nir: Move variable_get_io_mask back into gather_info
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #pragma once
29
30 #include "util/hash_table.h"
31 #include "compiler/glsl/list.h"
32 #include "GL/gl.h" /* GLenum */
33 #include "util/list.h"
34 #include "util/ralloc.h"
35 #include "util/set.h"
36 #include "util/bitset.h"
37 #include "compiler/nir_types.h"
38 #include "compiler/shader_enums.h"
39 #include <stdio.h>
40
41 #include "nir_opcodes.h"
42
43 #ifdef __cplusplus
44 extern "C" {
45 #endif
46
47 struct gl_program;
48 struct gl_shader_program;
49
50 #define NIR_FALSE 0u
51 #define NIR_TRUE (~0u)
52
53 /** Defines a cast function
54 *
55 * This macro defines a cast function from in_type to out_type where
56 * out_type is some structure type that contains a field of type out_type.
57 *
58 * Note that you have to be a bit careful as the generated cast function
59 * destroys constness.
60 */
61 #define NIR_DEFINE_CAST(name, in_type, out_type, field) \
62 static inline out_type * \
63 name(const in_type *parent) \
64 { \
65 return exec_node_data(out_type, parent, field); \
66 }
67
68 struct nir_function;
69 struct nir_shader;
70 struct nir_instr;
71
72
73 /**
74 * Description of built-in state associated with a uniform
75 *
76 * \sa nir_variable::state_slots
77 */
78 typedef struct {
79 int tokens[5];
80 int swizzle;
81 } nir_state_slot;
82
83 typedef enum {
84 nir_var_all = -1,
85 nir_var_shader_in,
86 nir_var_shader_out,
87 nir_var_global,
88 nir_var_local,
89 nir_var_uniform,
90 nir_var_shader_storage,
91 nir_var_system_value,
92 nir_var_param,
93 nir_var_shared,
94 } nir_variable_mode;
95
96 /**
97 * Data stored in an nir_constant
98 */
99 union nir_constant_data {
100 unsigned u[16];
101 int i[16];
102 float f[16];
103 bool b[16];
104 double d[16];
105 };
106
107 typedef struct nir_constant {
108 /**
109 * Value of the constant.
110 *
111 * The field used to back the values supplied by the constant is determined
112 * by the type associated with the \c nir_variable. Constants may be
113 * scalars, vectors, or matrices.
114 */
115 union nir_constant_data value;
116
117 /* we could get this from the var->type but makes clone *much* easier to
118 * not have to care about the type.
119 */
120 unsigned num_elements;
121
122 /* Array elements / Structure Fields */
123 struct nir_constant **elements;
124 } nir_constant;
125
126 /**
127 * \brief Layout qualifiers for gl_FragDepth.
128 *
129 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
130 * with a layout qualifier.
131 */
132 typedef enum {
133 nir_depth_layout_none, /**< No depth layout is specified. */
134 nir_depth_layout_any,
135 nir_depth_layout_greater,
136 nir_depth_layout_less,
137 nir_depth_layout_unchanged
138 } nir_depth_layout;
139
140 /**
141 * Either a uniform, global variable, shader input, or shader output. Based on
142 * ir_variable - it should be easy to translate between the two.
143 */
144
145 typedef struct nir_variable {
146 struct exec_node node;
147
148 /**
149 * Declared type of the variable
150 */
151 const struct glsl_type *type;
152
153 /**
154 * Declared name of the variable
155 */
156 char *name;
157
158 struct nir_variable_data {
159
160 /**
161 * Is the variable read-only?
162 *
163 * This is set for variables declared as \c const, shader inputs,
164 * and uniforms.
165 */
166 unsigned read_only:1;
167 unsigned centroid:1;
168 unsigned sample:1;
169 unsigned patch:1;
170 unsigned invariant:1;
171
172 /**
173 * Storage class of the variable.
174 *
175 * \sa nir_variable_mode
176 */
177 nir_variable_mode mode:5;
178
179 /**
180 * Interpolation mode for shader inputs / outputs
181 *
182 * \sa glsl_interp_qualifier
183 */
184 unsigned interpolation:2;
185
186 /**
187 * \name ARB_fragment_coord_conventions
188 * @{
189 */
190 unsigned origin_upper_left:1;
191 unsigned pixel_center_integer:1;
192 /*@}*/
193
194 /**
195 * Was the location explicitly set in the shader?
196 *
197 * If the location is explicitly set in the shader, it \b cannot be changed
198 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
199 * no effect).
200 */
201 unsigned explicit_location:1;
202 unsigned explicit_index:1;
203
204 /**
205 * Was an initial binding explicitly set in the shader?
206 *
207 * If so, constant_initializer contains an integer nir_constant
208 * representing the initial binding point.
209 */
210 unsigned explicit_binding:1;
211
212 /**
213 * Does this variable have an initializer?
214 *
215 * This is used by the linker to cross-validiate initializers of global
216 * variables.
217 */
218 unsigned has_initializer:1;
219
220 /**
221 * If non-zero, then this variable may be packed along with other variables
222 * into a single varying slot, so this offset should be applied when
223 * accessing components. For example, an offset of 1 means that the x
224 * component of this variable is actually stored in component y of the
225 * location specified by \c location.
226 */
227 unsigned location_frac:2;
228
229 /**
230 * \brief Layout qualifier for gl_FragDepth.
231 *
232 * This is not equal to \c ir_depth_layout_none if and only if this
233 * variable is \c gl_FragDepth and a layout qualifier is specified.
234 */
235 nir_depth_layout depth_layout;
236
237 /**
238 * Storage location of the base of this variable
239 *
240 * The precise meaning of this field depends on the nature of the variable.
241 *
242 * - Vertex shader input: one of the values from \c gl_vert_attrib.
243 * - Vertex shader output: one of the values from \c gl_varying_slot.
244 * - Geometry shader input: one of the values from \c gl_varying_slot.
245 * - Geometry shader output: one of the values from \c gl_varying_slot.
246 * - Fragment shader input: one of the values from \c gl_varying_slot.
247 * - Fragment shader output: one of the values from \c gl_frag_result.
248 * - Uniforms: Per-stage uniform slot number for default uniform block.
249 * - Uniforms: Index within the uniform block definition for UBO members.
250 * - Non-UBO Uniforms: uniform slot number.
251 * - Other: This field is not currently used.
252 *
253 * If the variable is a uniform, shader input, or shader output, and the
254 * slot has not been assigned, the value will be -1.
255 */
256 int location;
257
258 /**
259 * The actual location of the variable in the IR. Only valid for inputs
260 * and outputs.
261 */
262 unsigned int driver_location;
263
264 /**
265 * output index for dual source blending.
266 */
267 int index;
268
269 /**
270 * Descriptor set binding for sampler or UBO.
271 */
272 int descriptor_set;
273
274 /**
275 * Initial binding point for a sampler or UBO.
276 *
277 * For array types, this represents the binding point for the first element.
278 */
279 int binding;
280
281 /**
282 * Location an atomic counter is stored at.
283 */
284 unsigned offset;
285
286 /**
287 * ARB_shader_image_load_store qualifiers.
288 */
289 struct {
290 bool read_only; /**< "readonly" qualifier. */
291 bool write_only; /**< "writeonly" qualifier. */
292 bool coherent;
293 bool _volatile;
294 bool restrict_flag;
295
296 /** Image internal format if specified explicitly, otherwise GL_NONE. */
297 GLenum format;
298 } image;
299
300 /**
301 * Highest element accessed with a constant expression array index
302 *
303 * Not used for non-array variables.
304 */
305 unsigned max_array_access;
306
307 } data;
308
309 /**
310 * Built-in state that backs this uniform
311 *
312 * Once set at variable creation, \c state_slots must remain invariant.
313 * This is because, ideally, this array would be shared by all clones of
314 * this variable in the IR tree. In other words, we'd really like for it
315 * to be a fly-weight.
316 *
317 * If the variable is not a uniform, \c num_state_slots will be zero and
318 * \c state_slots will be \c NULL.
