nir: Use deref instructions in lower_constant_initializers
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitset.h"
38 #include "util/macros.h"
39 #include "compiler/nir_types.h"
40 #include "compiler/shader_enums.h"
41 #include "compiler/shader_info.h"
42 #include <stdio.h>
43
44 #ifndef NDEBUG
45 #include "util/debug.h"
46 #endif /* NDEBUG */
47
48 #include "nir_opcodes.h"
49
50 #if defined(_WIN32) && !defined(snprintf)
51 #define snprintf _snprintf
52 #endif
53
54 #ifdef __cplusplus
55 extern "C" {
56 #endif
57
58 #define NIR_FALSE 0u
59 #define NIR_TRUE (~0u)
60
61 /** Defines a cast function
62 *
63 * This macro defines a cast function from in_type to out_type where
64 * out_type is some structure type that contains a field of type out_type.
65 *
66 * Note that you have to be a bit careful as the generated cast function
67 * destroys constness.
68 */
69 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
70 type_field, type_value) \
71 static inline out_type * \
72 name(const in_type *parent) \
73 { \
74 assert(parent && parent->type_field == type_value); \
75 return exec_node_data(out_type, parent, field); \
76 }
77
78 struct nir_function;
79 struct nir_shader;
80 struct nir_instr;
81 struct nir_builder;
82
83
84 /**
85 * Description of built-in state associated with a uniform
86 *
87 * \sa nir_variable::state_slots
88 */
89 typedef struct {
90 gl_state_index16 tokens[STATE_LENGTH];
91 int swizzle;
92 } nir_state_slot;
93
94 typedef enum {
95 nir_var_shader_in = (1 << 0),
96 nir_var_shader_out = (1 << 1),
97 nir_var_global = (1 << 2),
98 nir_var_local = (1 << 3),
99 nir_var_uniform = (1 << 4),
100 nir_var_shader_storage = (1 << 5),
101 nir_var_system_value = (1 << 6),
102 nir_var_shared = (1 << 8),
103 nir_var_all = ~0,
104 } nir_variable_mode;
105
106 /**
107 * Rounding modes.
108 */
109 typedef enum {
110 nir_rounding_mode_undef = 0,
111 nir_rounding_mode_rtne = 1, /* round to nearest even */
112 nir_rounding_mode_ru = 2, /* round up */
113 nir_rounding_mode_rd = 3, /* round down */
114 nir_rounding_mode_rtz = 4, /* round towards zero */
115 } nir_rounding_mode;
116
117 typedef union {
118 float f32[4];
119 double f64[4];
120 int8_t i8[4];
121 uint8_t u8[4];
122 int16_t i16[4];
123 uint16_t u16[4];
124 int32_t i32[4];
125 uint32_t u32[4];
126 int64_t i64[4];
127 uint64_t u64[4];
128 } nir_const_value;
129
130 typedef struct nir_constant {
131 /**
132 * Value of the constant.
133 *
134 * The field used to back the values supplied by the constant is determined
135 * by the type associated with the \c nir_variable. Constants may be
136 * scalars, vectors, or matrices.
137 */
138 nir_const_value values[4];
139
140 /* we could get this from the var->type but makes clone *much* easier to
141 * not have to care about the type.
142 */
143 unsigned num_elements;
144
145 /* Array elements / Structure Fields */
146 struct nir_constant **elements;
147 } nir_constant;
148
149 /**
150 * \brief Layout qualifiers for gl_FragDepth.
151 *
152 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
153 * with a layout qualifier.
154 */
155 typedef enum {
156 nir_depth_layout_none, /**< No depth layout is specified. */
157 nir_depth_layout_any,
158 nir_depth_layout_greater,
159 nir_depth_layout_less,
160 nir_depth_layout_unchanged
161 } nir_depth_layout;
162
163 /**
164 * Either a uniform, global variable, shader input, or shader output. Based on
165 * ir_variable - it should be easy to translate between the two.
166 */
167
168 typedef struct nir_variable {
169 struct exec_node node;
170
171 /**
172 * Declared type of the variable
173 */
174 const struct glsl_type *type;
175
176 /**
177 * Declared name of the variable
178 */
179 char *name;
180
181 struct nir_variable_data {
182 /**
183 * Storage class of the variable.
184 *
185 * \sa nir_variable_mode
186 */
187 nir_variable_mode mode;
188
189 /**
190 * Is the variable read-only?
191 *
192 * This is set for variables declared as \c const, shader inputs,
193 * and uniforms.
194 */
195 unsigned read_only:1;
196 unsigned centroid:1;
197 unsigned sample:1;
198 unsigned patch:1;
199 unsigned invariant:1;
200
201 /**
202 * When separate shader programs are enabled, only input/outputs between
203 * the stages of a multi-stage separate program can be safely removed
204 * from the shader interface. Other input/outputs must remains active.
205 *
206 * This is also used to make sure xfb varyings that are unused by the
207 * fragment shader are not removed.
208 */
209 unsigned always_active_io:1;
210
211 /**
212 * Interpolation mode for shader inputs / outputs
213 *
214 * \sa glsl_interp_mode
215 */
216 unsigned interpolation:2;
217
218 /**
219 * \name ARB_fragment_coord_conventions
220 * @{
221 */
222 unsigned origin_upper_left:1;
223 unsigned pixel_center_integer:1;
224 /*@}*/
225
226 /**
227 * If non-zero, then this variable may be packed along with other variables
228 * into a single varying slot, so this offset should be applied when
229 * accessing components. For example, an offset of 1 means that the x
230 * component of this variable is actually stored in component y of the
231 * location specified by \c location.
232 */
233 unsigned location_frac:2;
234
235 /**
236 * If true, this variable represents an array of scalars that should
237 * be tightly packed. In other words, consecutive array elements
238 * should be stored one component apart, rather than one slot apart.
239 */
240 unsigned compact:1;
241
242 /**
243 * Whether this is a fragment shader output implicitly initialized with
244 * the previous contents of the specified render target at the
245 * framebuffer location corresponding to this shader invocation.
246 */
247 unsigned fb_fetch_output:1;
248
249 /**
250 * Non-zero if this variable is considered bindless as defined by
251 * ARB_bindless_texture.
252 */
253 unsigned bindless:1;
254
255 /**
256 * Was an explicit binding set in the shader?
257 */
258 unsigned explicit_binding:1;
259
260 /**
261 * \brief Layout qualifier for gl_FragDepth.
262 *
263 * This is not equal to \c ir_depth_layout_none if and only if this
264 * variable is \c gl_FragDepth and a layout qualifier is specified.
265 */
266 nir_depth_layout depth_layout;
267
268 /**
269 * Storage location of the base of this variable
270 *
271 * The precise meaning of this field depends on the nature of the variable.
272 *
273 * - Vertex shader input: one of the values from \c gl_vert_attrib.
274 * - Vertex shader output: one of the values from \c gl_varying_slot.
275 * - Geometry shader input: one of the values from \c gl_varying_slot.
276 * - Geometry shader output: one of the values from \c gl_varying_slot.
277 * - Fragment shader input: one of the values from \c gl_varying_slot.
278 * - Fragment shader output: one of the values from \c gl_frag_result.
279 * - Uniforms: Per-stage uniform slot number for default uniform block.
280 * - Uniforms: Index within the uniform block definition for UBO members.
281 * - Non-UBO Uniforms: uniform slot number.
282 * - Other: This field is not currently used.
283 *
284 * If the variable is a uniform, shader input, or shader output, and the
285 * slot has not been assigned, the value will be -1.
286 */
287 int location;
288
289 /**
290 * The actual location of the variable in the IR. Only valid for inputs
291 * and outputs.
292 */
293 unsigned int driver_location;
294
295 /**
296 * Vertex stream output identifier.
297 *
298 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
299 * stream of the i-th component.
300 */
301 unsigned stream;
302
303 /**
304 * output index for dual source blending.
305 */
306 int index;
307
308 /**
309 * Descriptor set binding for sampler or UBO.
310 */
311 int descriptor_set;
312
313 /**
314 * Initial binding point for a sampler or UBO.
315 *
316 * For array types, this represents the binding point for the first element.
317 */
318 int binding;
319
320 /**
321 * Location an atomic counter is stored at.
322 */
323 unsigned offset;
324
325 /**
326 * ARB_shader_image_load_store qualifiers.
327 */
328 struct {
329 bool read_only; /**< "readonly" qualifier. */
330 bool write_only; /**< "writeonly" qualifier. */
331 bool coherent;
332 bool _volatile;
333 bool restrict_flag;
334
335 /** Image internal format if specified explicitly, otherwise GL_NONE. */
336 GLenum format;
337 } image;
338 } data;
339
340 /**
341 * Built-in state that backs this uniform
342 *
343 * Once set at variable creation, \c state_slots must remain invariant.
344 * This is because, ideally, this array would be shared by all clones of
345 * this variable in the IR tree. In other words, we'd really like for it
346 * to be a fly-weight.
347 *
348 * If the variable is not a uniform, \c num_state_slots will be zero and
349 * \c state_slots will be \c NULL.
350 */
351 /*@{*/
352 unsigned num_state_slots; /**< Number of state slots used */
353 nir_state_slot *state_slots; /**< State descriptors. */
354 /*@}*/
355
356 /**
357 * Constant expression assigned in the initializer of the variable
358 *
359 * This field should only be used temporarily by creators of NIR shaders
360 * and then lower_constant_initializers can be used to get rid of them.
361 * Most of the rest of NIR ignores this field or asserts that it's NULL.
362 */
363 nir_constant *constant_initializer;
364
365 /**
366 * For variables that are in an interface block or are an instance of an
367 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
368 *
369 * \sa ir_variable::location
370 */
371 const struct glsl_type *interface_type;
372
373 /**
374 * Description of per-member data for per-member struct variables
375 *
376 * This is used for variables which are actually an amalgamation of
377 * multiple entities such as a struct of built-in values or a struct of
378 * inputs each with their own layout specifier. This is only allowed on
379 * variables with a struct or array of array of struct type.
380 */
381 unsigned num_members;
382 struct nir_variable_data *members;
383 } nir_variable;
384
385 #define nir_foreach_variable(var, var_list) \
386 foreach_list_typed(nir_variable, var, node, var_list)
387
388 #define nir_foreach_variable_safe(var, var_list) \
389 foreach_list_typed_safe(nir_variable, var, node, var_list)
390
391 static inline bool
392 nir_variable_is_global(const nir_variable *var)
393 {
394 return var->data.mode != nir_var_local;
395 }
396
397 typedef struct nir_register {
398 struct exec_node node;
399
400 unsigned num_components; /** < number of vector components */
401 unsigned num_array_elems; /** < size of array (0 for no array) */
402
403 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
404 uint8_t bit_size;
405
406 /** generic register index. */
407 unsigned index;
408
409 /** only for debug purposes, can be NULL */
410 const char *name;
411
412 /** whether this register is local (per-function) or global (per-shader) */
413 bool is_global;
414
415 /**
416 * If this flag is set to true, then accessing channels >= num_components
417 * is well-defined, and simply spills over to the next array element. This
418 * is useful for backends that can do per-component accessing, in
419 * particular scalar backends. By setting this flag and making
420 * num_components equal to 1, structures can be packed tightly into
421 * registers and then registers can be accessed per-component to get to
422 * each structure member, even if it crosses vec4 boundaries.
