nir: Add texture opcodes and source types for multisample compression
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #pragma once
29
30 #include "util/hash_table.h"
31 #include "compiler/glsl/list.h"
32 #include "GL/gl.h" /* GLenum */
33 #include "util/list.h"
34 #include "util/ralloc.h"
35 #include "util/set.h"
36 #include "util/bitset.h"
37 #include "compiler/nir_types.h"
38 #include "compiler/shader_enums.h"
39 #include <stdio.h>
40
41 #include "nir_opcodes.h"
42
43 #ifdef __cplusplus
44 extern "C" {
45 #endif
46
47 struct gl_program;
48 struct gl_shader_program;
49
50 #define NIR_FALSE 0u
51 #define NIR_TRUE (~0u)
52
53 /** Defines a cast function
54 *
55 * This macro defines a cast function from in_type to out_type where
56 * out_type is some structure type that contains a field of type out_type.
57 *
58 * Note that you have to be a bit careful as the generated cast function
59 * destroys constness.
60 */
61 #define NIR_DEFINE_CAST(name, in_type, out_type, field) \
62 static inline out_type * \
63 name(const in_type *parent) \
64 { \
65 return exec_node_data(out_type, parent, field); \
66 }
67
68 struct nir_function;
69 struct nir_shader;
70 struct nir_instr;
71
72
73 /**
74 * Description of built-in state associated with a uniform
75 *
76 * \sa nir_variable::state_slots
77 */
78 typedef struct {
79 int tokens[5];
80 int swizzle;
81 } nir_state_slot;
82
83 typedef enum {
84 nir_var_shader_in = (1 << 0),
85 nir_var_shader_out = (1 << 1),
86 nir_var_global = (1 << 2),
87 nir_var_local = (1 << 3),
88 nir_var_uniform = (1 << 4),
89 nir_var_shader_storage = (1 << 5),
90 nir_var_system_value = (1 << 6),
91 nir_var_param = (1 << 7),
92 nir_var_shared = (1 << 8),
93 nir_var_all = ~0,
94 } nir_variable_mode;
95
96 /**
97 * Data stored in an nir_constant
98 */
99 union nir_constant_data {
100 unsigned u[16];
101 int i[16];
102 float f[16];
103 bool b[16];
104 double d[16];
105 };
106
107 typedef struct nir_constant {
108 /**
109 * Value of the constant.
110 *
111 * The field used to back the values supplied by the constant is determined
112 * by the type associated with the \c nir_variable. Constants may be
113 * scalars, vectors, or matrices.
114 */
115 union nir_constant_data value;
116
117 /* we could get this from the var->type but makes clone *much* easier to
118 * not have to care about the type.
119 */
120 unsigned num_elements;
121
122 /* Array elements / Structure Fields */
123 struct nir_constant **elements;
124 } nir_constant;
125
126 /**
127 * \brief Layout qualifiers for gl_FragDepth.
128 *
129 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
130 * with a layout qualifier.
131 */
132 typedef enum {
133 nir_depth_layout_none, /**< No depth layout is specified. */
134 nir_depth_layout_any,
135 nir_depth_layout_greater,
136 nir_depth_layout_less,
137 nir_depth_layout_unchanged
138 } nir_depth_layout;
139
140 /**
141 * Either a uniform, global variable, shader input, or shader output. Based on
142 * ir_variable - it should be easy to translate between the two.
143 */
144
145 typedef struct nir_variable {
146 struct exec_node node;
147
148 /**
149 * Declared type of the variable
150 */
151 const struct glsl_type *type;
152
153 /**
154 * Declared name of the variable
155 */
156 char *name;
157
158 struct nir_variable_data {
159 /**
160 * Storage class of the variable.
161 *
162 * \sa nir_variable_mode
163 */
164 nir_variable_mode mode;
165
166 /**
167 * Is the variable read-only?
168 *
169 * This is set for variables declared as \c const, shader inputs,
170 * and uniforms.