319 */
320 /*@{*/
321 unsigned num_state_slots; /**< Number of state slots used */
322 nir_state_slot *state_slots; /**< State descriptors. */
323 /*@}*/
324
325 /**
326 * Constant expression assigned in the initializer of the variable
327 */
328 nir_constant *constant_initializer;
329
330 /**
331 * For variables that are in an interface block or are an instance of an
332 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
333 *
334 * \sa ir_variable::location
335 */
336 const struct glsl_type *interface_type;
337 } nir_variable;
338
339 #define nir_foreach_variable(var, var_list) \
340 foreach_list_typed(nir_variable, var, node, var_list)
341
342 #define nir_foreach_variable_safe(var, var_list) \
343 foreach_list_typed_safe(nir_variable, var, node, var_list)
344
345 static inline bool
346 nir_variable_is_global(const nir_variable *var)
347 {
348 return var->data.mode != nir_var_local && var->data.mode != nir_var_param;
349 }
350
351 typedef struct nir_register {
352 struct exec_node node;
353
354 unsigned num_components; /** < number of vector components */
355 unsigned num_array_elems; /** < size of array (0 for no array) */
356
357 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
358 uint8_t bit_size;
359
360 /** generic register index. */
361 unsigned index;
362
363 /** only for debug purposes, can be NULL */
364 const char *name;
365
366 /** whether this register is local (per-function) or global (per-shader) */
367 bool is_global;
368
369 /**
370 * If this flag is set to true, then accessing channels >= num_components
371 * is well-defined, and simply spills over to the next array element. This
372 * is useful for backends that can do per-component accessing, in
373 * particular scalar backends. By setting this flag and making
374 * num_components equal to 1, structures can be packed tightly into
375 * registers and then registers can be accessed per-component to get to
376 * each structure member, even if it crosses vec4 boundaries.
377 */
378 bool is_packed;
379
380 /** set of nir_src's where this register is used (read from) */
381 struct list_head uses;
382
383 /** set of nir_dest's where this register is defined (written to) */
384 struct list_head defs;
385
386 /** set of nir_if's where this register is used as a condition */
387 struct list_head if_uses;
388 } nir_register;
389
390 typedef enum {
391 nir_instr_type_alu,
392 nir_instr_type_call,
393 nir_instr_type_tex,
394 nir_instr_type_intrinsic,
395 nir_instr_type_load_const,
396 nir_instr_type_jump,
397 nir_instr_type_ssa_undef,
398 nir_instr_type_phi,
399 nir_instr_type_parallel_copy,
400 } nir_instr_type;
401
402 typedef struct nir_instr {
403 struct exec_node node;
404 nir_instr_type type;
405 struct nir_block *block;
406
407 /** generic instruction index. */
408 unsigned index;
409
410 /* A temporary for optimization and analysis passes to use for storing
411 * flags. For instance, DCE uses this to store the "dead/live" info.
412 */
413 uint8_t pass_flags;
414 } nir_instr;
415
416 static inline nir_instr *
417 nir_instr_next(nir_instr *instr)
418 {
419 struct exec_node *next = exec_node_get_next(&instr->node);
420 if (exec_node_is_tail_sentinel(next))
421 return NULL;
422 else
423 return exec_node_data(nir_instr, next, node);
424 }
425
426 static inline nir_instr *
427 nir_instr_prev(nir_instr *instr)
428 {
429 struct exec_node *prev = exec_node_get_prev(&instr->node);
430 if (exec_node_is_head_sentinel(prev))
431 return NULL;
432 else
433 return exec_node_data(nir_instr, prev, node);
434 }
435
436 static inline bool
437 nir_instr_is_first(nir_instr *instr)
438 {
439 return exec_node_is_head_sentinel(exec_node_get_prev(&instr->node));
440 }
441
442 static inline bool
443 nir_instr_is_last(nir_instr *instr)
444 {
445 return exec_node_is_tail_sentinel(exec_node_get_next(&instr->node));
446 }
447
448 typedef struct nir_ssa_def {
449 /** for debugging only, can be NULL */
450 const char* name;
451
452 /** generic SSA definition index. */
453 unsigned index;
454
455 /** Index into the live_in and live_out bitfields */
456 unsigned live_index;
457
458 nir_instr *parent_instr;
459
460 /** set of nir_instr's where this register is used (read from) */
461 struct list_head uses;
462
463 /** set of nir_if's where this register is used as a condition */
464 struct list_head if_uses;
465
466 uint8_t num_components;
467
468 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
469 uint8_t bit_size;
470 } nir_ssa_def;
471
472 struct nir_src;
473
474 typedef struct {
475 nir_register *reg;
476 struct nir_src *indirect; /** < NULL for no indirect offset */
477 unsigned base_offset;
478
479 /* TODO use-def chain goes here */
480 } nir_reg_src;
481
482 typedef struct {
483 nir_instr *parent_instr;
484 struct list_head def_link;
485
486 nir_register *reg;
487 struct nir_src *indirect; /** < NULL for no indirect offset */
488 unsigned base_offset;
489
490 /* TODO def-use chain goes here */
491 } nir_reg_dest;
492
493 struct nir_if;
494
495 typedef struct nir_src {
496 union {
497 nir_instr *parent_instr;
498 struct nir_if *parent_if;
499 };
500
501 struct list_head use_link;
502
503 union {
504 nir_reg_src reg;
505 nir_ssa_def *ssa;
506 };
507
508 bool is_ssa;
509 } nir_src;
510
511 #define NIR_SRC_INIT (nir_src) { { NULL } }
512
513 #define nir_foreach_use(reg_or_ssa_def, src) \
514 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
515
516 #define nir_foreach_use_safe(reg_or_ssa_def, src) \
517 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
518
519 #define nir_foreach_if_use(reg_or_ssa_def, src) \
520 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
521
522 #define nir_foreach_if_use_safe(reg_or_ssa_def, src) \
523 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
524
525 typedef struct {
526 union {
527 nir_reg_dest reg;
528 nir_ssa_def ssa;
529 };
530
531 bool is_ssa;
532 } nir_dest;
533
534 #define NIR_DEST_INIT (nir_dest) { { { NULL } } }
535
536 #define nir_foreach_def(reg, dest) \
537 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
538
539 #define nir_foreach_def_safe(reg, dest) \
540 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
541
542 static inline nir_src
543 nir_src_for_ssa(nir_ssa_def *def)
544 {
545 nir_src src = NIR_SRC_INIT;
546
547 src.is_ssa = true;
548 src.ssa = def;
549
550 return src;
551 }
552
553 static inline nir_src
554 nir_src_for_reg(nir_register *reg)
555 {
556 nir_src src = NIR_SRC_INIT;
557
558 src.is_ssa = false;
559 src.reg.reg = reg;
560 src.reg.indirect = NULL;
561 src.reg.base_offset = 0;
562
563 return src;
564 }
565
566 static inline nir_dest
567 nir_dest_for_reg(nir_register *reg)
568 {
569 nir_dest dest = NIR_DEST_INIT;
570
571 dest.reg.reg = reg;
572
573 return dest;
574 }
575
576 static inline unsigned
577 nir_src_bit_size(nir_src src)
578 {
579 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
580 }
581
582 static inline unsigned
583 nir_dest_bit_size(nir_dest dest)
584 {
585 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
586 }
587
588 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
589 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
590
591 typedef struct {
592 nir_src src;
593
594 /**
595 * \name input modifiers
596 */
597 /*@{*/
598 /**
599 * For inputs interpreted as floating point, flips the sign bit. For
600 * inputs interpreted as integers, performs the two's complement negation.
601 */
602 bool negate;
603
604 /**
605 * Clears the sign bit for floating point values, and computes the integer
606 * absolute value for integers. Note that the negate modifier acts after
607 * the absolute value modifier, therefore if both are set then all inputs
608 * will become negative.
609 */
610 bool abs;
611 /*@}*/
612
613 /**
614 * For each input component, says which component of the register it is
615 * chosen from. Note that which elements of the swizzle are used and which
616 * are ignored are based on the write mask for most opcodes - for example,
617 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
618 * a swizzle of {2, x, 1, 0} where x means "don't care."
619 */
620 uint8_t swizzle[4];
621 } nir_alu_src;
622
623 typedef struct {
624 nir_dest dest;
625
626 /**
627 * \name saturate output modifier
628 *
629 * Only valid for opcodes that output floating-point numbers. Clamps the
630 * output to between 0.0 and 1.0 inclusive.
