nir: Add nir_lower_tex options to lower sampler return formats.
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitscan.h"
38 #include "util/bitset.h"
39 #include "util/macros.h"
40 #include "compiler/nir_types.h"
41 #include "compiler/shader_enums.h"
42 #include "compiler/shader_info.h"
43 #include <stdio.h>
44
45 #ifndef NDEBUG
46 #include "util/debug.h"
47 #endif /* NDEBUG */
48
49 #include "nir_opcodes.h"
50
51 #if defined(_WIN32) && !defined(snprintf)
52 #define snprintf _snprintf
53 #endif
54
55 #ifdef __cplusplus
56 extern "C" {
57 #endif
58
59 #define NIR_FALSE 0u
60 #define NIR_TRUE (~0u)
61 #define NIR_MAX_VEC_COMPONENTS 4
62 typedef uint8_t nir_component_mask_t;
63
64 /** Defines a cast function
65 *
66 * This macro defines a cast function from in_type to out_type where
67 * out_type is some structure type that contains a field of type out_type.
68 *
69 * Note that you have to be a bit careful as the generated cast function
70 * destroys constness.
71 */
72 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
73 type_field, type_value) \
74 static inline out_type * \
75 name(const in_type *parent) \
76 { \
77 assert(parent && parent->type_field == type_value); \
78 return exec_node_data(out_type, parent, field); \
79 }
80
81 struct nir_function;
82 struct nir_shader;
83 struct nir_instr;
84 struct nir_builder;
85
86
87 /**
88 * Description of built-in state associated with a uniform
89 *
90 * \sa nir_variable::state_slots
91 */
92 typedef struct {
93 gl_state_index16 tokens[STATE_LENGTH];
94 int swizzle;
95 } nir_state_slot;
96
97 typedef enum {
98 nir_var_shader_in = (1 << 0),
99 nir_var_shader_out = (1 << 1),
100 nir_var_global = (1 << 2),
101 nir_var_local = (1 << 3),
102 nir_var_uniform = (1 << 4),
103 nir_var_shader_storage = (1 << 5),
104 nir_var_system_value = (1 << 6),
105 nir_var_shared = (1 << 8),
106 nir_var_all = ~0,
107 } nir_variable_mode;
108
109 /**
110 * Rounding modes.
111 */
112 typedef enum {
113 nir_rounding_mode_undef = 0,
114 nir_rounding_mode_rtne = 1, /* round to nearest even */
115 nir_rounding_mode_ru = 2, /* round up */
116 nir_rounding_mode_rd = 3, /* round down */
117 nir_rounding_mode_rtz = 4, /* round towards zero */
118 } nir_rounding_mode;
119
120 typedef union {
121 bool b[NIR_MAX_VEC_COMPONENTS];
122 float f32[NIR_MAX_VEC_COMPONENTS];
123 double f64[NIR_MAX_VEC_COMPONENTS];
124 int8_t i8[NIR_MAX_VEC_COMPONENTS];
125 uint8_t u8[NIR_MAX_VEC_COMPONENTS];
126 int16_t i16[NIR_MAX_VEC_COMPONENTS];
127 uint16_t u16[NIR_MAX_VEC_COMPONENTS];
128 int32_t i32[NIR_MAX_VEC_COMPONENTS];
129 uint32_t u32[NIR_MAX_VEC_COMPONENTS];
130 int64_t i64[NIR_MAX_VEC_COMPONENTS];
131 uint64_t u64[NIR_MAX_VEC_COMPONENTS];
132 } nir_const_value;
133
134 typedef struct nir_constant {
135 /**
136 * Value of the constant.
137 *
138 * The field used to back the values supplied by the constant is determined
139 * by the type associated with the \c nir_variable. Constants may be
140 * scalars, vectors, or matrices.
141 */
142 nir_const_value values[NIR_MAX_VEC_COMPONENTS];
143
144 /* we could get this from the var->type but makes clone *much* easier to
145 * not have to care about the type.
146 */
147 unsigned num_elements;
148
149 /* Array elements / Structure Fields */
150 struct nir_constant **elements;
151 } nir_constant;
152
153 /**
154 * \brief Layout qualifiers for gl_FragDepth.
155 *
156 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
157 * with a layout qualifier.
158 */
159 typedef enum {
160 nir_depth_layout_none, /**< No depth layout is specified. */
161 nir_depth_layout_any,
162 nir_depth_layout_greater,
163 nir_depth_layout_less,
164 nir_depth_layout_unchanged
165 } nir_depth_layout;
166
167 /**
168 * Enum keeping track of how a variable was declared.
169 */
170 typedef enum {
171 /**
172 * Normal declaration.
173 */
174 nir_var_declared_normally = 0,
175
176 /**
177 * Variable is implicitly generated by the compiler and should not be
178 * visible via the API.
179 */
180 nir_var_hidden,
181 } nir_var_declaration_type;
182
183 /**
184 * Either a uniform, global variable, shader input, or shader output. Based on
185 * ir_variable - it should be easy to translate between the two.
186 */
187
188 typedef struct nir_variable {
189 struct exec_node node;
190
191 /**
192 * Declared type of the variable
193 */
194 const struct glsl_type *type;
195
196 /**
197 * Declared name of the variable
198 */
199 char *name;
200
201 struct nir_variable_data {
202 /**
203 * Storage class of the variable.
204 *
205 * \sa nir_variable_mode
206 */
207 nir_variable_mode mode;
208
209 /**
210 * Is the variable read-only?
211 *
212 * This is set for variables declared as \c const, shader inputs,
213 * and uniforms.
214 */
215 unsigned read_only:1;
216 unsigned centroid:1;
217 unsigned sample:1;
218 unsigned patch:1;
219 unsigned invariant:1;
220
221 /**
222 * When separate shader programs are enabled, only input/outputs between
223 * the stages of a multi-stage separate program can be safely removed
224 * from the shader interface. Other input/outputs must remains active.
225 *
226 * This is also used to make sure xfb varyings that are unused by the
227 * fragment shader are not removed.
228 */
229 unsigned always_active_io:1;
230
231 /**
232 * Interpolation mode for shader inputs / outputs
233 *
234 * \sa glsl_interp_mode
235 */
236 unsigned interpolation:2;
237
238 /**
239 * \name ARB_fragment_coord_conventions
240 * @{
241 */
242 unsigned origin_upper_left:1;
243 unsigned pixel_center_integer:1;
244 /*@}*/
245
246 /**
247 * If non-zero, then this variable may be packed along with other variables
248 * into a single varying slot, so this offset should be applied when
249 * accessing components. For example, an offset of 1 means that the x
250 * component of this variable is actually stored in component y of the
251 * location specified by \c location.
252 */
253 unsigned location_frac:2;
254
255 /**
256 * If true, this variable represents an array of scalars that should
257 * be tightly packed. In other words, consecutive array elements
258 * should be stored one component apart, rather than one slot apart.
259 */
260 unsigned compact:1;
261
262 /**
263 * Whether this is a fragment shader output implicitly initialized with
264 * the previous contents of the specified render target at the
265 * framebuffer location corresponding to this shader invocation.
266 */
267 unsigned fb_fetch_output:1;
268
269 /**
270 * Non-zero if this variable is considered bindless as defined by
271 * ARB_bindless_texture.
272 */
273 unsigned bindless:1;
274
275 /**
276 * Was an explicit binding set in the shader?
277 */
278 unsigned explicit_binding:1;
279
280 /**
281 * Was a transfer feedback buffer set in the shader?
282 */
283 unsigned explicit_xfb_buffer:1;
284
285 /**
286 * Was a transfer feedback stride set in the shader?
287 */
288 unsigned explicit_xfb_stride:1;
289
290 /**
291 * Was an explicit offset set in the shader?
292 */
293 unsigned explicit_offset:1;
294
295 /**
296 * \brief Layout qualifier for gl_FragDepth.
297 *
298 * This is not equal to \c ir_depth_layout_none if and only if this
299 * variable is \c gl_FragDepth and a layout qualifier is specified.
300 */
301 nir_depth_layout depth_layout;
302
303 /**
304 * Storage location of the base of this variable
305 *
306 * The precise meaning of this field depends on the nature of the variable.
307 *
308 * - Vertex shader input: one of the values from \c gl_vert_attrib.
309 * - Vertex shader output: one of the values from \c gl_varying_slot.
310 * - Geometry shader input: one of the values from \c gl_varying_slot.
311 * - Geometry shader output: one of the values from \c gl_varying_slot.
312 * - Fragment shader input: one of the values from \c gl_varying_slot.
313 * - Fragment shader output: one of the values from \c gl_frag_result.
314 * - Uniforms: Per-stage uniform slot number for default uniform block.
315 * - Uniforms: Index within the uniform block definition for UBO members.
316 * - Non-UBO Uniforms: uniform slot number.
317 * - Other: This field is not currently used.
318 *
319 * If the variable is a uniform, shader input, or shader output, and the
320 * slot has not been assigned, the value will be -1.
321 */
322 int location;
323
324 /**
325 * The actual location of the variable in the IR. Only valid for inputs
326 * and outputs.
327 */
328 unsigned int driver_location;
329
330 /**
331 * Vertex stream output identifier.
332 *
333 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
334 * stream of the i-th component.
335 */
336 unsigned stream;
337
338 /**
339 * output index for dual source blending.
340 */
341 int index;
342
343 /**
344 * Descriptor set binding for sampler or UBO.
345 */
346 int descriptor_set;
347
348 /**
349 * Initial binding point for a sampler or UBO.
350 *
351 * For array types, this represents the binding point for the first element.
352 */
353 int binding;
354
355 /**
356 * Location an atomic counter or transform feedback is stored at.
357 */
358 unsigned offset;
359
360 /**
361 * Transform feedback buffer.
362 */
363 unsigned xfb_buffer;
364
365 /**
366 * Transform feedback stride.
367 */
368 unsigned xfb_stride;
369
370 /**
371 * How the variable was declared. See nir_var_declaration_type.
372 *
373 * This is used to detect variables generated by the compiler, so should
374 * not be visible via the API.
375 */
376 unsigned how_declared:2;
377
378 /**
379 * ARB_shader_image_load_store qualifiers.
380 */
381 struct {
382 enum gl_access_qualifier access;
383
384 /** Image internal format if specified explicitly, otherwise GL_NONE. */
385 GLenum format;
386 } image;
387 } data;
388
389 /**
390 * Built-in state that backs this uniform
391 *
392 * Once set at variable creation, \c state_slots must remain invariant.
393 * This is because, ideally, this array would be shared by all clones of
394 * this variable in the IR tree. In other words, we'd really like for it
395 * to be a fly-weight.
396 *
397 * If the variable is not a uniform, \c num_state_slots will be zero and
398 * \c state_slots will be \c NULL.
399 */
400 /*@{*/
401 unsigned num_state_slots; /**< Number of state slots used */
402 nir_state_slot *state_slots; /**< State descriptors. */
403 /*@}*/
404
405 /**
406 * Constant expression assigned in the initializer of the variable
407 *
408 * This field should only be used temporarily by creators of NIR shaders
409 * and then lower_constant_initializers can be used to get rid of them.
410 * Most of the rest of NIR ignores this field or asserts that it's NULL.
411 */
412 nir_constant *constant_initializer;
413
414 /**
415 * For variables that are in an interface block or are an instance of an
416 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
417 *
418 * \sa ir_variable::location
419 */
420 const struct glsl_type *interface_type;
421
422 /**
423 * Description of per-member data for per-member struct variables
424 *
425 * This is used for variables which are actually an amalgamation of
426 * multiple entities such as a struct of built-in values or a struct of
427 * inputs each with their own layout specifier. This is only allowed on
428 * variables with a struct or array of array of struct type.
