insert to bfm, compares, and shifts. */
1987 bool lower_bitfield_insert_to_shifts;
1988 /** Lowers bitfield_reverse to shifts. */
1989 bool lower_bitfield_reverse;
1990 /** Lowers bit_count to shifts. */
1991 bool lower_bit_count;
1992 /** Lowers bfm to shifts and subtracts. */
1993 bool lower_bfm;
1994 /** Lowers ifind_msb to compare and ufind_msb */
1995 bool lower_ifind_msb;
1996 /** Lowers find_lsb to ufind_msb and logic ops */
1997 bool lower_find_lsb;
1998 bool lower_uadd_carry;
1999 bool lower_usub_borrow;
2000 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2001 bool lower_mul_high;
2002 /** lowers fneg and ineg to fsub and isub. */
2003 bool lower_negate;
2004 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2005 bool lower_sub;
2006
2007 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2008 bool lower_scmp;
2009
2010 /** enables rules to lower idiv by power-of-two: */
2011 bool lower_idiv;
2012
2013 /* lower b2f to iand */
2014 bool lower_b2f;
2015
2016 /* Does the native fdot instruction replicate its result for four
2017 * components? If so, then opt_algebraic_late will turn all fdotN
2018 * instructions into fdot_replicatedN instructions.
2019 */
2020 bool fdot_replicates;
2021
2022 /** lowers ffract to fsub+ffloor: */
2023 bool lower_ffract;
2024
2025 bool lower_ldexp;
2026
2027 bool lower_pack_half_2x16;
2028 bool lower_pack_unorm_2x16;
2029 bool lower_pack_snorm_2x16;
2030 bool lower_pack_unorm_4x8;
2031 bool lower_pack_snorm_4x8;
2032 bool lower_unpack_half_2x16;
2033 bool lower_unpack_unorm_2x16;
2034 bool lower_unpack_snorm_2x16;
2035 bool lower_unpack_unorm_4x8;
2036 bool lower_unpack_snorm_4x8;
2037
2038 bool lower_extract_byte;
2039 bool lower_extract_word;
2040
2041 bool lower_all_io_to_temps;
2042
2043 /**
2044 * Does the driver support real 32-bit integers? (Otherwise, integers
2045 * are simulated by floats.)
2046 */
2047 bool native_integers;
2048
2049 /* Indicates that the driver only has zero-based vertex id */
2050 bool vertex_id_zero_based;
2051
2052 /**
2053 * If enabled, gl_BaseVertex will be lowered as:
2054 * is_indexed_draw (~0/0) & firstvertex
2055 */
2056 bool lower_base_vertex;
2057
2058 /**
2059 * If enabled, gl_HelperInvocation will be lowered as:
2060 *
2061 * !((1 << sample_id) & sample_mask_in))
2062 *
2063 * This depends on some possibly hw implementation details, which may
2064 * not be true for all hw. In particular that the FS is only executed
2065 * for covered samples or for helper invocations. So, do not blindly
2066 * enable this option.
2067 *
2068 * Note: See also issue #22 in ARB_shader_image_load_store
2069 */
2070 bool lower_helper_invocation;
2071
2072 bool lower_cs_local_index_from_id;
2073
2074 bool lower_device_index_to_zero;
2075
2076 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
2077 bool lower_wpos_pntc;
2078
2079 /**
2080 * Should nir_lower_io() create load_interpolated_input intrinsics?
2081 *
2082 * If not, it generates regular load_input intrinsics and interpolation
2083 * information must be inferred from the list of input nir_variables.
2084 */
2085 bool use_interpolated_input_intrinsics;
2086
2087 /**
2088 * Do vertex shader double inputs use two locations? The Vulkan spec
2089 * requires two locations to be used, OpenGL allows a single location.
2090 */
2091 bool vs_inputs_dual_locations;
2092
2093 unsigned max_unroll_iterations;
2094 } nir_shader_compiler_options;
2095
2096 typedef struct nir_shader {
2097 /** list of uniforms (nir_variable) */
2098 struct exec_list uniforms;
2099
2100 /** list of inputs (nir_variable) */
2101 struct exec_list inputs;
2102
2103 /** list of outputs (nir_variable) */
2104 struct exec_list outputs;
2105
2106 /** list of shared compute variables (nir_variable) */
2107 struct exec_list shared;
2108
2109 /** Set of driver-specific options for the shader.