423 */
424 bool is_packed;
425
426 /** set of nir_srcs where this register is used (read from) */
427 struct list_head uses;
428
429 /** set of nir_dests where this register is defined (written to) */
430 struct list_head defs;
431
432 /** set of nir_ifs where this register is used as a condition */
433 struct list_head if_uses;
434 } nir_register;
435
436 #define nir_foreach_register(reg, reg_list) \
437 foreach_list_typed(nir_register, reg, node, reg_list)
438 #define nir_foreach_register_safe(reg, reg_list) \
439 foreach_list_typed_safe(nir_register, reg, node, reg_list)
440
441 typedef enum {
442 nir_instr_type_alu,
443 nir_instr_type_deref,
444 nir_instr_type_call,
445 nir_instr_type_tex,
446 nir_instr_type_intrinsic,
447 nir_instr_type_load_const,
448 nir_instr_type_jump,
449 nir_instr_type_ssa_undef,
450 nir_instr_type_phi,
451 nir_instr_type_parallel_copy,
452 } nir_instr_type;
453
454 typedef struct nir_instr {
455 struct exec_node node;
456 nir_instr_type type;
457 struct nir_block *block;
458
459 /** generic instruction index. */
460 unsigned index;
461
462 /* A temporary for optimization and analysis passes to use for storing
463 * flags. For instance, DCE uses this to store the "dead/live" info.
464 */
465 uint8_t pass_flags;
466 } nir_instr;
467
468 static inline nir_instr *
469 nir_instr_next(nir_instr *instr)
470 {
471 struct exec_node *next = exec_node_get_next(&instr->node);
472 if (exec_node_is_tail_sentinel(next))
473 return NULL;
474 else
475 return exec_node_data(nir_instr, next, node);
476 }
477
478 static inline nir_instr *
479 nir_instr_prev(nir_instr *instr)
480 {
481 struct exec_node *prev = exec_node_get_prev(&instr->node);
482 if (exec_node_is_head_sentinel(prev))
483 return NULL;
484 else
485 return exec_node_data(nir_instr, prev, node);
486 }
487
488 static inline bool
489 nir_instr_is_first(const nir_instr *instr)
490 {
491 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
492 }
493
494 static inline bool
495 nir_instr_is_last(const nir_instr *instr)
496 {
497 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
498 }
499
500 typedef struct nir_ssa_def {
501 /** for debugging only, can be NULL */
502 const char* name;
503
504 /** generic SSA definition index. */
505 unsigned index;
506
507 /** Index into the live_in and live_out bitfields */
508 unsigned live_index;
509
510 /** Instruction which produces this SSA value. */
511 nir_instr *parent_instr;
512
513 /** set of nir_instrs where this register is used (read from) */
514 struct list_head uses;
515
516 /** set of nir_ifs where this register is used as a condition */
517 struct list_head if_uses;
518
519 uint8_t num_components;
520
521 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
522 uint8_t bit_size;
523 } nir_ssa_def;
524
525 struct nir_src;
526
527 typedef struct {
528 nir_register *reg;
529 struct nir_src *indirect; /** < NULL for no indirect offset */
530 unsigned base_offset;
531
532 /* TODO use-def chain goes here */
533 } nir_reg_src;
534
535 typedef struct {
536 nir_instr *parent_instr;
537 struct list_head def_link;
538
539 nir_register *reg;
540 struct nir_src *indirect; /** < NULL for no indirect offset */
541 unsigned base_offset;
542
543 /* TODO def-use chain goes here */
544 } nir_reg_dest;
545
546 struct nir_if;
547
548 typedef struct nir_src {
549 union {
550 /** Instruction that consumes this value as a source. */
551 nir_instr *parent_instr;
552 struct nir_if *parent_if;
553 };
554
555 struct list_head use_link;
556
557 union {
558 nir_reg_src reg;
559 nir_ssa_def *ssa;
560 };
561
562 bool is_ssa;
563 } nir_src;
564
565 static inline nir_src
566 nir_src_init(void)
567 {
568 nir_src src = { { NULL } };
569 return src;
570 }
571
572 #define NIR_SRC_INIT nir_src_init()
573
574 #define nir_foreach_use(src, reg_or_ssa_def) \
575 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
576
577 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
578 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
579
580 #define nir_foreach_if_use(src, reg_or_ssa_def) \
581 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
582
583 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
584 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
585
586 typedef struct {
587 union {
588 nir_reg_dest reg;
589 nir_ssa_def ssa;
590 };
591
592 bool is_ssa;
593 } nir_dest;
594
595 static inline nir_dest
596 nir_dest_init(void)
597 {
598 nir_dest dest = { { { NULL } } };
599 return dest;
600 }
601
602 #define NIR_DEST_INIT nir_dest_init()
603
604 #define nir_foreach_def(dest, reg) \
605 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
606
607 #define nir_foreach_def_safe(dest, reg) \
608 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
609
610 static inline nir_src
611 nir_src_for_ssa(nir_ssa_def *def)
612 {
613 nir_src src = NIR_SRC_INIT;
614
615 src.is_ssa = true;
616 src.ssa = def;
617
618 return src;
619 }
620
621 static inline nir_src
622 nir_src_for_reg(nir_register *reg)
623 {
624 nir_src src = NIR_SRC_INIT;
625
626 src.is_ssa = false;
627 src.reg.reg = reg;
628 src.reg.indirect = NULL;
629 src.reg.base_offset = 0;
630
631 return src;
632 }
633
634 static inline nir_dest
635 nir_dest_for_reg(nir_register *reg)
636 {
637 nir_dest dest = NIR_DEST_INIT;
638
639 dest.reg.reg = reg;
640
641 return dest;
642 }
643
644 static inline unsigned
645 nir_src_bit_size(nir_src src)
646 {
647 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
648 }
649
650 static inline unsigned
651 nir_src_num_components(nir_src src)
652 {
653 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
654 }
655
656 static inline unsigned
657 nir_dest_bit_size(nir_dest dest)
658 {
659 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
660 }
661
662 static inline unsigned
663 nir_dest_num_components(nir_dest dest)
664 {
665 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
666 }
667
668 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
669 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
670
671 typedef struct {
672 nir_src src;
673
674 /**
675 * \name input modifiers
676 */
677 /*@{*/
678 /**
679 * For inputs interpreted as floating point, flips the sign bit. For
680 * inputs interpreted as integers, performs the two's complement negation.
681 */
682 bool negate;
683
684 /**
685 * Clears the sign bit for floating point values, and computes the integer
686 * absolute value for integers. Note that the negate modifier acts after
687 * the absolute value modifier, therefore if both are set then all inputs
688 * will become negative.
689 */
690 bool abs;
691 /*@}*/
692
693 /**
694 * For each input component, says which component of the register it is
695 * chosen from. Note that which elements of the swizzle are used and which
696 * are ignored are based on the write mask for most opcodes - for example,
697 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
698 * a swizzle of {2, x, 1, 0} where x means "don't care."
699 */
700 uint8_t swizzle[4];
701 } nir_alu_src;
702
703 typedef struct {
704 nir_dest dest;
705
706 /**
707 * \name saturate output modifier
708 *
709 * Only valid for opcodes that output floating-point numbers. Clamps the
710 * output to between 0.0 and 1.0 inclusive.
711 */
712
713 bool saturate;
714
715 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
716 } nir_alu_dest;
717
718 typedef enum {
719 nir_type_invalid = 0, /* Not a valid type */
720 nir_type_float,
721 nir_type_int,
722 nir_type_uint,
723 nir_type_bool,
724 nir_type_bool32 = 32 | nir_type_bool,
725 nir_type_int8 = 8 | nir_type_int,
726 nir_type_int16 = 16 | nir_type_int,
727 nir_type_int32 = 32 | nir_type_int,
728 nir_type_int64 = 64 | nir_type_int,
729 nir_type_uint8 = 8 | nir_type_uint,
730 nir_type_uint16 = 16 | nir_type_uint,
731 nir_type_uint32 = 32 | nir_type_uint,
732 nir_type_uint64 = 64 | nir_type_uint,
733 nir_type_float16 = 16 | nir_type_float,
734 nir_type_float32 = 32 | nir_type_float,
735 nir_type_float64 = 64 | nir_type_float,
736 } nir_alu_type;
737
738 #define NIR_ALU_TYPE_SIZE_MASK 0xfffffff8
739 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x00000007
740
741 static inline unsigned
742 nir_alu_type_get_type_size(nir_alu_type type)
743 {
744 return type & NIR_ALU_TYPE_SIZE_MASK;
745 }
746
747 static inline unsigned
748 nir_alu_type_get_base_type(nir_alu_type type)
749 {
750 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
751 }
752
753 static inline nir_alu_type
754 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
755 {
756 switch (base_type) {
757 case GLSL_TYPE_BOOL:
758 return nir_type_bool32;
759 break;
760 case GLSL_TYPE_UINT:
761 return nir_type_uint32;
762 break;
763 case GLSL_TYPE_INT:
764 return nir_type_int32;
765 break;
766 case GLSL_TYPE_UINT16:
767 return nir_type_uint16;
768 break;
769 case GLSL_TYPE_INT16:
770 return nir_type_int16;
771 break;
772 case GLSL_TYPE_UINT8:
773 return nir_type_uint8;
774 case GLSL_TYPE_INT8:
775 return nir_type_int8;
776 case GLSL_TYPE_UINT64:
777 return nir_type_uint64;
778 break;
779 case GLSL_TYPE_INT64:
780 return nir_type_int64;
781 break;
782 case GLSL_TYPE_FLOAT:
783 return nir_type_float32;
784 break;
785 case GLSL_TYPE_FLOAT16:
786 return nir_type_float16;
787 break;
788 case GLSL_TYPE_DOUBLE:
789 return nir_type_float64;
790 break;
791 default:
792 unreachable("unknown type");
793 }
794 }
795
796 static inline nir_alu_type
797 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
798 {
799 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
800 }
801
802 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
803 nir_rounding_mode rnd);
804
805 typedef enum {
806 NIR_OP_IS_COMMUTATIVE = (1 << 0),
807 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
808 } nir_op_algebraic_property;
809
810 typedef struct {
811 const char *name;
812
813 unsigned num_inputs;
814
815 /**
816 * The number of components in the output
817 *
818 * If non-zero, this is the size of the output and input sizes are
819 * explicitly given; swizzle and writemask are still in effect, but if
820 * the output component is masked out, then the input component may
821 * still be in use.
822 *
823 * If zero, the opcode acts in the standard, per-component manner; the
824 * operation is performed on each component (except the ones that are
825 * masked out) with the input being taken from the input swizzle for
826 * that component.
827 *
828 * The size of some of the inputs may be given (i.e. non-zero) even
829 * though output_size is zero; in that case, the inputs with a zero
830 * size act per-component, while the inputs with non-zero size don't.
831 */
832 unsigned output_size;
833
834 /**
835 * The type of vector that the instruction outputs. Note that the
836 * staurate modifier is only allowed on outputs with the float type.