429 */
430 unsigned num_members;
431 struct nir_variable_data *members;
432 } nir_variable;
433
434 #define nir_foreach_variable(var, var_list) \
435 foreach_list_typed(nir_variable, var, node, var_list)
436
437 #define nir_foreach_variable_safe(var, var_list) \
438 foreach_list_typed_safe(nir_variable, var, node, var_list)
439
440 static inline bool
441 nir_variable_is_global(const nir_variable *var)
442 {
443 return var->data.mode != nir_var_local;
444 }
445
446 typedef struct nir_register {
447 struct exec_node node;
448
449 unsigned num_components; /** < number of vector components */
450 unsigned num_array_elems; /** < size of array (0 for no array) */
451
452 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
453 uint8_t bit_size;
454
455 /** generic register index. */
456 unsigned index;
457
458 /** only for debug purposes, can be NULL */
459 const char *name;
460
461 /** whether this register is local (per-function) or global (per-shader) */
462 bool is_global;
463
464 /**
465 * If this flag is set to true, then accessing channels >= num_components
466 * is well-defined, and simply spills over to the next array element. This
467 * is useful for backends that can do per-component accessing, in
468 * particular scalar backends. By setting this flag and making
469 * num_components equal to 1, structures can be packed tightly into
470 * registers and then registers can be accessed per-component to get to
471 * each structure member, even if it crosses vec4 boundaries.
472 */
473 bool is_packed;
474
475 /** set of nir_srcs where this register is used (read from) */
476 struct list_head uses;
477
478 /** set of nir_dests where this register is defined (written to) */
479 struct list_head defs;
480
481 /** set of nir_ifs where this register is used as a condition */
482 struct list_head if_uses;
483 } nir_register;
484
485 #define nir_foreach_register(reg, reg_list) \
486 foreach_list_typed(nir_register, reg, node, reg_list)
487 #define nir_foreach_register_safe(reg, reg_list) \
488 foreach_list_typed_safe(nir_register, reg, node, reg_list)
489
490 typedef enum PACKED {
491 nir_instr_type_alu,
492 nir_instr_type_deref,
493 nir_instr_type_call,
494 nir_instr_type_tex,
495 nir_instr_type_intrinsic,
496 nir_instr_type_load_const,
497 nir_instr_type_jump,
498 nir_instr_type_ssa_undef,
499 nir_instr_type_phi,
500 nir_instr_type_parallel_copy,
501 } nir_instr_type;
502
503 typedef struct nir_instr {
504 struct exec_node node;
505 struct nir_block *block;
506 nir_instr_type type;
507
508 /* A temporary for optimization and analysis passes to use for storing
509 * flags. For instance, DCE uses this to store the "dead/live" info.
510 */
511 uint8_t pass_flags;
512
513 /** generic instruction index. */
514 unsigned index;
515 } nir_instr;
516
517 static inline nir_instr *
518 nir_instr_next(nir_instr *instr)
519 {
520 struct exec_node *next = exec_node_get_next(&instr->node);
521 if (exec_node_is_tail_sentinel(next))
522 return NULL;
523 else
524 return exec_node_data(nir_instr, next, node);
525 }
526
527 static inline nir_instr *
528 nir_instr_prev(nir_instr *instr)
529 {
530 struct exec_node *prev = exec_node_get_prev(&instr->node);
531 if (exec_node_is_head_sentinel(prev))
532 return NULL;
533 else
534 return exec_node_data(nir_instr, prev, node);
535 }
536
537 static inline bool
538 nir_instr_is_first(const nir_instr *instr)
539 {
540 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
541 }
542
543 static inline bool
544 nir_instr_is_last(const nir_instr *instr)
545 {
546 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
547 }
548
549 typedef struct nir_ssa_def {
550 /** for debugging only, can be NULL */
551 const char* name;
552
553 /** generic SSA definition index. */
554 unsigned index;
555
556 /** Index into the live_in and live_out bitfields */
557 unsigned live_index;
558
559 /** Instruction which produces this SSA value. */
560 nir_instr *parent_instr;
561
562 /** set of nir_instrs where this register is used (read from) */
563 struct list_head uses;
564
565 /** set of nir_ifs where this register is used as a condition */
566 struct list_head if_uses;
567
568 uint8_t num_components;
569
570 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
571 uint8_t bit_size;
572 } nir_ssa_def;
573
574 struct nir_src;
575
576 typedef struct {
577 nir_register *reg;
578 struct nir_src *indirect; /** < NULL for no indirect offset */
579 unsigned base_offset;
580
581 /* TODO use-def chain goes here */
582 } nir_reg_src;
583
584 typedef struct {
585 nir_instr *parent_instr;
586 struct list_head def_link;
587
588 nir_register *reg;
589 struct nir_src *indirect; /** < NULL for no indirect offset */
590 unsigned base_offset;
591
592 /* TODO def-use chain goes here */
593 } nir_reg_dest;
594
595 struct nir_if;
596
597 typedef struct nir_src {
598 union {
599 /** Instruction that consumes this value as a source. */
600 nir_instr *parent_instr;
601 struct nir_if *parent_if;
602 };
603
604 struct list_head use_link;
605
606 union {
607 nir_reg_src reg;
608 nir_ssa_def *ssa;
609 };
610
611 bool is_ssa;
612 } nir_src;
613
614 static inline nir_src
615 nir_src_init(void)
616 {
617 nir_src src = { { NULL } };
618 return src;
619 }
620
621 #define NIR_SRC_INIT nir_src_init()
622
623 #define nir_foreach_use(src, reg_or_ssa_def) \
624 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
625
626 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
627 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
628
629 #define nir_foreach_if_use(src, reg_or_ssa_def) \
630 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
631
632 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
633 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
634
635 typedef struct {
636 union {
637 nir_reg_dest reg;
638 nir_ssa_def ssa;
639 };
640
641 bool is_ssa;
642 } nir_dest;
643
644 static inline nir_dest
645 nir_dest_init(void)
646 {
647 nir_dest dest = { { { NULL } } };
648 return dest;
649 }
650
651 #define NIR_DEST_INIT nir_dest_init()
652
653 #define nir_foreach_def(dest, reg) \
654 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
655
656 #define nir_foreach_def_safe(dest, reg) \
657 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
658
659 static inline nir_src
660 nir_src_for_ssa(nir_ssa_def *def)
661 {
662 nir_src src = NIR_SRC_INIT;
663
664 src.is_ssa = true;
665 src.ssa = def;
666
667 return src;
668 }
669
670 static inline nir_src
671 nir_src_for_reg(nir_register *reg)
672 {
673 nir_src src = NIR_SRC_INIT;
674
675 src.is_ssa = false;
676 src.reg.reg = reg;
677 src.reg.indirect = NULL;
678 src.reg.base_offset = 0;
679
680 return src;
681 }
682
683 static inline nir_dest
684 nir_dest_for_reg(nir_register *reg)
685 {
686 nir_dest dest = NIR_DEST_INIT;
687
688 dest.reg.reg = reg;
689
690 return dest;
691 }
692
693 static inline unsigned
694 nir_src_bit_size(nir_src src)
695 {
696 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
697 }
698
699 static inline unsigned
700 nir_src_num_components(nir_src src)
701 {
702 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
703 }
704
705 static inline bool
706 nir_src_is_const(nir_src src)
707 {
708 return src.is_ssa &&
709 src.ssa->parent_instr->type == nir_instr_type_load_const;
710 }
711
712 int64_t nir_src_as_int(nir_src src);
713 uint64_t nir_src_as_uint(nir_src src);
714 bool nir_src_as_bool(nir_src src);
715 double nir_src_as_float(nir_src src);
716 int64_t nir_src_comp_as_int(nir_src src, unsigned component);
717 uint64_t nir_src_comp_as_uint(nir_src src, unsigned component);
718 bool nir_src_comp_as_bool(nir_src src, unsigned component);
719 double nir_src_comp_as_float(nir_src src, unsigned component);
720
721 static inline unsigned
722 nir_dest_bit_size(nir_dest dest)
723 {
724 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
725 }
726
727 static inline unsigned
728 nir_dest_num_components(nir_dest dest)
729 {
730 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
731 }
732
733 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
734 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
735
736 typedef struct {
737 nir_src src;
738
739 /**
740 * \name input modifiers
741 */
742 /*@{*/
743 /**
744 * For inputs interpreted as floating point, flips the sign bit. For
745 * inputs interpreted as integers, performs the two's complement negation.
746 */
747 bool negate;
748
749 /**
750 * Clears the sign bit for floating point values, and computes the integer
751 * absolute value for integers. Note that the negate modifier acts after
752 * the absolute value modifier, therefore if both are set then all inputs
753 * will become negative.
754 */
755 bool abs;
756 /*@}*/
757
758 /**
759 * For each input component, says which component of the register it is
760 * chosen from. Note that which elements of the swizzle are used and which
761 * are ignored are based on the write mask for most opcodes - for example,
762 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
763 * a swizzle of {2, x, 1, 0} where x means "don't care."
764 */
765 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
766 } nir_alu_src;
767
768 typedef struct {
769 nir_dest dest;
770
771 /**
772 * \name saturate output modifier
773 *
774 * Only valid for opcodes that output floating-point numbers. Clamps the
775 * output to between 0.0 and 1.0 inclusive.
776 */
777
778 bool saturate;
779
780 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
781 } nir_alu_dest;
782
783 /** NIR sized and unsized types
784 *
785 * The values in this enum are carefully chosen so that the sized type is
786 * just the unsized type OR the number of bits.
787 */
788 typedef enum {
789 nir_type_invalid = 0, /* Not a valid type */
790 nir_type_int = 2,
791 nir_type_uint = 4,
792 nir_type_bool = 6,
793 nir_type_float = 128,
794 nir_type_bool1 = 1 | nir_type_bool,
795 nir_type_bool32 = 32 | nir_type_bool,
796 nir_type_int1 = 1 | nir_type_int,
797 nir_type_int8 = 8 | nir_type_int,
798 nir_type_int16 = 16 | nir_type_int,
799 nir_type_int32 = 32 | nir_type_int,
800 nir_type_int64 = 64 | nir_type_int,
801 nir_type_uint1 = 1 | nir_type_uint,
802 nir_type_uint8 = 8 | nir_type_uint,
803 nir_type_uint16 = 16 | nir_type_uint,
804 nir_type_uint32 = 32 | nir_type_uint,
805 nir_type_uint64 = 64 | nir_type_uint,
806 nir_type_float16 = 16 | nir_type_float,
807 nir_type_float32 = 32 | nir_type_float,
808 nir_type_float64 = 64 | nir_type_float,
809 } nir_alu_type;
810
811 #define NIR_ALU_TYPE_SIZE_MASK 0x79
812 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
813
814 static inline unsigned
815 nir_alu_type_get_type_size(nir_alu_type type)
816 {
817 return type & NIR_ALU_TYPE_SIZE_MASK;
818 }
819
820 static inline unsigned
821 nir_alu_type_get_base_type(nir_alu_type type)
822 {
823 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
824 }
825
826 static inline nir_alu_type
827 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
828 {
829 switch (base_type) {
830 case GLSL_TYPE_BOOL:
831 return nir_type_bool1;
832 break;
833 case GLSL_TYPE_UINT:
834 return nir_type_uint32;
835 break;
836 case GLSL_TYPE_INT:
837 return nir_type_int32;
838 break;
839 case GLSL_TYPE_UINT16:
840 return nir_type_uint16;
841 break;
842 case GLSL_TYPE_INT16:
843 return nir_type_int16;
844 break;
845 case GLSL_TYPE_UINT8:
846 return nir_type_uint8;
847 case GLSL_TYPE_INT8:
848 return nir_type_int8;
849 case GLSL_TYPE_UINT64:
850 return nir_type_uint64;
851 break;
852 case GLSL_TYPE_INT64:
853 return nir_type_int64;
854 break;
855 case GLSL_TYPE_FLOAT:
856 return nir_type_float32;
857 break;
858 case GLSL_TYPE_FLOAT16:
859 return nir_type_float16;
860 break;
861 case GLSL_TYPE_DOUBLE:
862 return nir_type_float64;
863 break;
864 default:
865 unreachable("unknown type");
866 }
867 }
868
869 static inline nir_alu_type
870 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
871 {
872 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
873 }
874
875 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
876 nir_rounding_mode rnd);
877
878 typedef enum {
879 NIR_OP_IS_COMMUTATIVE = (1 << 0),
880 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
881 } nir_op_algebraic_property;
882
883 typedef struct {
884 const char *name;
885
886 unsigned num_inputs;
887
888 /**
889 * The number of components in the output
890 *
891 * If non-zero, this is the size of the output and input sizes are
892 * explicitly given; swizzle and writemask are still in effect, but if
893 * the output component is masked out, then the input component may
894 * still be in use.
