nir/algebraic: support for power-of-two optimizations
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #pragma once
29
30 #include "util/hash_table.h"
31 #include "compiler/glsl/list.h"
32 #include "GL/gl.h" /* GLenum */
33 #include "util/list.h"
34 #include "util/ralloc.h"
35 #include "util/set.h"
36 #include "util/bitset.h"
37 #include "util/macros.h"
38 #include "compiler/nir_types.h"
39 #include "compiler/shader_enums.h"
40 #include <stdio.h>
41
42 #include "nir_opcodes.h"
43
44 #ifdef __cplusplus
45 extern "C" {
46 #endif
47
48 struct gl_program;
49 struct gl_shader_program;
50
51 #define NIR_FALSE 0u
52 #define NIR_TRUE (~0u)
53
54 /** Defines a cast function
55 *
56 * This macro defines a cast function from in_type to out_type where
57 * out_type is some structure type that contains a field of type out_type.
58 *
59 * Note that you have to be a bit careful as the generated cast function
60 * destroys constness.
61 */
62 #define NIR_DEFINE_CAST(name, in_type, out_type, field) \
63 static inline out_type * \
64 name(const in_type *parent) \
65 { \
66 return exec_node_data(out_type, parent, field); \
67 }
68
69 struct nir_function;
70 struct nir_shader;
71 struct nir_instr;
72
73
74 /**
75 * Description of built-in state associated with a uniform
76 *
77 * \sa nir_variable::state_slots
78 */
79 typedef struct {
80 int tokens[5];
81 int swizzle;
82 } nir_state_slot;
83
84 typedef enum {
85 nir_var_shader_in = (1 << 0),
86 nir_var_shader_out = (1 << 1),
87 nir_var_global = (1 << 2),
88 nir_var_local = (1 << 3),
89 nir_var_uniform = (1 << 4),
90 nir_var_shader_storage = (1 << 5),
91 nir_var_system_value = (1 << 6),
92 nir_var_param = (1 << 7),
93 nir_var_shared = (1 << 8),
94 nir_var_all = ~0,
95 } nir_variable_mode;
96
97 /**
98 * Data stored in an nir_constant
99 */
100 union nir_constant_data {
101 unsigned u[16];
102 int i[16];
103 float f[16];
104 bool b[16];
105 double d[16];
106 };
107
108 typedef struct nir_constant {
109 /**
110 * Value of the constant.
111 *
112 * The field used to back the values supplied by the constant is determined
113 * by the type associated with the \c nir_variable. Constants may be
114 * scalars, vectors, or matrices.
115 */
116 union nir_constant_data value;
117
118 /* we could get this from the var->type but makes clone *much* easier to
119 * not have to care about the type.
120 */
121 unsigned num_elements;
122
123 /* Array elements / Structure Fields */
124 struct nir_constant **elements;
125 } nir_constant;
126
127 /**
128 * \brief Layout qualifiers for gl_FragDepth.
129 *
130 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
131 * with a layout qualifier.
132 */
133 typedef enum {
134 nir_depth_layout_none, /**< No depth layout is specified. */
135 nir_depth_layout_any,
136 nir_depth_layout_greater,
137 nir_depth_layout_less,
138 nir_depth_layout_unchanged
139 } nir_depth_layout;
140
141 /**
142 * Either a uniform, global variable, shader input, or shader output. Based on
143 * ir_variable - it should be easy to translate between the two.
144 */
145
146 typedef struct nir_variable {
147 struct exec_node node;
148
149 /**
150 * Declared type of the variable
151 */
152 const struct glsl_type *type;
153
154 /**
155 * Declared name of the variable
156 */
157 char *name;
158
159 struct nir_variable_data {
160 /**
161 * Storage class of the variable.
162 *
163 * \sa nir_variable_mode
164 */
165 nir_variable_mode mode;
166
167 /**
168 * Is the variable read-only?
169 *
170 * This is set for variables declared as \c const, shader inputs,
171 * and uniforms.
172 */
173 unsigned read_only:1;
174 unsigned centroid:1;
175 unsigned sample:1;
176 unsigned patch:1;
177 unsigned invariant:1;
178
179 /**
180 * Interpolation mode for shader inputs / outputs
181 *
182 * \sa glsl_interp_qualifier
183 */
184 unsigned interpolation:2;
185
186 /**
187 * \name ARB_fragment_coord_conventions
188 * @{
189 */
190 unsigned origin_upper_left:1;
191 unsigned pixel_center_integer:1;
192 /*@}*/
193
194 /**
195 * Was the location explicitly set in the shader?
196 *
197 * If the location is explicitly set in the shader, it \b cannot be changed
198 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
199 * no effect).
200 */
201 unsigned explicit_location:1;
202 unsigned explicit_index:1;
203
204 /**
205 * Was an initial binding explicitly set in the shader?
206 *
207 * If so, constant_initializer contains an integer nir_constant
208 * representing the initial binding point.
209 */
210 unsigned explicit_binding:1;
211
212 /**
213 * Does this variable have an initializer?
214 *
215 * This is used by the linker to cross-validiate initializers of global
216 * variables.
217 */
218 unsigned has_initializer:1;
219
220 /**
221 * If non-zero, then this variable may be packed along with other variables
222 * into a single varying slot, so this offset should be applied when
223 * accessing components. For example, an offset of 1 means that the x
224 * component of this variable is actually stored in component y of the
225 * location specified by \c location.
226 */
227 unsigned location_frac:2;
228
229 /**
230 * \brief Layout qualifier for gl_FragDepth.
231 *
232 * This is not equal to \c ir_depth_layout_none if and only if this
233 * variable is \c gl_FragDepth and a layout qualifier is specified.
234 */
235 nir_depth_layout depth_layout;
236
237 /**
238 * Storage location of the base of this variable
239 *
240 * The precise meaning of this field depends on the nature of the variable.
241 *
242 * - Vertex shader input: one of the values from \c gl_vert_attrib.
243 * - Vertex shader output: one of the values from \c gl_varying_slot.
244 * - Geometry shader input: one of the values from \c gl_varying_slot.
245 * - Geometry shader output: one of the values from \c gl_varying_slot.
246 * - Fragment shader input: one of the values from \c gl_varying_slot.
247 * - Fragment shader output: one of the values from \c gl_frag_result.
248 * - Uniforms: Per-stage uniform slot number for default uniform block.
249 * - Uniforms: Index within the uniform block definition for UBO members.
250 * - Non-UBO Uniforms: uniform slot number.
251 * - Other: This field is not currently used.
252 *
253 * If the variable is a uniform, shader input, or shader output, and the
254 * slot has not been assigned, the value will be -1.
255 */
256 int location;
257
258 /**
259 * The actual location of the variable in the IR. Only valid for inputs
260 * and outputs.
261 */
262 unsigned int driver_location;
263
264 /**
265 * output index for dual source blending.
266 */
267 int index;
268
269 /**
270 * Descriptor set binding for sampler or UBO.
271 */
272 int descriptor_set;
273
274 /**
275 * Initial binding point for a sampler or UBO.
276 *
277 * For array types, this represents the binding point for the first element.
278 */
279 int binding;
280
281 /**
282 * Location an atomic counter is stored at.
283 */
284 unsigned offset;
285
286 /**
287 * ARB_shader_image_load_store qualifiers.
288 */
289 struct {
290 bool read_only; /**< "readonly" qualifier. */
291 bool write_only; /**< "writeonly" qualifier. */
292 bool coherent;
293 bool _volatile;
294 bool restrict_flag;
295
296 /** Image internal format if specified explicitly, otherwise GL_NONE. */
297 GLenum format;
298 } image;
299
300 /**
301 * Highest element accessed with a constant expression array index
302 *
303 * Not used for non-array variables.
304 */
305 unsigned max_array_access;
306
307 } data;
308
309 /**
310 * Built-in state that backs this uniform
311 *
312 * Once set at variable creation, \c state_slots must remain invariant.
313 * This is because, ideally, this array would be shared by all clones of
314 * this variable in the IR tree. In other words, we'd really like for it
315 * to be a fly-weight.
316 *
317 * If the variable is not a uniform, \c num_state_slots will be zero and
318 * \c state_slots will be \c NULL.
319 */
320 /*@{*/
321 unsigned num_state_slots; /**< Number of state slots used */
322 nir_state_slot *state_slots; /**< State descriptors. */
323 /*@}*/
324
325 /**
326 * Constant expression assigned in the initializer of the variable
327 */
328 nir_constant *constant_initializer;
329
330 /**
331 * For variables that are in an interface block or are an instance of an
332 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
333 *
334 * \sa ir_variable::location
335 */
336 const struct glsl_type *interface_type;
337 } nir_variable;
338
339 #define nir_foreach_variable(var, var_list) \
340 foreach_list_typed(nir_variable, var, node, var_list)
341
342 #define nir_foreach_variable_safe(var, var_list) \
343 foreach_list_typed_safe(nir_variable, var, node, var_list)
344
345 static inline bool
346 nir_variable_is_global(const nir_variable *var)
347 {
348 return var->data.mode != nir_var_local && var->data.mode != nir_var_param;
349 }
350
351 typedef struct nir_register {
352 struct exec_node node;
353
354 unsigned num_components; /** < number of vector components */
355 unsigned num_array_elems; /** < size of array (0 for no array) */
356
357 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
358 uint8_t bit_size;
359
360 /** generic register index. */
361 unsigned index;
362
363 /** only for debug purposes, can be NULL */
364 const char *name;
365
366 /** whether this register is local (per-function) or global (per-shader) */
367 bool is_global;
368
369 /**
370 * If this flag is set to true, then accessing channels >= num_components
371 * is well-defined, and simply spills over to the next array element. This
372 * is useful for backends that can do per-component accessing, in
373 * particular scalar backends. By setting this flag and making
374 * num_components equal to 1, structures can be packed tightly into
375 * registers and then registers can be accessed per-component to get to
376 * each structure member, even if it crosses vec4 boundaries.