837 */
838
839 nir_alu_type output_type;
840
841 /**
842 * The number of components in each input
843 */
844 unsigned input_sizes[4];
845
846 /**
847 * The type of vector that each input takes. Note that negate and
848 * absolute value are only allowed on inputs with int or float type and
849 * behave differently on the two.
850 */
851 nir_alu_type input_types[4];
852
853 nir_op_algebraic_property algebraic_properties;
854 } nir_op_info;
855
856 extern const nir_op_info nir_op_infos[nir_num_opcodes];
857
858 typedef struct nir_alu_instr {
859 nir_instr instr;
860 nir_op op;
861
862 /** Indicates that this ALU instruction generates an exact value
863 *
864 * This is kind of a mixture of GLSL "precise" and "invariant" and not
865 * really equivalent to either. This indicates that the value generated by
866 * this operation is high-precision and any code transformations that touch
867 * it must ensure that the resulting value is bit-for-bit identical to the
868 * original.
869 */
870 bool exact;
871
872 nir_alu_dest dest;
873 nir_alu_src src[];
874 } nir_alu_instr;
875
876 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
877 nir_alu_instr *instr);
878 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
879 nir_alu_instr *instr);
880
881 /* is this source channel used? */
882 static inline bool
883 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
884 unsigned channel)
885 {
886 if (nir_op_infos[instr->op].input_sizes[src] > 0)
887 return channel < nir_op_infos[instr->op].input_sizes[src];
888
889 return (instr->dest.write_mask >> channel) & 1;
890 }
891
892 /*
893 * For instructions whose destinations are SSA, get the number of channels
894 * used for a source
895 */
896 static inline unsigned
897 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
898 {
899 assert(instr->dest.dest.is_ssa);
900
901 if (nir_op_infos[instr->op].input_sizes[src] > 0)
902 return nir_op_infos[instr->op].input_sizes[src];
903
904 return instr->dest.dest.ssa.num_components;
905 }
906
907 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
908 unsigned src1, unsigned src2);
909
910 typedef enum {
911 nir_deref_type_var,
912 nir_deref_type_array,
913 nir_deref_type_array_wildcard,
914 nir_deref_type_struct,
915 nir_deref_type_cast,
916 } nir_deref_type;
917
918 typedef struct nir_deref {
919 nir_deref_type deref_type;
920 struct nir_deref *child;
921 const struct glsl_type *type;
922 } nir_deref;
923
924 typedef struct {
925 nir_deref deref;
926
927 nir_variable *var;
928 } nir_deref_var;
929
930 /* This enum describes how the array is referenced. If the deref is
931 * direct then the base_offset is used. If the deref is indirect then
932 * offset is given by base_offset + indirect. If the deref is a wildcard
933 * then the deref refers to all of the elements of the array at the same
934 * time. Wildcard dereferences are only ever allowed in copy_var
935 * intrinsics and the source and destination derefs must have matching
936 * wildcards.
937 */
938 typedef enum {
939 nir_deref_array_type_direct,
940 nir_deref_array_type_indirect,
941 nir_deref_array_type_wildcard,
942 } nir_deref_array_type;
943
944 typedef struct {
945 nir_deref deref;
946
947 nir_deref_array_type deref_array_type;
948 unsigned base_offset;
949 nir_src indirect;
950 } nir_deref_array;
951
952 typedef struct {
953 nir_deref deref;
954
955 unsigned index;
956 } nir_deref_struct;
957
958 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref,
959 deref_type, nir_deref_type_var)
960 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref,
961 deref_type, nir_deref_type_array)
962 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref,
963 deref_type, nir_deref_type_struct)
964
965 /* Returns the last deref in the chain. */
966 static inline nir_deref *
967 nir_deref_tail(nir_deref *deref)
968 {
969 while (deref->child)
970 deref = deref->child;
971 return deref;
972 }
973
974 typedef struct {
975 nir_instr instr;
976
977 /** The type of this deref instruction */
978 nir_deref_type deref_type;
979
980 /** The mode of the underlying variable */
981 nir_variable_mode mode;
982
983 /** The dereferenced type of the resulting pointer value */
984 const struct glsl_type *type;
985
986 union {
987 /** Variable being dereferenced if deref_type is a deref_var */
988 nir_variable *var;
989
990 /** Parent deref if deref_type is not deref_var */
991 nir_src parent;
992 };
993
994 /** Additional deref parameters */
995 union {
996 struct {
997 nir_src index;
998 } arr;
999
1000 struct {
1001 unsigned index;
1002 } strct;
1003 };
1004
1005 /** Destination to store the resulting "pointer" */
1006 nir_dest dest;
1007 } nir_deref_instr;
1008
1009 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
1010 type, nir_instr_type_deref)
1011
1012 static inline nir_deref_instr *
1013 nir_src_as_deref(nir_src src)
1014 {
1015 if (!src.is_ssa)
1016 return NULL;
1017
1018 if (src.ssa->parent_instr->type != nir_instr_type_deref)
1019 return NULL;
1020
1021 return nir_instr_as_deref(src.ssa->parent_instr);
1022 }
1023
1024 static inline nir_deref_instr *
1025 nir_deref_instr_parent(const nir_deref_instr *instr)
1026 {
1027 if (instr->deref_type == nir_deref_type_var)
1028 return NULL;
1029 else
1030 return nir_src_as_deref(instr->parent);
1031 }
1032
1033 static inline nir_variable *
1034 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1035 {
1036 while (instr->deref_type != nir_deref_type_var) {
1037 if (instr->deref_type == nir_deref_type_cast)
1038 return NULL;
1039
1040 instr = nir_deref_instr_parent(instr);
1041 }
1042
1043 return instr->var;
1044 }
1045
1046 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1047
1048 nir_deref_var *
1049 nir_deref_instr_to_deref(nir_deref_instr *instr, void *mem_ctx);
1050
1051 typedef struct {
1052 nir_instr instr;
1053
1054 struct nir_function *callee;
1055
1056 unsigned num_params;
1057 nir_src params[];
1058 } nir_call_instr;
1059
1060 #include "nir_intrinsics.h"
1061
1062 #define NIR_INTRINSIC_MAX_CONST_INDEX 3
1063
1064 /** Represents an intrinsic
1065 *
1066 * An intrinsic is an instruction type for handling things that are
1067 * more-or-less regular operations but don't just consume and produce SSA
1068 * values like ALU operations do. Intrinsics are not for things that have
1069 * special semantic meaning such as phi nodes and parallel copies.
1070 * Examples of intrinsics include variable load/store operations, system
1071 * value loads, and the like. Even though texturing more-or-less falls
1072 * under this category, texturing is its own instruction type because
1073 * trying to represent texturing with intrinsics would lead to a
1074 * combinatorial explosion of intrinsic opcodes.
1075 *
1076 * By having a single instruction type for handling a lot of different
1077 * cases, optimization passes can look for intrinsics and, for the most
1078 * part, completely ignore them. Each intrinsic type also has a few
1079 * possible flags that govern whether or not they can be reordered or
1080 * eliminated. That way passes like dead code elimination can still work
1081 * on intrisics without understanding the meaning of each.
1082 *
1083 * Each intrinsic has some number of constant indices, some number of
1084 * variables, and some number of sources. What these sources, variables,
1085 * and indices mean depends on the intrinsic and is documented with the
1086 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1087 * instructions are the only types of instruction that can operate on
1088 * variables.
1089 */
1090 typedef struct {
1091 nir_instr instr;
1092
1093 nir_intrinsic_op intrinsic;
1094
1095 nir_dest dest;
1096
1097 /** number of components if this is a vectorized intrinsic
1098 *
1099 * Similarly to ALU operations, some intrinsics are vectorized.
1100 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1101 * For vectorized intrinsics, the num_components field specifies the
1102 * number of destination components and the number of source components
1103 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1104 */
1105 uint8_t num_components;
1106
1107 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1108
1109 nir_deref_var *variables[2];
1110
1111 nir_src src[];
1112 } nir_intrinsic_instr;
1113
1114 /**
1115 * \name NIR intrinsics semantic flags
1116 *
1117 * information about what the compiler can do with the intrinsics.
1118 *
1119 * \sa nir_intrinsic_info::flags
1120 */
1121 typedef enum {
1122 /**
1123 * whether the intrinsic can be safely eliminated if none of its output
1124 * value is not being used.
1125 */
1126 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1127
1128 /**
1129 * Whether the intrinsic can be reordered with respect to any other
1130 * intrinsic, i.e. whether the only reordering dependencies of the
1131 * intrinsic are due to the register reads/writes.
1132 */
1133 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1134 } nir_intrinsic_semantic_flag;
1135
1136 /**
1137 * \name NIR intrinsics const-index flag
1138 *
1139 * Indicates the usage of a const_index slot.
1140 *
1141 * \sa nir_intrinsic_info::index_map
1142 */
1143 typedef enum {
1144 /**
1145 * Generally instructions that take a offset src argument, can encode
1146 * a constant 'base' value which is added to the offset.
1147 */
1148 NIR_INTRINSIC_BASE = 1,
1149
1150 /**
1151 * For store instructions, a writemask for the store.
1152 */
1153 NIR_INTRINSIC_WRMASK = 2,
1154
1155 /**
1156 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1157 */
1158 NIR_INTRINSIC_STREAM_ID = 3,
1159
1160 /**
1161 * The clip-plane id for load_user_clip_plane intrinsic.
1162 */
1163 NIR_INTRINSIC_UCP_ID = 4,
1164
1165 /**
1166 * The amount of data, starting from BASE, that this instruction may
1167 * access. This is used to provide bounds if the offset is not constant.
1168 */
1169 NIR_INTRINSIC_RANGE = 5,
1170
1171 /**
1172 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1173 */
1174 NIR_INTRINSIC_DESC_SET = 6,
1175
1176 /**
1177 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1178 */
1179 NIR_INTRINSIC_BINDING = 7,
1180
1181 /**
1182 * Component offset.
1183 */
1184 NIR_INTRINSIC_COMPONENT = 8,
1185
1186 /**
1187 * Interpolation mode (only meaningful for FS inputs).
1188 */
1189 NIR_INTRINSIC_INTERP_MODE = 9,
1190
1191 /**
1192 * A binary nir_op to use when performing a reduction or scan operation
1193 */
1194 NIR_INTRINSIC_REDUCTION_OP = 10,
1195
1196 /**
1197 * Cluster size for reduction operations
1198 */
1199 NIR_INTRINSIC_CLUSTER_SIZE = 11,
1200
1201 /**
1202 * Parameter index for a load_param intrinsic
1203 */
1204 NIR_INTRINSIC_PARAM_IDX = 12,
1205
1206 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1207
1208 } nir_intrinsic_index_flag;
1209
1210 #define NIR_INTRINSIC_MAX_INPUTS 5
1211
1212 typedef struct {
1213 const char *name;
1214
1215 unsigned num_srcs; /** < number of register/SSA inputs */
1216
1217 /** number of components of each input register
1218 *
1219 * If this value is 0, the number of components is given by the
1220 * num_components field of nir_intrinsic_instr.