631 */
632
633 bool saturate;
634
635 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
636 } nir_alu_dest;
637
638 typedef enum {
639 nir_type_invalid = 0, /* Not a valid type */
640 nir_type_float,
641 nir_type_int,
642 nir_type_uint,
643 nir_type_bool,
644 nir_type_bool32 = 32 | nir_type_bool,
645 nir_type_int8 = 8 | nir_type_int,
646 nir_type_int16 = 16 | nir_type_int,
647 nir_type_int32 = 32 | nir_type_int,
648 nir_type_int64 = 64 | nir_type_int,
649 nir_type_uint8 = 8 | nir_type_uint,
650 nir_type_uint16 = 16 | nir_type_uint,
651 nir_type_uint32 = 32 | nir_type_uint,
652 nir_type_uint64 = 64 | nir_type_uint,
653 nir_type_float16 = 16 | nir_type_float,
654 nir_type_float32 = 32 | nir_type_float,
655 nir_type_float64 = 64 | nir_type_float,
656 } nir_alu_type;
657
658 #define NIR_ALU_TYPE_SIZE_MASK 0xfffffff8
659 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x00000007
660
661 static inline unsigned
662 nir_alu_type_get_type_size(nir_alu_type type)
663 {
664 return type & NIR_ALU_TYPE_SIZE_MASK;
665 }
666
667 static inline unsigned
668 nir_alu_type_get_base_type(nir_alu_type type)
669 {
670 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
671 }
672
673 typedef enum {
674 NIR_OP_IS_COMMUTATIVE = (1 << 0),
675 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
676 } nir_op_algebraic_property;
677
678 typedef struct {
679 const char *name;
680
681 unsigned num_inputs;
682
683 /**
684 * The number of components in the output
685 *
686 * If non-zero, this is the size of the output and input sizes are
687 * explicitly given; swizzle and writemask are still in effect, but if
688 * the output component is masked out, then the input component may
689 * still be in use.
690 *
691 * If zero, the opcode acts in the standard, per-component manner; the
692 * operation is performed on each component (except the ones that are
693 * masked out) with the input being taken from the input swizzle for
694 * that component.
695 *
696 * The size of some of the inputs may be given (i.e. non-zero) even
697 * though output_size is zero; in that case, the inputs with a zero
698 * size act per-component, while the inputs with non-zero size don't.
699 */
700 unsigned output_size;
701
702 /**
703 * The type of vector that the instruction outputs. Note that the
704 * staurate modifier is only allowed on outputs with the float type.
705 */
706
707 nir_alu_type output_type;
708
709 /**
710 * The number of components in each input
711 */
712 unsigned input_sizes[4];
713
714 /**
715 * The type of vector that each input takes. Note that negate and
716 * absolute value are only allowed on inputs with int or float type and
717 * behave differently on the two.
718 */
719 nir_alu_type input_types[4];
720
721 nir_op_algebraic_property algebraic_properties;
722 } nir_op_info;
723
724 extern const nir_op_info nir_op_infos[nir_num_opcodes];
725
726 typedef struct nir_alu_instr {
727 nir_instr instr;
728 nir_op op;
729
730 /** Indicates that this ALU instruction generates an exact value
731 *
732 * This is kind of a mixture of GLSL "precise" and "invariant" and not
733 * really equivalent to either. This indicates that the value generated by
734 * this operation is high-precision and any code transformations that touch
735 * it must ensure that the resulting value is bit-for-bit identical to the
736 * original.
737 */
738 bool exact;
739
740 nir_alu_dest dest;
741 nir_alu_src src[];
742 } nir_alu_instr;
743
744 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
745 nir_alu_instr *instr);
746 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
747 nir_alu_instr *instr);
748
749 /* is this source channel used? */
750 static inline bool
751 nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel)
752 {
753 if (nir_op_infos[instr->op].input_sizes[src] > 0)
754 return channel < nir_op_infos[instr->op].input_sizes[src];
755
756 return (instr->dest.write_mask >> channel) & 1;
757 }
758
759 /*
760 * For instructions whose destinations are SSA, get the number of channels
761 * used for a source
762 */
763 static inline unsigned
764 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
765 {
766 assert(instr->dest.dest.is_ssa);
767
768 if (nir_op_infos[instr->op].input_sizes[src] > 0)
769 return nir_op_infos[instr->op].input_sizes[src];
770
771 return instr->dest.dest.ssa.num_components;
772 }
773
774 typedef enum {
775 nir_deref_type_var,
776 nir_deref_type_array,
777 nir_deref_type_struct
778 } nir_deref_type;
779
780 typedef struct nir_deref {
781 nir_deref_type deref_type;
782 struct nir_deref *child;
783 const struct glsl_type *type;
784 } nir_deref;
785
786 typedef struct {
787 nir_deref deref;
788
789 nir_variable *var;
790 } nir_deref_var;
791
792 /* This enum describes how the array is referenced. If the deref is
793 * direct then the base_offset is used. If the deref is indirect then then
794 * offset is given by base_offset + indirect. If the deref is a wildcard
795 * then the deref refers to all of the elements of the array at the same
796 * time. Wildcard dereferences are only ever allowed in copy_var
797 * intrinsics and the source and destination derefs must have matching
798 * wildcards.
799 */
800 typedef enum {
801 nir_deref_array_type_direct,
802 nir_deref_array_type_indirect,
803 nir_deref_array_type_wildcard,
804 } nir_deref_array_type;
805
806 typedef struct {
807 nir_deref deref;
808
809 nir_deref_array_type deref_array_type;
810 unsigned base_offset;
811 nir_src indirect;
812 } nir_deref_array;
813
814 typedef struct {
815 nir_deref deref;
816
817 unsigned index;
818 } nir_deref_struct;
819
820 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref)
821 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref)
822 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref)
823
824 /* Returns the last deref in the chain. */
825 static inline nir_deref *
826 nir_deref_tail(nir_deref *deref)
827 {
828 while (deref->child)
829 deref = deref->child;
830 return deref;
831 }
832
833 typedef struct {
834 nir_instr instr;
835
836 unsigned num_params;
837 nir_deref_var **params;
838 nir_deref_var *return_deref;
839
840 struct nir_function *callee;
841 } nir_call_instr;
842
843 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
844 num_variables, num_indices, idx0, idx1, idx2, flags) \
845 nir_intrinsic_##name,
846
847 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
848
849 typedef enum {
850 #include "nir_intrinsics.h"
851 nir_num_intrinsics = nir_last_intrinsic + 1
852 } nir_intrinsic_op;
853
854 #undef INTRINSIC
855 #undef LAST_INTRINSIC
856
857 #define NIR_INTRINSIC_MAX_CONST_INDEX 3
858
859 /** Represents an intrinsic
860 *
861 * An intrinsic is an instruction type for handling things that are
862 * more-or-less regular operations but don't just consume and produce SSA
863 * values like ALU operations do. Intrinsics are not for things that have
864 * special semantic meaning such as phi nodes and parallel copies.
865 * Examples of intrinsics include variable load/store operations, system
866 * value loads, and the like. Even though texturing more-or-less falls
867 * under this category, texturing is its own instruction type because
868 * trying to represent texturing with intrinsics would lead to a
869 * combinatorial explosion of intrinsic opcodes.
870 *
871 * By having a single instruction type for handling a lot of different
872 * cases, optimization passes can look for intrinsics and, for the most
873 * part, completely ignore them. Each intrinsic type also has a few
874 * possible flags that govern whether or not they can be reordered or
875 * eliminated. That way passes like dead code elimination can still work
876 * on intrisics without understanding the meaning of each.
877 *
878 * Each intrinsic has some number of constant indices, some number of
879 * variables, and some number of sources. What these sources, variables,
880 * and indices mean depends on the intrinsic and is documented with the
881 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
882 * instructions are the only types of instruction that can operate on
883 * variables.
884 */
885 typedef struct {
886 nir_instr instr;
887
888 nir_intrinsic_op intrinsic;
889
890 nir_dest dest;
891
892 /** number of components if this is a vectorized intrinsic
893 *
894 * Similarly to ALU operations, some intrinsics are vectorized.
895 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
896 * For vectorized intrinsics, the num_components field specifies the
897 * number of destination components and the number of source components
898 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
899 */
900 uint8_t num_components;
901
902 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
903
904 nir_deref_var *variables[2];
905
906 nir_src src[];
907 } nir_intrinsic_instr;
908
909 /**
910 * \name NIR intrinsics semantic flags
911 *
912 * information about what the compiler can do with the intrinsics.
913 *
914 * \sa nir_intrinsic_info::flags
915 */
916 typedef enum {
917 /**
918 * whether the intrinsic can be safely eliminated if none of its output
919 * value is not being used.
920 */
921 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
922
923 /**
924 * Whether the intrinsic can be reordered with respect to any other
925 * intrinsic, i.e. whether the only reordering dependencies of the
926 * intrinsic are due to the register reads/writes.
927 */
928 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
929 } nir_intrinsic_semantic_flag;
930
931 /**
932 * \name NIR intrinsics const-index flag
933 *
934 * Indicates the usage of a const_index slot.
935 *
936 * \sa nir_intrinsic_info::index_map
937 */
938 typedef enum {
939 /**
940 * Generally instructions that take a offset src argument, can encode
941 * a constant 'base' value which is added to the offset.
942 */
943 NIR_INTRINSIC_BASE = 1,
944
945 /**
946 * For store instructions, a writemask for the store.
947 */
948 NIR_INTRINSIC_WRMASK = 2,
949
950 /**
951 * The stream-id for GS emit_vertex/end_primitive intrinsics.