377 */
378 bool is_packed;
379
380 /** set of nir_src's where this register is used (read from) */
381 struct list_head uses;
382
383 /** set of nir_dest's where this register is defined (written to) */
384 struct list_head defs;
385
386 /** set of nir_if's where this register is used as a condition */
387 struct list_head if_uses;
388 } nir_register;
389
390 typedef enum {
391 nir_instr_type_alu,
392 nir_instr_type_call,
393 nir_instr_type_tex,
394 nir_instr_type_intrinsic,
395 nir_instr_type_load_const,
396 nir_instr_type_jump,
397 nir_instr_type_ssa_undef,
398 nir_instr_type_phi,
399 nir_instr_type_parallel_copy,
400 } nir_instr_type;
401
402 typedef struct nir_instr {
403 struct exec_node node;
404 nir_instr_type type;
405 struct nir_block *block;
406
407 /** generic instruction index. */
408 unsigned index;
409
410 /* A temporary for optimization and analysis passes to use for storing
411 * flags. For instance, DCE uses this to store the "dead/live" info.
412 */
413 uint8_t pass_flags;
414 } nir_instr;
415
416 static inline nir_instr *
417 nir_instr_next(nir_instr *instr)
418 {
419 struct exec_node *next = exec_node_get_next(&instr->node);
420 if (exec_node_is_tail_sentinel(next))
421 return NULL;
422 else
423 return exec_node_data(nir_instr, next, node);
424 }
425
426 static inline nir_instr *
427 nir_instr_prev(nir_instr *instr)
428 {
429 struct exec_node *prev = exec_node_get_prev(&instr->node);
430 if (exec_node_is_head_sentinel(prev))
431 return NULL;
432 else
433 return exec_node_data(nir_instr, prev, node);
434 }
435
436 static inline bool
437 nir_instr_is_first(nir_instr *instr)
438 {
439 return exec_node_is_head_sentinel(exec_node_get_prev(&instr->node));
440 }
441
442 static inline bool
443 nir_instr_is_last(nir_instr *instr)
444 {
445 return exec_node_is_tail_sentinel(exec_node_get_next(&instr->node));
446 }
447
448 typedef struct nir_ssa_def {
449 /** for debugging only, can be NULL */
450 const char* name;
451
452 /** generic SSA definition index. */
453 unsigned index;
454
455 /** Index into the live_in and live_out bitfields */
456 unsigned live_index;
457
458 nir_instr *parent_instr;
459
460 /** set of nir_instr's where this register is used (read from) */
461 struct list_head uses;
462
463 /** set of nir_if's where this register is used as a condition */
464 struct list_head if_uses;
465
466 uint8_t num_components;
467
468 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
469 uint8_t bit_size;
470 } nir_ssa_def;
471
472 struct nir_src;
473
474 typedef struct {
475 nir_register *reg;
476 struct nir_src *indirect; /** < NULL for no indirect offset */
477 unsigned base_offset;
478
479 /* TODO use-def chain goes here */
480 } nir_reg_src;
481
482 typedef struct {
483 nir_instr *parent_instr;
484 struct list_head def_link;
485
486 nir_register *reg;
487 struct nir_src *indirect; /** < NULL for no indirect offset */
488 unsigned base_offset;
489
490 /* TODO def-use chain goes here */
491 } nir_reg_dest;
492
493 struct nir_if;
494
495 typedef struct nir_src {
496 union {
497 nir_instr *parent_instr;
498 struct nir_if *parent_if;
499 };
500
501 struct list_head use_link;
502
503 union {
504 nir_reg_src reg;
505 nir_ssa_def *ssa;
506 };
507
508 bool is_ssa;
509 } nir_src;
510
511 static inline nir_src
512 nir_src_init(void)
513 {
514 nir_src src = { { NULL } };
515 return src;
516 }
517
518 #define NIR_SRC_INIT nir_src_init()
519
520 #define nir_foreach_use(src, reg_or_ssa_def) \
521 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
522
523 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
524 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
525
526 #define nir_foreach_if_use(src, reg_or_ssa_def) \
527 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
528
529 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
530 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
531
532 typedef struct {
533 union {
534 nir_reg_dest reg;
535 nir_ssa_def ssa;
536 };
537
538 bool is_ssa;
539 } nir_dest;
540
541 static inline nir_dest
542 nir_dest_init(void)
543 {
544 nir_dest dest = { { { NULL } } };
545 return dest;
546 }
547
548 #define NIR_DEST_INIT nir_dest_init()
549
550 #define nir_foreach_def(dest, reg) \
551 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
552
553 #define nir_foreach_def_safe(dest, reg) \
554 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
555
556 static inline nir_src
557 nir_src_for_ssa(nir_ssa_def *def)
558 {
559 nir_src src = NIR_SRC_INIT;
560
561 src.is_ssa = true;
562 src.ssa = def;
563
564 return src;
565 }
566
567 static inline nir_src
568 nir_src_for_reg(nir_register *reg)
569 {
570 nir_src src = NIR_SRC_INIT;
571
572 src.is_ssa = false;
573 src.reg.reg = reg;
574 src.reg.indirect = NULL;
575 src.reg.base_offset = 0;
576
577 return src;
578 }
579
580 static inline nir_dest
581 nir_dest_for_reg(nir_register *reg)
582 {
583 nir_dest dest = NIR_DEST_INIT;
584
585 dest.reg.reg = reg;
586
587 return dest;
588 }
589
590 static inline unsigned
591 nir_src_bit_size(nir_src src)
592 {
593 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
594 }
595
596 static inline unsigned
597 nir_dest_bit_size(nir_dest dest)
598 {
599 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
600 }
601
602 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
603 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
604
605 typedef struct {
606 nir_src src;
607
608 /**
609 * \name input modifiers
610 */
611 /*@{*/
612 /**
613 * For inputs interpreted as floating point, flips the sign bit. For
614 * inputs interpreted as integers, performs the two's complement negation.
615 */
616 bool negate;
617
618 /**
619 * Clears the sign bit for floating point values, and computes the integer
620 * absolute value for integers. Note that the negate modifier acts after
621 * the absolute value modifier, therefore if both are set then all inputs
622 * will become negative.
623 */
624 bool abs;
625 /*@}*/
626
627 /**
628 * For each input component, says which component of the register it is
629 * chosen from. Note that which elements of the swizzle are used and which
630 * are ignored are based on the write mask for most opcodes - for example,
631 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
632 * a swizzle of {2, x, 1, 0} where x means "don't care."
633 */
634 uint8_t swizzle[4];
635 } nir_alu_src;
636
637 typedef struct {
638 nir_dest dest;
639
640 /**
641 * \name saturate output modifier
642 *
643 * Only valid for opcodes that output floating-point numbers. Clamps the
644 * output to between 0.0 and 1.0 inclusive.
645 */
646
647 bool saturate;
648
649 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
650 } nir_alu_dest;
651
652 typedef enum {
653 nir_type_invalid = 0, /* Not a valid type */
654 nir_type_float,
655 nir_type_int,
656 nir_type_uint,
657 nir_type_bool,
658 nir_type_bool32 = 32 | nir_type_bool,
659 nir_type_int8 = 8 | nir_type_int,
660 nir_type_int16 = 16 | nir_type_int,
661 nir_type_int32 = 32 | nir_type_int,
662 nir_type_int64 = 64 | nir_type_int,
663 nir_type_uint8 = 8 | nir_type_uint,
664 nir_type_uint16 = 16 | nir_type_uint,
665 nir_type_uint32 = 32 | nir_type_uint,
666 nir_type_uint64 = 64 | nir_type_uint,
667 nir_type_float16 = 16 | nir_type_float,
668 nir_type_float32 = 32 | nir_type_float,
669 nir_type_float64 = 64 | nir_type_float,
670 } nir_alu_type;
671
672 #define NIR_ALU_TYPE_SIZE_MASK 0xfffffff8
673 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x00000007
674
675 static inline unsigned
676 nir_alu_type_get_type_size(nir_alu_type type)
677 {
678 return type & NIR_ALU_TYPE_SIZE_MASK;
679 }
680
681 static inline unsigned
682 nir_alu_type_get_base_type(nir_alu_type type)
683 {
684 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
685 }
686
687 typedef enum {
688 NIR_OP_IS_COMMUTATIVE = (1 << 0),
689 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
690 } nir_op_algebraic_property;
691
692 typedef struct {
693 const char *name;
694
695 unsigned num_inputs;
696
697 /**
698 * The number of components in the output
699 *
700 * If non-zero, this is the size of the output and input sizes are
701 * explicitly given; swizzle and writemask are still in effect, but if
702 * the output component is masked out, then the input component may
703 * still be in use.