895 *
896 * If zero, the opcode acts in the standard, per-component manner; the
897 * operation is performed on each component (except the ones that are
898 * masked out) with the input being taken from the input swizzle for
899 * that component.
900 *
901 * The size of some of the inputs may be given (i.e. non-zero) even
902 * though output_size is zero; in that case, the inputs with a zero
903 * size act per-component, while the inputs with non-zero size don't.
904 */
905 unsigned output_size;
906
907 /**
908 * The type of vector that the instruction outputs. Note that the
909 * staurate modifier is only allowed on outputs with the float type.
910 */
911
912 nir_alu_type output_type;
913
914 /**
915 * The number of components in each input
916 */
917 unsigned input_sizes[NIR_MAX_VEC_COMPONENTS];
918
919 /**
920 * The type of vector that each input takes. Note that negate and
921 * absolute value are only allowed on inputs with int or float type and
922 * behave differently on the two.
923 */
924 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
925
926 nir_op_algebraic_property algebraic_properties;
927 } nir_op_info;
928
929 extern const nir_op_info nir_op_infos[nir_num_opcodes];
930
931 typedef struct nir_alu_instr {
932 nir_instr instr;
933 nir_op op;
934
935 /** Indicates that this ALU instruction generates an exact value
936 *
937 * This is kind of a mixture of GLSL "precise" and "invariant" and not
938 * really equivalent to either. This indicates that the value generated by
939 * this operation is high-precision and any code transformations that touch
940 * it must ensure that the resulting value is bit-for-bit identical to the
941 * original.
942 */
943 bool exact;
944
945 nir_alu_dest dest;
946 nir_alu_src src[];
947 } nir_alu_instr;
948
949 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
950 nir_alu_instr *instr);
951 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
952 nir_alu_instr *instr);
953
954 /* is this source channel used? */
955 static inline bool
956 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
957 unsigned channel)
958 {
959 if (nir_op_infos[instr->op].input_sizes[src] > 0)
960 return channel < nir_op_infos[instr->op].input_sizes[src];
961
962 return (instr->dest.write_mask >> channel) & 1;
963 }
964
965 static inline nir_component_mask_t
966 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
967 {
968 nir_component_mask_t read_mask = 0;
969 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
970 if (!nir_alu_instr_channel_used(instr, src, c))
971 continue;
972
973 read_mask |= (1 << instr->src[src].swizzle[c]);
974 }
975 return read_mask;
976 }
977
978 /*
979 * For instructions whose destinations are SSA, get the number of channels
980 * used for a source
981 */
982 static inline unsigned
983 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
984 {
985 assert(instr->dest.dest.is_ssa);
986
987 if (nir_op_infos[instr->op].input_sizes[src] > 0)
988 return nir_op_infos[instr->op].input_sizes[src];
989
990 return instr->dest.dest.ssa.num_components;
991 }
992
993 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
994 unsigned src1, unsigned src2);
995
996 typedef enum {
997 nir_deref_type_var,
998 nir_deref_type_array,
999 nir_deref_type_array_wildcard,
1000 nir_deref_type_struct,
1001 nir_deref_type_cast,
1002 } nir_deref_type;
1003
1004 typedef struct {
1005 nir_instr instr;
1006
1007 /** The type of this deref instruction */
1008 nir_deref_type deref_type;
1009
1010 /** The mode of the underlying variable */
1011 nir_variable_mode mode;
1012
1013 /** The dereferenced type of the resulting pointer value */
1014 const struct glsl_type *type;
1015
1016 union {
1017 /** Variable being dereferenced if deref_type is a deref_var */
1018 nir_variable *var;
1019
1020 /** Parent deref if deref_type is not deref_var */
1021 nir_src parent;
1022 };
1023
1024 /** Additional deref parameters */
1025 union {
1026 struct {
1027 nir_src index;
1028 } arr;
1029
1030 struct {
1031 unsigned index;
1032 } strct;
1033 };
1034
1035 /** Destination to store the resulting "pointer" */
1036 nir_dest dest;
1037 } nir_deref_instr;
1038
1039 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
1040 type, nir_instr_type_deref)
1041
1042 static inline nir_deref_instr *
1043 nir_src_as_deref(nir_src src)
1044 {
1045 if (!src.is_ssa)
1046 return NULL;
1047
1048 if (src.ssa->parent_instr->type != nir_instr_type_deref)
1049 return NULL;
1050
1051 return nir_instr_as_deref(src.ssa->parent_instr);
1052 }
1053
1054 static inline nir_deref_instr *
1055 nir_deref_instr_parent(const nir_deref_instr *instr)
1056 {
1057 if (instr->deref_type == nir_deref_type_var)
1058 return NULL;
1059 else
1060 return nir_src_as_deref(instr->parent);
1061 }
1062
1063 static inline nir_variable *
1064 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1065 {
1066 while (instr->deref_type != nir_deref_type_var) {
1067 if (instr->deref_type == nir_deref_type_cast)
1068 return NULL;
1069
1070 instr = nir_deref_instr_parent(instr);
1071 }
1072
1073 return instr->var;
1074 }
1075
1076 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1077
1078 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1079
1080 typedef struct {
1081 nir_instr instr;
1082
1083 struct nir_function *callee;
1084
1085 unsigned num_params;
1086 nir_src params[];
1087 } nir_call_instr;
1088
1089 #include "nir_intrinsics.h"
1090
1091 #define NIR_INTRINSIC_MAX_CONST_INDEX 4
1092
1093 /** Represents an intrinsic
1094 *
1095 * An intrinsic is an instruction type for handling things that are
1096 * more-or-less regular operations but don't just consume and produce SSA
1097 * values like ALU operations do. Intrinsics are not for things that have
1098 * special semantic meaning such as phi nodes and parallel copies.
1099 * Examples of intrinsics include variable load/store operations, system
1100 * value loads, and the like. Even though texturing more-or-less falls
1101 * under this category, texturing is its own instruction type because
1102 * trying to represent texturing with intrinsics would lead to a
1103 * combinatorial explosion of intrinsic opcodes.
1104 *
1105 * By having a single instruction type for handling a lot of different
1106 * cases, optimization passes can look for intrinsics and, for the most
1107 * part, completely ignore them. Each intrinsic type also has a few
1108 * possible flags that govern whether or not they can be reordered or
1109 * eliminated. That way passes like dead code elimination can still work
1110 * on intrisics without understanding the meaning of each.
1111 *
1112 * Each intrinsic has some number of constant indices, some number of
1113 * variables, and some number of sources. What these sources, variables,
1114 * and indices mean depends on the intrinsic and is documented with the
1115 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1116 * instructions are the only types of instruction that can operate on
1117 * variables.
1118 */
1119 typedef struct {
1120 nir_instr instr;
1121
1122 nir_intrinsic_op intrinsic;
1123
1124 nir_dest dest;
1125
1126 /** number of components if this is a vectorized intrinsic
1127 *
1128 * Similarly to ALU operations, some intrinsics are vectorized.
1129 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1130 * For vectorized intrinsics, the num_components field specifies the
1131 * number of destination components and the number of source components
1132 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1133 */
1134 uint8_t num_components;
1135
1136 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1137
1138 nir_src src[];
1139 } nir_intrinsic_instr;
1140
1141 static inline nir_variable *
1142 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1143 {
1144 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1145 }
1146
1147 /**
1148 * \name NIR intrinsics semantic flags
1149 *
1150 * information about what the compiler can do with the intrinsics.
1151 *
1152 * \sa nir_intrinsic_info::flags
1153 */
1154 typedef enum {
1155 /**
1156 * whether the intrinsic can be safely eliminated if none of its output
1157 * value is not being used.
1158 */
1159 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1160
1161 /**
1162 * Whether the intrinsic can be reordered with respect to any other
1163 * intrinsic, i.e. whether the only reordering dependencies of the
1164 * intrinsic are due to the register reads/writes.
1165 */
1166 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1167 } nir_intrinsic_semantic_flag;
1168
1169 /**
1170 * \name NIR intrinsics const-index flag
1171 *
1172 * Indicates the usage of a const_index slot.
1173 *
1174 * \sa nir_intrinsic_info::index_map
1175 */
1176 typedef enum {
1177 /**
1178 * Generally instructions that take a offset src argument, can encode
1179 * a constant 'base' value which is added to the offset.
1180 */
1181 NIR_INTRINSIC_BASE = 1,
1182
1183 /**
1184 * For store instructions, a writemask for the store.
1185 */
1186 NIR_INTRINSIC_WRMASK = 2,
1187
1188 /**
1189 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1190 */
1191 NIR_INTRINSIC_STREAM_ID = 3,
1192
1193 /**
1194 * The clip-plane id for load_user_clip_plane intrinsic.
1195 */
1196 NIR_INTRINSIC_UCP_ID = 4,
1197
1198 /**
1199 * The amount of data, starting from BASE, that this instruction may
1200 * access. This is used to provide bounds if the offset is not constant.
1201 */
1202 NIR_INTRINSIC_RANGE = 5,
1203
1204 /**
1205 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1206 */
1207 NIR_INTRINSIC_DESC_SET = 6,
1208
1209 /**
1210 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1211 */
1212 NIR_INTRINSIC_BINDING = 7,
1213
1214 /**
1215 * Component offset.
1216 */
1217 NIR_INTRINSIC_COMPONENT = 8,
1218
1219 /**
1220 * Interpolation mode (only meaningful for FS inputs).
1221 */
1222 NIR_INTRINSIC_INTERP_MODE = 9,
1223
1224 /**
1225 * A binary nir_op to use when performing a reduction or scan operation
1226 */
1227 NIR_INTRINSIC_REDUCTION_OP = 10,
1228
1229 /**
1230 * Cluster size for reduction operations
1231 */
1232 NIR_INTRINSIC_CLUSTER_SIZE = 11,
1233
1234 /**
1235 * Parameter index for a load_param intrinsic
1236 */
1237 NIR_INTRINSIC_PARAM_IDX = 12,
1238
1239 /**
1240 * Image dimensionality for image intrinsics
1241 *
1242 * One of GLSL_SAMPLER_DIM_*
1243 */
1244 NIR_INTRINSIC_IMAGE_DIM = 13,
1245
1246 /**
1247 * Non-zero if we are accessing an array image
1248 */
1249 NIR_INTRINSIC_IMAGE_ARRAY = 14,
1250
1251 /**
1252 * Image format for image intrinsics
1253 */
1254 NIR_INTRINSIC_FORMAT = 15,
1255
1256 /**
1257 * Access qualifiers for image intrinsics
1258 */
1259 NIR_INTRINSIC_ACCESS = 16,
1260
1261 /**
1262 * Alignment for offsets and addresses
1263 *
1264 * These two parameters, specify an alignment in terms of a multiplier and
1265 * an offset. The offset or address parameter X of the intrinsic is
1266 * guaranteed to satisfy the following:
1267 *
1268 * (X - align_offset) % align_mul == 0
1269 */
1270 NIR_INTRINSIC_ALIGN_MUL = 17,
1271 NIR_INTRINSIC_ALIGN_OFFSET = 18,
1272
1273 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1274
1275 } nir_intrinsic_index_flag;
1276
1277 #define NIR_INTRINSIC_MAX_INPUTS 5
1278
1279 typedef struct {
1280 const char *name;
1281
1282 unsigned num_srcs; /** < number of register/SSA inputs */
1283
1284 /** number of components of each input register
1285 *
1286 * If this value is 0, the number of components is given by the
1287 * num_components field of nir_intrinsic_instr.