2110 *
2111 * The memory for the options is expected to be kept in a single static
2112 * copy by the driver.
2113 */
2114 const struct nir_shader_compiler_options *options;
2115
2116 /** Various bits of compile-time information about a given shader */
2117 struct shader_info info;
2118
2119 /** list of global variables in the shader (nir_variable) */
2120 struct exec_list globals;
2121
2122 /** list of system value variables in the shader (nir_variable) */
2123 struct exec_list system_values;
2124
2125 struct exec_list functions; /** < list of nir_function */
2126
2127 /** list of global register in the shader */
2128 struct exec_list registers;
2129
2130 /** next available global register index */
2131 unsigned reg_alloc;
2132
2133 /**
2134 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2135 * access plus one
2136 */
2137 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2138
2139 /** Constant data associated with this shader.
2140 *
2141 * Constant data is loaded through load_constant intrinsics. See also
2142 * nir_opt_large_constants.
2143 */
2144 void *constant_data;
2145 unsigned constant_data_size;
2146 } nir_shader;
2147
2148 static inline nir_function_impl *
2149 nir_shader_get_entrypoint(nir_shader *shader)
2150 {
2151 assert(exec_list_length(&shader->functions) == 1);
2152 struct exec_node *func_node = exec_list_get_head(&shader->functions);
2153 nir_function *func = exec_node_data(nir_function, func_node, node);
2154 assert(func->num_params == 0);
2155 assert(func->impl);
2156 return func->impl;
2157 }
2158
2159 #define nir_foreach_function(func, shader) \
2160 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2161
2162 nir_shader *nir_shader_create(void *mem_ctx,
2163 gl_shader_stage stage,
2164 const nir_shader_compiler_options *options,
2165 shader_info *si);
2166
2167 /** creates a register, including assigning it an index and adding it to the list */
2168 nir_register *nir_global_reg_create(nir_shader *shader);
2169
2170 nir_register *nir_local_reg_create(nir_function_impl *impl);
2171
2172 void nir_reg_remove(nir_register *reg);
2173
2174 /** Adds a variable to the appropriate list in nir_shader */
2175 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2176
2177 static inline void
2178 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2179 {
2180 assert(var->data.mode == nir_var_local);
2181 exec_list_push_tail(&impl->locals, &var->node);
2182 }
2183
2184 /** creates a variable, sets a few defaults, and adds it to the list */
2185 nir_variable *nir_variable_create(nir_shader *shader,
2186 nir_variable_mode mode,
2187 const struct glsl_type *type,
2188 const char *name);
2189 /** creates a local variable and adds it to the list */
2190 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2191 const struct glsl_type *type,
2192 const char *name);
2193
2194 /** creates a function and adds it to the shader's list of functions */
2195 nir_function *nir_function_create(nir_shader *shader, const char *name);
2196
2197 nir_function_impl *nir_function_impl_create(nir_function *func);
2198 /** creates a function_impl that isn't tied to any particular function */
2199 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2200
2201 nir_block *nir_block_create(nir_shader *shader);
2202 nir_if *nir_if_create(nir_shader *shader);
2203 nir_loop *nir_loop_create(nir_shader *shader);
2204
2205 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2206
2207 /** requests that the given pieces of metadata be generated */
2208 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2209 /** dirties all but the preserved metadata */
2210 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2211
2212 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2213 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2214
2215 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2216 nir_deref_type deref_type);
2217
2218 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2219
2220 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2221 unsigned num_components,
2222 unsigned bit_size);
2223
2224 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2225 nir_intrinsic_op op);
2226
2227 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2228 nir_function *callee);
2229
2230 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2231
2232 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2233
2234 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2235
2236 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2237 unsigned num_components,
2238 unsigned bit_size);
2239
2240 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2241
2242 /**
2243 * NIR Cursors and Instruction Insertion API
2244 * @{
2245 *
2246 * A tiny struct representing a point to insert/extract instructions or
2247 * control flow nodes. Helps reduce the combinatorial explosion of possible
2248 * points to insert/extract.