704 *
705 * If zero, the opcode acts in the standard, per-component manner; the
706 * operation is performed on each component (except the ones that are
707 * masked out) with the input being taken from the input swizzle for
708 * that component.
709 *
710 * The size of some of the inputs may be given (i.e. non-zero) even
711 * though output_size is zero; in that case, the inputs with a zero
712 * size act per-component, while the inputs with non-zero size don't.
713 */
714 unsigned output_size;
715
716 /**
717 * The type of vector that the instruction outputs. Note that the
718 * staurate modifier is only allowed on outputs with the float type.
719 */
720
721 nir_alu_type output_type;
722
723 /**
724 * The number of components in each input
725 */
726 unsigned input_sizes[4];
727
728 /**
729 * The type of vector that each input takes. Note that negate and
730 * absolute value are only allowed on inputs with int or float type and
731 * behave differently on the two.
732 */
733 nir_alu_type input_types[4];
734
735 nir_op_algebraic_property algebraic_properties;
736 } nir_op_info;
737
738 extern const nir_op_info nir_op_infos[nir_num_opcodes];
739
740 typedef struct nir_alu_instr {
741 nir_instr instr;
742 nir_op op;
743
744 /** Indicates that this ALU instruction generates an exact value
745 *
746 * This is kind of a mixture of GLSL "precise" and "invariant" and not
747 * really equivalent to either. This indicates that the value generated by
748 * this operation is high-precision and any code transformations that touch
749 * it must ensure that the resulting value is bit-for-bit identical to the
750 * original.
751 */
752 bool exact;
753
754 nir_alu_dest dest;
755 nir_alu_src src[];
756 } nir_alu_instr;
757
758 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
759 nir_alu_instr *instr);
760 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
761 nir_alu_instr *instr);
762
763 /* is this source channel used? */
764 static inline bool
765 nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel)
766 {
767 if (nir_op_infos[instr->op].input_sizes[src] > 0)
768 return channel < nir_op_infos[instr->op].input_sizes[src];
769
770 return (instr->dest.write_mask >> channel) & 1;
771 }
772
773 /*
774 * For instructions whose destinations are SSA, get the number of channels
775 * used for a source
776 */
777 static inline unsigned
778 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
779 {
780 assert(instr->dest.dest.is_ssa);
781
782 if (nir_op_infos[instr->op].input_sizes[src] > 0)
783 return nir_op_infos[instr->op].input_sizes[src];
784
785 return instr->dest.dest.ssa.num_components;
786 }
787
788 typedef enum {
789 nir_deref_type_var,
790 nir_deref_type_array,
791 nir_deref_type_struct
792 } nir_deref_type;
793
794 typedef struct nir_deref {
795 nir_deref_type deref_type;
796 struct nir_deref *child;
797 const struct glsl_type *type;
798 } nir_deref;
799
800 typedef struct {
801 nir_deref deref;
802
803 nir_variable *var;
804 } nir_deref_var;
805
806 /* This enum describes how the array is referenced. If the deref is
807 * direct then the base_offset is used. If the deref is indirect then then
808 * offset is given by base_offset + indirect. If the deref is a wildcard
809 * then the deref refers to all of the elements of the array at the same
810 * time. Wildcard dereferences are only ever allowed in copy_var
811 * intrinsics and the source and destination derefs must have matching
812 * wildcards.
813 */
814 typedef enum {
815 nir_deref_array_type_direct,
816 nir_deref_array_type_indirect,
817 nir_deref_array_type_wildcard,
818 } nir_deref_array_type;
819
820 typedef struct {
821 nir_deref deref;
822
823 nir_deref_array_type deref_array_type;
824 unsigned base_offset;
825 nir_src indirect;
826 } nir_deref_array;
827
828 typedef struct {
829 nir_deref deref;
830
831 unsigned index;
832 } nir_deref_struct;
833
834 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref)
835 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref)
836 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref)
837
838 /* Returns the last deref in the chain. */
839 static inline nir_deref *
840 nir_deref_tail(nir_deref *deref)
841 {
842 while (deref->child)
843 deref = deref->child;
844 return deref;
845 }
846
847 typedef struct {
848 nir_instr instr;
849
850 unsigned num_params;
851 nir_deref_var **params;
852 nir_deref_var *return_deref;
853
854 struct nir_function *callee;
855 } nir_call_instr;
856
857 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
858 num_variables, num_indices, idx0, idx1, idx2, flags) \
859 nir_intrinsic_##name,
860
861 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
862
863 typedef enum {
864 #include "nir_intrinsics.h"
865 nir_num_intrinsics = nir_last_intrinsic + 1
866 } nir_intrinsic_op;
867
868 #undef INTRINSIC
869 #undef LAST_INTRINSIC
870
871 #define NIR_INTRINSIC_MAX_CONST_INDEX 3
872
873 /** Represents an intrinsic
874 *
875 * An intrinsic is an instruction type for handling things that are
876 * more-or-less regular operations but don't just consume and produce SSA
877 * values like ALU operations do. Intrinsics are not for things that have
878 * special semantic meaning such as phi nodes and parallel copies.
879 * Examples of intrinsics include variable load/store operations, system
880 * value loads, and the like. Even though texturing more-or-less falls
881 * under this category, texturing is its own instruction type because
882 * trying to represent texturing with intrinsics would lead to a
883 * combinatorial explosion of intrinsic opcodes.
884 *
885 * By having a single instruction type for handling a lot of different
886 * cases, optimization passes can look for intrinsics and, for the most
887 * part, completely ignore them. Each intrinsic type also has a few
888 * possible flags that govern whether or not they can be reordered or
889 * eliminated. That way passes like dead code elimination can still work
890 * on intrisics without understanding the meaning of each.
891 *
892 * Each intrinsic has some number of constant indices, some number of
893 * variables, and some number of sources. What these sources, variables,
894 * and indices mean depends on the intrinsic and is documented with the
895 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
896 * instructions are the only types of instruction that can operate on
897 * variables.
898 */
899 typedef struct {
900 nir_instr instr;
901
902 nir_intrinsic_op intrinsic;
903
904 nir_dest dest;
905
906 /** number of components if this is a vectorized intrinsic
907 *
908 * Similarly to ALU operations, some intrinsics are vectorized.
909 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
910 * For vectorized intrinsics, the num_components field specifies the
911 * number of destination components and the number of source components
912 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
913 */
914 uint8_t num_components;
915
916 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
917
918 nir_deref_var *variables[2];
919
920 nir_src src[];
921 } nir_intrinsic_instr;
922
923 /**
924 * \name NIR intrinsics semantic flags
925 *
926 * information about what the compiler can do with the intrinsics.
927 *
928 * \sa nir_intrinsic_info::flags
929 */
930 typedef enum {
931 /**
932 * whether the intrinsic can be safely eliminated if none of its output
933 * value is not being used.
934 */
935 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
936
937 /**
938 * Whether the intrinsic can be reordered with respect to any other
939 * intrinsic, i.e. whether the only reordering dependencies of the
940 * intrinsic are due to the register reads/writes.
941 */
942 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
943 } nir_intrinsic_semantic_flag;
944
945 /**
946 * \name NIR intrinsics const-index flag
947 *
948 * Indicates the usage of a const_index slot.
949 *
950 * \sa nir_intrinsic_info::index_map
951 */
952 typedef enum {
953 /**
954 * Generally instructions that take a offset src argument, can encode
955 * a constant 'base' value which is added to the offset.
956 */
957 NIR_INTRINSIC_BASE = 1,
958
959 /**
960 * For store instructions, a writemask for the store.
961 */
962 NIR_INTRINSIC_WRMASK = 2,
963
964 /**
965 * The stream-id for GS emit_vertex/end_primitive intrinsics.
966 */
967 NIR_INTRINSIC_STREAM_ID = 3,
968
969 /**
970 * The clip-plane id for load_user_clip_plane intrinsic.
971 */
972 NIR_INTRINSIC_UCP_ID = 4,
973
974 /**
975 * The amount of data, starting from BASE, that this instruction may
976 * access. This is used to provide bounds if the offset is not constant.
977 */
978 NIR_INTRINSIC_RANGE = 5,
979
980 /**
981 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
982 */
983 NIR_INTRINSIC_DESC_SET = 6,
984
985 /**
986 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
987 */
988 NIR_INTRINSIC_BINDING = 7,
989
990 NIR_INTRINSIC_NUM_INDEX_FLAGS,
991
992 } nir_intrinsic_index_flag;
993
994 #define NIR_INTRINSIC_MAX_INPUTS 4
995
996 typedef struct {
997 const char *name;
998
999 unsigned num_srcs; /** < number of register/SSA inputs */
1000
1001 /** number of components of each input register
1002 *
1003 * If this value is 0, the number of components is given by the
1004 * num_components field of nir_intrinsic_instr.
1005 */
1006 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
1007
1008 bool has_dest;
1009
1010 /** number of components of the output register
1011 *
1012 * If this value is 0, the number of components is given by the
1013 * num_components field of nir_intrinsic_instr.