952 */
953 NIR_INTRINSIC_STREAM_ID = 3,
954
955 /**
956 * The clip-plane id for load_user_clip_plane intrinsic.
957 */
958 NIR_INTRINSIC_UCP_ID = 4,
959
960 /**
961 * The ammount of data, starting from BASE, that this instruction may
962 * access. This is used to provide bounds if the offset is not constant.
963 */
964 NIR_INTRINSIC_RANGE = 5,
965
966 /**
967 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
968 */
969 NIR_INTRINSIC_DESC_SET = 6,
970
971 /**
972 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
973 */
974 NIR_INTRINSIC_BINDING = 7,
975
976 NIR_INTRINSIC_NUM_INDEX_FLAGS,
977
978 } nir_intrinsic_index_flag;
979
980 #define NIR_INTRINSIC_MAX_INPUTS 4
981
982 typedef struct {
983 const char *name;
984
985 unsigned num_srcs; /** < number of register/SSA inputs */
986
987 /** number of components of each input register
988 *
989 * If this value is 0, the number of components is given by the
990 * num_components field of nir_intrinsic_instr.
991 */
992 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
993
994 bool has_dest;
995
996 /** number of components of the output register
997 *
998 * If this value is 0, the number of components is given by the
999 * num_components field of nir_intrinsic_instr.
1000 */
1001 unsigned dest_components;
1002
1003 /** the number of inputs/outputs that are variables */
1004 unsigned num_variables;
1005
1006 /** the number of constant indices used by the intrinsic */
1007 unsigned num_indices;
1008
1009 /** indicates the usage of intr->const_index[n] */
1010 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1011
1012 /** semantic flags for calls to this intrinsic */
1013 nir_intrinsic_semantic_flag flags;
1014 } nir_intrinsic_info;
1015
1016 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1017
1018
1019 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1020 static inline type \
1021 nir_intrinsic_##name(nir_intrinsic_instr *instr) \
1022 { \
1023 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1024 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1025 return instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1026 } \
1027 static inline void \
1028 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1029 { \
1030 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1031 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1032 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1033 }
1034
1035 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1036 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1037 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1038 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1039 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1040 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1041 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1042
1043 /**
1044 * \group texture information
1045 *
1046 * This gives semantic information about textures which is useful to the
1047 * frontend, the backend, and lowering passes, but not the optimizer.
1048 */
1049
1050 typedef enum {
1051 nir_tex_src_coord,
1052 nir_tex_src_projector,
1053 nir_tex_src_comparitor, /* shadow comparitor */
1054 nir_tex_src_offset,
1055 nir_tex_src_bias,
1056 nir_tex_src_lod,
1057 nir_tex_src_ms_index, /* MSAA sample index */
1058 nir_tex_src_ddx,
1059 nir_tex_src_ddy,
1060 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1061 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1062 nir_num_tex_src_types
1063 } nir_tex_src_type;
1064
1065 typedef struct {
1066 nir_src src;
1067 nir_tex_src_type src_type;
1068 } nir_tex_src;
1069
1070 typedef enum {
1071 nir_texop_tex, /**< Regular texture look-up */
1072 nir_texop_txb, /**< Texture look-up with LOD bias */
1073 nir_texop_txl, /**< Texture look-up with explicit LOD */
1074 nir_texop_txd, /**< Texture look-up with partial derivatvies */
1075 nir_texop_txf, /**< Texel fetch with explicit LOD */
1076 nir_texop_txf_ms, /**< Multisample texture fetch */
1077 nir_texop_txs, /**< Texture size */
1078 nir_texop_lod, /**< Texture lod query */
1079 nir_texop_tg4, /**< Texture gather */
1080 nir_texop_query_levels, /**< Texture levels query */
1081 nir_texop_texture_samples, /**< Texture samples query */
1082 nir_texop_samples_identical, /**< Query whether all samples are definitely
1083 * identical.
1084 */
1085 } nir_texop;
1086
1087 typedef struct {
1088 nir_instr instr;
1089
1090 enum glsl_sampler_dim sampler_dim;
1091 nir_alu_type dest_type;
1092
1093 nir_texop op;
1094 nir_dest dest;
1095 nir_tex_src *src;
1096 unsigned num_srcs, coord_components;
1097 bool is_array, is_shadow;
1098
1099 /**
1100 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1101 * components or the new-style shadow that outputs 1 component.
1102 */
1103 bool is_new_style_shadow;
1104
1105 /* gather component selector */
1106 unsigned component : 2;
1107
1108 /** The texture index
1109 *
1110 * If this texture instruction has a nir_tex_src_texture_offset source,
1111 * then the texture index is given by texture_index + texture_offset.
1112 */
1113 unsigned texture_index;
1114
1115 /** The size of the texture array or 0 if it's not an array */
1116 unsigned texture_array_size;
1117
1118 /** The texture deref
1119 *
1120 * If this is null, use texture_index instead.
1121 */
1122 nir_deref_var *texture;
1123
1124 /** The sampler index
1125 *
1126 * The following operations do not require a sampler and, as such, this
1127 * field should be ignored:
1128 * - nir_texop_txf
1129 * - nir_texop_txf_ms
1130 * - nir_texop_txs
1131 * - nir_texop_lod
1132 * - nir_texop_tg4
1133 * - nir_texop_query_levels
1134 * - nir_texop_texture_samples
1135 * - nir_texop_samples_identical
1136 *
1137 * If this texture instruction has a nir_tex_src_sampler_offset source,
1138 * then the sampler index is given by sampler_index + sampler_offset.
1139 */
1140 unsigned sampler_index;
1141
1142 /** The sampler deref
1143 *
1144 * If this is null, use sampler_index instead.
1145 */
1146 nir_deref_var *sampler;
1147 } nir_tex_instr;
1148
1149 static inline unsigned
1150 nir_tex_instr_dest_size(nir_tex_instr *instr)
1151 {
1152 switch (instr->op) {
1153 case nir_texop_txs: {
1154 unsigned ret;
1155 switch (instr->sampler_dim) {
1156 case GLSL_SAMPLER_DIM_1D:
1157 case GLSL_SAMPLER_DIM_BUF:
1158 ret = 1;
1159 break;
1160 case GLSL_SAMPLER_DIM_2D:
1161 case GLSL_SAMPLER_DIM_CUBE:
1162 case GLSL_SAMPLER_DIM_MS:
1163 case GLSL_SAMPLER_DIM_RECT:
1164 case GLSL_SAMPLER_DIM_EXTERNAL:
1165 ret = 2;
1166 break;
1167 case GLSL_SAMPLER_DIM_3D:
1168 ret = 3;
1169 break;
1170 default:
1171 unreachable("not reached");
1172 }
1173 if (instr->is_array)
1174 ret++;
1175 return ret;
1176 }
1177
1178 case nir_texop_lod:
1179 return 2;
1180
1181 case nir_texop_texture_samples:
1182 case nir_texop_query_levels:
1183 case nir_texop_samples_identical:
1184 return 1;
1185
1186 default:
1187 if (instr->is_shadow && instr->is_new_style_shadow)
1188 return 1;
1189
1190 return 4;
1191 }
1192 }
1193
1194 /* Returns true if this texture operation queries something about the texture
1195 * rather than actually sampling it.