1221 */
1222 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
1223
1224 bool has_dest;
1225
1226 /** number of components of the output register
1227 *
1228 * If this value is 0, the number of components is given by the
1229 * num_components field of nir_intrinsic_instr.
1230 */
1231 unsigned dest_components;
1232
1233 /** the number of inputs/outputs that are variables */
1234 unsigned num_variables;
1235
1236 /** the number of constant indices used by the intrinsic */
1237 unsigned num_indices;
1238
1239 /** indicates the usage of intr->const_index[n] */
1240 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1241
1242 /** semantic flags for calls to this intrinsic */
1243 nir_intrinsic_semantic_flag flags;
1244 } nir_intrinsic_info;
1245
1246 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1247
1248 static inline unsigned
1249 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1250 {
1251 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1252 assert(srcn < info->num_srcs);
1253 if (info->src_components[srcn])
1254 return info->src_components[srcn];
1255 else
1256 return intr->num_components;
1257 }
1258
1259 static inline unsigned
1260 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1261 {
1262 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1263 if (!info->has_dest)
1264 return 0;
1265 else if (info->dest_components)
1266 return info->dest_components;
1267 else
1268 return intr->num_components;
1269 }
1270
1271 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1272 static inline type \
1273 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1274 { \
1275 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1276 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1277 return instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1278 } \
1279 static inline void \
1280 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1281 { \
1282 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1283 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1284 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1285 }
1286
1287 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1288 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1289 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1290 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1291 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1292 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1293 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1294 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1295 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1296 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1297 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1298 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1299
1300 /**
1301 * \group texture information
1302 *
1303 * This gives semantic information about textures which is useful to the
1304 * frontend, the backend, and lowering passes, but not the optimizer.
1305 */
1306
1307 typedef enum {
1308 nir_tex_src_coord,
1309 nir_tex_src_projector,
1310 nir_tex_src_comparator, /* shadow comparator */
1311 nir_tex_src_offset,
1312 nir_tex_src_bias,
1313 nir_tex_src_lod,
1314 nir_tex_src_ms_index, /* MSAA sample index */
1315 nir_tex_src_ms_mcs, /* MSAA compression value */
1316 nir_tex_src_ddx,
1317 nir_tex_src_ddy,
1318 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1319 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1320 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1321 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1322 nir_tex_src_plane, /* < selects plane for planar textures */
1323 nir_num_tex_src_types
1324 } nir_tex_src_type;
1325
1326 typedef struct {
1327 nir_src src;
1328 nir_tex_src_type src_type;
1329 } nir_tex_src;
1330
1331 typedef enum {
1332 nir_texop_tex, /**< Regular texture look-up */
1333 nir_texop_txb, /**< Texture look-up with LOD bias */
1334 nir_texop_txl, /**< Texture look-up with explicit LOD */
1335 nir_texop_txd, /**< Texture look-up with partial derivatives */
1336 nir_texop_txf, /**< Texel fetch with explicit LOD */
1337 nir_texop_txf_ms, /**< Multisample texture fetch */
1338 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1339 nir_texop_txs, /**< Texture size */
1340 nir_texop_lod, /**< Texture lod query */
1341 nir_texop_tg4, /**< Texture gather */
1342 nir_texop_query_levels, /**< Texture levels query */
1343 nir_texop_texture_samples, /**< Texture samples query */
1344 nir_texop_samples_identical, /**< Query whether all samples are definitely
1345 * identical.
1346 */
1347 } nir_texop;
1348
1349 typedef struct {
1350 nir_instr instr;
1351
1352 enum glsl_sampler_dim sampler_dim;
1353 nir_alu_type dest_type;
1354
1355 nir_texop op;
1356 nir_dest dest;
1357 nir_tex_src *src;
1358 unsigned num_srcs, coord_components;
1359 bool is_array, is_shadow;
1360
1361 /**
1362 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1363 * components or the new-style shadow that outputs 1 component.
1364 */
1365 bool is_new_style_shadow;
1366
1367 /* gather component selector */
1368 unsigned component : 2;
1369
1370 /** The texture index
1371 *
1372 * If this texture instruction has a nir_tex_src_texture_offset source,
1373 * then the texture index is given by texture_index + texture_offset.
1374 */
1375 unsigned texture_index;
1376
1377 /** The size of the texture array or 0 if it's not an array */
1378 unsigned texture_array_size;
1379
1380 /** The texture deref
1381 *
1382 * If this is null, use texture_index instead.
1383 */
1384 nir_deref_var *texture;
1385
1386 /** The sampler index
1387 *
1388 * The following operations do not require a sampler and, as such, this
1389 * field should be ignored:
1390 * - nir_texop_txf
1391 * - nir_texop_txf_ms
1392 * - nir_texop_txs
1393 * - nir_texop_lod
1394 * - nir_texop_query_levels
1395 * - nir_texop_texture_samples
1396 * - nir_texop_samples_identical
1397 *
1398 * If this texture instruction has a nir_tex_src_sampler_offset source,
1399 * then the sampler index is given by sampler_index + sampler_offset.
1400 */
1401 unsigned sampler_index;
1402
1403 /** The sampler deref
1404 *
1405 * If this is null, use sampler_index instead.
1406 */
1407 nir_deref_var *sampler;
1408 } nir_tex_instr;
1409
1410 static inline unsigned
1411 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1412 {
1413 switch (instr->op) {
1414 case nir_texop_txs: {
1415 unsigned ret;
1416 switch (instr->sampler_dim) {
1417 case GLSL_SAMPLER_DIM_1D:
1418 case GLSL_SAMPLER_DIM_BUF:
1419 ret = 1;
1420 break;
1421 case GLSL_SAMPLER_DIM_2D:
1422 case GLSL_SAMPLER_DIM_CUBE:
1423 case GLSL_SAMPLER_DIM_MS:
1424 case GLSL_SAMPLER_DIM_RECT:
1425 case GLSL_SAMPLER_DIM_EXTERNAL:
1426 case GLSL_SAMPLER_DIM_SUBPASS:
1427 ret = 2;
1428 break;
1429 case GLSL_SAMPLER_DIM_3D:
1430 ret = 3;
1431 break;
1432 default:
1433 unreachable("not reached");
1434 }
1435 if (instr->is_array)
1436 ret++;
1437 return ret;
1438 }
1439
1440 case nir_texop_lod:
1441 return 2;
1442
1443 case nir_texop_texture_samples:
1444 case nir_texop_query_levels:
1445 case nir_texop_samples_identical:
1446 return 1;
1447
1448 default:
1449 if (instr->is_shadow && instr->is_new_style_shadow)
1450 return 1;
1451
1452 return 4;
1453 }
1454 }
1455
1456 /* Returns true if this texture operation queries something about the texture
1457 * rather than actually sampling it.
1458 */
1459 static inline bool
1460 nir_tex_instr_is_query(const nir_tex_instr *instr)
1461 {
1462 switch (instr->op) {
1463 case nir_texop_txs:
1464 case nir_texop_lod:
1465 case nir_texop_texture_samples:
1466 case nir_texop_query_levels:
1467 case nir_texop_txf_ms_mcs:
1468 return true;
1469 case nir_texop_tex:
1470 case nir_texop_txb:
1471 case nir_texop_txl:
1472 case nir_texop_txd:
1473 case nir_texop_txf:
1474 case nir_texop_txf_ms:
1475 case nir_texop_tg4:
1476 return false;
1477 default:
1478 unreachable("Invalid texture opcode");
1479 }
1480 }
1481
1482 static inline bool
1483 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1484 {
1485 switch (instr->op) {
1486 case nir_op_flt:
1487 case nir_op_fge:
1488 case nir_op_feq:
1489 case nir_op_fne:
1490 case nir_op_ilt:
1491 case nir_op_ult:
1492 case nir_op_ige:
1493 case nir_op_uge:
1494 case nir_op_ieq:
1495 case nir_op_ine:
1496 case nir_op_i2b:
1497 case nir_op_f2b:
1498 case nir_op_inot:
1499 case nir_op_fnot:
1500 return true;
1501 default:
1502 return false;
1503 }
1504 }
1505
1506 static inline nir_alu_type
1507 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1508 {
1509 switch (instr->src[src].src_type) {
1510 case nir_tex_src_coord:
1511 switch (instr->op) {
1512 case nir_texop_txf:
1513 case nir_texop_txf_ms:
1514 case nir_texop_txf_ms_mcs:
1515 case nir_texop_samples_identical:
1516 return nir_type_int;
1517
1518 default:
1519 return nir_type_float;
1520 }
1521
1522 case nir_tex_src_lod:
1523 switch (instr->op) {
1524 case nir_texop_txs:
1525 case nir_texop_txf:
1526 return nir_type_int;
1527
1528 default:
1529 return nir_type_float;
1530 }
1531
1532 case nir_tex_src_projector:
1533 case nir_tex_src_comparator:
1534 case nir_tex_src_bias:
1535 case nir_tex_src_ddx:
1536 case nir_tex_src_ddy:
1537 return nir_type_float;
1538
1539 case nir_tex_src_offset:
1540 case nir_tex_src_ms_index:
1541 case nir_tex_src_texture_offset:
1542 case nir_tex_src_sampler_offset:
1543 return nir_type_int;
1544
1545 default:
1546 unreachable("Invalid texture source type");
1547 }
1548 }
1549
1550 static inline unsigned
1551 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1552 {
1553 if (instr->src[src].src_type == nir_tex_src_coord)
1554 return instr->coord_components;
1555
1556 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1557 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1558 return 4;
1559
1560 if (instr->src[src].src_type == nir_tex_src_ddx ||
1561 instr->src[src].src_type == nir_tex_src_ddy) {
1562 if (instr->is_array)
1563 return instr->coord_components - 1;
1564 else
1565 return instr->coord_components;
1566 }
1567
1568 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1569 * the offset, since a cube maps to a single face.
1570 */
1571 if (instr->src[src].src_type == nir_tex_src_offset) {
1572 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1573 return 2;
1574 else if (instr->is_array)
1575 return instr->coord_components - 1;
1576 else
1577 return instr->coord_components;
1578 }
1579
1580 return 1;
1581 }
1582
1583 static inline int
1584 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1585 {
1586 for (unsigned i = 0; i < instr->num_srcs; i++)
1587 if (instr->src[i].src_type == type)
1588 return (int) i;
1589
1590 return -1;
1591 }
1592
1593 void nir_tex_instr_add_src(nir_tex_instr *tex,
1594 nir_tex_src_type src_type,
1595 nir_src src);
1596
1597 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1598
1599 typedef struct {
1600 nir_instr instr;
1601
1602 nir_const_value value;
1603
1604 nir_ssa_def def;
1605 } nir_load_const_instr;
1606
1607 typedef enum {
1608 nir_jump_return,
1609 nir_jump_break,
1610 nir_jump_continue,
1611 } nir_jump_type;
1612
1613 typedef struct {
1614 nir_instr instr;
1615 nir_jump_type type;
1616 } nir_jump_instr;
1617
1618 /* creates a new SSA variable in an undefined state */
1619
1620 typedef struct {
1621 nir_instr instr;
1622 nir_ssa_def def;
1623 } nir_ssa_undef_instr;
1624
1625 typedef struct {
1626 struct exec_node node;
1627
1628 /* The predecessor block corresponding to this source */
1629 struct nir_block *pred;
1630
1631 nir_src src;
1632 } nir_phi_src;
1633
1634 #define nir_foreach_phi_src(phi_src, phi) \
1635 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1636 #define nir_foreach_phi_src_safe(phi_src, phi) \
1637 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1638
1639 typedef struct {
1640 nir_instr instr;
1641
1642 struct exec_list srcs; /** < list of nir_phi_src */
1643
1644 nir_dest dest;
1645 } nir_phi_instr;
1646
1647 typedef struct {
1648 struct exec_node node;
1649 nir_src src;
1650 nir_dest dest;
1651 } nir_parallel_copy_entry;
1652
1653 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1654 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1655
1656 typedef struct {
1657 nir_instr instr;
1658
1659 /* A list of nir_parallel_copy_entrys. The sources of all of the
1660 * entries are copied to the corresponding destinations "in parallel".