1014 */
1015 unsigned dest_components;
1016
1017 /** the number of inputs/outputs that are variables */
1018 unsigned num_variables;
1019
1020 /** the number of constant indices used by the intrinsic */
1021 unsigned num_indices;
1022
1023 /** indicates the usage of intr->const_index[n] */
1024 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1025
1026 /** semantic flags for calls to this intrinsic */
1027 nir_intrinsic_semantic_flag flags;
1028 } nir_intrinsic_info;
1029
1030 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1031
1032
1033 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1034 static inline type \
1035 nir_intrinsic_##name(nir_intrinsic_instr *instr) \
1036 { \
1037 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1038 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1039 return instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1040 } \
1041 static inline void \
1042 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1043 { \
1044 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1045 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1046 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1047 }
1048
1049 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1050 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1051 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1052 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1053 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1054 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1055 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1056
1057 /**
1058 * \group texture information
1059 *
1060 * This gives semantic information about textures which is useful to the
1061 * frontend, the backend, and lowering passes, but not the optimizer.
1062 */
1063
1064 typedef enum {
1065 nir_tex_src_coord,
1066 nir_tex_src_projector,
1067 nir_tex_src_comparitor, /* shadow comparitor */
1068 nir_tex_src_offset,
1069 nir_tex_src_bias,
1070 nir_tex_src_lod,
1071 nir_tex_src_ms_index, /* MSAA sample index */
1072 nir_tex_src_ms_mcs, /* MSAA compression value */
1073 nir_tex_src_ddx,
1074 nir_tex_src_ddy,
1075 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1076 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1077 nir_tex_src_plane, /* < selects plane for planar textures */
1078 nir_num_tex_src_types
1079 } nir_tex_src_type;
1080
1081 typedef struct {
1082 nir_src src;
1083 nir_tex_src_type src_type;
1084 } nir_tex_src;
1085
1086 typedef enum {
1087 nir_texop_tex, /**< Regular texture look-up */
1088 nir_texop_txb, /**< Texture look-up with LOD bias */
1089 nir_texop_txl, /**< Texture look-up with explicit LOD */
1090 nir_texop_txd, /**< Texture look-up with partial derivatvies */
1091 nir_texop_txf, /**< Texel fetch with explicit LOD */
1092 nir_texop_txf_ms, /**< Multisample texture fetch */
1093 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1094 nir_texop_txs, /**< Texture size */
1095 nir_texop_lod, /**< Texture lod query */
1096 nir_texop_tg4, /**< Texture gather */
1097 nir_texop_query_levels, /**< Texture levels query */
1098 nir_texop_texture_samples, /**< Texture samples query */
1099 nir_texop_samples_identical, /**< Query whether all samples are definitely
1100 * identical.
1101 */
1102 } nir_texop;
1103
1104 typedef struct {
1105 nir_instr instr;
1106
1107 enum glsl_sampler_dim sampler_dim;
1108 nir_alu_type dest_type;
1109
1110 nir_texop op;
1111 nir_dest dest;
1112 nir_tex_src *src;
1113 unsigned num_srcs, coord_components;
1114 bool is_array, is_shadow;
1115
1116 /**
1117 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1118 * components or the new-style shadow that outputs 1 component.
1119 */
1120 bool is_new_style_shadow;
1121
1122 /* gather component selector */
1123 unsigned component : 2;
1124
1125 /** The texture index
1126 *
1127 * If this texture instruction has a nir_tex_src_texture_offset source,
1128 * then the texture index is given by texture_index + texture_offset.
1129 */
1130 unsigned texture_index;
1131
1132 /** The size of the texture array or 0 if it's not an array */
1133 unsigned texture_array_size;
1134
1135 /** The texture deref
1136 *
1137 * If this is null, use texture_index instead.
1138 */
1139 nir_deref_var *texture;
1140
1141 /** The sampler index
1142 *
1143 * The following operations do not require a sampler and, as such, this
1144 * field should be ignored:
1145 * - nir_texop_txf
1146 * - nir_texop_txf_ms
1147 * - nir_texop_txs
1148 * - nir_texop_lod
1149 * - nir_texop_tg4
1150 * - nir_texop_query_levels
1151 * - nir_texop_texture_samples
1152 * - nir_texop_samples_identical
1153 *
1154 * If this texture instruction has a nir_tex_src_sampler_offset source,
1155 * then the sampler index is given by sampler_index + sampler_offset.
1156 */
1157 unsigned sampler_index;
1158
1159 /** The sampler deref
1160 *
1161 * If this is null, use sampler_index instead.
1162 */
1163 nir_deref_var *sampler;
1164 } nir_tex_instr;
1165
1166 static inline unsigned
1167 nir_tex_instr_dest_size(nir_tex_instr *instr)
1168 {
1169 switch (instr->op) {
1170 case nir_texop_txs: {
1171 unsigned ret;
1172 switch (instr->sampler_dim) {
1173 case GLSL_SAMPLER_DIM_1D:
1174 case GLSL_SAMPLER_DIM_BUF:
1175 ret = 1;
1176 break;
1177 case GLSL_SAMPLER_DIM_2D:
1178 case GLSL_SAMPLER_DIM_CUBE:
1179 case GLSL_SAMPLER_DIM_MS:
1180 case GLSL_SAMPLER_DIM_RECT:
1181 case GLSL_SAMPLER_DIM_EXTERNAL:
1182 ret = 2;
1183 break;
1184 case GLSL_SAMPLER_DIM_3D:
1185 ret = 3;
1186 break;
1187 default:
1188 unreachable("not reached");
1189 }
1190 if (instr->is_array)
1191 ret++;
1192 return ret;
1193 }
1194
1195 case nir_texop_lod:
1196 return 2;
1197
1198 case nir_texop_texture_samples:
1199 case nir_texop_query_levels:
1200 case nir_texop_samples_identical:
1201 return 1;
1202
1203 default:
1204 if (instr->is_shadow && instr->is_new_style_shadow)
1205 return 1;
1206
1207 return 4;
1208 }
1209 }
1210
1211 /* Returns true if this texture operation queries something about the texture
1212 * rather than actually sampling it.
1213 */
1214 static inline bool
1215 nir_tex_instr_is_query(nir_tex_instr *instr)
1216 {
1217 switch (instr->op) {
1218 case nir_texop_txs:
1219 case nir_texop_lod:
1220 case nir_texop_texture_samples:
1221 case nir_texop_query_levels:
1222 case nir_texop_txf_ms_mcs:
1223 return true;
1224 case nir_texop_tex:
1225 case nir_texop_txb:
1226 case nir_texop_txl:
1227 case nir_texop_txd:
1228 case nir_texop_txf:
1229 case nir_texop_txf_ms:
1230 case nir_texop_tg4:
1231 return false;
1232 default:
1233 unreachable("Invalid texture opcode");
1234 }
1235 }
1236
1237 static inline unsigned
1238 nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src)
1239 {
1240 if (instr->src[src].src_type == nir_tex_src_coord)
1241 return instr->coord_components;
1242
1243 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1244 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1245 return 4;
1246
1247 if (instr->src[src].src_type == nir_tex_src_offset ||
1248 instr->src[src].src_type == nir_tex_src_ddx ||
1249 instr->src[src].src_type == nir_tex_src_ddy) {
1250 if (instr->is_array)
1251 return instr->coord_components - 1;
1252 else
1253 return instr->coord_components;
1254 }
1255
1256 return 1;
1257 }
1258
1259 static inline int
1260 nir_tex_instr_src_index(nir_tex_instr *instr, nir_tex_src_type type)
1261 {
1262 for (unsigned i = 0; i < instr->num_srcs; i++)
1263 if (instr->src[i].src_type == type)
1264 return (int) i;
1265
1266 return -1;
1267 }
1268
1269 typedef union {
1270 float f32[4];
1271 double f64[4];
1272 int32_t i32[4];
1273 uint32_t u32[4];
1274 int64_t i64[4];
1275 uint64_t u64[4];
1276 } nir_const_value;
1277
1278 typedef struct {
1279 nir_instr instr;
1280
1281 nir_const_value value;
1282
1283 nir_ssa_def def;
1284 } nir_load_const_instr;
1285
1286 typedef enum {
1287 nir_jump_return,
1288 nir_jump_break,
1289 nir_jump_continue,
1290 } nir_jump_type;
1291
1292 typedef struct {
1293 nir_instr instr;
1294 nir_jump_type type;
1295 } nir_jump_instr;
1296
1297 /* creates a new SSA variable in an undefined state */
1298
1299 typedef struct {
1300 nir_instr instr;
1301 nir_ssa_def def;
1302 } nir_ssa_undef_instr;
1303
1304 typedef struct {
1305 struct exec_node node;
1306
1307 /* The predecessor block corresponding to this source */
1308 struct nir_block *pred;
1309
1310 nir_src src;
1311 } nir_phi_src;
1312
1313 #define nir_foreach_phi_src(phi_src, phi) \
1314 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1315 #define nir_foreach_phi_src_safe(phi_src, phi) \
1316 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1317
1318 typedef struct {
1319 nir_instr instr;
1320
1321 struct exec_list srcs; /** < list of nir_phi_src */
1322
1323 nir_dest dest;
1324 } nir_phi_instr;
1325
1326 typedef struct {
1327 struct exec_node node;
1328 nir_src src;
1329 nir_dest dest;
1330 } nir_parallel_copy_entry;
1331
1332 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1333 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1334
1335 typedef struct {
1336 nir_instr instr;
1337
1338 /* A list of nir_parallel_copy_entry's. The sources of all of the
1339 * entries are copied to the corresponding destinations "in parallel".