2249 *
2250 * \sa nir_control_flow.h
2251 */
2252 typedef enum {
2253 nir_cursor_before_block,
2254 nir_cursor_after_block,
2255 nir_cursor_before_instr,
2256 nir_cursor_after_instr,
2257 } nir_cursor_option;
2258
2259 typedef struct {
2260 nir_cursor_option option;
2261 union {
2262 nir_block *block;
2263 nir_instr *instr;
2264 };
2265 } nir_cursor;
2266
2267 static inline nir_block *
2268 nir_cursor_current_block(nir_cursor cursor)
2269 {
2270 if (cursor.option == nir_cursor_before_instr ||
2271 cursor.option == nir_cursor_after_instr) {
2272 return cursor.instr->block;
2273 } else {
2274 return cursor.block;
2275 }
2276 }
2277
2278 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2279
2280 static inline nir_cursor
2281 nir_before_block(nir_block *block)
2282 {
2283 nir_cursor cursor;
2284 cursor.option = nir_cursor_before_block;
2285 cursor.block = block;
2286 return cursor;
2287 }
2288
2289 static inline nir_cursor
2290 nir_after_block(nir_block *block)
2291 {
2292 nir_cursor cursor;
2293 cursor.option = nir_cursor_after_block;
2294 cursor.block = block;
2295 return cursor;
2296 }
2297
2298 static inline nir_cursor
2299 nir_before_instr(nir_instr *instr)
2300 {
2301 nir_cursor cursor;
2302 cursor.option = nir_cursor_before_instr;
2303 cursor.instr = instr;
2304 return cursor;
2305 }
2306
2307 static inline nir_cursor
2308 nir_after_instr(nir_instr *instr)
2309 {
2310 nir_cursor cursor;
2311 cursor.option = nir_cursor_after_instr;
2312 cursor.instr = instr;
2313 return cursor;
2314 }
2315
2316 static inline nir_cursor
2317 nir_after_block_before_jump(nir_block *block)
2318 {
2319 nir_instr *last_instr = nir_block_last_instr(block);
2320 if (last_instr && last_instr->type == nir_instr_type_jump) {
2321 return nir_before_instr(last_instr);
2322 } else {
2323 return nir_after_block(block);
2324 }
2325 }
2326
2327 static inline nir_cursor
2328 nir_before_cf_node(nir_cf_node *node)
2329 {
2330 if (node->type == nir_cf_node_block)
2331 return nir_before_block(nir_cf_node_as_block(node));
2332
2333 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2334 }
2335
2336 static inline nir_cursor
2337 nir_after_cf_node(nir_cf_node *node)
2338 {
2339 if (node->type == nir_cf_node_block)
2340 return nir_after_block(nir_cf_node_as_block(node));
2341
2342 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2343 }
2344
2345 static inline nir_cursor
2346 nir_after_phis(nir_block *block)
2347 {
2348 nir_foreach_instr(instr, block) {
2349 if (instr->type != nir_instr_type_phi)
2350 return nir_before_instr(instr);
2351 }
2352 return nir_after_block(block);
2353 }
2354
2355 static inline nir_cursor
2356 nir_after_cf_node_and_phis(nir_cf_node *node)
2357 {
2358 if (node->type == nir_cf_node_block)
2359 return nir_after_block(nir_cf_node_as_block(node));
2360
2361 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2362
2363 return nir_after_phis(block);
2364 }
2365
2366 static inline nir_cursor
2367 nir_before_cf_list(struct exec_list *cf_list)
2368 {
2369 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2370 exec_list_get_head(cf_list), node);
2371 return nir_before_cf_node(first_node);
2372 }
2373
2374 static inline nir_cursor
2375 nir_after_cf_list(struct exec_list *cf_list)
2376 {
2377 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2378 exec_list_get_tail(cf_list), node);
2379 return nir_after_cf_node(last_node);
2380 }
2381
2382 /**
2383 * Insert a NIR instruction at the given cursor.