1288 */
1289 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
1290
1291 bool has_dest;
1292
1293 /** number of components of the output register
1294 *
1295 * If this value is 0, the number of components is given by the
1296 * num_components field of nir_intrinsic_instr.
1297 */
1298 unsigned dest_components;
1299
1300 /** the number of constant indices used by the intrinsic */
1301 unsigned num_indices;
1302
1303 /** indicates the usage of intr->const_index[n] */
1304 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1305
1306 /** semantic flags for calls to this intrinsic */
1307 nir_intrinsic_semantic_flag flags;
1308 } nir_intrinsic_info;
1309
1310 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1311
1312 static inline unsigned
1313 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1314 {
1315 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1316 assert(srcn < info->num_srcs);
1317 if (info->src_components[srcn])
1318 return info->src_components[srcn];
1319 else
1320 return intr->num_components;
1321 }
1322
1323 static inline unsigned
1324 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1325 {
1326 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1327 if (!info->has_dest)
1328 return 0;
1329 else if (info->dest_components)
1330 return info->dest_components;
1331 else
1332 return intr->num_components;
1333 }
1334
1335 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1336 static inline type \
1337 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1338 { \
1339 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1340 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1341 return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1342 } \
1343 static inline void \
1344 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1345 { \
1346 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1347 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1348 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1349 }
1350
1351 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1352 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1353 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1354 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1355 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1356 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1357 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1358 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1359 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1360 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1361 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1362 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1363 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1364 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1365 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1366 INTRINSIC_IDX_ACCESSORS(format, FORMAT, unsigned)
1367 INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
1368 INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
1369
1370 static inline void
1371 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1372 unsigned align_mul, unsigned align_offset)
1373 {
1374 assert(util_is_power_of_two_nonzero(align_mul));
1375 assert(align_offset < align_mul);
1376 nir_intrinsic_set_align_mul(intrin, align_mul);
1377 nir_intrinsic_set_align_offset(intrin, align_offset);
1378 }
1379
1380 /** Returns a simple alignment for a load/store intrinsic offset
1381 *
1382 * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1383 * and ALIGN_OFFSET parameters, this helper takes both into account and
1384 * provides a single simple alignment parameter. The offset X is guaranteed
1385 * to satisfy X % align == 0.
1386 */
1387 static inline unsigned
1388 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
1389 {
1390 const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1391 const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1392 assert(align_offset < align_mul);
1393 return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1394 }
1395
1396 /**
1397 * \group texture information
1398 *
1399 * This gives semantic information about textures which is useful to the
1400 * frontend, the backend, and lowering passes, but not the optimizer.
1401 */
1402
1403 typedef enum {
1404 nir_tex_src_coord,
1405 nir_tex_src_projector,
1406 nir_tex_src_comparator, /* shadow comparator */
1407 nir_tex_src_offset,
1408 nir_tex_src_bias,
1409 nir_tex_src_lod,
1410 nir_tex_src_min_lod,
1411 nir_tex_src_ms_index, /* MSAA sample index */
1412 nir_tex_src_ms_mcs, /* MSAA compression value */
1413 nir_tex_src_ddx,
1414 nir_tex_src_ddy,
1415 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1416 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1417 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1418 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1419 nir_tex_src_plane, /* < selects plane for planar textures */
1420 nir_num_tex_src_types
1421 } nir_tex_src_type;
1422
1423 typedef struct {
1424 nir_src src;
1425 nir_tex_src_type src_type;
1426 } nir_tex_src;
1427
1428 typedef enum {
1429 nir_texop_tex, /**< Regular texture look-up */
1430 nir_texop_txb, /**< Texture look-up with LOD bias */
1431 nir_texop_txl, /**< Texture look-up with explicit LOD */
1432 nir_texop_txd, /**< Texture look-up with partial derivatives */
1433 nir_texop_txf, /**< Texel fetch with explicit LOD */
1434 nir_texop_txf_ms, /**< Multisample texture fetch */
1435 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1436 nir_texop_txs, /**< Texture size */
1437 nir_texop_lod, /**< Texture lod query */
1438 nir_texop_tg4, /**< Texture gather */
1439 nir_texop_query_levels, /**< Texture levels query */
1440 nir_texop_texture_samples, /**< Texture samples query */
1441 nir_texop_samples_identical, /**< Query whether all samples are definitely
1442 * identical.
1443 */
1444 } nir_texop;
1445
1446 typedef struct {
1447 nir_instr instr;
1448
1449 enum glsl_sampler_dim sampler_dim;
1450 nir_alu_type dest_type;
1451
1452 nir_texop op;
1453 nir_dest dest;
1454 nir_tex_src *src;
1455 unsigned num_srcs, coord_components;
1456 bool is_array, is_shadow;
1457
1458 /**
1459 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1460 * components or the new-style shadow that outputs 1 component.
1461 */
1462 bool is_new_style_shadow;
1463
1464 /* gather component selector */
1465 unsigned component : 2;
1466
1467 /** The texture index
1468 *
1469 * If this texture instruction has a nir_tex_src_texture_offset source,
1470 * then the texture index is given by texture_index + texture_offset.
1471 */
1472 unsigned texture_index;
1473
1474 /** The size of the texture array or 0 if it's not an array */
1475 unsigned texture_array_size;
1476
1477 /** The sampler index
1478 *
1479 * The following operations do not require a sampler and, as such, this
1480 * field should be ignored:
1481 * - nir_texop_txf
1482 * - nir_texop_txf_ms
1483 * - nir_texop_txs
1484 * - nir_texop_lod
1485 * - nir_texop_query_levels
1486 * - nir_texop_texture_samples
1487 * - nir_texop_samples_identical
1488 *
1489 * If this texture instruction has a nir_tex_src_sampler_offset source,
1490 * then the sampler index is given by sampler_index + sampler_offset.
1491 */
1492 unsigned sampler_index;
1493 } nir_tex_instr;
1494
1495 static inline unsigned
1496 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1497 {
1498 switch (instr->op) {
1499 case nir_texop_txs: {
1500 unsigned ret;
1501 switch (instr->sampler_dim) {
1502 case GLSL_SAMPLER_DIM_1D:
1503 case GLSL_SAMPLER_DIM_BUF:
1504 ret = 1;
1505 break;
1506 case GLSL_SAMPLER_DIM_2D:
1507 case GLSL_SAMPLER_DIM_CUBE:
1508 case GLSL_SAMPLER_DIM_MS:
1509 case GLSL_SAMPLER_DIM_RECT:
1510 case GLSL_SAMPLER_DIM_EXTERNAL:
1511 case GLSL_SAMPLER_DIM_SUBPASS:
1512 ret = 2;
1513 break;
1514 case GLSL_SAMPLER_DIM_3D:
1515 ret = 3;
1516 break;
1517 default:
1518 unreachable("not reached");
1519 }
1520 if (instr->is_array)
1521 ret++;
1522 return ret;
1523 }
1524
1525 case nir_texop_lod:
1526 return 2;
1527
1528 case nir_texop_texture_samples:
1529 case nir_texop_query_levels:
1530 case nir_texop_samples_identical:
1531 return 1;
1532
1533 default:
1534 if (instr->is_shadow && instr->is_new_style_shadow)
1535 return 1;
1536
1537 return 4;
1538 }
1539 }
1540
1541 /* Returns true if this texture operation queries something about the texture
1542 * rather than actually sampling it.
1543 */
1544 static inline bool
1545 nir_tex_instr_is_query(const nir_tex_instr *instr)
1546 {
1547 switch (instr->op) {
1548 case nir_texop_txs:
1549 case nir_texop_lod:
1550 case nir_texop_texture_samples:
1551 case nir_texop_query_levels:
1552 case nir_texop_txf_ms_mcs:
1553 return true;
1554 case nir_texop_tex:
1555 case nir_texop_txb:
1556 case nir_texop_txl:
1557 case nir_texop_txd:
1558 case nir_texop_txf:
1559 case nir_texop_txf_ms:
1560 case nir_texop_tg4:
1561 return false;
1562 default:
1563 unreachable("Invalid texture opcode");
1564 }
1565 }
1566
1567 static inline bool
1568 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1569 {
1570 switch (instr->op) {
1571 case nir_op_flt:
1572 case nir_op_fge:
1573 case nir_op_feq:
1574 case nir_op_fne:
1575 case nir_op_ilt:
1576 case nir_op_ult:
1577 case nir_op_ige:
1578 case nir_op_uge:
1579 case nir_op_ieq:
1580 case nir_op_ine:
1581 case nir_op_i2b1:
1582 case nir_op_f2b1:
1583 case nir_op_inot:
1584 case nir_op_fnot:
1585 return true;
1586 default:
1587 return false;
1588 }
1589 }
1590
1591 static inline nir_alu_type
1592 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1593 {
1594 switch (instr->src[src].src_type) {
1595 case nir_tex_src_coord:
1596 switch (instr->op) {
1597 case nir_texop_txf:
1598 case nir_texop_txf_ms:
1599 case nir_texop_txf_ms_mcs:
1600 case nir_texop_samples_identical:
1601 return nir_type_int;
1602
1603 default:
1604 return nir_type_float;
1605 }
1606
1607 case nir_tex_src_lod:
1608 switch (instr->op) {
1609 case nir_texop_txs:
1610 case nir_texop_txf:
1611 return nir_type_int;
1612
1613 default:
1614 return nir_type_float;
1615 }
1616
1617 case nir_tex_src_projector:
1618 case nir_tex_src_comparator:
1619 case nir_tex_src_bias:
1620 case nir_tex_src_ddx:
1621 case nir_tex_src_ddy:
1622 return nir_type_float;
1623
1624 case nir_tex_src_offset:
1625 case nir_tex_src_ms_index:
1626 case nir_tex_src_texture_offset:
1627 case nir_tex_src_sampler_offset:
1628 return nir_type_int;
1629
1630 default:
1631 unreachable("Invalid texture source type");
1632 }
1633 }
1634
1635 static inline unsigned
1636 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1637 {
1638 if (instr->src[src].src_type == nir_tex_src_coord)
1639 return instr->coord_components;
1640
1641 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1642 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1643 return 4;
1644
1645 if (instr->src[src].src_type == nir_tex_src_ddx ||
1646 instr->src[src].src_type == nir_tex_src_ddy) {
1647 if (instr->is_array)
1648 return instr->coord_components - 1;
1649 else
1650 return instr->coord_components;
1651 }
1652
1653 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1654 * the offset, since a cube maps to a single face.
1655 */
1656 if (instr->src[src].src_type == nir_tex_src_offset) {
1657 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1658 return 2;
1659 else if (instr->is_array)
1660 return instr->coord_components - 1;
1661 else
1662 return instr->coord_components;
1663 }
1664
1665 return 1;
1666 }
1667
1668 static inline int
1669 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1670 {
1671 for (unsigned i = 0; i < instr->num_srcs; i++)
1672 if (instr->src[i].src_type == type)
1673 return (int) i;
1674
1675 return -1;
1676 }
1677
1678 void nir_tex_instr_add_src(nir_tex_instr *tex,
1679 nir_tex_src_type src_type,
1680 nir_src src);
1681
1682 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1683
1684 typedef struct {
1685 nir_instr instr;
1686
1687 nir_const_value value;
1688
1689 nir_ssa_def def;
1690 } nir_load_const_instr;
1691
1692 typedef enum {
1693 nir_jump_return,
1694 nir_jump_break,
1695 nir_jump_continue,
1696 } nir_jump_type;
1697
1698 typedef struct {
1699 nir_instr instr;
1700 nir_jump_type type;
1701 } nir_jump_instr;
1702
1703 /* creates a new SSA variable in an undefined state */
1704
1705 typedef struct {
1706 nir_instr instr;
1707 nir_ssa_def def;
1708 } nir_ssa_undef_instr;
1709
1710 typedef struct {
1711 struct exec_node node;
1712
1713 /* The predecessor block corresponding to this source */
1714 struct nir_block *pred;
1715
1716 nir_src src;
1717 } nir_phi_src;
1718
1719 #define nir_foreach_phi_src(phi_src, phi) \
1720 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1721 #define nir_foreach_phi_src_safe(phi_src, phi) \
1722 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1723
1724 typedef struct {
1725 nir_instr instr;
1726
1727 struct exec_list srcs; /** < list of nir_phi_src */
1728
1729 nir_dest dest;
1730 } nir_phi_instr;
1731
1732 typedef struct {
1733 struct exec_node node;
1734 nir_src src;
1735 nir_dest dest;
1736 } nir_parallel_copy_entry;
1737
1738 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1739 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1740
1741 typedef struct {
1742 nir_instr instr;
1743
1744 /* A list of nir_parallel_copy_entrys. The sources of all of the
1745 * entries are copied to the corresponding destinations "in parallel".