1196 */
1197 static inline bool
1198 nir_tex_instr_is_query(nir_tex_instr *instr)
1199 {
1200 switch (instr->op) {
1201 case nir_texop_txs:
1202 case nir_texop_lod:
1203 case nir_texop_texture_samples:
1204 case nir_texop_query_levels:
1205 return true;
1206 case nir_texop_tex:
1207 case nir_texop_txb:
1208 case nir_texop_txl:
1209 case nir_texop_txd:
1210 case nir_texop_txf:
1211 case nir_texop_txf_ms:
1212 case nir_texop_tg4:
1213 return false;
1214 default:
1215 unreachable("Invalid texture opcode");
1216 }
1217 }
1218
1219 static inline unsigned
1220 nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src)
1221 {
1222 if (instr->src[src].src_type == nir_tex_src_coord)
1223 return instr->coord_components;
1224
1225
1226 if (instr->src[src].src_type == nir_tex_src_offset ||
1227 instr->src[src].src_type == nir_tex_src_ddx ||
1228 instr->src[src].src_type == nir_tex_src_ddy) {
1229 if (instr->is_array)
1230 return instr->coord_components - 1;
1231 else
1232 return instr->coord_components;
1233 }
1234
1235 return 1;
1236 }
1237
1238 static inline int
1239 nir_tex_instr_src_index(nir_tex_instr *instr, nir_tex_src_type type)
1240 {
1241 for (unsigned i = 0; i < instr->num_srcs; i++)
1242 if (instr->src[i].src_type == type)
1243 return (int) i;
1244
1245 return -1;
1246 }
1247
1248 typedef struct {
1249 union {
1250 float f32[4];
1251 double f64[4];
1252 int32_t i32[4];
1253 uint32_t u32[4];
1254 int64_t i64[4];
1255 uint64_t u64[4];
1256 };
1257 } nir_const_value;
1258
1259 typedef struct {
1260 nir_instr instr;
1261
1262 nir_const_value value;
1263
1264 nir_ssa_def def;
1265 } nir_load_const_instr;
1266
1267 typedef enum {
1268 nir_jump_return,
1269 nir_jump_break,
1270 nir_jump_continue,
1271 } nir_jump_type;
1272
1273 typedef struct {
1274 nir_instr instr;
1275 nir_jump_type type;
1276 } nir_jump_instr;
1277
1278 /* creates a new SSA variable in an undefined state */
1279
1280 typedef struct {
1281 nir_instr instr;
1282 nir_ssa_def def;
1283 } nir_ssa_undef_instr;
1284
1285 typedef struct {
1286 struct exec_node node;
1287
1288 /* The predecessor block corresponding to this source */
1289 struct nir_block *pred;
1290
1291 nir_src src;
1292 } nir_phi_src;
1293
1294 #define nir_foreach_phi_src(phi, entry) \
1295 foreach_list_typed(nir_phi_src, entry, node, &(phi)->srcs)
1296 #define nir_foreach_phi_src_safe(phi, entry) \
1297 foreach_list_typed_safe(nir_phi_src, entry, node, &(phi)->srcs)
1298
1299 typedef struct {
1300 nir_instr instr;
1301
1302 struct exec_list srcs; /** < list of nir_phi_src */
1303
1304 nir_dest dest;
1305 } nir_phi_instr;
1306
1307 typedef struct {
1308 struct exec_node node;
1309 nir_src src;
1310 nir_dest dest;
1311 } nir_parallel_copy_entry;
1312
1313 #define nir_foreach_parallel_copy_entry(pcopy, entry) \
1314 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1315
1316 typedef struct {
1317 nir_instr instr;
1318
1319 /* A list of nir_parallel_copy_entry's. The sources of all of the
1320 * entries are copied to the corresponding destinations "in parallel".
1321 * In other words, if we have two entries: a -> b and b -> a, the values
1322 * get swapped.
1323 */
1324 struct exec_list entries;
1325 } nir_parallel_copy_instr;
1326
1327 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr)
1328 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr)
1329 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr)
1330 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr)
1331 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr)
1332 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr)
1333 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr)
1334 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr)
1335 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1336 nir_parallel_copy_instr, instr)
1337
1338 /*
1339 * Control flow
1340 *
1341 * Control flow consists of a tree of control flow nodes, which include
1342 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1343 * instructions that always run start-to-finish. Each basic block also keeps
1344 * track of its successors (blocks which may run immediately after the current
1345 * block) and predecessors (blocks which could have run immediately before the
1346 * current block). Each function also has a start block and an end block which
1347 * all return statements point to (which is always empty). Together, all the
1348 * blocks with their predecessors and successors make up the control flow
1349 * graph (CFG) of the function. There are helpers that modify the tree of
1350 * control flow nodes while modifying the CFG appropriately; these should be
1351 * used instead of modifying the tree directly.
1352 */
1353
1354 typedef enum {
1355 nir_cf_node_block,
1356 nir_cf_node_if,
1357 nir_cf_node_loop,
1358 nir_cf_node_function
1359 } nir_cf_node_type;
1360
1361 typedef struct nir_cf_node {
1362 struct exec_node node;
1363 nir_cf_node_type type;
1364 struct nir_cf_node *parent;
1365 } nir_cf_node;
1366
1367 typedef struct nir_block {
1368 nir_cf_node cf_node;
1369
1370 struct exec_list instr_list; /** < list of nir_instr */
1371
1372 /** generic block index; generated by nir_index_blocks */
1373 unsigned index;
1374
1375 /*
1376 * Each block can only have up to 2 successors, so we put them in a simple
1377 * array - no need for anything more complicated.
1378 */
1379 struct nir_block *successors[2];
1380
1381 /* Set of nir_block predecessors in the CFG */
1382 struct set *predecessors;
1383
1384 /*
1385 * this node's immediate dominator in the dominance tree - set to NULL for
1386 * the start block.
1387 */
1388 struct nir_block *imm_dom;
1389
1390 /* This node's children in the dominance tree */
1391 unsigned num_dom_children;
1392 struct nir_block **dom_children;
1393
1394 /* Set of nir_block's on the dominance frontier of this block */
1395 struct set *dom_frontier;
1396
1397 /*
1398 * These two indices have the property that dom_{pre,post}_index for each
1399 * child of this block in the dominance tree will always be between
1400 * dom_pre_index and dom_post_index for this block, which makes testing if
1401 * a given block is dominated by another block an O(1) operation.
1402 */
1403 unsigned dom_pre_index, dom_post_index;
1404
1405 /* live in and out for this block; used for liveness analysis */
1406 BITSET_WORD *live_in;
1407 BITSET_WORD *live_out;
1408 } nir_block;
1409
1410 static inline nir_instr *
1411 nir_block_first_instr(nir_block *block)
1412 {
1413 struct exec_node *head = exec_list_get_head(&block->instr_list);
1414 return exec_node_data(nir_instr, head, node);
1415 }
1416
1417 static inline nir_instr *
1418 nir_block_last_instr(nir_block *block)
1419 {
1420 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1421 return exec_node_data(nir_instr, tail, node);
1422 }
1423
1424 #define nir_foreach_instr(block, instr) \
1425 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1426 #define nir_foreach_instr_reverse(block, instr) \
1427 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1428 #define nir_foreach_instr_safe(block, instr) \
1429 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1430 #define nir_foreach_instr_reverse_safe(block, instr) \
1431 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1432
1433 typedef struct nir_if {
1434 nir_cf_node cf_node;
1435 nir_src condition;
1436
1437 struct exec_list then_list; /** < list of nir_cf_node */
1438 struct exec_list else_list; /** < list of nir_cf_node */
1439 } nir_if;
1440
1441 static inline nir_cf_node *
1442 nir_if_first_then_node(nir_if *if_stmt)
1443 {
1444 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1445 return exec_node_data(nir_cf_node, head, node);
1446 }
1447
1448 static inline nir_cf_node *
1449 nir_if_last_then_node(nir_if *if_stmt)
1450 {
1451 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1452 return exec_node_data(nir_cf_node, tail, node);
1453 }
1454
1455 static inline nir_cf_node *
1456 nir_if_first_else_node(nir_if *if_stmt)
1457 {
1458 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1459 return exec_node_data(nir_cf_node, head, node);
1460 }
1461
1462 static inline nir_cf_node *
1463 nir_if_last_else_node(nir_if *if_stmt)
1464 {
1465 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1466 return exec_node_data(nir_cf_node, tail, node);
1467 }
1468
1469 typedef struct {
1470 nir_cf_node cf_node;
1471
1472 struct exec_list body; /** < list of nir_cf_node */
1473 } nir_loop;
1474
1475 static inline nir_cf_node *
1476 nir_loop_first_cf_node(nir_loop *loop)
1477 {
1478 return exec_node_data(nir_cf_node, exec_list_get_head(&loop->body), node);
1479 }
1480
1481 static inline nir_cf_node *
1482 nir_loop_last_cf_node(nir_loop *loop)
1483 {
1484 return exec_node_data(nir_cf_node, exec_list_get_tail(&loop->body), node);
1485 }
1486
1487 /**
1488 * Various bits of metadata that can may be created or required by
1489 * optimization and analysis passes
1490 */
1491 typedef enum {
1492 nir_metadata_none = 0x0,
1493 nir_metadata_block_index = 0x1,
1494 nir_metadata_dominance = 0x2,
1495 nir_metadata_live_ssa_defs = 0x4,
1496 nir_metadata_not_properly_reset = 0x8,
1497 } nir_metadata;
1498
1499 typedef struct {
1500 nir_cf_node cf_node;
1501
1502 /** pointer to the function of which this is an implementation */
1503 struct nir_function *function;
1504
1505 struct exec_list body; /** < list of nir_cf_node */
1506
1507 nir_block *end_block;
1508
1509 /** list for all local variables in the function */
1510 struct exec_list locals;
1511
1512 /** array of variables used as parameters */
1513 unsigned num_params;
1514 nir_variable **params;
1515
1516 /** variable used to hold the result of the function */
1517 nir_variable *return_var;
1518
1519 /** list of local registers in the function */
1520 struct exec_list registers;
1521
1522 /** next available local register index */
1523 unsigned reg_alloc;
1524
1525 /** next available SSA value index */
1526 unsigned ssa_alloc;
1527
1528 /* total number of basic blocks, only valid when block_index_dirty = false */
1529 unsigned num_blocks;
1530
1531 nir_metadata valid_metadata;
1532 } nir_function_impl;
1533
1534 static inline nir_block *
1535 nir_start_block(nir_function_impl *impl)
1536 {
1537 return (nir_block *) exec_list_get_head(&impl->body);
1538 }
1539
1540 static inline nir_cf_node *
1541 nir_cf_node_next(nir_cf_node *node)
1542 {
1543 struct exec_node *next = exec_node_get_next(&node->node);
1544 if (exec_node_is_tail_sentinel(next))
1545 return NULL;
1546 else
1547 return exec_node_data(nir_cf_node, next, node);
1548 }
1549
1550 static inline nir_cf_node *
1551 nir_cf_node_prev(nir_cf_node *node)
1552 {
1553 struct exec_node *prev = exec_node_get_prev(&node->node);
1554 if (exec_node_is_head_sentinel(prev))
1555 return NULL;
1556 else
1557 return exec_node_data(nir_cf_node, prev, node);
1558 }
1559
1560 static inline bool
1561 nir_cf_node_is_first(const nir_cf_node *node)
1562 {
1563 return exec_node_is_head_sentinel(node->node.prev);
1564 }
1565
1566 static inline bool
1567 nir_cf_node_is_last(const nir_cf_node *node)
1568 {
1569 return exec_node_is_tail_sentinel(node->node.next);
1570 }
1571
1572 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node)
1573 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node)
1574 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node)
1575 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node, nir_function_impl, cf_node)
1576
1577 typedef enum {
1578 nir_parameter_in,
1579 nir_parameter_out,
1580 nir_parameter_inout,
1581 } nir_parameter_type;
1582
1583 typedef struct {
1584 nir_parameter_type param_type;
1585 const struct glsl_type *type;
1586 } nir_parameter;
1587
1588 typedef struct nir_function {
1589 struct exec_node node;
1590
1591 const char *name;
1592 struct nir_shader *shader;
1593
1594 unsigned num_params;
1595 nir_parameter *params;
1596 const struct glsl_type *return_type;
1597
1598 /** The implementation of this function.