1340 * In other words, if we have two entries: a -> b and b -> a, the values
1341 * get swapped.
1342 */
1343 struct exec_list entries;
1344 } nir_parallel_copy_instr;
1345
1346 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr)
1347 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr)
1348 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr)
1349 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr)
1350 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr)
1351 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr)
1352 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr)
1353 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr)
1354 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1355 nir_parallel_copy_instr, instr)
1356
1357 /*
1358 * Control flow
1359 *
1360 * Control flow consists of a tree of control flow nodes, which include
1361 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1362 * instructions that always run start-to-finish. Each basic block also keeps
1363 * track of its successors (blocks which may run immediately after the current
1364 * block) and predecessors (blocks which could have run immediately before the
1365 * current block). Each function also has a start block and an end block which
1366 * all return statements point to (which is always empty). Together, all the
1367 * blocks with their predecessors and successors make up the control flow
1368 * graph (CFG) of the function. There are helpers that modify the tree of
1369 * control flow nodes while modifying the CFG appropriately; these should be
1370 * used instead of modifying the tree directly.
1371 */
1372
1373 typedef enum {
1374 nir_cf_node_block,
1375 nir_cf_node_if,
1376 nir_cf_node_loop,
1377 nir_cf_node_function
1378 } nir_cf_node_type;
1379
1380 typedef struct nir_cf_node {
1381 struct exec_node node;
1382 nir_cf_node_type type;
1383 struct nir_cf_node *parent;
1384 } nir_cf_node;
1385
1386 typedef struct nir_block {
1387 nir_cf_node cf_node;
1388
1389 struct exec_list instr_list; /** < list of nir_instr */
1390
1391 /** generic block index; generated by nir_index_blocks */
1392 unsigned index;
1393
1394 /*
1395 * Each block can only have up to 2 successors, so we put them in a simple
1396 * array - no need for anything more complicated.
1397 */
1398 struct nir_block *successors[2];
1399
1400 /* Set of nir_block predecessors in the CFG */
1401 struct set *predecessors;
1402
1403 /*
1404 * this node's immediate dominator in the dominance tree - set to NULL for
1405 * the start block.
1406 */
1407 struct nir_block *imm_dom;
1408
1409 /* This node's children in the dominance tree */
1410 unsigned num_dom_children;
1411 struct nir_block **dom_children;
1412
1413 /* Set of nir_block's on the dominance frontier of this block */
1414 struct set *dom_frontier;
1415
1416 /*
1417 * These two indices have the property that dom_{pre,post}_index for each
1418 * child of this block in the dominance tree will always be between
1419 * dom_pre_index and dom_post_index for this block, which makes testing if
1420 * a given block is dominated by another block an O(1) operation.
1421 */
1422 unsigned dom_pre_index, dom_post_index;
1423
1424 /* live in and out for this block; used for liveness analysis */
1425 BITSET_WORD *live_in;
1426 BITSET_WORD *live_out;
1427 } nir_block;
1428
1429 static inline nir_instr *
1430 nir_block_first_instr(nir_block *block)
1431 {
1432 struct exec_node *head = exec_list_get_head(&block->instr_list);
1433 return exec_node_data(nir_instr, head, node);
1434 }
1435
1436 static inline nir_instr *
1437 nir_block_last_instr(nir_block *block)
1438 {
1439 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1440 return exec_node_data(nir_instr, tail, node);
1441 }
1442
1443 #define nir_foreach_instr(instr, block) \
1444 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1445 #define nir_foreach_instr_reverse(instr, block) \
1446 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1447 #define nir_foreach_instr_safe(instr, block) \
1448 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1449 #define nir_foreach_instr_reverse_safe(instr, block) \
1450 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1451
1452 typedef struct nir_if {
1453 nir_cf_node cf_node;
1454 nir_src condition;
1455
1456 struct exec_list then_list; /** < list of nir_cf_node */
1457 struct exec_list else_list; /** < list of nir_cf_node */
1458 } nir_if;
1459
1460 static inline nir_cf_node *
1461 nir_if_first_then_node(nir_if *if_stmt)
1462 {
1463 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1464 return exec_node_data(nir_cf_node, head, node);
1465 }
1466
1467 static inline nir_cf_node *
1468 nir_if_last_then_node(nir_if *if_stmt)
1469 {
1470 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1471 return exec_node_data(nir_cf_node, tail, node);
1472 }
1473
1474 static inline nir_cf_node *
1475 nir_if_first_else_node(nir_if *if_stmt)
1476 {
1477 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1478 return exec_node_data(nir_cf_node, head, node);
1479 }
1480
1481 static inline nir_cf_node *
1482 nir_if_last_else_node(nir_if *if_stmt)
1483 {
1484 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1485 return exec_node_data(nir_cf_node, tail, node);
1486 }
1487
1488 typedef struct {
1489 nir_cf_node cf_node;
1490
1491 struct exec_list body; /** < list of nir_cf_node */
1492 } nir_loop;
1493
1494 static inline nir_cf_node *
1495 nir_loop_first_cf_node(nir_loop *loop)
1496 {
1497 return exec_node_data(nir_cf_node, exec_list_get_head(&loop->body), node);
1498 }
1499
1500 static inline nir_cf_node *
1501 nir_loop_last_cf_node(nir_loop *loop)
1502 {
1503 return exec_node_data(nir_cf_node, exec_list_get_tail(&loop->body), node);
1504 }
1505
1506 /**
1507 * Various bits of metadata that can may be created or required by
1508 * optimization and analysis passes
1509 */
1510 typedef enum {
1511 nir_metadata_none = 0x0,
1512 nir_metadata_block_index = 0x1,
1513 nir_metadata_dominance = 0x2,
1514 nir_metadata_live_ssa_defs = 0x4,
1515 nir_metadata_not_properly_reset = 0x8,
1516 } nir_metadata;
1517
1518 typedef struct {
1519 nir_cf_node cf_node;
1520
1521 /** pointer to the function of which this is an implementation */
1522 struct nir_function *function;
1523
1524 struct exec_list body; /** < list of nir_cf_node */
1525
1526 nir_block *end_block;
1527
1528 /** list for all local variables in the function */
1529 struct exec_list locals;
1530
1531 /** array of variables used as parameters */
1532 unsigned num_params;
1533 nir_variable **params;
1534
1535 /** variable used to hold the result of the function */
1536 nir_variable *return_var;
1537
1538 /** list of local registers in the function */
1539 struct exec_list registers;
1540
1541 /** next available local register index */
1542 unsigned reg_alloc;
1543
1544 /** next available SSA value index */
1545 unsigned ssa_alloc;
1546
1547 /* total number of basic blocks, only valid when block_index_dirty = false */
1548 unsigned num_blocks;
1549
1550 nir_metadata valid_metadata;
1551 } nir_function_impl;
1552
1553 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1554 nir_start_block(nir_function_impl *impl)
1555 {
1556 return (nir_block *) impl->body.head;
1557 }
1558
1559 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1560 nir_impl_last_block(nir_function_impl *impl)
1561 {
1562 return (nir_block *) impl->body.tail_pred;
1563 }
1564
1565 static inline nir_cf_node *
1566 nir_cf_node_next(nir_cf_node *node)
1567 {
1568 struct exec_node *next = exec_node_get_next(&node->node);
1569 if (exec_node_is_tail_sentinel(next))
1570 return NULL;
1571 else
1572 return exec_node_data(nir_cf_node, next, node);
1573 }
1574
1575 static inline nir_cf_node *
1576 nir_cf_node_prev(nir_cf_node *node)
1577 {
1578 struct exec_node *prev = exec_node_get_prev(&node->node);
1579 if (exec_node_is_head_sentinel(prev))
1580 return NULL;
1581 else
1582 return exec_node_data(nir_cf_node, prev, node);
1583 }
1584
1585 static inline bool
1586 nir_cf_node_is_first(const nir_cf_node *node)
1587 {
1588 return exec_node_is_head_sentinel(node->node.prev);
1589 }
1590
1591 static inline bool
1592 nir_cf_node_is_last(const nir_cf_node *node)
1593 {
1594 return exec_node_is_tail_sentinel(node->node.next);
1595 }
1596
1597 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node)
1598 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node)
1599 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node)
1600 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node, nir_function_impl, cf_node)
1601
1602 typedef enum {
1603 nir_parameter_in,
1604 nir_parameter_out,
1605 nir_parameter_inout,
1606 } nir_parameter_type;
1607
1608 typedef struct {
1609 nir_parameter_type param_type;
1610 const struct glsl_type *type;
1611 } nir_parameter;
1612
1613 typedef struct nir_function {
1614 struct exec_node node;
1615
1616 const char *name;
1617 struct nir_shader *shader;
1618
1619 unsigned num_params;
1620 nir_parameter *params;
1621 const struct glsl_type *return_type;
1622
1623 /** The implementation of this function.
1624 *
1625 * If the function is only declared and not implemented, this is NULL.