1746 * In other words, if we have two entries: a -> b and b -> a, the values
1747 * get swapped.
1748 */
1749 struct exec_list entries;
1750 } nir_parallel_copy_instr;
1751
1752 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1753 type, nir_instr_type_alu)
1754 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1755 type, nir_instr_type_call)
1756 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1757 type, nir_instr_type_jump)
1758 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1759 type, nir_instr_type_tex)
1760 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1761 type, nir_instr_type_intrinsic)
1762 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1763 type, nir_instr_type_load_const)
1764 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1765 type, nir_instr_type_ssa_undef)
1766 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1767 type, nir_instr_type_phi)
1768 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1769 nir_parallel_copy_instr, instr,
1770 type, nir_instr_type_parallel_copy)
1771
1772 /*
1773 * Control flow
1774 *
1775 * Control flow consists of a tree of control flow nodes, which include
1776 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1777 * instructions that always run start-to-finish. Each basic block also keeps
1778 * track of its successors (blocks which may run immediately after the current
1779 * block) and predecessors (blocks which could have run immediately before the
1780 * current block). Each function also has a start block and an end block which
1781 * all return statements point to (which is always empty). Together, all the
1782 * blocks with their predecessors and successors make up the control flow
1783 * graph (CFG) of the function. There are helpers that modify the tree of
1784 * control flow nodes while modifying the CFG appropriately; these should be
1785 * used instead of modifying the tree directly.
1786 */
1787
1788 typedef enum {
1789 nir_cf_node_block,
1790 nir_cf_node_if,
1791 nir_cf_node_loop,
1792 nir_cf_node_function
1793 } nir_cf_node_type;
1794
1795 typedef struct nir_cf_node {
1796 struct exec_node node;
1797 nir_cf_node_type type;
1798 struct nir_cf_node *parent;
1799 } nir_cf_node;
1800
1801 typedef struct nir_block {
1802 nir_cf_node cf_node;
1803
1804 struct exec_list instr_list; /** < list of nir_instr */
1805
1806 /** generic block index; generated by nir_index_blocks */
1807 unsigned index;
1808
1809 /*
1810 * Each block can only have up to 2 successors, so we put them in a simple
1811 * array - no need for anything more complicated.
1812 */
1813 struct nir_block *successors[2];
1814
1815 /* Set of nir_block predecessors in the CFG */
1816 struct set *predecessors;
1817
1818 /*
1819 * this node's immediate dominator in the dominance tree - set to NULL for
1820 * the start block.
1821 */
1822 struct nir_block *imm_dom;
1823
1824 /* This node's children in the dominance tree */
1825 unsigned num_dom_children;
1826 struct nir_block **dom_children;
1827
1828 /* Set of nir_blocks on the dominance frontier of this block */
1829 struct set *dom_frontier;
1830
1831 /*
1832 * These two indices have the property that dom_{pre,post}_index for each
1833 * child of this block in the dominance tree will always be between
1834 * dom_pre_index and dom_post_index for this block, which makes testing if
1835 * a given block is dominated by another block an O(1) operation.
1836 */
1837 unsigned dom_pre_index, dom_post_index;
1838
1839 /* live in and out for this block; used for liveness analysis */
1840 BITSET_WORD *live_in;
1841 BITSET_WORD *live_out;
1842 } nir_block;
1843
1844 static inline nir_instr *
1845 nir_block_first_instr(nir_block *block)
1846 {
1847 struct exec_node *head = exec_list_get_head(&block->instr_list);
1848 return exec_node_data(nir_instr, head, node);
1849 }
1850
1851 static inline nir_instr *
1852 nir_block_last_instr(nir_block *block)
1853 {
1854 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1855 return exec_node_data(nir_instr, tail, node);
1856 }
1857
1858 static inline bool
1859 nir_block_ends_in_jump(nir_block *block)
1860 {
1861 return !exec_list_is_empty(&block->instr_list) &&
1862 nir_block_last_instr(block)->type == nir_instr_type_jump;
1863 }
1864
1865 #define nir_foreach_instr(instr, block) \
1866 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1867 #define nir_foreach_instr_reverse(instr, block) \
1868 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1869 #define nir_foreach_instr_safe(instr, block) \
1870 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1871 #define nir_foreach_instr_reverse_safe(instr, block) \
1872 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1873
1874 typedef struct nir_if {
1875 nir_cf_node cf_node;
1876 nir_src condition;
1877
1878 struct exec_list then_list; /** < list of nir_cf_node */
1879 struct exec_list else_list; /** < list of nir_cf_node */
1880 } nir_if;
1881
1882 typedef struct {
1883 nir_if *nif;
1884
1885 nir_instr *conditional_instr;
1886
1887 nir_block *break_block;
1888 nir_block *continue_from_block;
1889
1890 bool continue_from_then;
1891
1892 struct list_head loop_terminator_link;
1893 } nir_loop_terminator;
1894
1895 typedef struct {
1896 /* Number of instructions in the loop */
1897 unsigned num_instructions;
1898
1899 /* Maximum number of times the loop is run (if known) */
1900 unsigned max_trip_count;
1901
1902 /* Do we know the exact number of times the loop will be run */
1903 bool exact_trip_count_known;
1904
1905 /* Unroll the loop regardless of its size */
1906 bool force_unroll;
1907
1908 /* Does the loop contain complex loop terminators, continues or other
1909 * complex behaviours? If this is true we can't rely on
1910 * loop_terminator_list to be complete or accurate.
1911 */
1912 bool complex_loop;
1913
1914 nir_loop_terminator *limiting_terminator;
1915
1916 /* A list of loop_terminators terminating this loop. */
1917 struct list_head loop_terminator_list;
1918 } nir_loop_info;
1919
1920 typedef struct {
1921 nir_cf_node cf_node;
1922
1923 struct exec_list body; /** < list of nir_cf_node */
1924
1925 nir_loop_info *info;
1926 } nir_loop;
1927
1928 /**
1929 * Various bits of metadata that can may be created or required by
1930 * optimization and analysis passes
1931 */
1932 typedef enum {
1933 nir_metadata_none = 0x0,
1934 nir_metadata_block_index = 0x1,
1935 nir_metadata_dominance = 0x2,
1936 nir_metadata_live_ssa_defs = 0x4,
1937 nir_metadata_not_properly_reset = 0x8,
1938 nir_metadata_loop_analysis = 0x10,
1939 } nir_metadata;
1940
1941 typedef struct {
1942 nir_cf_node cf_node;
1943
1944 /** pointer to the function of which this is an implementation */
1945 struct nir_function *function;
1946
1947 struct exec_list body; /** < list of nir_cf_node */
1948
1949 nir_block *end_block;
1950
1951 /** list for all local variables in the function */
1952 struct exec_list locals;
1953
1954 /** list of local registers in the function */
1955 struct exec_list registers;
1956
1957 /** next available local register index */
1958 unsigned reg_alloc;
1959
1960 /** next available SSA value index */
1961 unsigned ssa_alloc;
1962
1963 /* total number of basic blocks, only valid when block_index_dirty = false */
1964 unsigned num_blocks;
1965
1966 nir_metadata valid_metadata;
1967 } nir_function_impl;
1968
1969 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1970 nir_start_block(nir_function_impl *impl)
1971 {
1972 return (nir_block *) impl->body.head_sentinel.next;
1973 }
1974
1975 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1976 nir_impl_last_block(nir_function_impl *impl)
1977 {
1978 return (nir_block *) impl->body.tail_sentinel.prev;
1979 }
1980
1981 static inline nir_cf_node *
1982 nir_cf_node_next(nir_cf_node *node)
1983 {
1984 struct exec_node *next = exec_node_get_next(&node->node);
1985 if (exec_node_is_tail_sentinel(next))
1986 return NULL;
1987 else
1988 return exec_node_data(nir_cf_node, next, node);
1989 }
1990
1991 static inline nir_cf_node *
1992 nir_cf_node_prev(nir_cf_node *node)
1993 {
1994 struct exec_node *prev = exec_node_get_prev(&node->node);
1995 if (exec_node_is_head_sentinel(prev))
1996 return NULL;
1997 else
1998 return exec_node_data(nir_cf_node, prev, node);
1999 }
2000
2001 static inline bool
2002 nir_cf_node_is_first(const nir_cf_node *node)
2003 {
2004 return exec_node_is_head_sentinel(node->node.prev);
2005 }
2006
2007 static inline bool
2008 nir_cf_node_is_last(const nir_cf_node *node)
2009 {
2010 return exec_node_is_tail_sentinel(node->node.next);
2011 }
2012
2013 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
2014 type, nir_cf_node_block)
2015 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
2016 type, nir_cf_node_if)
2017 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
2018 type, nir_cf_node_loop)
2019 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
2020 nir_function_impl, cf_node, type, nir_cf_node_function)
2021
2022 static inline nir_block *
2023 nir_if_first_then_block(nir_if *if_stmt)
2024 {
2025 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
2026 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2027 }
2028
2029 static inline nir_block *
2030 nir_if_last_then_block(nir_if *if_stmt)
2031 {
2032 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
2033 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2034 }
2035
2036 static inline nir_block *
2037 nir_if_first_else_block(nir_if *if_stmt)
2038 {
2039 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
2040 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2041 }
2042
2043 static inline nir_block *
2044 nir_if_last_else_block(nir_if *if_stmt)
2045 {
2046 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
2047 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2048 }
2049
2050 static inline nir_block *
2051 nir_loop_first_block(nir_loop *loop)
2052 {
2053 struct exec_node *head = exec_list_get_head(&loop->body);
2054 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2055 }
2056
2057 static inline nir_block *
2058 nir_loop_last_block(nir_loop *loop)
2059 {
2060 struct exec_node *tail = exec_list_get_tail(&loop->body);
2061 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2062 }
2063
2064 typedef struct {
2065 uint8_t num_components;
2066 uint8_t bit_size;
2067 } nir_parameter;
2068
2069 typedef struct nir_function {
2070 struct exec_node node;
2071
2072 const char *name;
2073 struct nir_shader *shader;
2074
2075 unsigned num_params;
2076 nir_parameter *params;
2077
2078 /** The implementation of this function.
2079 *
2080 * If the function is only declared and not implemented, this is NULL.