1661 * In other words, if we have two entries: a -> b and b -> a, the values
1662 * get swapped.
1663 */
1664 struct exec_list entries;
1665 } nir_parallel_copy_instr;
1666
1667 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1668 type, nir_instr_type_alu)
1669 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1670 type, nir_instr_type_call)
1671 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1672 type, nir_instr_type_jump)
1673 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1674 type, nir_instr_type_tex)
1675 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1676 type, nir_instr_type_intrinsic)
1677 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1678 type, nir_instr_type_load_const)
1679 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1680 type, nir_instr_type_ssa_undef)
1681 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1682 type, nir_instr_type_phi)
1683 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1684 nir_parallel_copy_instr, instr,
1685 type, nir_instr_type_parallel_copy)
1686
1687 /*
1688 * Control flow
1689 *
1690 * Control flow consists of a tree of control flow nodes, which include
1691 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1692 * instructions that always run start-to-finish. Each basic block also keeps
1693 * track of its successors (blocks which may run immediately after the current
1694 * block) and predecessors (blocks which could have run immediately before the
1695 * current block). Each function also has a start block and an end block which
1696 * all return statements point to (which is always empty). Together, all the
1697 * blocks with their predecessors and successors make up the control flow
1698 * graph (CFG) of the function. There are helpers that modify the tree of
1699 * control flow nodes while modifying the CFG appropriately; these should be
1700 * used instead of modifying the tree directly.
1701 */
1702
1703 typedef enum {
1704 nir_cf_node_block,
1705 nir_cf_node_if,
1706 nir_cf_node_loop,
1707 nir_cf_node_function
1708 } nir_cf_node_type;
1709
1710 typedef struct nir_cf_node {
1711 struct exec_node node;
1712 nir_cf_node_type type;
1713 struct nir_cf_node *parent;
1714 } nir_cf_node;
1715
1716 typedef struct nir_block {
1717 nir_cf_node cf_node;
1718
1719 struct exec_list instr_list; /** < list of nir_instr */
1720
1721 /** generic block index; generated by nir_index_blocks */
1722 unsigned index;
1723
1724 /*
1725 * Each block can only have up to 2 successors, so we put them in a simple
1726 * array - no need for anything more complicated.
1727 */
1728 struct nir_block *successors[2];
1729
1730 /* Set of nir_block predecessors in the CFG */
1731 struct set *predecessors;
1732
1733 /*
1734 * this node's immediate dominator in the dominance tree - set to NULL for
1735 * the start block.
1736 */
1737 struct nir_block *imm_dom;
1738
1739 /* This node's children in the dominance tree */
1740 unsigned num_dom_children;
1741 struct nir_block **dom_children;
1742
1743 /* Set of nir_blocks on the dominance frontier of this block */
1744 struct set *dom_frontier;
1745
1746 /*
1747 * These two indices have the property that dom_{pre,post}_index for each
1748 * child of this block in the dominance tree will always be between
1749 * dom_pre_index and dom_post_index for this block, which makes testing if
1750 * a given block is dominated by another block an O(1) operation.
1751 */
1752 unsigned dom_pre_index, dom_post_index;
1753
1754 /* live in and out for this block; used for liveness analysis */
1755 BITSET_WORD *live_in;
1756 BITSET_WORD *live_out;
1757 } nir_block;
1758
1759 static inline nir_instr *
1760 nir_block_first_instr(nir_block *block)
1761 {
1762 struct exec_node *head = exec_list_get_head(&block->instr_list);
1763 return exec_node_data(nir_instr, head, node);
1764 }
1765
1766 static inline nir_instr *
1767 nir_block_last_instr(nir_block *block)
1768 {
1769 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1770 return exec_node_data(nir_instr, tail, node);
1771 }
1772
1773 #define nir_foreach_instr(instr, block) \
1774 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1775 #define nir_foreach_instr_reverse(instr, block) \
1776 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1777 #define nir_foreach_instr_safe(instr, block) \
1778 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1779 #define nir_foreach_instr_reverse_safe(instr, block) \
1780 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1781
1782 typedef struct nir_if {
1783 nir_cf_node cf_node;
1784 nir_src condition;
1785
1786 struct exec_list then_list; /** < list of nir_cf_node */
1787 struct exec_list else_list; /** < list of nir_cf_node */
1788 } nir_if;
1789
1790 typedef struct {
1791 nir_if *nif;
1792
1793 nir_instr *conditional_instr;
1794
1795 nir_block *break_block;
1796 nir_block *continue_from_block;
1797
1798 bool continue_from_then;
1799
1800 struct list_head loop_terminator_link;
1801 } nir_loop_terminator;
1802
1803 typedef struct {
1804 /* Number of instructions in the loop */
1805 unsigned num_instructions;
1806
1807 /* How many times the loop is run (if known) */
1808 unsigned trip_count;
1809 bool is_trip_count_known;
1810
1811 /* Unroll the loop regardless of its size */
1812 bool force_unroll;
1813
1814 nir_loop_terminator *limiting_terminator;
1815
1816 /* A list of loop_terminators terminating this loop. */
1817 struct list_head loop_terminator_list;
1818 } nir_loop_info;
1819
1820 typedef struct {
1821 nir_cf_node cf_node;
1822
1823 struct exec_list body; /** < list of nir_cf_node */
1824
1825 nir_loop_info *info;
1826 } nir_loop;
1827
1828 /**
1829 * Various bits of metadata that can may be created or required by
1830 * optimization and analysis passes
1831 */
1832 typedef enum {
1833 nir_metadata_none = 0x0,
1834 nir_metadata_block_index = 0x1,
1835 nir_metadata_dominance = 0x2,
1836 nir_metadata_live_ssa_defs = 0x4,
1837 nir_metadata_not_properly_reset = 0x8,
1838 nir_metadata_loop_analysis = 0x10,
1839 } nir_metadata;
1840
1841 typedef struct {
1842 nir_cf_node cf_node;
1843
1844 /** pointer to the function of which this is an implementation */
1845 struct nir_function *function;
1846
1847 struct exec_list body; /** < list of nir_cf_node */
1848
1849 nir_block *end_block;
1850
1851 /** list for all local variables in the function */
1852 struct exec_list locals;
1853
1854 /** list of local registers in the function */
1855 struct exec_list registers;
1856
1857 /** next available local register index */
1858 unsigned reg_alloc;
1859
1860 /** next available SSA value index */
1861 unsigned ssa_alloc;
1862
1863 /* total number of basic blocks, only valid when block_index_dirty = false */
1864 unsigned num_blocks;
1865
1866 nir_metadata valid_metadata;
1867 } nir_function_impl;
1868
1869 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1870 nir_start_block(nir_function_impl *impl)
1871 {
1872 return (nir_block *) impl->body.head_sentinel.next;
1873 }
1874
1875 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1876 nir_impl_last_block(nir_function_impl *impl)
1877 {
1878 return (nir_block *) impl->body.tail_sentinel.prev;
1879 }
1880
1881 static inline nir_cf_node *
1882 nir_cf_node_next(nir_cf_node *node)
1883 {
1884 struct exec_node *next = exec_node_get_next(&node->node);
1885 if (exec_node_is_tail_sentinel(next))
1886 return NULL;
1887 else
1888 return exec_node_data(nir_cf_node, next, node);
1889 }
1890
1891 static inline nir_cf_node *
1892 nir_cf_node_prev(nir_cf_node *node)
1893 {
1894 struct exec_node *prev = exec_node_get_prev(&node->node);
1895 if (exec_node_is_head_sentinel(prev))
1896 return NULL;
1897 else
1898 return exec_node_data(nir_cf_node, prev, node);
1899 }
1900
1901 static inline bool
1902 nir_cf_node_is_first(const nir_cf_node *node)
1903 {
1904 return exec_node_is_head_sentinel(node->node.prev);
1905 }
1906
1907 static inline bool
1908 nir_cf_node_is_last(const nir_cf_node *node)
1909 {
1910 return exec_node_is_tail_sentinel(node->node.next);
1911 }
1912
1913 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
1914 type, nir_cf_node_block)
1915 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
1916 type, nir_cf_node_if)
1917 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
1918 type, nir_cf_node_loop)
1919 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
1920 nir_function_impl, cf_node, type, nir_cf_node_function)
1921
1922 static inline nir_block *
1923 nir_if_first_then_block(nir_if *if_stmt)
1924 {
1925 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1926 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1927 }
1928
1929 static inline nir_block *
1930 nir_if_last_then_block(nir_if *if_stmt)
1931 {
1932 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1933 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1934 }
1935
1936 static inline nir_block *
1937 nir_if_first_else_block(nir_if *if_stmt)
1938 {
1939 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1940 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1941 }
1942
1943 static inline nir_block *
1944 nir_if_last_else_block(nir_if *if_stmt)
1945 {
1946 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1947 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1948 }
1949
1950 static inline nir_block *
1951 nir_loop_first_block(nir_loop *loop)
1952 {
1953 struct exec_node *head = exec_list_get_head(&loop->body);
1954 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1955 }
1956
1957 static inline nir_block *
1958 nir_loop_last_block(nir_loop *loop)
1959 {
1960 struct exec_node *tail = exec_list_get_tail(&loop->body);
1961 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1962 }
1963
1964 typedef struct {
1965 uint8_t num_components;
1966 uint8_t bit_size;
1967 } nir_parameter;
1968
1969 typedef struct nir_function {
1970 struct exec_node node;
1971
1972 const char *name;
1973 struct nir_shader *shader;
1974
1975 unsigned num_params;
1976 nir_parameter *params;
1977
1978 /** The implementation of this function.
1979 *
1980 * If the function is only declared and not implemented, this is NULL.