1626 */
1627 nir_function_impl *impl;
1628 } nir_function;
1629
1630 typedef struct nir_shader_compiler_options {
1631 bool lower_fdiv;
1632 bool lower_ffma;
1633 bool fuse_ffma;
1634 bool lower_flrp32;
1635 /** Lowers flrp when it does not support doubles */
1636 bool lower_flrp64;
1637 bool lower_fpow;
1638 bool lower_fsat;
1639 bool lower_fsqrt;
1640 bool lower_fmod32;
1641 bool lower_fmod64;
1642 bool lower_bitfield_extract;
1643 bool lower_bitfield_insert;
1644 bool lower_uadd_carry;
1645 bool lower_usub_borrow;
1646 /** lowers fneg and ineg to fsub and isub. */
1647 bool lower_negate;
1648 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1649 bool lower_sub;
1650
1651 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1652 bool lower_scmp;
1653
1654 /** enables rules to lower idiv by power-of-two: */
1655 bool lower_idiv;
1656
1657 /* Does the native fdot instruction replicate its result for four
1658 * components? If so, then opt_algebraic_late will turn all fdotN
1659 * instructions into fdot_replicatedN instructions.
1660 */
1661 bool fdot_replicates;
1662
1663 /** lowers ffract to fsub+ffloor: */
1664 bool lower_ffract;
1665
1666 bool lower_pack_half_2x16;
1667 bool lower_pack_unorm_2x16;
1668 bool lower_pack_snorm_2x16;
1669 bool lower_pack_unorm_4x8;
1670 bool lower_pack_snorm_4x8;
1671 bool lower_unpack_half_2x16;
1672 bool lower_unpack_unorm_2x16;
1673 bool lower_unpack_snorm_2x16;
1674 bool lower_unpack_unorm_4x8;
1675 bool lower_unpack_snorm_4x8;
1676
1677 bool lower_extract_byte;
1678 bool lower_extract_word;
1679
1680 /**
1681 * Does the driver support real 32-bit integers? (Otherwise, integers
1682 * are simulated by floats.)
1683 */
1684 bool native_integers;
1685
1686 /* Indicates that the driver only has zero-based vertex id */
1687 bool vertex_id_zero_based;
1688
1689 bool lower_cs_local_index_from_id;
1690 } nir_shader_compiler_options;
1691
1692 typedef struct nir_shader_info {
1693 const char *name;
1694
1695 /* Descriptive name provided by the client; may be NULL */
1696 const char *label;
1697
1698 /* Number of textures used by this shader */
1699 unsigned num_textures;
1700 /* Number of uniform buffers used by this shader */
1701 unsigned num_ubos;
1702 /* Number of atomic buffers used by this shader */
1703 unsigned num_abos;
1704 /* Number of shader storage buffers used by this shader */
1705 unsigned num_ssbos;
1706 /* Number of images used by this shader */
1707 unsigned num_images;
1708
1709 /* Which inputs are actually read */
1710 uint64_t inputs_read;
1711 /* Which inputs are actually read and are double */
1712 uint64_t double_inputs_read;
1713 /* Which outputs are actually written */
1714 uint64_t outputs_written;
1715 /* Which system values are actually read */
1716 uint64_t system_values_read;
1717
1718 /* Which patch inputs are actually read */
1719 uint32_t patch_inputs_read;
1720 /* Which patch outputs are actually written */
1721 uint32_t patch_outputs_written;
1722
1723 /* Whether or not this shader ever uses textureGather() */
1724 bool uses_texture_gather;
1725
1726 /** Whether or not this shader uses nir_intrinsic_interp_var_at_offset */
1727 bool uses_interp_var_at_offset;
1728
1729 /* Whether or not this shader uses the gl_ClipDistance output */
1730 bool uses_clip_distance_out;
1731
1732 /* Whether or not separate shader objects were used */
1733 bool separate_shader;
1734
1735 /** Was this shader linked with any transform feedback varyings? */
1736 bool has_transform_feedback_varyings;
1737
1738 union {
1739 struct {
1740 /** The number of vertices recieves per input primitive */
1741 unsigned vertices_in;
1742
1743 /** The output primitive type (GL enum value) */
1744 unsigned output_primitive;
1745
1746 /** The maximum number of vertices the geometry shader might write. */
1747 unsigned vertices_out;
1748
1749 /** 1 .. MAX_GEOMETRY_SHADER_INVOCATIONS */
1750 unsigned invocations;
1751
1752 /** Whether or not this shader uses EndPrimitive */
1753 bool uses_end_primitive;
1754
1755 /** Whether or not this shader uses non-zero streams */
1756 bool uses_streams;
1757 } gs;
1758
1759 struct {
1760 bool uses_discard;
1761
1762 /**
1763 * Whether any inputs are declared with the "sample" qualifier.
1764 */
1765 bool uses_sample_qualifier;
1766
1767 /**
1768 * Whether early fragment tests are enabled as defined by
1769 * ARB_shader_image_load_store.
1770 */
1771 bool early_fragment_tests;
1772
1773 /** gl_FragDepth layout for ARB_conservative_depth. */
1774 enum gl_frag_depth_layout depth_layout;
1775 } fs;
1776
1777 struct {
1778 unsigned local_size[3];
1779 } cs;
1780
1781 struct {
1782 /** The number of vertices in the TCS output patch. */
1783 unsigned vertices_out;
1784 } tcs;
1785 };
1786 } nir_shader_info;
1787
1788 typedef struct nir_shader {
1789 /** list of uniforms (nir_variable) */
1790 struct exec_list uniforms;
1791
1792 /** list of inputs (nir_variable) */
1793 struct exec_list inputs;
1794
1795 /** list of outputs (nir_variable) */
1796 struct exec_list outputs;
1797
1798 /** list of shared compute variables (nir_variable) */
1799 struct exec_list shared;
1800
1801 /** Set of driver-specific options for the shader.
1802 *
1803 * The memory for the options is expected to be kept in a single static
1804 * copy by the driver.
1805 */
1806 const struct nir_shader_compiler_options *options;
1807
1808 /** Various bits of compile-time information about a given shader */
1809 struct nir_shader_info info;
1810
1811 /** list of global variables in the shader (nir_variable) */
1812 struct exec_list globals;
1813
1814 /** list of system value variables in the shader (nir_variable) */
1815 struct exec_list system_values;
1816
1817 struct exec_list functions; /** < list of nir_function */
1818
1819 /** list of global register in the shader */
1820 struct exec_list registers;
1821
1822 /** next available global register index */
1823 unsigned reg_alloc;
1824
1825 /**
1826 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1827 * access plus one
1828 */
1829 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
1830
1831 /** The shader stage, such as MESA_SHADER_VERTEX. */
1832 gl_shader_stage stage;
1833 } nir_shader;
1834
1835 static inline nir_function *
1836 nir_shader_get_entrypoint(nir_shader *shader)
1837 {
1838 assert(exec_list_length(&shader->functions) == 1);
1839 struct exec_node *func_node = exec_list_get_head(&shader->functions);
1840 nir_function *func = exec_node_data(nir_function, func_node, node);
1841 assert(func->return_type == glsl_void_type());
1842 assert(func->num_params == 0);
1843 return func;
1844 }
1845
1846 #define nir_foreach_function(func, shader) \
1847 foreach_list_typed(nir_function, func, node, &(shader)->functions)
1848
1849 nir_shader *nir_shader_create(void *mem_ctx,
1850 gl_shader_stage stage,
1851 const nir_shader_compiler_options *options);
1852
1853 /** creates a register, including assigning it an index and adding it to the list */
1854 nir_register *nir_global_reg_create(nir_shader *shader);
1855
1856 nir_register *nir_local_reg_create(nir_function_impl *impl);
1857
1858 void nir_reg_remove(nir_register *reg);
1859
1860 /** Adds a variable to the appropreate list in nir_shader */
1861 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
1862
1863 static inline void
1864 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
1865 {
1866 assert(var->data.mode == nir_var_local);
1867 exec_list_push_tail(&impl->locals, &var->node);
1868 }
1869
1870 /** creates a variable, sets a few defaults, and adds it to the list */
1871 nir_variable *nir_variable_create(nir_shader *shader,
1872 nir_variable_mode mode,
1873 const struct glsl_type *type,
1874 const char *name);
1875 /** creates a local variable and adds it to the list */
1876 nir_variable *nir_local_variable_create(nir_function_impl *impl,
1877 const struct glsl_type *type,
1878 const char *name);
1879
1880 /** creates a function and adds it to the shader's list of functions */
1881 nir_function *nir_function_create(nir_shader *shader, const char *name);
1882
1883 nir_function_impl *nir_function_impl_create(nir_function *func);
1884 /** creates a function_impl that isn't tied to any particular function */
1885 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
1886
1887 nir_block *nir_block_create(nir_shader *shader);
1888 nir_if *nir_if_create(nir_shader *shader);
1889 nir_loop *nir_loop_create(nir_shader *shader);
1890
1891 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1892
1893 /** requests that the given pieces of metadata be generated */
1894 void nir_metadata_require(nir_function_impl *impl, nir_metadata required);
1895 /** dirties all but the preserved metadata */
1896 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1897
1898 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1899 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
1900
1901 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
1902
1903 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
1904 unsigned num_components,
1905 unsigned bit_size);
1906
1907 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
1908 nir_intrinsic_op op);
1909
1910 nir_call_instr *nir_call_instr_create(nir_shader *shader,
1911 nir_function *callee);
1912
1913 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
1914
1915 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
1916
1917 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
1918
1919 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
1920 unsigned num_components,
1921 unsigned bit_size);
1922
1923 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1924 nir_deref_array *nir_deref_array_create(void *mem_ctx);
1925 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
1926
1927 nir_deref *nir_copy_deref(void *mem_ctx, nir_deref *deref);
1928
1929 nir_load_const_instr *
1930 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
1931
1932 /**
1933 * NIR Cursors and Instruction Insertion API
1934 * @{
1935 *
1936 * A tiny struct representing a point to insert/extract instructions or
1937 * control flow nodes. Helps reduce the combinatorial explosion of possible
1938 * points to insert/extract.