1599 *
1600 * If the function is only declared and not implemented, this is NULL.
1601 */
1602 nir_function_impl *impl;
1603 } nir_function;
1604
1605 typedef struct nir_shader_compiler_options {
1606 bool lower_fdiv;
1607 bool lower_ffma;
1608 bool lower_flrp;
1609 bool lower_fpow;
1610 bool lower_fsat;
1611 bool lower_fsqrt;
1612 bool lower_fmod;
1613 bool lower_bitfield_extract;
1614 bool lower_bitfield_insert;
1615 bool lower_uadd_carry;
1616 bool lower_usub_borrow;
1617 /** lowers fneg and ineg to fsub and isub. */
1618 bool lower_negate;
1619 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1620 bool lower_sub;
1621
1622 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1623 bool lower_scmp;
1624
1625 /* Does the native fdot instruction replicate its result for four
1626 * components? If so, then opt_algebraic_late will turn all fdotN
1627 * instructions into fdot_replicatedN instructions.
1628 */
1629 bool fdot_replicates;
1630
1631 /** lowers ffract to fsub+ffloor: */
1632 bool lower_ffract;
1633
1634 bool lower_pack_half_2x16;
1635 bool lower_pack_unorm_2x16;
1636 bool lower_pack_snorm_2x16;
1637 bool lower_pack_unorm_4x8;
1638 bool lower_pack_snorm_4x8;
1639 bool lower_unpack_half_2x16;
1640 bool lower_unpack_unorm_2x16;
1641 bool lower_unpack_snorm_2x16;
1642 bool lower_unpack_unorm_4x8;
1643 bool lower_unpack_snorm_4x8;
1644
1645 bool lower_extract_byte;
1646 bool lower_extract_word;
1647
1648 /**
1649 * Does the driver support real 32-bit integers? (Otherwise, integers
1650 * are simulated by floats.)
1651 */
1652 bool native_integers;
1653
1654 /* Indicates that the driver only has zero-based vertex id */
1655 bool vertex_id_zero_based;
1656 } nir_shader_compiler_options;
1657
1658 typedef struct nir_shader_info {
1659 const char *name;
1660
1661 /* Descriptive name provided by the client; may be NULL */
1662 const char *label;
1663
1664 /* Number of textures used by this shader */
1665 unsigned num_textures;
1666 /* Number of uniform buffers used by this shader */
1667 unsigned num_ubos;
1668 /* Number of atomic buffers used by this shader */
1669 unsigned num_abos;
1670 /* Number of shader storage buffers used by this shader */
1671 unsigned num_ssbos;
1672 /* Number of images used by this shader */
1673 unsigned num_images;
1674
1675 /* Which inputs are actually read */
1676 uint64_t inputs_read;
1677 /* Which outputs are actually written */
1678 uint64_t outputs_written;
1679 /* Which system values are actually read */
1680 uint64_t system_values_read;
1681
1682 /* Which patch inputs are actually read */
1683 uint32_t patch_inputs_read;
1684 /* Which patch outputs are actually written */
1685 uint32_t patch_outputs_written;
1686
1687 /* Whether or not this shader ever uses textureGather() */
1688 bool uses_texture_gather;
1689
1690 /* Whether or not this shader uses the gl_ClipDistance output */
1691 bool uses_clip_distance_out;
1692
1693 /* Whether or not separate shader objects were used */
1694 bool separate_shader;
1695
1696 /** Was this shader linked with any transform feedback varyings? */
1697 bool has_transform_feedback_varyings;
1698
1699 union {
1700 struct {
1701 /** The number of vertices recieves per input primitive */
1702 unsigned vertices_in;
1703
1704 /** The output primitive type (GL enum value) */
1705 unsigned output_primitive;
1706
1707 /** The maximum number of vertices the geometry shader might write. */
1708 unsigned vertices_out;
1709
1710 /** 1 .. MAX_GEOMETRY_SHADER_INVOCATIONS */
1711 unsigned invocations;
1712
1713 /** Whether or not this shader uses EndPrimitive */
1714 bool uses_end_primitive;
1715
1716 /** Whether or not this shader uses non-zero streams */
1717 bool uses_streams;
1718 } gs;
1719
1720 struct {
1721 bool uses_discard;
1722
1723 /**
1724 * Whether early fragment tests are enabled as defined by
1725 * ARB_shader_image_load_store.
1726 */
1727 bool early_fragment_tests;
1728
1729 /** gl_FragDepth layout for ARB_conservative_depth. */
1730 enum gl_frag_depth_layout depth_layout;
1731 } fs;
1732
1733 struct {
1734 unsigned local_size[3];
1735 } cs;
1736
1737 struct {
1738 /** The number of vertices in the TCS output patch. */
1739 unsigned vertices_out;
1740 } tcs;
1741 };
1742 } nir_shader_info;
1743
1744 typedef struct nir_shader {
1745 /** list of uniforms (nir_variable) */
1746 struct exec_list uniforms;
1747
1748 /** list of inputs (nir_variable) */
1749 struct exec_list inputs;
1750
1751 /** list of outputs (nir_variable) */
1752 struct exec_list outputs;
1753
1754 /** list of shared compute variables (nir_variable) */
1755 struct exec_list shared;
1756
1757 /** Set of driver-specific options for the shader.
1758 *
1759 * The memory for the options is expected to be kept in a single static
1760 * copy by the driver.