2081 */
2082 nir_function_impl *impl;
2083 } nir_function;
2084
2085 typedef struct nir_shader_compiler_options {
2086 bool lower_fdiv;
2087 bool lower_ffma;
2088 bool fuse_ffma;
2089 bool lower_flrp32;
2090 /** Lowers flrp when it does not support doubles */
2091 bool lower_flrp64;
2092 bool lower_fpow;
2093 bool lower_fsat;
2094 bool lower_fsqrt;
2095 bool lower_fmod32;
2096 bool lower_fmod64;
2097 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2098 bool lower_bitfield_extract;
2099 /** Lowers ibitfield_extract/ubitfield_extract to bfm, compares, shifts. */
2100 bool lower_bitfield_extract_to_shifts;
2101 /** Lowers bitfield_insert to bfi/bfm */
2102 bool lower_bitfield_insert;
2103 /** Lowers bitfield_insert to bfm, compares, and shifts. */
2104 bool lower_bitfield_insert_to_shifts;
2105 /** Lowers bitfield_reverse to shifts. */
2106 bool lower_bitfield_reverse;
2107 /** Lowers bit_count to shifts. */
2108 bool lower_bit_count;
2109 /** Lowers bfm to shifts and subtracts. */
2110 bool lower_bfm;
2111 /** Lowers ifind_msb to compare and ufind_msb */
2112 bool lower_ifind_msb;
2113 /** Lowers find_lsb to ufind_msb and logic ops */
2114 bool lower_find_lsb;
2115 bool lower_uadd_carry;
2116 bool lower_usub_borrow;
2117 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2118 bool lower_mul_high;
2119 /** lowers fneg and ineg to fsub and isub. */
2120 bool lower_negate;
2121 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2122 bool lower_sub;
2123
2124 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2125 bool lower_scmp;
2126
2127 /** enables rules to lower idiv by power-of-two: */
2128 bool lower_idiv;
2129
2130 /* Does the native fdot instruction replicate its result for four
2131 * components? If so, then opt_algebraic_late will turn all fdotN
2132 * instructions into fdot_replicatedN instructions.
2133 */
2134 bool fdot_replicates;
2135
2136 /** lowers ffloor to fsub+ffract: */
2137 bool lower_ffloor;
2138
2139 /** lowers ffract to fsub+ffloor: */
2140 bool lower_ffract;
2141
2142 /** lowers fceil to fneg+ffloor+fneg: */
2143 bool lower_fceil;
2144
2145 bool lower_ldexp;
2146
2147 bool lower_pack_half_2x16;
2148 bool lower_pack_unorm_2x16;
2149 bool lower_pack_snorm_2x16;
2150 bool lower_pack_unorm_4x8;
2151 bool lower_pack_snorm_4x8;
2152 bool lower_unpack_half_2x16;
2153 bool lower_unpack_unorm_2x16;
2154 bool lower_unpack_snorm_2x16;
2155 bool lower_unpack_unorm_4x8;
2156 bool lower_unpack_snorm_4x8;
2157
2158 bool lower_extract_byte;
2159 bool lower_extract_word;
2160
2161 bool lower_all_io_to_temps;
2162
2163 /**
2164 * Does the driver support real 32-bit integers? (Otherwise, integers
2165 * are simulated by floats.)
2166 */
2167 bool native_integers;
2168
2169 /* Indicates that the driver only has zero-based vertex id */
2170 bool vertex_id_zero_based;
2171
2172 /**
2173 * If enabled, gl_BaseVertex will be lowered as:
2174 * is_indexed_draw (~0/0) & firstvertex
2175 */
2176 bool lower_base_vertex;
2177
2178 /**
2179 * If enabled, gl_HelperInvocation will be lowered as:
2180 *
2181 * !((1 << sample_id) & sample_mask_in))
2182 *
2183 * This depends on some possibly hw implementation details, which may
2184 * not be true for all hw. In particular that the FS is only executed
2185 * for covered samples or for helper invocations. So, do not blindly
2186 * enable this option.
2187 *
2188 * Note: See also issue #22 in ARB_shader_image_load_store
2189 */
2190 bool lower_helper_invocation;
2191
2192 bool lower_cs_local_index_from_id;
2193 bool lower_cs_local_id_from_index;
2194
2195 bool lower_device_index_to_zero;
2196
2197 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
2198 bool lower_wpos_pntc;
2199
2200 /**
2201 * Should nir_lower_io() create load_interpolated_input intrinsics?
2202 *
2203 * If not, it generates regular load_input intrinsics and interpolation
2204 * information must be inferred from the list of input nir_variables.
2205 */
2206 bool use_interpolated_input_intrinsics;
2207
2208 unsigned max_unroll_iterations;
2209 } nir_shader_compiler_options;
2210
2211 typedef struct nir_shader {
2212 /** list of uniforms (nir_variable) */
2213 struct exec_list uniforms;
2214
2215 /** list of inputs (nir_variable) */
2216 struct exec_list inputs;
2217
2218 /** list of outputs (nir_variable) */
2219 struct exec_list outputs;
2220
2221 /** list of shared compute variables (nir_variable) */
2222 struct exec_list shared;
2223
2224 /** Set of driver-specific options for the shader.
2225 *
2226 * The memory for the options is expected to be kept in a single static
2227 * copy by the driver.
2228 */
2229 const struct nir_shader_compiler_options *options;
2230
2231 /** Various bits of compile-time information about a given shader */
2232 struct shader_info info;
2233
2234 /** list of global variables in the shader (nir_variable) */
2235 struct exec_list globals;
2236
2237 /** list of system value variables in the shader (nir_variable) */
2238 struct exec_list system_values;
2239
2240 struct exec_list functions; /** < list of nir_function */
2241
2242 /** list of global register in the shader */
2243 struct exec_list registers;
2244
2245 /** next available global register index */
2246 unsigned reg_alloc;
2247
2248 /**
2249 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2250 * access plus one
2251 */
2252 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2253
2254 /** Constant data associated with this shader.
2255 *
2256 * Constant data is loaded through load_constant intrinsics. See also
2257 * nir_opt_large_constants.
2258 */
2259 void *constant_data;
2260 unsigned constant_data_size;
2261 } nir_shader;
2262
2263 static inline nir_function_impl *
2264 nir_shader_get_entrypoint(nir_shader *shader)
2265 {
2266 assert(exec_list_length(&shader->functions) == 1);
2267 struct exec_node *func_node = exec_list_get_head(&shader->functions);
2268 nir_function *func = exec_node_data(nir_function, func_node, node);
2269 assert(func->num_params == 0);
2270 assert(func->impl);
2271 return func->impl;
2272 }
2273
2274 #define nir_foreach_function(func, shader) \
2275 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2276
2277 nir_shader *nir_shader_create(void *mem_ctx,
2278 gl_shader_stage stage,
2279 const nir_shader_compiler_options *options,
2280 shader_info *si);
2281
2282 /** creates a register, including assigning it an index and adding it to the list */
2283 nir_register *nir_global_reg_create(nir_shader *shader);
2284
2285 nir_register *nir_local_reg_create(nir_function_impl *impl);
2286
2287 void nir_reg_remove(nir_register *reg);
2288
2289 /** Adds a variable to the appropriate list in nir_shader */
2290 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2291
2292 static inline void
2293 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2294 {
2295 assert(var->data.mode == nir_var_local);
2296 exec_list_push_tail(&impl->locals, &var->node);
2297 }
2298
2299 /** creates a variable, sets a few defaults, and adds it to the list */
2300 nir_variable *nir_variable_create(nir_shader *shader,
2301 nir_variable_mode mode,
2302 const struct glsl_type *type,
2303 const char *name);
2304 /** creates a local variable and adds it to the list */
2305 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2306 const struct glsl_type *type,
2307 const char *name);
2308
2309 /** creates a function and adds it to the shader's list of functions */
2310 nir_function *nir_function_create(nir_shader *shader, const char *name);
2311
2312 nir_function_impl *nir_function_impl_create(nir_function *func);
2313 /** creates a function_impl that isn't tied to any particular function */
2314 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2315
2316 nir_block *nir_block_create(nir_shader *shader);
2317 nir_if *nir_if_create(nir_shader *shader);
2318 nir_loop *nir_loop_create(nir_shader *shader);
2319
2320 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2321
2322 /** requests that the given pieces of metadata be generated */
2323 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2324 /** dirties all but the preserved metadata */
2325 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2326
2327 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2328 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2329
2330 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2331 nir_deref_type deref_type);
2332
2333 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2334
2335 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2336 unsigned num_components,
2337 unsigned bit_size);
2338
2339 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2340 nir_intrinsic_op op);
2341
2342 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2343 nir_function *callee);
2344
2345 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2346
2347 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2348
2349 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2350
2351 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2352 unsigned num_components,
2353 unsigned bit_size);
2354
2355 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2356
2357 /**
2358 * NIR Cursors and Instruction Insertion API
2359 * @{
2360 *
2361 * A tiny struct representing a point to insert/extract instructions or
2362 * control flow nodes. Helps reduce the combinatorial explosion of possible
2363 * points to insert/extract.
2364 *
2365 * \sa nir_control_flow.h
2366 */
2367 typedef enum {
2368 nir_cursor_before_block,
2369 nir_cursor_after_block,
2370 nir_cursor_before_instr,
2371 nir_cursor_after_instr,
2372 } nir_cursor_option;
2373
2374 typedef struct {
2375 nir_cursor_option option;
2376 union {
2377 nir_block *block;
2378 nir_instr *instr;
2379 };
2380 } nir_cursor;
2381
2382 static inline nir_block *
2383 nir_cursor_current_block(nir_cursor cursor)
2384 {
2385 if (cursor.option == nir_cursor_before_instr ||
2386 cursor.option == nir_cursor_after_instr) {
2387 return cursor.instr->block;
2388 } else {
2389 return cursor.block;
2390 }
2391 }
2392
2393 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2394
2395 static inline nir_cursor
2396 nir_before_block(nir_block *block)
2397 {
2398 nir_cursor cursor;
2399 cursor.option = nir_cursor_before_block;
2400 cursor.block = block;
2401 return cursor;
2402 }
2403
2404 static inline nir_cursor
2405 nir_after_block(nir_block *block)
2406 {
2407 nir_cursor cursor;
2408 cursor.option = nir_cursor_after_block;
2409 cursor.block = block;
2410 return cursor;
2411 }
2412
2413 static inline nir_cursor
2414 nir_before_instr(nir_instr *instr)
2415 {
2416 nir_cursor cursor;
2417 cursor.option = nir_cursor_before_instr;
2418 cursor.instr = instr;
2419 return cursor;
2420 }
2421
2422 static inline nir_cursor
2423 nir_after_instr(nir_instr *instr)
2424 {
2425 nir_cursor cursor;
2426 cursor.option = nir_cursor_after_instr;
2427 cursor.instr = instr;
2428 return cursor;
2429 }
2430
2431 static inline nir_cursor
2432 nir_after_block_before_jump(nir_block *block)
2433 {
2434 nir_instr *last_instr = nir_block_last_instr(block);
2435 if (last_instr && last_instr->type == nir_instr_type_jump) {
2436 return nir_before_instr(last_instr);
2437 } else {
2438 return nir_after_block(block);
2439 }
2440 }
2441
2442 static inline nir_cursor
2443 nir_before_src(nir_src *src, bool is_if_condition)
2444 {
2445 if (is_if_condition) {
2446 nir_block *prev_block =
2447 nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
2448 assert(!nir_block_ends_in_jump(prev_block));
2449 return nir_after_block(prev_block);
2450 } else if (src->parent_instr->type == nir_instr_type_phi) {
2451 #ifndef NDEBUG
2452 nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
2453 bool found = false;
2454 nir_foreach_phi_src(phi_src, cond_phi) {
2455 if (phi_src->src.ssa == src->ssa) {
2456 found = true;
2457 break;
2458 }
2459 }
2460 assert(found);
2461 #endif
2462 /* The LIST_ENTRY macro is a generic container-of macro, it just happens
2463 * to have a more specific name.