1939 *
1940 * \sa nir_control_flow.h
1941 */
1942 typedef enum {
1943 nir_cursor_before_block,
1944 nir_cursor_after_block,
1945 nir_cursor_before_instr,
1946 nir_cursor_after_instr,
1947 } nir_cursor_option;
1948
1949 typedef struct {
1950 nir_cursor_option option;
1951 union {
1952 nir_block *block;
1953 nir_instr *instr;
1954 };
1955 } nir_cursor;
1956
1957 static inline nir_block *
1958 nir_cursor_current_block(nir_cursor cursor)
1959 {
1960 if (cursor.option == nir_cursor_before_instr ||
1961 cursor.option == nir_cursor_after_instr) {
1962 return cursor.instr->block;
1963 } else {
1964 return cursor.block;
1965 }
1966 }
1967
1968 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
1969
1970 static inline nir_cursor
1971 nir_before_block(nir_block *block)
1972 {
1973 nir_cursor cursor;
1974 cursor.option = nir_cursor_before_block;
1975 cursor.block = block;
1976 return cursor;
1977 }
1978
1979 static inline nir_cursor
1980 nir_after_block(nir_block *block)
1981 {
1982 nir_cursor cursor;
1983 cursor.option = nir_cursor_after_block;
1984 cursor.block = block;
1985 return cursor;
1986 }
1987
1988 static inline nir_cursor
1989 nir_before_instr(nir_instr *instr)
1990 {
1991 nir_cursor cursor;
1992 cursor.option = nir_cursor_before_instr;
1993 cursor.instr = instr;
1994 return cursor;
1995 }
1996
1997 static inline nir_cursor
1998 nir_after_instr(nir_instr *instr)
1999 {
2000 nir_cursor cursor;
2001 cursor.option = nir_cursor_after_instr;
2002 cursor.instr = instr;
2003 return cursor;
2004 }
2005
2006 static inline nir_cursor
2007 nir_after_block_before_jump(nir_block *block)
2008 {
2009 nir_instr *last_instr = nir_block_last_instr(block);
2010 if (last_instr && last_instr->type == nir_instr_type_jump) {
2011 return nir_before_instr(last_instr);
2012 } else {
2013 return nir_after_block(block);
2014 }
2015 }
2016
2017 static inline nir_cursor
2018 nir_before_cf_node(nir_cf_node *node)
2019 {
2020 if (node->type == nir_cf_node_block)
2021 return nir_before_block(nir_cf_node_as_block(node));
2022
2023 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2024 }
2025
2026 static inline nir_cursor
2027 nir_after_cf_node(nir_cf_node *node)
2028 {
2029 if (node->type == nir_cf_node_block)
2030 return nir_after_block(nir_cf_node_as_block(node));
2031
2032 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2033 }
2034
2035 static inline nir_cursor
2036 nir_after_cf_node_and_phis(nir_cf_node *node)
2037 {
2038 if (node->type == nir_cf_node_block)
2039 return nir_after_block(nir_cf_node_as_block(node));
2040
2041 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2042 assert(block->cf_node.type == nir_cf_node_block);
2043
2044 nir_foreach_instr(instr, block) {
2045 if (instr->type != nir_instr_type_phi)
2046 return nir_before_instr(instr);
2047 }
2048 return nir_after_block(block);
2049 }
2050
2051 static inline nir_cursor
2052 nir_before_cf_list(struct exec_list *cf_list)
2053 {
2054 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2055 exec_list_get_head(cf_list), node);
2056 return nir_before_cf_node(first_node);
2057 }
2058
2059 static inline nir_cursor
2060 nir_after_cf_list(struct exec_list *cf_list)
2061 {
2062 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2063 exec_list_get_tail(cf_list), node);
2064 return nir_after_cf_node(last_node);
2065 }
2066
2067 /**
2068 * Insert a NIR instruction at the given cursor.
2069 *
2070 * Note: This does not update the cursor.
2071 */
2072 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2073
2074 static inline void
2075 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2076 {
2077 nir_instr_insert(nir_before_instr(instr), before);
2078 }
2079
2080 static inline void
2081 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2082 {
2083 nir_instr_insert(nir_after_instr(instr), after);
2084 }
2085
2086 static inline void
2087 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2088 {
2089 nir_instr_insert(nir_before_block(block), before);
2090 }
2091
2092 static inline void
2093 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2094 {
2095 nir_instr_insert(nir_after_block(block), after);
2096 }
2097
2098 static inline void
2099 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2100 {
2101 nir_instr_insert(nir_before_cf_node(node), before);
2102 }
2103
2104 static inline void
2105 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2106 {
2107 nir_instr_insert(nir_after_cf_node(node), after);
2108 }
2109
2110 static inline void
2111 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2112 {
2113 nir_instr_insert(nir_before_cf_list(list), before);
2114 }
2115
2116 static inline void
2117 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2118 {
2119 nir_instr_insert(nir_after_cf_list(list), after);
2120 }
2121
2122 void nir_instr_remove(nir_instr *instr);
2123
2124 /** @} */
2125
2126 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2127 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2128 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2129 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2130 void *state);
2131 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2132 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2133
2134 nir_const_value *nir_src_as_const_value(nir_src src);
2135 bool nir_src_is_dynamically_uniform(nir_src src);
2136 bool nir_srcs_equal(nir_src src1, nir_src src2);
2137 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2138 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2139 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2140 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2141 nir_dest new_dest);
2142
2143 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2144 unsigned num_components, unsigned bit_size,
2145 const char *name);
2146 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2147 unsigned num_components, unsigned bit_size,
2148 const char *name);
2149 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2150 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2151 nir_instr *after_me);
2152
2153 uint8_t nir_ssa_def_components_read(nir_ssa_def *def);
2154
2155 /*
2156 * finds the next basic block in source-code order, returns NULL if there is
2157 * none
2158 */
2159
2160 nir_block *nir_block_cf_tree_next(nir_block *block);
2161
2162 /* Performs the opposite of nir_block_cf_tree_next() */
2163
2164 nir_block *nir_block_cf_tree_prev(nir_block *block);
2165
2166 /* Gets the first block in a CF node in source-code order */
2167
2168 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2169
2170 /* Gets the last block in a CF node in source-code order */
2171
2172 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2173
2174 /* Gets the next block after a CF node in source-code order */
2175
2176 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2177
2178 /* Macros for loops that visit blocks in source-code order */
2179
2180 #define nir_foreach_block(block, impl) \
2181 for (nir_block *block = nir_start_block(impl); block != NULL; \
2182 block = nir_block_cf_tree_next(block))
2183
2184 #define nir_foreach_block_safe(block, impl) \
2185 for (nir_block *block = nir_start_block(impl), \
2186 *next = nir_block_cf_tree_next(block); \
2187 block != NULL; \
2188 block = next, next = nir_block_cf_tree_next(block))
2189
2190 #define nir_foreach_block_reverse(block, impl) \
2191 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2192 block = nir_block_cf_tree_prev(block))
2193
2194 #define nir_foreach_block_reverse_safe(block, impl) \
2195 for (nir_block *block = nir_impl_last_block(impl), \
2196 *prev = nir_block_cf_tree_prev(block); \
2197 block != NULL; \
2198 block = prev, prev = nir_block_cf_tree_prev(block))
2199
2200 #define nir_foreach_block_in_cf_node(block, node) \
2201 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2202 block != nir_cf_node_cf_tree_next(node); \
2203 block = nir_block_cf_tree_next(block))
2204
2205 /* If the following CF node is an if, this function returns that if.
2206 * Otherwise, it returns NULL.