1761 */
1762 const struct nir_shader_compiler_options *options;
1763
1764 /** Various bits of compile-time information about a given shader */
1765 struct nir_shader_info info;
1766
1767 /** list of global variables in the shader (nir_variable) */
1768 struct exec_list globals;
1769
1770 /** list of system value variables in the shader (nir_variable) */
1771 struct exec_list system_values;
1772
1773 struct exec_list functions; /** < list of nir_function */
1774
1775 /** list of global register in the shader */
1776 struct exec_list registers;
1777
1778 /** next available global register index */
1779 unsigned reg_alloc;
1780
1781 /**
1782 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1783 * access plus one
1784 */
1785 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
1786
1787 /** The shader stage, such as MESA_SHADER_VERTEX. */
1788 gl_shader_stage stage;
1789 } nir_shader;
1790
1791 static inline nir_function *
1792 nir_shader_get_entrypoint(nir_shader *shader)
1793 {
1794 assert(exec_list_length(&shader->functions) == 1);
1795 struct exec_node *func_node = exec_list_get_head(&shader->functions);
1796 nir_function *func = exec_node_data(nir_function, func_node, node);
1797 assert(func->return_type == glsl_void_type());
1798 assert(func->num_params == 0);
1799 return func;
1800 }
1801
1802 #define nir_foreach_function(shader, func) \
1803 foreach_list_typed(nir_function, func, node, &(shader)->functions)
1804
1805 nir_shader *nir_shader_create(void *mem_ctx,
1806 gl_shader_stage stage,
1807 const nir_shader_compiler_options *options);
1808
1809 /** creates a register, including assigning it an index and adding it to the list */
1810 nir_register *nir_global_reg_create(nir_shader *shader);
1811
1812 nir_register *nir_local_reg_create(nir_function_impl *impl);
1813
1814 void nir_reg_remove(nir_register *reg);
1815
1816 /** Adds a variable to the appropreate list in nir_shader */
1817 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
1818
1819 static inline void
1820 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
1821 {
1822 assert(var->data.mode == nir_var_local);
1823 exec_list_push_tail(&impl->locals, &var->node);
1824 }
1825
1826 /** creates a variable, sets a few defaults, and adds it to the list */
1827 nir_variable *nir_variable_create(nir_shader *shader,
1828 nir_variable_mode mode,
1829 const struct glsl_type *type,
1830 const char *name);
1831 /** creates a local variable and adds it to the list */
1832 nir_variable *nir_local_variable_create(nir_function_impl *impl,
1833 const struct glsl_type *type,
1834 const char *name);
1835
1836 /** creates a function and adds it to the shader's list of functions */
1837 nir_function *nir_function_create(nir_shader *shader, const char *name);
1838
1839 nir_function_impl *nir_function_impl_create(nir_function *func);
1840 /** creates a function_impl that isn't tied to any particular function */
1841 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
1842
1843 nir_block *nir_block_create(nir_shader *shader);
1844 nir_if *nir_if_create(nir_shader *shader);
1845 nir_loop *nir_loop_create(nir_shader *shader);
1846
1847 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1848
1849 /** requests that the given pieces of metadata be generated */
1850 void nir_metadata_require(nir_function_impl *impl, nir_metadata required);
1851 /** dirties all but the preserved metadata */
1852 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1853
1854 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1855 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
1856
1857 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
1858
1859 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
1860 unsigned num_components);
1861
1862 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
1863 nir_intrinsic_op op);
1864
1865 nir_call_instr *nir_call_instr_create(nir_shader *shader,
1866 nir_function *callee);
1867
1868 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
1869
1870 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
1871
1872 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
1873
1874 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
1875 unsigned num_components);
1876
1877 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1878 nir_deref_array *nir_deref_array_create(void *mem_ctx);
1879 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
1880
1881 nir_deref *nir_copy_deref(void *mem_ctx, nir_deref *deref);
1882
1883 nir_load_const_instr *
1884 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
1885
1886 /**
1887 * NIR Cursors and Instruction Insertion API
1888 * @{
1889 *
1890 * A tiny struct representing a point to insert/extract instructions or
1891 * control flow nodes. Helps reduce the combinatorial explosion of possible
1892 * points to insert/extract.
1893 *
1894 * \sa nir_control_flow.h
1895 */
1896 typedef enum {
1897 nir_cursor_before_block,
1898 nir_cursor_after_block,
1899 nir_cursor_before_instr,
1900 nir_cursor_after_instr,
1901 } nir_cursor_option;
1902
1903 typedef struct {
1904 nir_cursor_option option;
1905 union {
1906 nir_block *block;
1907 nir_instr *instr;
1908 };
1909 } nir_cursor;
1910
1911 static inline nir_block *
1912 nir_cursor_current_block(nir_cursor cursor)
1913 {
1914 if (cursor.option == nir_cursor_before_instr ||
1915 cursor.option == nir_cursor_after_instr) {
1916 return cursor.instr->block;
1917 } else {
1918 return cursor.block;
1919 }
1920 }
1921
1922 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
1923
1924 static inline nir_cursor
1925 nir_before_block(nir_block *block)
1926 {
1927 nir_cursor cursor;
1928 cursor.option = nir_cursor_before_block;
1929 cursor.block = block;
1930 return cursor;
1931 }
1932
1933 static inline nir_cursor
1934 nir_after_block(nir_block *block)
1935 {
1936 nir_cursor cursor;
1937 cursor.option = nir_cursor_after_block;
1938 cursor.block = block;
1939 return cursor;
1940 }
1941
1942 static inline nir_cursor
1943 nir_before_instr(nir_instr *instr)
1944 {
1945 nir_cursor cursor;
1946 cursor.option = nir_cursor_before_instr;
1947 cursor.instr = instr;
1948 return cursor;
1949 }
1950
1951 static inline nir_cursor
1952 nir_after_instr(nir_instr *instr)
1953 {
1954 nir_cursor cursor;
1955 cursor.option = nir_cursor_after_instr;
1956 cursor.instr = instr;
1957 return cursor;
1958 }
1959
1960 static inline nir_cursor
1961 nir_after_block_before_jump(nir_block *block)
1962 {
1963 nir_instr *last_instr = nir_block_last_instr(block);
1964 if (last_instr && last_instr->type == nir_instr_type_jump) {
1965 return nir_before_instr(last_instr);
1966 } else {
1967 return nir_after_block(block);
1968 }
1969 }
1970
1971 static inline nir_cursor
1972 nir_before_cf_node(nir_cf_node *node)
1973 {
1974 if (node->type == nir_cf_node_block)
1975 return nir_before_block(nir_cf_node_as_block(node));
1976
1977 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
1978 }
1979
1980 static inline nir_cursor
1981 nir_after_cf_node(nir_cf_node *node)
1982 {
1983 if (node->type == nir_cf_node_block)
1984 return nir_after_block(nir_cf_node_as_block(node));
1985
1986 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
1987 }
1988
1989 static inline nir_cursor
1990 nir_after_cf_node_and_phis(nir_cf_node *node)
1991 {
1992 if (node->type == nir_cf_node_block)
1993 return nir_after_block(nir_cf_node_as_block(node));
1994
1995 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
1996 assert(block->cf_node.type == nir_cf_node_block);
1997
1998 nir_foreach_instr(block, instr) {
1999 if (instr->type != nir_instr_type_phi)
2000 return nir_before_instr(instr);
2001 }
2002 return nir_after_block(block);
2003 }
2004
2005 static inline nir_cursor
2006 nir_before_cf_list(struct exec_list *cf_list)
2007 {
2008 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2009 exec_list_get_head(cf_list), node);
2010 return nir_before_cf_node(first_node);
2011 }
2012
2013 static inline nir_cursor
2014 nir_after_cf_list(struct exec_list *cf_list)
2015 {
2016 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2017 exec_list_get_tail(cf_list), node);
2018 return nir_after_cf_node(last_node);
2019 }
2020
2021 /**
2022 * Insert a NIR instruction at the given cursor.
2023 *
2024 * Note: This does not update the cursor.
2025 */
2026 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2027
2028 static inline void
2029 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2030 {
2031 nir_instr_insert(nir_before_instr(instr), before);
2032 }
2033
2034 static inline void
2035 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2036 {
2037 nir_instr_insert(nir_after_instr(instr), after);
2038 }
2039
2040 static inline void
2041 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2042 {
2043 nir_instr_insert(nir_before_block(block), before);
2044 }
2045
2046 static inline void
2047 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2048 {
2049 nir_instr_insert(nir_after_block(block), after);
2050 }
2051
2052 static inline void
2053 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2054 {
2055 nir_instr_insert(nir_before_cf_node(node), before);
2056 }
2057
2058 static inline void
2059 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2060 {
2061 nir_instr_insert(nir_after_cf_node(node), after);
2062 }
2063
2064 static inline void
2065 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2066 {
2067 nir_instr_insert(nir_before_cf_list(list), before);
2068 }
2069
2070 static inline void
2071 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2072 {
2073 nir_instr_insert(nir_after_cf_list(list), after);
2074 }
2075
2076 void nir_instr_remove(nir_instr *instr);
2077
2078 /** @} */
2079
2080 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2081 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2082 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2083 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2084 void *state);
2085 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2086 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2087
2088 nir_const_value *nir_src_as_const_value(nir_src src);
2089 bool nir_src_is_dynamically_uniform(nir_src src);
2090 bool nir_srcs_equal(nir_src src1, nir_src src2);
2091 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2092 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2093 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2094 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2095 nir_dest new_dest);
2096
2097 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2098 unsigned num_components, unsigned bit_size,
2099 const char *name);
2100 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2101 unsigned num_components, unsigned bit_size,
2102 const char *name);
2103 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2104 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2105 nir_instr *after_me);
2106
2107 /* visits basic blocks in source-code order */
2108 typedef bool (*nir_foreach_block_cb)(nir_block *block, void *state);
2109 bool nir_foreach_block(nir_function_impl *impl, nir_foreach_block_cb cb,
2110 void *state);
2111 bool nir_foreach_block_reverse(nir_function_impl *impl, nir_foreach_block_cb cb,
2112 void *state);
2113 bool nir_foreach_block_in_cf_node(nir_cf_node *node, nir_foreach_block_cb cb,
2114 void *state);
2115
2116 /* If the following CF node is an if, this function returns that if.