2464 */
2465 nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
2466 return nir_after_block_before_jump(phi_src->pred);
2467 } else {
2468 return nir_before_instr(src->parent_instr);
2469 }
2470 }
2471
2472 static inline nir_cursor
2473 nir_before_cf_node(nir_cf_node *node)
2474 {
2475 if (node->type == nir_cf_node_block)
2476 return nir_before_block(nir_cf_node_as_block(node));
2477
2478 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2479 }
2480
2481 static inline nir_cursor
2482 nir_after_cf_node(nir_cf_node *node)
2483 {
2484 if (node->type == nir_cf_node_block)
2485 return nir_after_block(nir_cf_node_as_block(node));
2486
2487 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2488 }
2489
2490 static inline nir_cursor
2491 nir_after_phis(nir_block *block)
2492 {
2493 nir_foreach_instr(instr, block) {
2494 if (instr->type != nir_instr_type_phi)
2495 return nir_before_instr(instr);
2496 }
2497 return nir_after_block(block);
2498 }
2499
2500 static inline nir_cursor
2501 nir_after_cf_node_and_phis(nir_cf_node *node)
2502 {
2503 if (node->type == nir_cf_node_block)
2504 return nir_after_block(nir_cf_node_as_block(node));
2505
2506 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2507
2508 return nir_after_phis(block);
2509 }
2510
2511 static inline nir_cursor
2512 nir_before_cf_list(struct exec_list *cf_list)
2513 {
2514 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2515 exec_list_get_head(cf_list), node);
2516 return nir_before_cf_node(first_node);
2517 }
2518
2519 static inline nir_cursor
2520 nir_after_cf_list(struct exec_list *cf_list)
2521 {
2522 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2523 exec_list_get_tail(cf_list), node);
2524 return nir_after_cf_node(last_node);
2525 }
2526
2527 /**
2528 * Insert a NIR instruction at the given cursor.
2529 *
2530 * Note: This does not update the cursor.
2531 */
2532 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2533
2534 static inline void
2535 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2536 {
2537 nir_instr_insert(nir_before_instr(instr), before);
2538 }
2539
2540 static inline void
2541 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2542 {
2543 nir_instr_insert(nir_after_instr(instr), after);
2544 }
2545
2546 static inline void
2547 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2548 {
2549 nir_instr_insert(nir_before_block(block), before);
2550 }
2551
2552 static inline void
2553 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2554 {
2555 nir_instr_insert(nir_after_block(block), after);
2556 }
2557
2558 static inline void
2559 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2560 {
2561 nir_instr_insert(nir_before_cf_node(node), before);
2562 }
2563
2564 static inline void
2565 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2566 {
2567 nir_instr_insert(nir_after_cf_node(node), after);
2568 }
2569
2570 static inline void
2571 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2572 {
2573 nir_instr_insert(nir_before_cf_list(list), before);
2574 }
2575
2576 static inline void
2577 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2578 {
2579 nir_instr_insert(nir_after_cf_list(list), after);
2580 }
2581
2582 void nir_instr_remove_v(nir_instr *instr);
2583
2584 static inline nir_cursor
2585 nir_instr_remove(nir_instr *instr)
2586 {
2587 nir_cursor cursor;
2588 nir_instr *prev = nir_instr_prev(instr);
2589 if (prev) {
2590 cursor = nir_after_instr(prev);
2591 } else {
2592 cursor = nir_before_block(instr->block);
2593 }
2594 nir_instr_remove_v(instr);
2595 return cursor;
2596 }
2597
2598 /** @} */
2599
2600 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2601 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2602 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2603 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2604 void *state);
2605 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2606 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2607
2608 nir_const_value *nir_src_as_const_value(nir_src src);
2609
2610 static inline struct nir_instr *
2611 nir_src_instr(const struct nir_src *src)
2612 {
2613 return src->is_ssa ? src->ssa->parent_instr : NULL;
2614 }
2615
2616 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
2617 static inline c_type * \
2618 nir_src_as_ ## name (struct nir_src *src) \
2619 { \
2620 return src->is_ssa && src->ssa->parent_instr->type == type_enum \
2621 ? cast_macro(src->ssa->parent_instr) : NULL; \
2622 } \
2623 static inline const c_type * \
2624 nir_src_as_ ## name ## _const(const struct nir_src *src) \
2625 { \
2626 return src->is_ssa && src->ssa->parent_instr->type == type_enum \
2627 ? cast_macro(src->ssa->parent_instr) : NULL; \
2628 }
2629
2630 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
2631
2632 bool nir_src_is_dynamically_uniform(nir_src src);
2633 bool nir_srcs_equal(nir_src src1, nir_src src2);
2634 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2635 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2636 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2637 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2638 nir_dest new_dest);
2639
2640 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2641 unsigned num_components, unsigned bit_size,
2642 const char *name);
2643 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2644 unsigned num_components, unsigned bit_size,
2645 const char *name);
2646 static inline void
2647 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
2648 const struct glsl_type *type,
2649 const char *name)
2650 {
2651 assert(glsl_type_is_vector_or_scalar(type));
2652 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
2653 glsl_get_bit_size(type), name);
2654 }
2655 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2656 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2657 nir_instr *after_me);
2658
2659 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
2660
2661 /*
2662 * finds the next basic block in source-code order, returns NULL if there is
2663 * none
2664 */
2665
2666 nir_block *nir_block_cf_tree_next(nir_block *block);
2667
2668 /* Performs the opposite of nir_block_cf_tree_next() */
2669
2670 nir_block *nir_block_cf_tree_prev(nir_block *block);
2671
2672 /* Gets the first block in a CF node in source-code order */
2673
2674 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2675
2676 /* Gets the last block in a CF node in source-code order */
2677
2678 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2679
2680 /* Gets the next block after a CF node in source-code order */
2681
2682 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2683
2684 /* Macros for loops that visit blocks in source-code order */
2685
2686 #define nir_foreach_block(block, impl) \
2687 for (nir_block *block = nir_start_block(impl); block != NULL; \
2688 block = nir_block_cf_tree_next(block))
2689
2690 #define nir_foreach_block_safe(block, impl) \
2691 for (nir_block *block = nir_start_block(impl), \
2692 *next = nir_block_cf_tree_next(block); \
2693 block != NULL; \
2694 block = next, next = nir_block_cf_tree_next(block))
2695
2696 #define nir_foreach_block_reverse(block, impl) \
2697 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2698 block = nir_block_cf_tree_prev(block))
2699
2700 #define nir_foreach_block_reverse_safe(block, impl) \
2701 for (nir_block *block = nir_impl_last_block(impl), \
2702 *prev = nir_block_cf_tree_prev(block); \
2703 block != NULL; \
2704 block = prev, prev = nir_block_cf_tree_prev(block))
2705
2706 #define nir_foreach_block_in_cf_node(block, node) \
2707 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2708 block != nir_cf_node_cf_tree_next(node); \
2709 block = nir_block_cf_tree_next(block))
2710
2711 /* If the following CF node is an if, this function returns that if.
2712 * Otherwise, it returns NULL.
2713 */
2714 nir_if *nir_block_get_following_if(nir_block *block);
2715
2716 nir_loop *nir_block_get_following_loop(nir_block *block);
2717
2718 void nir_index_local_regs(nir_function_impl *impl);
2719 void nir_index_global_regs(nir_shader *shader);
2720 void nir_index_ssa_defs(nir_function_impl *impl);
2721 unsigned nir_index_instrs(nir_function_impl *impl);
2722
2723 void nir_index_blocks(nir_function_impl *impl);
2724
2725 void nir_print_shader(nir_shader *shader, FILE *fp);
2726 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2727 void nir_print_instr(const nir_instr *instr, FILE *fp);
2728 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
2729
2730 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2731 nir_function_impl *nir_function_impl_clone(const nir_function_impl *fi);
2732 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2733 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2734
2735 nir_shader *nir_shader_serialize_deserialize(void *mem_ctx, nir_shader *s);
2736
2737 #ifndef NDEBUG
2738 void nir_validate_shader(nir_shader *shader, const char *when);
2739 void nir_metadata_set_validation_flag(nir_shader *shader);
2740 void nir_metadata_check_validation_flag(nir_shader *shader);
2741
2742 static inline bool
2743 should_clone_nir(void)
2744 {
2745 static int should_clone = -1;
2746 if (should_clone < 0)
2747 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2748
2749 return should_clone;
2750 }
2751
2752 static inline bool
2753 should_serialize_deserialize_nir(void)
2754 {
2755 static int test_serialize = -1;
2756 if (test_serialize < 0)
2757 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
2758
2759 return test_serialize;
2760 }
2761
2762 static inline bool
2763 should_print_nir(void)
2764 {
2765 static int should_print = -1;
2766 if (should_print < 0)
2767 should_print = env_var_as_boolean("NIR_PRINT", false);
2768
2769 return should_print;
2770 }
2771 #else
2772 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
2773 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2774 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2775 static inline bool should_clone_nir(void) { return false; }
2776 static inline bool should_serialize_deserialize_nir(void) { return false; }
2777 static inline bool should_print_nir(void) { return false; }
2778 #endif /* NDEBUG */
2779
2780 #define _PASS(pass, nir, do_pass) do { \
2781 do_pass \
2782 nir_validate_shader(nir, "after " #pass); \
2783 if (should_clone_nir()) { \
2784 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2785 ralloc_free(nir); \
2786 nir = clone; \
2787 } \
2788 if (should_serialize_deserialize_nir()) { \
2789 void *mem_ctx = ralloc_parent(nir); \
2790 nir = nir_shader_serialize_deserialize(mem_ctx, nir); \
2791 } \
2792 } while (0)
2793
2794 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, \
2795 nir_metadata_set_validation_flag(nir); \
2796 if (should_print_nir()) \
2797 printf("%s\n", #pass); \
2798 if (pass(nir, ##__VA_ARGS__)) { \
2799 progress = true; \
2800 if (should_print_nir()) \
2801 nir_print_shader(nir, stdout); \
2802 nir_metadata_check_validation_flag(nir); \
2803 } \
2804 )
2805
2806 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, \
2807 if (should_print_nir()) \
2808 printf("%s\n", #pass); \
2809 pass(nir, ##__VA_ARGS__); \
2810 if (should_print_nir()) \
2811 nir_print_shader(nir, stdout); \
2812 )
2813
2814 void nir_calc_dominance_impl(nir_function_impl *impl);
2815 void nir_calc_dominance(nir_shader *shader);
2816
2817 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2818 bool nir_block_dominates(nir_block *parent, nir_block *child);
2819
2820 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2821 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2822
2823 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2824 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2825
2826 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2827 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2828
2829 int nir_gs_count_vertices(const nir_shader *shader);
2830
2831 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
2832 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
2833 bool nir_split_var_copies(nir_shader *shader);
2834 bool nir_split_per_member_structs(nir_shader *shader);
2835 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
2836
2837 bool nir_lower_returns_impl(nir_function_impl *impl);
2838 bool nir_lower_returns(nir_shader *shader);
2839
2840 bool nir_inline_functions(nir_shader *shader);
2841
2842 bool nir_propagate_invariant(nir_shader *shader);
2843
2844 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
2845 void nir_lower_deref_copy_instr(struct nir_builder *b,
2846 nir_intrinsic_instr *copy);
2847 bool nir_lower_var_copies(nir_shader *shader);
2848
2849 void nir_fixup_deref_modes(nir_shader *shader);
2850
2851 bool nir_lower_global_vars_to_local(nir_shader *shader);
2852
2853 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
2854
2855 bool nir_lower_locals_to_regs(nir_shader *shader);
2856
2857 void nir_lower_io_to_temporaries(nir_shader *shader,
2858 nir_function_impl *entrypoint,
2859 bool outputs, bool inputs);
2860
2861 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2862
2863 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
2864 int (*type_size)(const struct glsl_type *));
2865
2866 /* Some helpers to do very simple linking */
2867 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
2868 bool nir_remove_unused_io_vars(nir_shader *shader, struct exec_list *var_list,
2869 uint64_t *used_by_other_stage,
2870 uint64_t *used_by_other_stage_patches);
2871 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
2872 bool default_to_smooth_interp);
2873 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
2874 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
2875
2876 typedef enum {
2877 /* If set, this forces all non-flat fragment shader inputs to be
2878 * interpolated as if with the "sample" qualifier. This requires
2879 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
2880 */
2881 nir_lower_io_force_sample_interpolation = (1 << 1),
2882 } nir_lower_io_options;
2883 bool nir_lower_io(nir_shader *shader,
2884 nir_variable_mode modes,
2885 int (*type_size)(const struct glsl_type *),
2886 nir_lower_io_options);
2887 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2888 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2889
2890 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
2891
2892 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
2893 bool nir_lower_regs_to_ssa(nir_shader *shader);
2894 bool nir_lower_vars_to_ssa(nir_shader *shader);
2895
2896 bool nir_remove_dead_derefs(nir_shader *shader);
2897 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
2898 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
2899 bool nir_lower_constant_initializers(nir_shader *shader,
2900 nir_variable_mode modes);
2901
2902 bool nir_move_load_const(nir_shader *shader);
2903 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
2904 bool nir_lower_vec_to_movs(nir_shader *shader);
2905 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
2906 bool alpha_to_one);
2907 bool nir_lower_alu(nir_shader *shader);
2908 bool nir_lower_alu_to_scalar(nir_shader *shader);
2909 bool nir_lower_bool_to_int32(nir_shader *shader);
2910 bool nir_lower_load_const_to_scalar(nir_shader *shader);
2911 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
2912 bool nir_lower_phis_to_scalar(nir_shader *shader);
2913 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
2914 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
2915 bool outputs_only);
2916 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
2917 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
2918
2919 typedef struct nir_lower_subgroups_options {
2920 uint8_t subgroup_size;
2921 uint8_t ballot_bit_size;
2922 bool lower_to_scalar:1;
2923 bool lower_vote_trivial:1;
2924 bool lower_vote_eq_to_ballot:1;
2925 bool lower_subgroup_masks:1;
2926 bool lower_shuffle:1;
2927 bool lower_shuffle_to_32bit:1;
2928 bool lower_quad:1;
2929 } nir_lower_subgroups_options;
2930
2931 bool nir_lower_subgroups(nir_shader *shader,
2932 const nir_lower_subgroups_options *options);
2933
2934 bool nir_lower_system_values(nir_shader *shader);
2935
2936 enum PACKED nir_lower_tex_packing {
2937 nir_lower_tex_packing_none = 0,
2938 /* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
2939 * or unsigned ints based on the sampler type
2940 */
2941 nir_lower_tex_packing_16,
2942 /* The sampler returns 1 32-bit word of 4x8 unorm */
2943 nir_lower_tex_packing_8,
2944 };
2945
2946 typedef struct nir_lower_tex_options {
2947 /**
2948 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2949 * sampler types a texture projector is lowered.