2384 *
2385 * Note: This does not update the cursor.
2386 */
2387 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2388
2389 static inline void
2390 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2391 {
2392 nir_instr_insert(nir_before_instr(instr), before);
2393 }
2394
2395 static inline void
2396 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2397 {
2398 nir_instr_insert(nir_after_instr(instr), after);
2399 }
2400
2401 static inline void
2402 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2403 {
2404 nir_instr_insert(nir_before_block(block), before);
2405 }
2406
2407 static inline void
2408 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2409 {
2410 nir_instr_insert(nir_after_block(block), after);
2411 }
2412
2413 static inline void
2414 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2415 {
2416 nir_instr_insert(nir_before_cf_node(node), before);
2417 }
2418
2419 static inline void
2420 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2421 {
2422 nir_instr_insert(nir_after_cf_node(node), after);
2423 }
2424
2425 static inline void
2426 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2427 {
2428 nir_instr_insert(nir_before_cf_list(list), before);
2429 }
2430
2431 static inline void
2432 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2433 {
2434 nir_instr_insert(nir_after_cf_list(list), after);
2435 }
2436
2437 void nir_instr_remove_v(nir_instr *instr);
2438
2439 static inline nir_cursor
2440 nir_instr_remove(nir_instr *instr)
2441 {
2442 nir_cursor cursor;
2443 nir_instr *prev = nir_instr_prev(instr);
2444 if (prev) {
2445 cursor = nir_after_instr(prev);
2446 } else {
2447 cursor = nir_before_block(instr->block);
2448 }
2449 nir_instr_remove_v(instr);
2450 return cursor;
2451 }
2452
2453 /** @} */
2454
2455 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2456 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2457 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2458 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2459 void *state);
2460 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2461 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2462
2463 nir_const_value *nir_src_as_const_value(nir_src src);
2464 bool nir_src_is_dynamically_uniform(nir_src src);
2465 bool nir_srcs_equal(nir_src src1, nir_src src2);
2466 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2467 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2468 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2469 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2470 nir_dest new_dest);
2471
2472 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2473 unsigned num_components, unsigned bit_size,
2474 const char *name);
2475 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2476 unsigned num_components, unsigned bit_size,
2477 const char *name);
2478 static inline void
2479 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
2480 const struct glsl_type *type,
2481 const char *name)
2482 {
2483 assert(glsl_type_is_vector_or_scalar(type));
2484 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
2485 glsl_get_bit_size(type), name);
2486 }
2487 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2488 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2489 nir_instr *after_me);
2490
2491 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
2492
2493 /*
2494 * finds the next basic block in source-code order, returns NULL if there is
2495 * none
2496 */
2497
2498 nir_block *nir_block_cf_tree_next(nir_block *block);
2499
2500 /* Performs the opposite of nir_block_cf_tree_next() */
2501
2502 nir_block *nir_block_cf_tree_prev(nir_block *block);
2503
2504 /* Gets the first block in a CF node in source-code order */
2505
2506 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2507
2508 /* Gets the last block in a CF node in source-code order */
2509
2510 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2511
2512 /* Gets the next block after a CF node in source-code order */
2513
2514 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2515
2516 /* Macros for loops that visit blocks in source-code order */
2517
2518 #define nir_foreach_block(block, impl) \
2519 for (nir_block *block = nir_start_block(impl); block != NULL; \
2520 block = nir_block_cf_tree_next(block))
2521
2522 #define nir_foreach_block_safe(block, impl) \
2523 for (nir_block *block = nir_start_block(impl), \
2524 *next = nir_block_cf_tree_next(block); \
2525 block != NULL; \
2526 block = next, next = nir_block_cf_tree_next(block))
2527
2528 #define nir_foreach_block_reverse(block, impl) \
2529 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2530 block = nir_block_cf_tree_prev(block))
2531
2532 #define nir_foreach_block_reverse_safe(block, impl) \
2533 for (nir_block *block = nir_impl_last_block(impl), \
2534 *prev = nir_block_cf_tree_prev(block); \
2535 block != NULL; \
2536 block = prev, prev = nir_block_cf_tree_prev(block))
2537
2538 #define nir_foreach_block_in_cf_node(block, node) \
2539 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2540 block != nir_cf_node_cf_tree_next(node); \
2541 block = nir_block_cf_tree_next(block))
2542
2543 /* If the following CF node is an if, this function returns that if.