2117 * Otherwise, it returns NULL.
2118 */
2119 nir_if *nir_block_get_following_if(nir_block *block);
2120
2121 nir_loop *nir_block_get_following_loop(nir_block *block);
2122
2123 void nir_index_local_regs(nir_function_impl *impl);
2124 void nir_index_global_regs(nir_shader *shader);
2125 void nir_index_ssa_defs(nir_function_impl *impl);
2126 unsigned nir_index_instrs(nir_function_impl *impl);
2127
2128 void nir_index_blocks(nir_function_impl *impl);
2129
2130 void nir_print_shader(nir_shader *shader, FILE *fp);
2131 void nir_print_instr(const nir_instr *instr, FILE *fp);
2132
2133 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2134 nir_function_impl *nir_function_impl_clone(const nir_function_impl *fi);
2135 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2136 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2137
2138 #ifdef DEBUG
2139 void nir_validate_shader(nir_shader *shader);
2140 void nir_metadata_set_validation_flag(nir_shader *shader);
2141 void nir_metadata_check_validation_flag(nir_shader *shader);
2142
2143 #include "util/debug.h"
2144 static inline bool
2145 should_clone_nir(void)
2146 {
2147 static int should_clone = -1;
2148 if (should_clone < 0)
2149 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2150
2151 return should_clone;
2152 }
2153 #else
2154 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
2155 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2156 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2157 static inline bool should_clone_nir(void) { return false; }
2158 #endif /* DEBUG */
2159
2160 #define _PASS(nir, do_pass) do { \
2161 do_pass \
2162 nir_validate_shader(nir); \
2163 if (should_clone_nir()) { \
2164 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2165 ralloc_free(nir); \
2166 nir = clone; \
2167 } \
2168 } while (0)
2169
2170 #define NIR_PASS(progress, nir, pass, ...) _PASS(nir, \
2171 nir_metadata_set_validation_flag(nir); \
2172 if (pass(nir, ##__VA_ARGS__)) { \
2173 progress = true; \
2174 nir_metadata_check_validation_flag(nir); \
2175 } \
2176 )
2177
2178 #define NIR_PASS_V(nir, pass, ...) _PASS(nir, \
2179 pass(nir, ##__VA_ARGS__); \
2180 )
2181
2182 void nir_calc_dominance_impl(nir_function_impl *impl);
2183 void nir_calc_dominance(nir_shader *shader);
2184
2185 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2186 bool nir_block_dominates(nir_block *parent, nir_block *child);
2187
2188 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2189 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2190
2191 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2192 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2193
2194 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2195 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2196
2197 int nir_gs_count_vertices(const nir_shader *shader);
2198
2199 bool nir_split_var_copies(nir_shader *shader);
2200
2201 bool nir_lower_returns_impl(nir_function_impl *impl);
2202 bool nir_lower_returns(nir_shader *shader);
2203
2204 bool nir_inline_functions(nir_shader *shader);
2205
2206 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, void *mem_ctx);
2207 void nir_lower_var_copies(nir_shader *shader);
2208
2209 bool nir_lower_global_vars_to_local(nir_shader *shader);
2210
2211 bool nir_lower_indirect_derefs(nir_shader *shader, uint32_t mode_mask);
2212
2213 bool nir_lower_locals_to_regs(nir_shader *shader);
2214
2215 void nir_lower_outputs_to_temporaries(nir_shader *shader,
2216 nir_function *entrypoint);
2217
2218 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2219
2220 void nir_assign_var_locations(struct exec_list *var_list,
2221 unsigned *size,
2222 int (*type_size)(const struct glsl_type *));
2223
2224 void nir_lower_io(nir_shader *shader,
2225 nir_variable_mode mode,
2226 int (*type_size)(const struct glsl_type *));
2227 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2228 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2229
2230 void nir_lower_vars_to_ssa(nir_shader *shader);
2231
2232 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode mode);
2233
2234 void nir_move_vec_src_uses_to_dest(nir_shader *shader);
2235 bool nir_lower_vec_to_movs(nir_shader *shader);
2236 void nir_lower_alu_to_scalar(nir_shader *shader);
2237 void nir_lower_load_const_to_scalar(nir_shader *shader);
2238
2239 void nir_lower_phis_to_scalar(nir_shader *shader);
2240
2241 void nir_lower_samplers(nir_shader *shader,
2242 const struct gl_shader_program *shader_program);
2243
2244 bool nir_lower_system_values(nir_shader *shader);
2245
2246 typedef struct nir_lower_tex_options {
2247 /**
2248 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2249 * sampler types a texture projector is lowered.
2250 */
2251 unsigned lower_txp;
2252
2253 /**
2254 * If true, lower rect textures to 2D, using txs to fetch the
2255 * texture dimensions and dividing the texture coords by the
2256 * texture dims to normalize.
2257 */
2258 bool lower_rect;
2259
2260 /**
2261 * To emulate certain texture wrap modes, this can be used
2262 * to saturate the specified tex coord to [0.0, 1.0]. The
2263 * bits are according to sampler #, ie. if, for example:
2264 *
2265 * (conf->saturate_s & (1 << n))
2266 *
2267 * is true, then the s coord for sampler n is saturated.
2268 *
2269 * Note that clamping must happen *after* projector lowering
2270 * so any projected texture sample instruction with a clamped
2271 * coordinate gets automatically lowered, regardless of the
2272 * 'lower_txp' setting.
2273 */
2274 unsigned saturate_s;
2275 unsigned saturate_t;
2276 unsigned saturate_r;
2277
2278 /* Bitmask of textures that need swizzling.
2279 *
2280 * If (swizzle_result & (1 << texture_index)), then the swizzle in
2281 * swizzles[texture_index] is applied to the result of the texturing
2282 * operation.
2283 */
2284 unsigned swizzle_result;
2285
2286 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
2287 * while 4 and 5 represent 0 and 1 respectively.
2288 */
2289 uint8_t swizzles[32][4];
2290 } nir_lower_tex_options;
2291
2292 bool nir_lower_tex(nir_shader *shader,
2293 const nir_lower_tex_options *options);
2294
2295 void nir_lower_idiv(nir_shader *shader);
2296
2297 void nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
2298 void nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
2299
2300 void nir_lower_two_sided_color(nir_shader *shader);
2301
2302 void nir_lower_atomics(nir_shader *shader,
2303 const struct gl_shader_program *shader_program);
2304 void nir_lower_to_source_mods(nir_shader *shader);
2305
2306 bool nir_lower_gs_intrinsics(nir_shader *shader);
2307
2308 bool nir_normalize_cubemap_coords(nir_shader *shader);
2309
2310 void nir_live_ssa_defs_impl(nir_function_impl *impl);
2311 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
2312
2313 void nir_convert_to_ssa_impl(nir_function_impl *impl);
2314 void nir_convert_to_ssa(nir_shader *shader);
2315
2316 bool nir_repair_ssa_impl(nir_function_impl *impl);
2317 bool nir_repair_ssa(nir_shader *shader);
2318
2319 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
2320 * registers. If false, convert all values (even those not involved in a phi
2321 * node) to registers.
2322 */
2323 void nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
2324
2325 bool nir_opt_algebraic(nir_shader *shader);
2326 bool nir_opt_algebraic_late(nir_shader *shader);
2327 bool nir_opt_constant_folding(nir_shader *shader);
2328
2329 bool nir_opt_global_to_local(nir_shader *shader);
2330
2331 bool nir_copy_prop(nir_shader *shader);
2332
2333 bool nir_opt_cse(nir_shader *shader);
2334
2335 bool nir_opt_dce(nir_shader *shader);
2336
2337 bool nir_opt_dead_cf(nir_shader *shader);
2338
2339 void nir_opt_gcm(nir_shader *shader);
2340
2341 bool nir_opt_peephole_select(nir_shader *shader);
2342
2343 bool nir_opt_remove_phis(nir_shader *shader);
2344
2345 bool nir_opt_undef(nir_shader *shader);
2346
2347 void nir_sweep(nir_shader *shader);
2348
2349 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
2350 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
2351
2352 #ifdef __cplusplus
2353 } /* extern "C" */
2354 #endif