171 */
172 unsigned read_only:1;
173 unsigned centroid:1;
174 unsigned sample:1;
175 unsigned patch:1;
176 unsigned invariant:1;
177
178 /**
179 * Interpolation mode for shader inputs / outputs
180 *
181 * \sa glsl_interp_qualifier
182 */
183 unsigned interpolation:2;
184
185 /**
186 * \name ARB_fragment_coord_conventions
187 * @{
188 */
189 unsigned origin_upper_left:1;
190 unsigned pixel_center_integer:1;
191 /*@}*/
192
193 /**
194 * Was the location explicitly set in the shader?
195 *
196 * If the location is explicitly set in the shader, it \b cannot be changed
197 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
198 * no effect).
199 */
200 unsigned explicit_location:1;
201 unsigned explicit_index:1;
202
203 /**
204 * Was an initial binding explicitly set in the shader?
205 *
206 * If so, constant_initializer contains an integer nir_constant
207 * representing the initial binding point.
208 */
209 unsigned explicit_binding:1;
210
211 /**
212 * Does this variable have an initializer?
213 *
214 * This is used by the linker to cross-validiate initializers of global
215 * variables.
216 */
217 unsigned has_initializer:1;
218
219 /**
220 * If non-zero, then this variable may be packed along with other variables
221 * into a single varying slot, so this offset should be applied when
222 * accessing components. For example, an offset of 1 means that the x
223 * component of this variable is actually stored in component y of the
224 * location specified by \c location.
225 */
226 unsigned location_frac:2;
227
228 /**
229 * \brief Layout qualifier for gl_FragDepth.
230 *
231 * This is not equal to \c ir_depth_layout_none if and only if this
232 * variable is \c gl_FragDepth and a layout qualifier is specified.
233 */
234 nir_depth_layout depth_layout;
235
236 /**
237 * Storage location of the base of this variable
238 *
239 * The precise meaning of this field depends on the nature of the variable.
240 *
241 * - Vertex shader input: one of the values from \c gl_vert_attrib.
242 * - Vertex shader output: one of the values from \c gl_varying_slot.
243 * - Geometry shader input: one of the values from \c gl_varying_slot.
244 * - Geometry shader output: one of the values from \c gl_varying_slot.
245 * - Fragment shader input: one of the values from \c gl_varying_slot.
246 * - Fragment shader output: one of the values from \c gl_frag_result.
247 * - Uniforms: Per-stage uniform slot number for default uniform block.
248 * - Uniforms: Index within the uniform block definition for UBO members.
249 * - Non-UBO Uniforms: uniform slot number.
250 * - Other: This field is not currently used.
251 *
252 * If the variable is a uniform, shader input, or shader output, and the
253 * slot has not been assigned, the value will be -1.
254 */
255 int location;
256
257 /**
258 * The actual location of the variable in the IR. Only valid for inputs
259 * and outputs.
260 */
261 unsigned int driver_location;
262
263 /**
264 * output index for dual source blending.
265 */
266 int index;
267
268 /**
269 * Descriptor set binding for sampler or UBO.
270 */
271 int descriptor_set;
272
273 /**
274 * Initial binding point for a sampler or UBO.
275 *
276 * For array types, this represents the binding point for the first element.
277 */
278 int binding;
279
280 /**
281 * Location an atomic counter is stored at.
282 */
283 unsigned offset;
284
285 /**
286 * ARB_shader_image_load_store qualifiers.
287 */
288 struct {
289 bool read_only; /**< "readonly" qualifier. */
290 bool write_only; /**< "writeonly" qualifier. */
291 bool coherent;
292 bool _volatile;
293 bool restrict_flag;
294
295 /** Image internal format if specified explicitly, otherwise GL_NONE. */
296 GLenum format;
297 } image;
298
299 /**
300 * Highest element accessed with a constant expression array index
301 *
302 * Not used for non-array variables.
303 */
304 unsigned max_array_access;
305
306 } data;
307
308 /**
309 * Built-in state that backs this uniform
310 *
311 * Once set at variable creation, \c state_slots must remain invariant.