1981 */
1982 nir_function_impl *impl;
1983 } nir_function;
1984
1985 typedef struct nir_shader_compiler_options {
1986 bool lower_fdiv;
1987 bool lower_ffma;
1988 bool fuse_ffma;
1989 bool lower_flrp32;
1990 /** Lowers flrp when it does not support doubles */
1991 bool lower_flrp64;
1992 bool lower_fpow;
1993 bool lower_fsat;
1994 bool lower_fsqrt;
1995 bool lower_fmod32;
1996 bool lower_fmod64;
1997 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
1998 bool lower_bitfield_extract;
1999 /** Lowers ibitfield_extract/ubitfield_extract to bfm, compares, shifts. */
2000 bool lower_bitfield_extract_to_shifts;
2001 /** Lowers bitfield_insert to bfi/bfm */
2002 bool lower_bitfield_insert;
2003 /** Lowers bitfield_insert to bfm, compares, and shifts. */
2004 bool lower_bitfield_insert_to_shifts;
2005 /** Lowers bitfield_reverse to shifts. */
2006 bool lower_bitfield_reverse;
2007 /** Lowers bit_count to shifts. */
2008 bool lower_bit_count;
2009 /** Lowers bfm to shifts and subtracts. */
2010 bool lower_bfm;
2011 /** Lowers ifind_msb to compare and ufind_msb */
2012 bool lower_ifind_msb;
2013 /** Lowers find_lsb to ufind_msb and logic ops */
2014 bool lower_find_lsb;
2015 bool lower_uadd_carry;
2016 bool lower_usub_borrow;
2017 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2018 bool lower_mul_high;
2019 /** lowers fneg and ineg to fsub and isub. */
2020 bool lower_negate;
2021 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2022 bool lower_sub;
2023
2024 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2025 bool lower_scmp;
2026
2027 /** enables rules to lower idiv by power-of-two: */
2028 bool lower_idiv;
2029
2030 /* lower b2f to iand */
2031 bool lower_b2f;
2032
2033 /* Does the native fdot instruction replicate its result for four
2034 * components? If so, then opt_algebraic_late will turn all fdotN
2035 * instructions into fdot_replicatedN instructions.
2036 */
2037 bool fdot_replicates;
2038
2039 /** lowers ffract to fsub+ffloor: */
2040 bool lower_ffract;
2041
2042 bool lower_ldexp;
2043
2044 bool lower_pack_half_2x16;
2045 bool lower_pack_unorm_2x16;
2046 bool lower_pack_snorm_2x16;
2047 bool lower_pack_unorm_4x8;
2048 bool lower_pack_snorm_4x8;
2049 bool lower_unpack_half_2x16;
2050 bool lower_unpack_unorm_2x16;
2051 bool lower_unpack_snorm_2x16;
2052 bool lower_unpack_unorm_4x8;
2053 bool lower_unpack_snorm_4x8;
2054
2055 bool lower_extract_byte;
2056 bool lower_extract_word;
2057
2058 bool lower_all_io_to_temps;
2059
2060 /**
2061 * Does the driver support real 32-bit integers? (Otherwise, integers
2062 * are simulated by floats.)
2063 */
2064 bool native_integers;
2065
2066 /* Indicates that the driver only has zero-based vertex id */
2067 bool vertex_id_zero_based;
2068
2069 /**
2070 * If enabled, gl_BaseVertex will be lowered as:
2071 * is_indexed_draw (~0/0) & firstvertex
2072 */
2073 bool lower_base_vertex;
2074
2075 bool lower_cs_local_index_from_id;
2076
2077 bool lower_device_index_to_zero;
2078
2079 /**
2080 * Should nir_lower_io() create load_interpolated_input intrinsics?
2081 *
2082 * If not, it generates regular load_input intrinsics and interpolation
2083 * information must be inferred from the list of input nir_variables.
2084 */
2085 bool use_interpolated_input_intrinsics;
2086
2087 /**
2088 * Do vertex shader double inputs use two locations? The Vulkan spec
2089 * requires two locations to be used, OpenGL allows a single location.
2090 */
2091 bool vs_inputs_dual_locations;
2092
2093 unsigned max_unroll_iterations;
2094 } nir_shader_compiler_options;
2095
2096 typedef struct nir_shader {
2097 /** list of uniforms (nir_variable) */
2098 struct exec_list uniforms;
2099
2100 /** list of inputs (nir_variable) */
2101 struct exec_list inputs;
2102
2103 /** list of outputs (nir_variable) */
2104 struct exec_list outputs;
2105
2106 /** list of shared compute variables (nir_variable) */
2107 struct exec_list shared;
2108
2109 /** Set of driver-specific options for the shader.
2110 *
2111 * The memory for the options is expected to be kept in a single static
2112 * copy by the driver.
2113 */
2114 const struct nir_shader_compiler_options *options;
2115
2116 /** Various bits of compile-time information about a given shader */
2117 struct shader_info info;
2118
2119 /** list of global variables in the shader (nir_variable) */
2120 struct exec_list globals;
2121
2122 /** list of system value variables in the shader (nir_variable) */
2123 struct exec_list system_values;
2124
2125 struct exec_list functions; /** < list of nir_function */
2126
2127 /** list of global register in the shader */
2128 struct exec_list registers;
2129
2130 /** next available global register index */
2131 unsigned reg_alloc;
2132
2133 /**
2134 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2135 * access plus one
2136 */
2137 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2138
2139 /* temporary, tracking for which derefs instructions have been lowered
2140 * to deref chains
2141 */
2142 unsigned lowered_derefs;
2143 } nir_shader;
2144
2145 #define nir_assert_lowered_derefs(shader, mask) \
2146 assert(((shader)->lowered_derefs & (mask)) == (mask))
2147
2148 #define nir_assert_unlowered_derefs(shader, mask) \
2149 assert(!((shader)->lowered_derefs & (mask)))
2150
2151 static inline nir_function_impl *
2152 nir_shader_get_entrypoint(nir_shader *shader)
2153 {
2154 assert(exec_list_length(&shader->functions) == 1);
2155 struct exec_node *func_node = exec_list_get_head(&shader->functions);
2156 nir_function *func = exec_node_data(nir_function, func_node, node);
2157 assert(func->num_params == 0);
2158 assert(func->impl);
2159 return func->impl;
2160 }
2161
2162 #define nir_foreach_function(func, shader) \
2163 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2164
2165 nir_shader *nir_shader_create(void *mem_ctx,
2166 gl_shader_stage stage,
2167 const nir_shader_compiler_options *options,
2168 shader_info *si);
2169
2170 /** creates a register, including assigning it an index and adding it to the list */
2171 nir_register *nir_global_reg_create(nir_shader *shader);
2172
2173 nir_register *nir_local_reg_create(nir_function_impl *impl);
2174
2175 void nir_reg_remove(nir_register *reg);
2176
2177 /** Adds a variable to the appropriate list in nir_shader */
2178 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2179
2180 static inline void
2181 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2182 {
2183 assert(var->data.mode == nir_var_local);
2184 exec_list_push_tail(&impl->locals, &var->node);
2185 }
2186
2187 /** creates a variable, sets a few defaults, and adds it to the list */
2188 nir_variable *nir_variable_create(nir_shader *shader,
2189 nir_variable_mode mode,
2190 const struct glsl_type *type,
2191 const char *name);
2192 /** creates a local variable and adds it to the list */
2193 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2194 const struct glsl_type *type,
2195 const char *name);
2196
2197 /** creates a function and adds it to the shader's list of functions */
2198 nir_function *nir_function_create(nir_shader *shader, const char *name);
2199
2200 nir_function_impl *nir_function_impl_create(nir_function *func);
2201 /** creates a function_impl that isn't tied to any particular function */
2202 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2203
2204 nir_block *nir_block_create(nir_shader *shader);
2205 nir_if *nir_if_create(nir_shader *shader);
2206 nir_loop *nir_loop_create(nir_shader *shader);
2207
2208 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2209
2210 /** requests that the given pieces of metadata be generated */
2211 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2212 /** dirties all but the preserved metadata */
2213 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2214
2215 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2216 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2217
2218 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2219 nir_deref_type deref_type);
2220
2221 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2222
2223 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2224 unsigned num_components,
2225 unsigned bit_size);
2226
2227 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2228 nir_intrinsic_op op);
2229
2230 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2231 nir_function *callee);
2232
2233 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2234
2235 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2236
2237 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2238
2239 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2240 unsigned num_components,
2241 unsigned bit_size);
2242
2243 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
2244 nir_deref_array *nir_deref_array_create(void *mem_ctx);
2245 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
2246
2247 typedef bool (*nir_deref_foreach_leaf_cb)(nir_deref_var *deref, void *state);
2248 bool nir_deref_foreach_leaf(nir_deref_var *deref,
2249 nir_deref_foreach_leaf_cb cb, void *state);
2250
2251 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2252
2253 /**
2254 * NIR Cursors and Instruction Insertion API
2255 * @{
2256 *
2257 * A tiny struct representing a point to insert/extract instructions or
2258 * control flow nodes. Helps reduce the combinatorial explosion of possible
2259 * points to insert/extract.
2260 *
2261 * \sa nir_control_flow.h
2262 */
2263 typedef enum {
2264 nir_cursor_before_block,
2265 nir_cursor_after_block,
2266 nir_cursor_before_instr,
2267 nir_cursor_after_instr,
2268 } nir_cursor_option;
2269
2270 typedef struct {
2271 nir_cursor_option option;
2272 union {
2273 nir_block *block;
2274 nir_instr *instr;
2275 };
2276 } nir_cursor;
2277
2278 static inline nir_block *
2279 nir_cursor_current_block(nir_cursor cursor)
2280 {
2281 if (cursor.option == nir_cursor_before_instr ||
2282 cursor.option == nir_cursor_after_instr) {
2283 return cursor.instr->block;
2284 } else {
2285 return cursor.block;
2286 }
2287 }
2288
2289 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2290
2291 static inline nir_cursor
2292 nir_before_block(nir_block *block)
2293 {
2294 nir_cursor cursor;
2295 cursor.option = nir_cursor_before_block;
2296 cursor.block = block;
2297 return cursor;
2298 }
2299
2300 static inline nir_cursor
2301 nir_after_block(nir_block *block)
2302 {
2303 nir_cursor cursor;
2304 cursor.option = nir_cursor_after_block;
2305 cursor.block = block;
2306 return cursor;
2307 }
2308
2309 static inline nir_cursor
2310 nir_before_instr(nir_instr *instr)
2311 {
2312 nir_cursor cursor;
2313 cursor.option = nir_cursor_before_instr;
2314 cursor.instr = instr;
2315 return cursor;
2316 }
2317
2318 static inline nir_cursor
2319 nir_after_instr(nir_instr *instr)
2320 {
2321 nir_cursor cursor;
2322 cursor.option = nir_cursor_after_instr;
2323 cursor.instr = instr;
2324 return cursor;
2325 }
2326
2327 static inline nir_cursor
2328 nir_after_block_before_jump(nir_block *block)
2329 {
2330 nir_instr *last_instr = nir_block_last_instr(block);
2331 if (last_instr && last_instr->type == nir_instr_type_jump) {
2332 return nir_before_instr(last_instr);
2333 } else {
2334 return nir_after_block(block);
2335 }
2336 }
2337
2338 static inline nir_cursor
2339 nir_before_cf_node(nir_cf_node *node)
2340 {
2341 if (node->type == nir_cf_node_block)
2342 return nir_before_block(nir_cf_node_as_block(node));
2343
2344 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2345 }
2346
2347 static inline nir_cursor
2348 nir_after_cf_node(nir_cf_node *node)
2349 {
2350 if (node->type == nir_cf_node_block)
2351 return nir_after_block(nir_cf_node_as_block(node));
2352
2353 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2354 }
2355
2356 static inline nir_cursor
2357 nir_after_phis(nir_block *block)
2358 {
2359 nir_foreach_instr(instr, block) {
2360 if (instr->type != nir_instr_type_phi)
2361 return nir_before_instr(instr);
2362 }
2363 return nir_after_block(block);
2364 }
2365
2366 static inline nir_cursor
2367 nir_after_cf_node_and_phis(nir_cf_node *node)
2368 {
2369 if (node->type == nir_cf_node_block)
2370 return nir_after_block(nir_cf_node_as_block(node));
2371
2372 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2373
2374 return nir_after_phis(block);
2375 }
2376
2377 static inline nir_cursor
2378 nir_before_cf_list(struct exec_list *cf_list)
2379 {
2380 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2381 exec_list_get_head(cf_list), node);
2382 return nir_before_cf_node(first_node);
2383 }
2384
2385 static inline nir_cursor
2386 nir_after_cf_list(struct exec_list *cf_list)
2387 {
2388 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2389 exec_list_get_tail(cf_list), node);
2390 return nir_after_cf_node(last_node);
2391 }
2392
2393 /**
2394 * Insert a NIR instruction at the given cursor.