2544 * Otherwise, it returns NULL.
2545 */
2546 nir_if *nir_block_get_following_if(nir_block *block);
2547
2548 nir_loop *nir_block_get_following_loop(nir_block *block);
2549
2550 void nir_index_local_regs(nir_function_impl *impl);
2551 void nir_index_global_regs(nir_shader *shader);
2552 void nir_index_ssa_defs(nir_function_impl *impl);
2553 unsigned nir_index_instrs(nir_function_impl *impl);
2554
2555 void nir_index_blocks(nir_function_impl *impl);
2556
2557 void nir_print_shader(nir_shader *shader, FILE *fp);
2558 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2559 void nir_print_instr(const nir_instr *instr, FILE *fp);
2560
2561 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2562 nir_function_impl *nir_function_impl_clone(const nir_function_impl *fi);
2563 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2564 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2565
2566 nir_shader *nir_shader_serialize_deserialize(void *mem_ctx, nir_shader *s);
2567
2568 #ifndef NDEBUG
2569 void nir_validate_shader(nir_shader *shader);
2570 void nir_metadata_set_validation_flag(nir_shader *shader);
2571 void nir_metadata_check_validation_flag(nir_shader *shader);
2572
2573 static inline bool
2574 should_clone_nir(void)
2575 {
2576 static int should_clone = -1;
2577 if (should_clone < 0)
2578 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2579
2580 return should_clone;
2581 }
2582
2583 static inline bool
2584 should_serialize_deserialize_nir(void)
2585 {
2586 static int test_serialize = -1;
2587 if (test_serialize < 0)
2588 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
2589
2590 return test_serialize;
2591 }
2592
2593 static inline bool
2594 should_print_nir(void)
2595 {
2596 static int should_print = -1;
2597 if (should_print < 0)
2598 should_print = env_var_as_boolean("NIR_PRINT", false);
2599
2600 return should_print;
2601 }
2602 #else
2603 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
2604 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2605 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2606 static inline bool should_clone_nir(void) { return false; }
2607 static inline bool should_serialize_deserialize_nir(void) { return false; }
2608 static inline bool should_print_nir(void) { return false; }
2609 #endif /* NDEBUG */
2610
2611 #define _PASS(nir, do_pass) do { \
2612 do_pass \
2613 nir_validate_shader(nir); \
2614 if (should_clone_nir()) { \
2615 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2616 ralloc_free(nir); \
2617 nir = clone; \
2618 } \
2619 if (should_serialize_deserialize_nir()) { \
2620 void *mem_ctx = ralloc_parent(nir); \
2621 nir = nir_shader_serialize_deserialize(mem_ctx, nir); \
2622 } \
2623 } while (0)
2624
2625 #define NIR_PASS(progress, nir, pass, ...) _PASS(nir, \
2626 nir_metadata_set_validation_flag(nir); \
2627 if (should_print_nir()) \
2628 printf("%s\n", #pass); \
2629 if (pass(nir, ##__VA_ARGS__)) { \
2630 progress = true; \
2631 if (should_print_nir()) \
2632 nir_print_shader(nir, stdout); \
2633 nir_metadata_check_validation_flag(nir); \
2634 } \
2635 )
2636
2637 #define NIR_PASS_V(nir, pass, ...) _PASS(nir, \
2638 if (should_print_nir()) \
2639 printf("%s\n", #pass); \
2640 pass(nir, ##__VA_ARGS__); \
2641 if (should_print_nir()) \
2642 nir_print_shader(nir, stdout); \
2643 )
2644
2645 void nir_calc_dominance_impl(nir_function_impl *impl);
2646 void nir_calc_dominance(nir_shader *shader);
2647
2648 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2649 bool nir_block_dominates(nir_block *parent, nir_block *child);
2650
2651 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2652 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2653
2654 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2655 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2656
2657 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2658 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2659
2660 int nir_gs_count_vertices(const nir_shader *shader);
2661
2662 bool nir_split_var_copies(nir_shader *shader);
2663 bool nir_split_per_member_structs(nir_shader *shader);
2664
2665 bool nir_lower_returns_impl(nir_function_impl *impl);