312 * This is because, ideally, this array would be shared by all clones of
313 * this variable in the IR tree. In other words, we'd really like for it
314 * to be a fly-weight.
315 *
316 * If the variable is not a uniform, \c num_state_slots will be zero and
317 * \c state_slots will be \c NULL.
318 */
319 /*@{*/
320 unsigned num_state_slots; /**< Number of state slots used */
321 nir_state_slot *state_slots; /**< State descriptors. */
322 /*@}*/
323
324 /**
325 * Constant expression assigned in the initializer of the variable
326 */
327 nir_constant *constant_initializer;
328
329 /**
330 * For variables that are in an interface block or are an instance of an
331 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
332 *
333 * \sa ir_variable::location
334 */
335 const struct glsl_type *interface_type;
336 } nir_variable;
337
338 #define nir_foreach_variable(var, var_list) \
339 foreach_list_typed(nir_variable, var, node, var_list)
340
341 #define nir_foreach_variable_safe(var, var_list) \
342 foreach_list_typed_safe(nir_variable, var, node, var_list)
343
344 static inline bool
345 nir_variable_is_global(const nir_variable *var)
346 {
347 return var->data.mode != nir_var_local && var->data.mode != nir_var_param;
348 }
349
350 typedef struct nir_register {
351 struct exec_node node;
352
353 unsigned num_components; /** < number of vector components */
354 unsigned num_array_elems; /** < size of array (0 for no array) */
355
356 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
357 uint8_t bit_size;
358
359 /** generic register index. */
360 unsigned index;
361
362 /** only for debug purposes, can be NULL */
363 const char *name;
364
365 /** whether this register is local (per-function) or global (per-shader) */
366 bool is_global;
367
368 /**
369 * If this flag is set to true, then accessing channels >= num_components
370 * is well-defined, and simply spills over to the next array element. This
371 * is useful for backends that can do per-component accessing, in
372 * particular scalar backends. By setting this flag and making
373 * num_components equal to 1, structures can be packed tightly into
374 * registers and then registers can be accessed per-component to get to
375 * each structure member, even if it crosses vec4 boundaries.
376 */
377 bool is_packed;
378
379 /** set of nir_src's where this register is used (read from) */
380 struct list_head uses;
381
382 /** set of nir_dest's where this register is defined (written to) */
383 struct list_head defs;
384
385 /** set of nir_if's where this register is used as a condition */
386 struct list_head if_uses;
387 } nir_register;
388
389 typedef enum {
390 nir_instr_type_alu,
391 nir_instr_type_call,
392 nir_instr_type_tex,
393 nir_instr_type_intrinsic,
394 nir_instr_type_load_const,
395 nir_instr_type_jump,
396 nir_instr_type_ssa_undef,
397 nir_instr_type_phi,
398 nir_instr_type_parallel_copy,
399 } nir_instr_type;
400
401 typedef struct nir_instr {
402 struct exec_node node;
403 nir_instr_type type;
404 struct nir_block *block;
405
406 /** generic instruction index. */
407 unsigned index;
408
409 /* A temporary for optimization and analysis passes to use for storing
410 * flags. For instance, DCE uses this to store the "dead/live" info.