2395 *
2396 * Note: This does not update the cursor.
2397 */
2398 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2399
2400 static inline void
2401 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2402 {
2403 nir_instr_insert(nir_before_instr(instr), before);
2404 }
2405
2406 static inline void
2407 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2408 {
2409 nir_instr_insert(nir_after_instr(instr), after);
2410 }
2411
2412 static inline void
2413 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2414 {
2415 nir_instr_insert(nir_before_block(block), before);
2416 }
2417
2418 static inline void
2419 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2420 {
2421 nir_instr_insert(nir_after_block(block), after);
2422 }
2423
2424 static inline void
2425 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2426 {
2427 nir_instr_insert(nir_before_cf_node(node), before);
2428 }
2429
2430 static inline void
2431 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2432 {
2433 nir_instr_insert(nir_after_cf_node(node), after);
2434 }
2435
2436 static inline void
2437 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2438 {
2439 nir_instr_insert(nir_before_cf_list(list), before);
2440 }
2441
2442 static inline void
2443 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2444 {
2445 nir_instr_insert(nir_after_cf_list(list), after);
2446 }
2447
2448 void nir_instr_remove_v(nir_instr *instr);
2449
2450 static inline nir_cursor
2451 nir_instr_remove(nir_instr *instr)
2452 {
2453 nir_cursor cursor;
2454 nir_instr *prev = nir_instr_prev(instr);
2455 if (prev) {
2456 cursor = nir_after_instr(prev);
2457 } else {
2458 cursor = nir_before_block(instr->block);
2459 }
2460 nir_instr_remove_v(instr);
2461 return cursor;
2462 }
2463
2464 /** @} */
2465
2466 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2467 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2468 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2469 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2470 void *state);
2471 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2472 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2473
2474 nir_const_value *nir_src_as_const_value(nir_src src);
2475 bool nir_src_is_dynamically_uniform(nir_src src);
2476 bool nir_srcs_equal(nir_src src1, nir_src src2);
2477 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2478 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2479 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2480 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2481 nir_dest new_dest);
2482 void nir_instr_rewrite_deref(nir_instr *instr, nir_deref_var **deref,
2483 nir_deref_var *new_deref);
2484
2485 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2486 unsigned num_components, unsigned bit_size,
2487 const char *name);
2488 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2489 unsigned num_components, unsigned bit_size,
2490 const char *name);
2491 static inline void
2492 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
2493 const struct glsl_type *type,
2494 const char *name)
2495 {
2496 assert(glsl_type_is_vector_or_scalar(type));
2497 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
2498 glsl_get_bit_size(type), name);
2499 }
2500 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2501 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2502 nir_instr *after_me);
2503
2504 uint8_t nir_ssa_def_components_read(const nir_ssa_def *def);
2505
2506 /*
2507 * finds the next basic block in source-code order, returns NULL if there is
2508 * none
2509 */
2510
2511 nir_block *nir_block_cf_tree_next(nir_block *block);
2512
2513 /* Performs the opposite of nir_block_cf_tree_next() */
2514
2515 nir_block *nir_block_cf_tree_prev(nir_block *block);
2516
2517 /* Gets the first block in a CF node in source-code order */
2518
2519 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2520
2521 /* Gets the last block in a CF node in source-code order */
2522
2523 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2524
2525 /* Gets the next block after a CF node in source-code order */
2526
2527 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2528
2529 /* Macros for loops that visit blocks in source-code order */
2530
2531 #define nir_foreach_block(block, impl) \
2532 for (nir_block *block = nir_start_block(impl); block != NULL; \
2533 block = nir_block_cf_tree_next(block))
2534
2535 #define nir_foreach_block_safe(block, impl) \
2536 for (nir_block *block = nir_start_block(impl), \
2537 *next = nir_block_cf_tree_next(block); \
2538 block != NULL; \
2539 block = next, next = nir_block_cf_tree_next(block))
2540
2541 #define nir_foreach_block_reverse(block, impl) \
2542 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2543 block = nir_block_cf_tree_prev(block))
2544
2545 #define nir_foreach_block_reverse_safe(block, impl) \
2546 for (nir_block *block = nir_impl_last_block(impl), \
2547 *prev = nir_block_cf_tree_prev(block); \
2548 block != NULL; \
2549 block = prev, prev = nir_block_cf_tree_prev(block))
2550
2551 #define nir_foreach_block_in_cf_node(block, node) \
2552 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2553 block != nir_cf_node_cf_tree_next(node); \
2554 block = nir_block_cf_tree_next(block))
2555
2556 /* If the following CF node is an if, this function returns that if.
2557 * Otherwise, it returns NULL.
2558 */
2559 nir_if *nir_block_get_following_if(nir_block *block);
2560
2561 nir_loop *nir_block_get_following_loop(nir_block *block);
2562
2563 void nir_index_local_regs(nir_function_impl *impl);
2564 void nir_index_global_regs(nir_shader *shader);
2565 void nir_index_ssa_defs(nir_function_impl *impl);
2566 unsigned nir_index_instrs(nir_function_impl *impl);
2567
2568 void nir_index_blocks(nir_function_impl *impl);
2569
2570 void nir_print_shader(nir_shader *shader, FILE *fp);
2571 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2572 void nir_print_instr(const nir_instr *instr, FILE *fp);
2573
2574 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2575 nir_function_impl *nir_function_impl_clone(const nir_function_impl *fi);
2576 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2577 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2578 nir_deref *nir_deref_clone(const nir_deref *deref, void *mem_ctx);
2579 nir_deref_var *nir_deref_var_clone(const nir_deref_var *deref, void *mem_ctx);
2580
2581 nir_shader *nir_shader_serialize_deserialize(void *mem_ctx, nir_shader *s);
2582
2583 #ifndef NDEBUG
2584 void nir_validate_shader(nir_shader *shader);
2585 void nir_metadata_set_validation_flag(nir_shader *shader);
2586 void nir_metadata_check_validation_flag(nir_shader *shader);
2587
2588 static inline bool
2589 should_clone_nir(void)
2590 {
2591 static int should_clone = -1;
2592 if (should_clone < 0)
2593 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2594
2595 return should_clone;
2596 }
2597
2598 static inline bool
2599 should_serialize_deserialize_nir(void)
2600 {
2601 static int test_serialize = -1;
2602 if (test_serialize < 0)
2603 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
2604
2605 return test_serialize;
2606 }
2607
2608 static inline bool
2609 should_print_nir(void)
2610 {
2611 static int should_print = -1;
2612 if (should_print < 0)
2613 should_print = env_var_as_boolean("NIR_PRINT", false);
2614
2615 return should_print;
2616 }
2617 #else
2618 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
2619 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2620 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2621 static inline bool should_clone_nir(void) { return false; }
2622 static inline bool should_serialize_deserialize_nir(void) { return false; }
2623 static inline bool should_print_nir(void) { return false; }
2624 #endif /* NDEBUG */
2625
2626 #define _PASS(nir, do_pass) do { \
2627 do_pass \
2628 nir_validate_shader(nir); \
2629 if (should_clone_nir()) { \
2630 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2631 ralloc_free(nir); \
2632 nir = clone; \
2633 } \
2634 if (should_serialize_deserialize_nir()) { \
2635 void *mem_ctx = ralloc_parent(nir); \
2636 nir = nir_shader_serialize_deserialize(mem_ctx, nir); \
2637 } \
2638 } while (0)
2639
2640 #define NIR_PASS(progress, nir, pass, ...) _PASS(nir, \
2641 nir_metadata_set_validation_flag(nir); \
2642 if (should_print_nir()) \
2643 printf("%s\n", #pass); \
2644 if (pass(nir, ##__VA_ARGS__)) { \
2645 progress = true; \
2646 if (should_print_nir()) \
2647 nir_print_shader(nir, stdout); \
2648 nir_metadata_check_validation_flag(nir); \
2649 } \
2650 )
2651
2652 #define NIR_PASS_V(nir, pass, ...) _PASS(nir, \
2653 if (should_print_nir()) \
2654 printf("%s\n", #pass); \
2655 pass(nir, ##__VA_ARGS__); \
2656 if (should_print_nir()) \
2657 nir_print_shader(nir, stdout); \
2658 )
2659
2660 void nir_calc_dominance_impl(nir_function_impl *impl);
2661 void nir_calc_dominance(nir_shader *shader);
2662
2663 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2664 bool nir_block_dominates(nir_block *parent, nir_block *child);
2665
2666 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2667 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2668
2669 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2670 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2671
2672 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2673 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2674
2675 int nir_gs_count_vertices(const nir_shader *shader);
2676
2677 bool nir_split_var_copies(nir_shader *shader);
2678 bool nir_split_per_member_structs(nir_shader *shader);
2679
2680 bool nir_lower_returns_impl(nir_function_impl *impl);
2681 bool nir_lower_returns(nir_shader *shader);
2682
2683 bool nir_inline_functions(nir_shader *shader);
2684
2685 bool nir_propagate_invariant(nir_shader *shader);
2686
2687 enum nir_lower_deref_flags {
2688 nir_lower_load_store_derefs = (1 << 0),
2689 nir_lower_texture_derefs = (1 << 1),
2690 nir_lower_interp_derefs = (1 << 2),
2691 nir_lower_atomic_counter_derefs = (1 << 3),
2692 nir_lower_atomic_derefs = (1 << 4),
2693 nir_lower_image_derefs = (1 << 5),
2694 nir_lower_all_derefs = (1 << 6) - 1,
2695 };
2696
2697 bool nir_lower_deref_instrs(nir_shader *shader,
2698 enum nir_lower_deref_flags flags);
2699
2700 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
2701 void nir_lower_deref_copy_instr(struct nir_builder *b,
2702 nir_intrinsic_instr *copy);
2703 bool nir_lower_var_copies(nir_shader *shader);
2704
2705 void nir_fixup_deref_modes(nir_shader *shader);
2706
2707 bool nir_lower_global_vars_to_local(nir_shader *shader);
2708
2709 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
2710
2711 bool nir_lower_locals_to_regs(nir_shader *shader);
2712
2713 void nir_lower_io_to_temporaries(nir_shader *shader,
2714 nir_function_impl *entrypoint,
2715 bool outputs, bool inputs);
2716
2717 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2718
2719 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
2720 int (*type_size)(const struct glsl_type *));
2721
2722 /* Some helpers to do very simple linking */
2723 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
2724 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
2725 bool default_to_smooth_interp);
2726
2727 typedef enum {
2728 /* If set, this forces all non-flat fragment shader inputs to be
2729 * interpolated as if with the "sample" qualifier. This requires
2730 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
2731 */
2732 nir_lower_io_force_sample_interpolation = (1 << 1),
2733 } nir_lower_io_options;
2734 bool nir_lower_io(nir_shader *shader,
2735 nir_variable_mode modes,
2736 int (*type_size)(const struct glsl_type *),
2737 nir_lower_io_options);
2738 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2739 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2740
2741 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
2742
2743 void nir_lower_io_types(nir_shader *shader);
2744 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
2745 bool nir_lower_regs_to_ssa(nir_shader *shader);
2746 bool nir_lower_vars_to_ssa(nir_shader *shader);
2747
2748 bool nir_remove_dead_derefs(nir_shader *shader);
2749 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
2750 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
2751 bool nir_lower_constant_initializers(nir_shader *shader,
2752 nir_variable_mode modes);
2753
2754 bool nir_move_load_const(nir_shader *shader);
2755 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
2756 bool nir_lower_vec_to_movs(nir_shader *shader);
2757 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
2758 bool alpha_to_one);
2759 bool nir_lower_alu(nir_shader *shader);
2760 bool nir_lower_alu_to_scalar(nir_shader *shader);
2761 bool nir_lower_load_const_to_scalar(nir_shader *shader);
2762 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
2763 bool nir_lower_phis_to_scalar(nir_shader *shader);
2764 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
2765 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
2766 bool outputs_only);
2767 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
2768 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
2769
2770 typedef struct nir_lower_subgroups_options {
2771 uint8_t subgroup_size;
2772 uint8_t ballot_bit_size;
2773 bool lower_to_scalar:1;
2774 bool lower_vote_trivial:1;
2775 bool lower_vote_eq_to_ballot:1;
2776 bool lower_subgroup_masks:1;
2777 bool lower_shuffle:1;
2778 bool lower_shuffle_to_32bit:1;
2779 bool lower_quad:1;
2780 } nir_lower_subgroups_options;
2781
2782 bool nir_lower_subgroups(nir_shader *shader,
2783 const nir_lower_subgroups_options *options);
2784
2785 bool nir_lower_system_values(nir_shader *shader);
2786
2787 typedef struct nir_lower_tex_options {
2788 /**
2789 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2790 * sampler types a texture projector is lowered.