2666 bool nir_lower_returns(nir_shader *shader);
2667
2668 bool nir_inline_functions(nir_shader *shader);
2669
2670 bool nir_propagate_invariant(nir_shader *shader);
2671
2672 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
2673 void nir_lower_deref_copy_instr(struct nir_builder *b,
2674 nir_intrinsic_instr *copy);
2675 bool nir_lower_var_copies(nir_shader *shader);
2676
2677 void nir_fixup_deref_modes(nir_shader *shader);
2678
2679 bool nir_lower_global_vars_to_local(nir_shader *shader);
2680
2681 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
2682
2683 bool nir_lower_locals_to_regs(nir_shader *shader);
2684
2685 void nir_lower_io_to_temporaries(nir_shader *shader,
2686 nir_function_impl *entrypoint,
2687 bool outputs, bool inputs);
2688
2689 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2690
2691 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
2692 int (*type_size)(const struct glsl_type *));
2693
2694 /* Some helpers to do very simple linking */
2695 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
2696 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
2697 bool default_to_smooth_interp);
2698
2699 typedef enum {
2700 /* If set, this forces all non-flat fragment shader inputs to be
2701 * interpolated as if with the "sample" qualifier. This requires
2702 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
2703 */
2704 nir_lower_io_force_sample_interpolation = (1 << 1),
2705 } nir_lower_io_options;
2706 bool nir_lower_io(nir_shader *shader,
2707 nir_variable_mode modes,
2708 int (*type_size)(const struct glsl_type *),
2709 nir_lower_io_options);
2710 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2711 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2712
2713 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
2714
2715 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
2716 bool nir_lower_regs_to_ssa(nir_shader *shader);
2717 bool nir_lower_vars_to_ssa(nir_shader *shader);
2718
2719 bool nir_remove_dead_derefs(nir_shader *shader);
2720 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
2721 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
2722 bool nir_lower_constant_initializers(nir_shader *shader,
2723 nir_variable_mode modes);
2724
2725 bool nir_move_load_const(nir_shader *shader);
2726 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
2727 bool nir_lower_vec_to_movs(nir_shader *shader);
2728 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
2729 bool alpha_to_one);
2730 bool nir_lower_alu(nir_shader *shader);
2731 bool nir_lower_alu_to_scalar(nir_shader *shader);
2732 bool nir_lower_load_const_to_scalar(nir_shader *shader);
2733 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
2734 bool nir_lower_phis_to_scalar(nir_shader *shader);
2735 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
2736 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
2737 bool outputs_only);
2738 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
2739 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
2740
2741 typedef struct nir_lower_subgroups_options {
2742 uint8_t subgroup_size;
2743 uint8_t ballot_bit_size;
2744 bool lower_to_scalar:1;
2745 bool lower_vote_trivial:1;
2746 bool lower_vote_eq_to_ballot:1;
2747 bool lower_subgroup_masks:1;
2748 bool lower_shuffle:1;
2749 bool lower_shuffle_to_32bit:1;
2750 bool lower_quad:1;
2751 } nir_lower_subgroups_options;
2752
2753 bool nir_lower_subgroups(nir_shader *shader,
2754 const nir_lower_subgroups_options *options);
2755
2756 bool nir_lower_system_values(nir_shader *shader);
2757
2758 typedef struct nir_lower_tex_options {
2759 /**
2760 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2761 * sampler types a texture projector is lowered.
2762 */
2763 unsigned lower_txp;
2764
2765 /**
2766 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
2767 */
2768 bool lower_txf_offset;
2769
2770 /**
2771 * If true, lower away nir_tex_src_offset for all rect textures.
2772 */
2773 bool lower_rect_offset;
2774
2775 /**
2776 * If true, lower rect textures to 2D, using txs to fetch the
2777 * texture dimensions and dividing the texture coords by the
2778 * texture dims to normalize.