411 */
412 uint8_t pass_flags;
413 } nir_instr;
414
415 static inline nir_instr *
416 nir_instr_next(nir_instr *instr)
417 {
418 struct exec_node *next = exec_node_get_next(&instr->node);
419 if (exec_node_is_tail_sentinel(next))
420 return NULL;
421 else
422 return exec_node_data(nir_instr, next, node);
423 }
424
425 static inline nir_instr *
426 nir_instr_prev(nir_instr *instr)
427 {
428 struct exec_node *prev = exec_node_get_prev(&instr->node);
429 if (exec_node_is_head_sentinel(prev))
430 return NULL;
431 else
432 return exec_node_data(nir_instr, prev, node);
433 }
434
435 static inline bool
436 nir_instr_is_first(nir_instr *instr)
437 {
438 return exec_node_is_head_sentinel(exec_node_get_prev(&instr->node));
439 }
440
441 static inline bool
442 nir_instr_is_last(nir_instr *instr)
443 {
444 return exec_node_is_tail_sentinel(exec_node_get_next(&instr->node));
445 }
446
447 typedef struct nir_ssa_def {
448 /** for debugging only, can be NULL */
449 const char* name;
450
451 /** generic SSA definition index. */
452 unsigned index;
453
454 /** Index into the live_in and live_out bitfields */
455 unsigned live_index;
456
457 nir_instr *parent_instr;
458
459 /** set of nir_instr's where this register is used (read from) */
460 struct list_head uses;
461
462 /** set of nir_if's where this register is used as a condition */
463 struct list_head if_uses;
464
465 uint8_t num_components;
466
467 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
468 uint8_t bit_size;
469 } nir_ssa_def;
470
471 struct nir_src;
472
473 typedef struct {
474 nir_register *reg;
475 struct nir_src *indirect; /** < NULL for no indirect offset */
476 unsigned base_offset;
477
478 /* TODO use-def chain goes here */
479 } nir_reg_src;
480
481 typedef struct {
482 nir_instr *parent_instr;
483 struct list_head def_link;
484
485 nir_register *reg;
486 struct nir_src *indirect; /** < NULL for no indirect offset */
487 unsigned base_offset;
488
489 /* TODO def-use chain goes here */
490 } nir_reg_dest;
491
492 struct nir_if;
493
494 typedef struct nir_src {
495 union {
496 nir_instr *parent_instr;
497 struct nir_if *parent_if;
498 };
499
500 struct list_head use_link;
501
502 union {
503 nir_reg_src reg;
504 nir_ssa_def *ssa;
505 };
506
507 bool is_ssa;
508 } nir_src;
509
510 static inline nir_src
511 nir_src_init(void)
512 {
513 nir_src src = { { NULL } };
514 return src;
515 }
516
517 #define NIR_SRC_INIT nir_src_init()
518
519 #define nir_foreach_use(src, reg_or_ssa_def) \
520 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
521
522 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
523 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
524
525 #define nir_foreach_if_use(src, reg_or_ssa_def) \
526 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
527
528 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
529 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
530
531 typedef struct {
532 union {
533 nir_reg_dest reg;
534 nir_ssa_def ssa;
535 };
536
537 bool is_ssa;
538 } nir_dest;
539
540 static inline nir_dest
541 nir_dest_init(void)
542 {
543 nir_dest dest = { { { NULL } } };
544 return dest;
545 }
546
547 #define NIR_DEST_INIT nir_dest_init()
548
549 #define nir_foreach_def(dest, reg) \
550 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
551
552 #define nir_foreach_def_safe(dest, reg) \
553 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
554
555 static inline nir_src
556 nir_src_for_ssa(nir_ssa_def *def)
557 {
558 nir_src src = NIR_SRC_INIT;
559
560 src.is_ssa = true;
561 src.ssa = def;
562
563 return src;
564 }
565
566 static inline nir_src
567 nir_src_for_reg(nir_register *reg)
568 {
569 nir_src src = NIR_SRC_INIT;
570
571 src.is_ssa = false;
572 src.reg.reg = reg;
573 src.reg.indirect = NULL;
574 src.reg.base_offset = 0;
575
576 return src;
577 }
578
579 static inline nir_dest
580 nir_dest_for_reg(nir_register *reg)
581 {
582 nir_dest dest = NIR_DEST_INIT;
583
584 dest.reg.reg = reg;
585
586 return dest;
587 }
588
589 static inline unsigned
590 nir_src_bit_size(nir_src src)
591 {
592 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
593 }
594
595 static inline unsigned
596 nir_dest_bit_size(nir_dest dest)
597 {
598 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
599 }
600
601 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
602 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
603
604 typedef struct {
605 nir_src src;
606
607 /**
608 * \name input modifiers
609 */
610 /*@{*/
611 /**
612 * For inputs interpreted as floating point, flips the sign bit. For
613 * inputs interpreted as integers, performs the two's complement negation.