2791 */
2792 unsigned lower_txp;
2793
2794 /**
2795 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
2796 */
2797 bool lower_txf_offset;
2798
2799 /**
2800 * If true, lower away nir_tex_src_offset for all rect textures.
2801 */
2802 bool lower_rect_offset;
2803
2804 /**
2805 * If true, lower rect textures to 2D, using txs to fetch the
2806 * texture dimensions and dividing the texture coords by the
2807 * texture dims to normalize.
2808 */
2809 bool lower_rect;
2810
2811 /**
2812 * If true, convert yuv to rgb.
2813 */
2814 unsigned lower_y_uv_external;
2815 unsigned lower_y_u_v_external;
2816 unsigned lower_yx_xuxv_external;
2817 unsigned lower_xy_uxvx_external;
2818
2819 /**
2820 * To emulate certain texture wrap modes, this can be used
2821 * to saturate the specified tex coord to [0.0, 1.0]. The
2822 * bits are according to sampler #, ie. if, for example:
2823 *
2824 * (conf->saturate_s & (1 << n))
2825 *
2826 * is true, then the s coord for sampler n is saturated.
2827 *
2828 * Note that clamping must happen *after* projector lowering
2829 * so any projected texture sample instruction with a clamped
2830 * coordinate gets automatically lowered, regardless of the
2831 * 'lower_txp' setting.
2832 */
2833 unsigned saturate_s;
2834 unsigned saturate_t;
2835 unsigned saturate_r;
2836
2837 /* Bitmask of textures that need swizzling.
2838 *
2839 * If (swizzle_result & (1 << texture_index)), then the swizzle in
2840 * swizzles[texture_index] is applied to the result of the texturing
2841 * operation.
2842 */
2843 unsigned swizzle_result;
2844
2845 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
2846 * while 4 and 5 represent 0 and 1 respectively.
2847 */
2848 uint8_t swizzles[32][4];
2849
2850 /**
2851 * Bitmap of textures that need srgb to linear conversion. If
2852 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
2853 * of the texture are lowered to linear.
2854 */
2855 unsigned lower_srgb;
2856
2857 /**
2858 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
2859 */
2860 bool lower_txd_cube_map;
2861
2862 /**
2863 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
2864 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
2865 * with lower_txd_cube_map.
2866 */
2867 bool lower_txd_shadow;
2868
2869 /**
2870 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
2871 * Implies lower_txd_cube_map and lower_txd_shadow.
2872 */
2873 bool lower_txd;
2874 } nir_lower_tex_options;
2875
2876 bool nir_lower_tex(nir_shader *shader,
2877 const nir_lower_tex_options *options);
2878
2879 bool nir_lower_idiv(nir_shader *shader);
2880
2881 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
2882 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
2883 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
2884
2885 void nir_lower_two_sided_color(nir_shader *shader);
2886
2887 bool nir_lower_clamp_color_outputs(nir_shader *shader);
2888
2889 void nir_lower_passthrough_edgeflags(nir_shader *shader);
2890 void nir_lower_tes_patch_vertices(nir_shader *tes, unsigned patch_vertices);
2891
2892 typedef struct nir_lower_wpos_ytransform_options {
2893 gl_state_index16 state_tokens[STATE_LENGTH];
2894 bool fs_coord_origin_upper_left :1;
2895 bool fs_coord_origin_lower_left :1;
2896 bool fs_coord_pixel_center_integer :1;
2897 bool fs_coord_pixel_center_half_integer :1;
2898 } nir_lower_wpos_ytransform_options;
2899
2900 bool nir_lower_wpos_ytransform(nir_shader *shader,
2901 const nir_lower_wpos_ytransform_options *options);
2902 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
2903
2904 typedef struct nir_lower_drawpixels_options {
2905 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
2906 gl_state_index16 scale_state_tokens[STATE_LENGTH];
2907 gl_state_index16 bias_state_tokens[STATE_LENGTH];
2908 unsigned drawpix_sampler;
2909 unsigned pixelmap_sampler;
2910 bool pixel_maps :1;
2911 bool scale_and_bias :1;
2912 } nir_lower_drawpixels_options;
2913
2914 void nir_lower_drawpixels(nir_shader *shader,
2915 const nir_lower_drawpixels_options *options);
2916
2917 typedef struct nir_lower_bitmap_options {
2918 unsigned sampler;
2919 bool swizzle_xxxx;
2920 } nir_lower_bitmap_options;
2921
2922 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
2923
2924 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
2925 bool nir_lower_to_source_mods(nir_shader *shader);
2926
2927 bool nir_lower_gs_intrinsics(nir_shader *shader);
2928
2929 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
2930
2931 bool nir_lower_bit_size(nir_shader *shader,
2932 nir_lower_bit_size_callback callback,
2933 void *callback_data);
2934
2935 typedef enum {
2936 nir_lower_imul64 = (1 << 0),
2937 nir_lower_isign64 = (1 << 1),
2938 /** Lower all int64 modulus and division opcodes */
2939 nir_lower_divmod64 = (1 << 2),
2940 } nir_lower_int64_options;
2941
2942 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
2943
2944 typedef enum {
2945 nir_lower_drcp = (1 << 0),
2946 nir_lower_dsqrt = (1 << 1),
2947 nir_lower_drsq = (1 << 2),
2948 nir_lower_dtrunc = (1 << 3),
2949 nir_lower_dfloor = (1 << 4),
2950 nir_lower_dceil = (1 << 5),
2951 nir_lower_dfract = (1 << 6),
2952 nir_lower_dround_even = (1 << 7),
2953 nir_lower_dmod = (1 << 8)
2954 } nir_lower_doubles_options;
2955
2956 bool nir_lower_doubles(nir_shader *shader, nir_lower_doubles_options options);
2957 bool nir_lower_pack(nir_shader *shader);
2958
2959 bool nir_normalize_cubemap_coords(nir_shader *shader);
2960
2961 void nir_live_ssa_defs_impl(nir_function_impl *impl);
2962
2963 void nir_loop_analyze_impl(nir_function_impl *impl,
2964 nir_variable_mode indirect_mask);
2965
2966 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
2967
2968 bool nir_repair_ssa_impl(nir_function_impl *impl);
2969 bool nir_repair_ssa(nir_shader *shader);
2970
2971 void nir_convert_loop_to_lcssa(nir_loop *loop);
2972
2973 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
2974 * registers. If false, convert all values (even those not involved in a phi
2975 * node) to registers.
2976 */
2977 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
2978
2979 bool nir_lower_phis_to_regs_block(nir_block *block);
2980 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
2981
2982 bool nir_opt_algebraic(nir_shader *shader);
2983 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
2984 bool nir_opt_algebraic_late(nir_shader *shader);
2985 bool nir_opt_constant_folding(nir_shader *shader);
2986
2987 bool nir_opt_global_to_local(nir_shader *shader);
2988
2989 bool nir_copy_prop(nir_shader *shader);
2990
2991 bool nir_opt_copy_prop_vars(nir_shader *shader);
2992
2993 bool nir_opt_cse(nir_shader *shader);
2994
2995 bool nir_opt_dce(nir_shader *shader);
2996
2997 bool nir_opt_dead_cf(nir_shader *shader);
2998
2999 bool nir_opt_gcm(nir_shader *shader, bool value_number);
3000
3001 bool nir_opt_if(nir_shader *shader);
3002
3003 bool nir_opt_intrinsics(nir_shader *shader);
3004
3005 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
3006
3007 bool nir_opt_move_comparisons(nir_shader *shader);
3008
3009 bool nir_opt_move_load_ubo(nir_shader *shader);
3010
3011 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit);
3012
3013 bool nir_opt_remove_phis(nir_shader *shader);
3014
3015 bool nir_opt_shrink_load(nir_shader *shader);
3016
3017 bool nir_opt_trivial_continues(nir_shader *shader);
3018
3019 bool nir_opt_undef(nir_shader *shader);
3020
3021 bool nir_opt_conditional_discard(nir_shader *shader);
3022
3023 void nir_sweep(nir_shader *shader);
3024
3025 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
3026 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
3027
3028 #ifdef __cplusplus
3029 } /* extern "C" */
3030 #endif
3031
3032 #endif /* NIR_H */