2779 */
2780 bool lower_rect;
2781
2782 /**
2783 * If true, convert yuv to rgb.
2784 */
2785 unsigned lower_y_uv_external;
2786 unsigned lower_y_u_v_external;
2787 unsigned lower_yx_xuxv_external;
2788 unsigned lower_xy_uxvx_external;
2789
2790 /**
2791 * To emulate certain texture wrap modes, this can be used
2792 * to saturate the specified tex coord to [0.0, 1.0]. The
2793 * bits are according to sampler #, ie. if, for example:
2794 *
2795 * (conf->saturate_s & (1 << n))
2796 *
2797 * is true, then the s coord for sampler n is saturated.
2798 *
2799 * Note that clamping must happen *after* projector lowering
2800 * so any projected texture sample instruction with a clamped
2801 * coordinate gets automatically lowered, regardless of the
2802 * 'lower_txp' setting.
2803 */
2804 unsigned saturate_s;
2805 unsigned saturate_t;
2806 unsigned saturate_r;
2807
2808 /* Bitmask of textures that need swizzling.
2809 *
2810 * If (swizzle_result & (1 << texture_index)), then the swizzle in
2811 * swizzles[texture_index] is applied to the result of the texturing
2812 * operation.
2813 */
2814 unsigned swizzle_result;
2815
2816 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
2817 * while 4 and 5 represent 0 and 1 respectively.
2818 */
2819 uint8_t swizzles[32][4];
2820
2821 /**
2822 * Bitmap of textures that need srgb to linear conversion. If
2823 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
2824 * of the texture are lowered to linear.
2825 */
2826 unsigned lower_srgb;
2827
2828 /**
2829 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
2830 */
2831 bool lower_txd_cube_map;
2832
2833 /**
2834 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
2835 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
2836 * with lower_txd_cube_map.
2837 */
2838 bool lower_txd_shadow;
2839
2840 /**
2841 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
2842 * Implies lower_txd_cube_map and lower_txd_shadow.
2843 */
2844 bool lower_txd;
2845 } nir_lower_tex_options;
2846
2847 bool nir_lower_tex(nir_shader *shader,
2848 const nir_lower_tex_options *options);
2849
2850 bool nir_lower_idiv(nir_shader *shader);
2851
2852 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
2853 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
2854 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
2855
2856 void nir_lower_two_sided_color(nir_shader *shader);
2857
2858 bool nir_lower_clamp_color_outputs(nir_shader *shader);
2859
2860 void nir_lower_passthrough_edgeflags(nir_shader *shader);
2861 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
2862 const gl_state_index16 *uniform_state_tokens);
2863
2864 typedef struct nir_lower_wpos_ytransform_options {
2865 gl_state_index16 state_tokens[STATE_LENGTH];
2866 bool fs_coord_origin_upper_left :1;
2867 bool fs_coord_origin_lower_left :1;
2868 bool fs_coord_pixel_center_integer :1;
2869 bool fs_coord_pixel_center_half_integer :1;
2870 } nir_lower_wpos_ytransform_options;
2871
2872 bool nir_lower_wpos_ytransform(nir_shader *shader,
2873 const nir_lower_wpos_ytransform_options *options);
2874 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
2875
2876 typedef struct nir_lower_drawpixels_options {
2877 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
2878 gl_state_index16 scale_state_tokens[STATE_LENGTH];
2879 gl_state_index16 bias_state_tokens[STATE_LENGTH];
2880 unsigned drawpix_sampler;
2881 unsigned pixelmap_sampler;
2882 bool pixel_maps :1;
2883 bool scale_and_bias :1;
2884 } nir_lower_drawpixels_options;
2885
2886 void nir_lower_drawpixels(nir_shader *shader,
2887 const nir_lower_drawpixels_options *options);
2888
2889 typedef struct nir_lower_bitmap_options {
2890 unsigned sampler;
2891 bool swizzle_xxxx;
2892 } nir_lower_bitmap_options;
2893
2894 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