2950 */
2951 unsigned lower_txp;
2952
2953 /**
2954 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
2955 */
2956 bool lower_txf_offset;
2957
2958 /**
2959 * If true, lower away nir_tex_src_offset for all rect textures.
2960 */
2961 bool lower_rect_offset;
2962
2963 /**
2964 * If true, lower rect textures to 2D, using txs to fetch the
2965 * texture dimensions and dividing the texture coords by the
2966 * texture dims to normalize.
2967 */
2968 bool lower_rect;
2969
2970 /**
2971 * If true, convert yuv to rgb.
2972 */
2973 unsigned lower_y_uv_external;
2974 unsigned lower_y_u_v_external;
2975 unsigned lower_yx_xuxv_external;
2976 unsigned lower_xy_uxvx_external;
2977 unsigned lower_ayuv_external;
2978
2979 /**
2980 * To emulate certain texture wrap modes, this can be used
2981 * to saturate the specified tex coord to [0.0, 1.0]. The
2982 * bits are according to sampler #, ie. if, for example:
2983 *
2984 * (conf->saturate_s & (1 << n))
2985 *
2986 * is true, then the s coord for sampler n is saturated.
2987 *
2988 * Note that clamping must happen *after* projector lowering
2989 * so any projected texture sample instruction with a clamped
2990 * coordinate gets automatically lowered, regardless of the
2991 * 'lower_txp' setting.
2992 */
2993 unsigned saturate_s;
2994 unsigned saturate_t;
2995 unsigned saturate_r;
2996
2997 /* Bitmask of textures that need swizzling.
2998 *
2999 * If (swizzle_result & (1 << texture_index)), then the swizzle in
3000 * swizzles[texture_index] is applied to the result of the texturing
3001 * operation.
3002 */
3003 unsigned swizzle_result;
3004
3005 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
3006 * while 4 and 5 represent 0 and 1 respectively.
3007 */
3008 uint8_t swizzles[32][4];
3009
3010 /**
3011 * Bitmap of textures that need srgb to linear conversion. If
3012 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
3013 * of the texture are lowered to linear.
3014 */
3015 unsigned lower_srgb;
3016
3017 /**
3018 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
3019 */
3020 bool lower_txd_cube_map;
3021
3022 /**
3023 * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
3024 */
3025 bool lower_txd_3d;
3026
3027 /**
3028 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
3029 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
3030 * with lower_txd_cube_map.
3031 */
3032 bool lower_txd_shadow;
3033
3034 /**
3035 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
3036 * Implies lower_txd_cube_map and lower_txd_shadow.
3037 */
3038 bool lower_txd;
3039
3040 /**
3041 * If true, lower nir_texop_txb that try to use shadow compare and min_lod
3042 * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
3043 */
3044 bool lower_txb_shadow_clamp;
3045
3046 /**
3047 * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
3048 * with nir_texop_txl. This includes cube maps.
3049 */
3050 bool lower_txd_shadow_clamp;
3051
3052 /**
3053 * If true, lower nir_texop_txd on when it uses both offset and min_lod
3054 * with nir_texop_txl. This includes cube maps.
3055 */
3056 bool lower_txd_offset_clamp;
3057
3058 enum nir_lower_tex_packing lower_tex_packing[32];
3059 } nir_lower_tex_options;
3060
3061 bool nir_lower_tex(nir_shader *shader,
3062 const nir_lower_tex_options *options);
3063
3064 bool nir_lower_idiv(nir_shader *shader);
3065
3066 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables, bool use_vars);
3067 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
3068 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
3069
3070 void nir_lower_two_sided_color(nir_shader *shader);
3071
3072 bool nir_lower_clamp_color_outputs(nir_shader *shader);
3073
3074 void nir_lower_passthrough_edgeflags(nir_shader *shader);
3075 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
3076 const gl_state_index16 *uniform_state_tokens);
3077
3078 typedef struct nir_lower_wpos_ytransform_options {
3079 gl_state_index16 state_tokens[STATE_LENGTH];
3080 bool fs_coord_origin_upper_left :1;
3081 bool fs_coord_origin_lower_left :1;
3082 bool fs_coord_pixel_center_integer :1;
3083 bool fs_coord_pixel_center_half_integer :1;
3084 } nir_lower_wpos_ytransform_options;
3085
3086 bool nir_lower_wpos_ytransform(nir_shader *shader,
3087 const nir_lower_wpos_ytransform_options *options);
3088 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
3089
3090 typedef struct nir_lower_drawpixels_options {
3091 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
3092 gl_state_index16 scale_state_tokens[STATE_LENGTH];
3093 gl_state_index16 bias_state_tokens[STATE_LENGTH];
3094 unsigned drawpix_sampler;
3095 unsigned pixelmap_sampler;
3096 bool pixel_maps :1;
3097 bool scale_and_bias :1;
3098 } nir_lower_drawpixels_options;
3099
3100 void nir_lower_drawpixels(nir_shader *shader,
3101 const nir_lower_drawpixels_options *options);
3102
3103 typedef struct nir_lower_bitmap_options {
3104 unsigned sampler;
3105 bool swizzle_xxxx;
3106 } nir_lower_bitmap_options;
3107
3108 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
3109
3110 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
3111
3112 typedef enum {
3113 nir_lower_int_source_mods = 1 << 0,
3114 nir_lower_float_source_mods = 1 << 1,
3115 nir_lower_all_source_mods = (1 << 2) - 1
3116 } nir_lower_to_source_mods_flags;
3117
3118
3119 bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
3120
3121 bool nir_lower_gs_intrinsics(nir_shader *shader);
3122
3123 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
3124
3125 bool nir_lower_bit_size(nir_shader *shader,
3126 nir_lower_bit_size_callback callback,
3127 void *callback_data);
3128
3129 typedef enum {
3130 nir_lower_imul64 = (1 << 0),
3131 nir_lower_isign64 = (1 << 1),
3132 /** Lower all int64 modulus and division opcodes */
3133 nir_lower_divmod64 = (1 << 2),
3134 /** Lower all 64-bit umul_high and imul_high opcodes */
3135 nir_lower_imul_high64 = (1 << 3),
3136 } nir_lower_int64_options;
3137
3138 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
3139
3140 typedef enum {
3141 nir_lower_drcp = (1 << 0),
3142 nir_lower_dsqrt = (1 << 1),
3143 nir_lower_drsq = (1 << 2),
3144 nir_lower_dtrunc = (1 << 3),
3145 nir_lower_dfloor = (1 << 4),
3146 nir_lower_dceil = (1 << 5),
3147 nir_lower_dfract = (1 << 6),
3148 nir_lower_dround_even = (1 << 7),
3149 nir_lower_dmod = (1 << 8)
3150 } nir_lower_doubles_options;
3151
3152 bool nir_lower_doubles(nir_shader *shader, nir_lower_doubles_options options);
3153 bool nir_lower_pack(nir_shader *shader);
3154
3155 bool nir_normalize_cubemap_coords(nir_shader *shader);
3156
3157 void nir_live_ssa_defs_impl(nir_function_impl *impl);
3158
3159 void nir_loop_analyze_impl(nir_function_impl *impl,
3160 nir_variable_mode indirect_mask);
3161
3162 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
3163
3164 bool nir_repair_ssa_impl(nir_function_impl *impl);
3165 bool nir_repair_ssa(nir_shader *shader);
3166
3167 void nir_convert_loop_to_lcssa(nir_loop *loop);
3168
3169 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
3170 * registers. If false, convert all values (even those not involved in a phi
3171 * node) to registers.
3172 */
3173 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
3174
3175 bool nir_lower_phis_to_regs_block(nir_block *block);
3176 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
3177 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
3178
3179 bool nir_opt_algebraic(nir_shader *shader);
3180 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
3181 bool nir_opt_algebraic_late(nir_shader *shader);
3182 bool nir_opt_constant_folding(nir_shader *shader);
3183
3184 bool nir_opt_global_to_local(nir_shader *shader);
3185
3186 bool nir_copy_prop(nir_shader *shader);
3187
3188 bool nir_opt_copy_prop_vars(nir_shader *shader);
3189
3190 bool nir_opt_cse(nir_shader *shader);
3191
3192 bool nir_opt_dce(nir_shader *shader);
3193
3194 bool nir_opt_dead_cf(nir_shader *shader);
3195
3196 bool nir_opt_dead_write_vars(nir_shader *shader);
3197
3198 bool nir_opt_find_array_copies(nir_shader *shader);
3199
3200 bool nir_opt_gcm(nir_shader *shader, bool value_number);
3201
3202 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
3203
3204 bool nir_opt_if(nir_shader *shader);
3205
3206 bool nir_opt_intrinsics(nir_shader *shader);
3207
3208 bool nir_opt_large_constants(nir_shader *shader,
3209 glsl_type_size_align_func size_align,
3210 unsigned threshold);
3211
3212 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
3213
3214 bool nir_opt_move_comparisons(nir_shader *shader);
3215
3216 bool nir_opt_move_load_ubo(nir_shader *shader);
3217
3218 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
3219 bool indirect_load_ok, bool expensive_alu_ok);
3220
3221 bool nir_opt_remove_phis(nir_shader *shader);
3222
3223 bool nir_opt_shrink_load(nir_shader *shader);
3224
3225 bool nir_opt_trivial_continues(nir_shader *shader);
3226
3227 bool nir_opt_undef(nir_shader *shader);
3228
3229 bool nir_opt_conditional_discard(nir_shader *shader);
3230
3231 void nir_sweep(nir_shader *shader);
3232
3233 void nir_remap_dual_slot_attributes(nir_shader *shader,
3234 uint64_t *dual_slot_inputs);
3235 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
3236
3237 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
3238 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
3239
3240 #ifdef __cplusplus
3241 } /* extern "C" */
3242 #endif
3243
3244 #endif /* NIR_H */