2207 */
2208 nir_if *nir_block_get_following_if(nir_block *block);
2209
2210 nir_loop *nir_block_get_following_loop(nir_block *block);
2211
2212 void nir_index_local_regs(nir_function_impl *impl);
2213 void nir_index_global_regs(nir_shader *shader);
2214 void nir_index_ssa_defs(nir_function_impl *impl);
2215 unsigned nir_index_instrs(nir_function_impl *impl);
2216
2217 void nir_index_blocks(nir_function_impl *impl);
2218
2219 void nir_print_shader(nir_shader *shader, FILE *fp);
2220 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2221 void nir_print_instr(const nir_instr *instr, FILE *fp);
2222
2223 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2224 nir_function_impl *nir_function_impl_clone(const nir_function_impl *fi);
2225 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2226 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2227
2228 #ifdef DEBUG
2229 void nir_validate_shader(nir_shader *shader);
2230 void nir_metadata_set_validation_flag(nir_shader *shader);
2231 void nir_metadata_check_validation_flag(nir_shader *shader);
2232
2233 #include "util/debug.h"
2234 static inline bool
2235 should_clone_nir(void)
2236 {
2237 static int should_clone = -1;
2238 if (should_clone < 0)
2239 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2240
2241 return should_clone;
2242 }
2243 #else
2244 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
2245 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2246 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2247 static inline bool should_clone_nir(void) { return false; }
2248 #endif /* DEBUG */
2249
2250 #define _PASS(nir, do_pass) do { \
2251 do_pass \
2252 nir_validate_shader(nir); \
2253 if (should_clone_nir()) { \
2254 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2255 ralloc_free(nir); \
2256 nir = clone; \
2257 } \
2258 } while (0)
2259
2260 #define NIR_PASS(progress, nir, pass, ...) _PASS(nir, \
2261 nir_metadata_set_validation_flag(nir); \
2262 if (pass(nir, ##__VA_ARGS__)) { \
2263 progress = true; \
2264 nir_metadata_check_validation_flag(nir); \
2265 } \
2266 )
2267
2268 #define NIR_PASS_V(nir, pass, ...) _PASS(nir, \
2269 pass(nir, ##__VA_ARGS__); \
2270 )
2271
2272 void nir_calc_dominance_impl(nir_function_impl *impl);
2273 void nir_calc_dominance(nir_shader *shader);
2274
2275 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2276 bool nir_block_dominates(nir_block *parent, nir_block *child);
2277
2278 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2279 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2280
2281 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2282 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2283
2284 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2285 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2286
2287 int nir_gs_count_vertices(const nir_shader *shader);
2288
2289 bool nir_split_var_copies(nir_shader *shader);
2290
2291 bool nir_lower_returns_impl(nir_function_impl *impl);
2292 bool nir_lower_returns(nir_shader *shader);
2293
2294 bool nir_inline_functions(nir_shader *shader);
2295
2296 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, void *mem_ctx);
2297 void nir_lower_var_copies(nir_shader *shader);
2298
2299 bool nir_lower_global_vars_to_local(nir_shader *shader);
2300
2301 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
2302
2303 bool nir_lower_locals_to_regs(nir_shader *shader);
2304
2305 void nir_lower_io_to_temporaries(nir_shader *shader, nir_function *entrypoint,
2306 bool outputs, bool inputs);
2307
2308 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2309
2310 void nir_assign_var_locations(struct exec_list *var_list,
2311 unsigned *size,
2312 int (*type_size)(const struct glsl_type *));
2313
2314 void nir_lower_io(nir_shader *shader,
2315 nir_variable_mode modes,
2316 int (*type_size)(const struct glsl_type *));
2317 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2318 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2319
2320 void nir_lower_io_types(nir_shader *shader);
2321 void nir_lower_vars_to_ssa(nir_shader *shader);
2322
2323 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
2324
2325 void nir_move_vec_src_uses_to_dest(nir_shader *shader);
2326 bool nir_lower_vec_to_movs(nir_shader *shader);
2327 void nir_lower_alu_to_scalar(nir_shader *shader);
2328 void nir_lower_load_const_to_scalar(nir_shader *shader);
2329
2330 void nir_lower_phis_to_scalar(nir_shader *shader);
2331
2332 void nir_lower_samplers(nir_shader *shader,
2333 const struct gl_shader_program *shader_program);
2334
2335 bool nir_lower_system_values(nir_shader *shader);
2336
2337 typedef struct nir_lower_tex_options {
2338 /**
2339 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2340 * sampler types a texture projector is lowered.
2341 */
2342 unsigned lower_txp;
2343
2344 /**
2345 * If true, lower rect textures to 2D, using txs to fetch the
2346 * texture dimensions and dividing the texture coords by the
2347 * texture dims to normalize.
2348 */
2349 bool lower_rect;
2350
2351 /**
2352 * If true, convert yuv to rgb.
2353 */
2354 unsigned lower_y_uv_external;
2355 unsigned lower_y_u_v_external;
2356 unsigned lower_yx_xuxv_external;
2357
2358 /**
2359 * To emulate certain texture wrap modes, this can be used
2360 * to saturate the specified tex coord to [0.0, 1.0]. The
2361 * bits are according to sampler #, ie. if, for example:
2362 *
2363 * (conf->saturate_s & (1 << n))
2364 *
2365 * is true, then the s coord for sampler n is saturated.
2366 *
2367 * Note that clamping must happen *after* projector lowering
2368 * so any projected texture sample instruction with a clamped
2369 * coordinate gets automatically lowered, regardless of the
2370 * 'lower_txp' setting.
2371 */
2372 unsigned saturate_s;
2373 unsigned saturate_t;
2374 unsigned saturate_r;
2375
2376 /* Bitmask of textures that need swizzling.
2377 *
2378 * If (swizzle_result & (1 << texture_index)), then the swizzle in
2379 * swizzles[texture_index] is applied to the result of the texturing
2380 * operation.
2381 */
2382 unsigned swizzle_result;
2383
2384 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
2385 * while 4 and 5 represent 0 and 1 respectively.
2386 */
2387 uint8_t swizzles[32][4];
2388
2389 /**
2390 * Bitmap of textures that need srgb to linear conversion. If
2391 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
2392 * of the texture are lowered to linear.
2393 */
2394 unsigned lower_srgb;
2395 } nir_lower_tex_options;
2396
2397 bool nir_lower_tex(nir_shader *shader,
2398 const nir_lower_tex_options *options);
2399
2400 bool nir_lower_idiv(nir_shader *shader);
2401
2402 void nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
2403 void nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
2404
2405 void nir_lower_two_sided_color(nir_shader *shader);
2406
2407 void nir_lower_clamp_color_outputs(nir_shader *shader);
2408
2409 void nir_lower_passthrough_edgeflags(nir_shader *shader);
2410
2411 typedef struct nir_lower_wpos_ytransform_options {
2412 int state_tokens[5];
2413 bool fs_coord_origin_upper_left :1;
2414 bool fs_coord_origin_lower_left :1;
2415 bool fs_coord_pixel_center_integer :1;
2416 bool fs_coord_pixel_center_half_integer :1;
2417 } nir_lower_wpos_ytransform_options;
2418
2419 bool nir_lower_wpos_ytransform(nir_shader *shader,
2420 const nir_lower_wpos_ytransform_options *options);
2421 bool nir_lower_wpos_center(nir_shader *shader);
2422
2423 typedef struct nir_lower_drawpixels_options {
2424 int texcoord_state_tokens[5];
2425 int scale_state_tokens[5];
2426 int bias_state_tokens[5];
2427 unsigned drawpix_sampler;
2428 unsigned pixelmap_sampler;
2429 bool pixel_maps :1;
2430 bool scale_and_bias :1;
2431 } nir_lower_drawpixels_options;
2432
2433 void nir_lower_drawpixels(nir_shader *shader,
2434 const nir_lower_drawpixels_options *options);
2435
2436 typedef struct nir_lower_bitmap_options {
2437 unsigned sampler;
2438 bool swizzle_xxxx;
2439 } nir_lower_bitmap_options;
2440
2441 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
2442
2443 void nir_lower_atomics(nir_shader *shader,
2444 const struct gl_shader_program *shader_program);
2445 void nir_lower_to_source_mods(nir_shader *shader);
2446
2447 bool nir_lower_gs_intrinsics(nir_shader *shader);
2448
2449 typedef enum {
2450 nir_lower_drcp = (1 << 0),
2451 nir_lower_dsqrt = (1 << 1),
2452 nir_lower_drsq = (1 << 2),
2453 nir_lower_dtrunc = (1 << 3),
2454 nir_lower_dfloor = (1 << 4),
2455 nir_lower_dceil = (1 << 5),
2456 nir_lower_dfract = (1 << 6),
2457 nir_lower_dround_even = (1 << 7),
2458 nir_lower_dmod = (1 << 8)
2459 } nir_lower_doubles_options;
2460
2461 void nir_lower_doubles(nir_shader *shader, nir_lower_doubles_options options);
2462 void nir_lower_double_pack(nir_shader *shader);
2463
2464 bool nir_normalize_cubemap_coords(nir_shader *shader);
2465
2466 void nir_live_ssa_defs_impl(nir_function_impl *impl);
2467 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
2468
2469 void nir_convert_to_ssa_impl(nir_function_impl *impl);
2470 void nir_convert_to_ssa(nir_shader *shader);
2471
2472 bool nir_repair_ssa_impl(nir_function_impl *impl);
2473 bool nir_repair_ssa(nir_shader *shader);
2474
2475 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
2476 * registers. If false, convert all values (even those not involved in a phi
2477 * node) to registers.
2478 */
2479 void nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
2480
2481 bool nir_opt_algebraic(nir_shader *shader);
2482 bool nir_opt_algebraic_late(nir_shader *shader);
2483 bool nir_opt_constant_folding(nir_shader *shader);
2484
2485 bool nir_opt_global_to_local(nir_shader *shader);
2486
2487 bool nir_copy_prop(nir_shader *shader);
2488
2489 bool nir_opt_cse(nir_shader *shader);
2490
2491 bool nir_opt_dce(nir_shader *shader);
2492
2493 bool nir_opt_dead_cf(nir_shader *shader);
2494
2495 void nir_opt_gcm(nir_shader *shader);
2496
2497 bool nir_opt_peephole_select(nir_shader *shader);
2498
2499 bool nir_opt_remove_phis(nir_shader *shader);
2500
2501 bool nir_opt_undef(nir_shader *shader);
2502
2503 void nir_sweep(nir_shader *shader);
2504
2505 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
2506 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
2507
2508 #ifdef __cplusplus
2509 } /* extern "C" */
2510 #endif