2895
2896 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
2897 bool nir_lower_to_source_mods(nir_shader *shader);
2898
2899 bool nir_lower_gs_intrinsics(nir_shader *shader);
2900
2901 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
2902
2903 bool nir_lower_bit_size(nir_shader *shader,
2904 nir_lower_bit_size_callback callback,
2905 void *callback_data);
2906
2907 typedef enum {
2908 nir_lower_imul64 = (1 << 0),
2909 nir_lower_isign64 = (1 << 1),
2910 /** Lower all int64 modulus and division opcodes */
2911 nir_lower_divmod64 = (1 << 2),
2912 } nir_lower_int64_options;
2913
2914 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
2915
2916 typedef enum {
2917 nir_lower_drcp = (1 << 0),
2918 nir_lower_dsqrt = (1 << 1),
2919 nir_lower_drsq = (1 << 2),
2920 nir_lower_dtrunc = (1 << 3),
2921 nir_lower_dfloor = (1 << 4),
2922 nir_lower_dceil = (1 << 5),
2923 nir_lower_dfract = (1 << 6),
2924 nir_lower_dround_even = (1 << 7),
2925 nir_lower_dmod = (1 << 8)
2926 } nir_lower_doubles_options;
2927
2928 bool nir_lower_doubles(nir_shader *shader, nir_lower_doubles_options options);
2929 bool nir_lower_pack(nir_shader *shader);
2930
2931 bool nir_normalize_cubemap_coords(nir_shader *shader);
2932
2933 void nir_live_ssa_defs_impl(nir_function_impl *impl);
2934
2935 void nir_loop_analyze_impl(nir_function_impl *impl,
2936 nir_variable_mode indirect_mask);
2937
2938 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
2939
2940 bool nir_repair_ssa_impl(nir_function_impl *impl);
2941 bool nir_repair_ssa(nir_shader *shader);
2942
2943 void nir_convert_loop_to_lcssa(nir_loop *loop);
2944
2945 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
2946 * registers. If false, convert all values (even those not involved in a phi
2947 * node) to registers.
2948 */
2949 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
2950
2951 bool nir_lower_phis_to_regs_block(nir_block *block);
2952 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
2953
2954 bool nir_opt_algebraic(nir_shader *shader);
2955 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
2956 bool nir_opt_algebraic_late(nir_shader *shader);
2957 bool nir_opt_constant_folding(nir_shader *shader);
2958
2959 bool nir_opt_global_to_local(nir_shader *shader);
2960
2961 bool nir_copy_prop(nir_shader *shader);
2962
2963 bool nir_opt_copy_prop_vars(nir_shader *shader);
2964
2965 bool nir_opt_cse(nir_shader *shader);
2966
2967 bool nir_opt_dce(nir_shader *shader);
2968
2969 bool nir_opt_dead_cf(nir_shader *shader);
2970
2971 bool nir_opt_gcm(nir_shader *shader, bool value_number);
2972
2973 bool nir_opt_if(nir_shader *shader);
2974
2975 bool nir_opt_intrinsics(nir_shader *shader);
2976
2977 bool nir_opt_large_constants(nir_shader *shader,
2978 glsl_type_size_align_func size_align,
2979 unsigned threshold);
2980
2981 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
2982
2983 bool nir_opt_move_comparisons(nir_shader *shader);
2984
2985 bool nir_opt_move_load_ubo(nir_shader *shader);
2986
2987 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit);
2988
2989 bool nir_opt_remove_phis_impl(nir_function_impl *impl);
2990 bool nir_opt_remove_phis(nir_shader *shader);
2991
2992 bool nir_opt_shrink_load(nir_shader *shader);
2993
2994 bool nir_opt_trivial_continues(nir_shader *shader);
2995
2996 bool nir_opt_undef(nir_shader *shader);
2997
2998 bool nir_opt_conditional_discard(nir_shader *shader);
2999
3000 void nir_sweep(nir_shader *shader);
3001
3002 void nir_remap_attributes(nir_shader *shader,
3003 const nir_shader_compiler_options *options);
3004
3005 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
3006 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
3007
3008 #ifdef __cplusplus
3009 } /* extern "C" */
3010 #endif
3011
3012 #endif /* NIR_H */