614 */
615 bool negate;
616
617 /**
618 * Clears the sign bit for floating point values, and computes the integer
619 * absolute value for integers. Note that the negate modifier acts after
620 * the absolute value modifier, therefore if both are set then all inputs
621 * will become negative.
622 */
623 bool abs;
624 /*@}*/
625
626 /**
627 * For each input component, says which component of the register it is
628 * chosen from. Note that which elements of the swizzle are used and which
629 * are ignored are based on the write mask for most opcodes - for example,
630 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
631 * a swizzle of {2, x, 1, 0} where x means "don't care."
632 */
633 uint8_t swizzle[4];
634 } nir_alu_src;
635
636 typedef struct {
637 nir_dest dest;
638
639 /**
640 * \name saturate output modifier
641 *
642 * Only valid for opcodes that output floating-point numbers. Clamps the
643 * output to between 0.0 and 1.0 inclusive.
644 */
645
646 bool saturate;
647
648 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
649 } nir_alu_dest;
650
651 typedef enum {
652 nir_type_invalid = 0, /* Not a valid type */
653 nir_type_float,
654 nir_type_int,
655 nir_type_uint,
656 nir_type_bool,
657 nir_type_bool32 = 32 | nir_type_bool,
658 nir_type_int8 = 8 | nir_type_int,
659 nir_type_int16 = 16 | nir_type_int,
660 nir_type_int32 = 32 | nir_type_int,
661 nir_type_int64 = 64 | nir_type_int,
662 nir_type_uint8 = 8 | nir_type_uint,
663 nir_type_uint16 = 16 | nir_type_uint,
664 nir_type_uint32 = 32 | nir_type_uint,
665 nir_type_uint64 = 64 | nir_type_uint,
666 nir_type_float16 = 16 | nir_type_float,
667 nir_type_float32 = 32 | nir_type_float,
668 nir_type_float64 = 64 | nir_type_float,
669 } nir_alu_type;
670
671 #define NIR_ALU_TYPE_SIZE_MASK 0xfffffff8
672 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x00000007
673
674 static inline unsigned
675 nir_alu_type_get_type_size(nir_alu_type type)
676 {
677 return type & NIR_ALU_TYPE_SIZE_MASK;
678 }
679
680 static inline unsigned
681 nir_alu_type_get_base_type(nir_alu_type type)
682 {
683 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
684 }
685
686 typedef enum {
687 NIR_OP_IS_COMMUTATIVE = (1 << 0),
688 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
689 } nir_op_algebraic_property;
690
691 typedef struct {
692 const char *name;
693
694 unsigned num_inputs;
695
696 /**
697 * The number of components in the output
698 *
699 * If non-zero, this is the size of the output and input sizes are
700 * explicitly given; swizzle and writemask are still in effect, but if
701 * the output component is masked out, then the input component may
702 * still be in use.
703 *
704 * If zero, the opcode acts in the standard, per-component manner; the
705 * operation is performed on each component (except the ones that are
706 * masked out) with the input being taken from the input swizzle for
707 * that component.
708 *
709 * The size of some of the inputs may be given (i.e. non-zero) even
710 * though output_size is zero; in that case, the inputs with a zero
711 * size act per-component, while the inputs with non-zero size don't.
712 */
713 unsigned output_size;
714
715 /**
716 * The type of vector that the instruction outputs. Note that the
717 * staurate modifier is only allowed on outputs with the float type.
718 */
719
720 nir_alu_type output_type;
721
722 /**
723 * The number of components in each input
724 */
725 unsigned input_sizes[4];
726
727 /**
728 * The type of vector that each input takes. Note that negate and
729 * absolute value are only allowed on inputs with int or float type and
730 * behave differently on the two.
731 */
732 nir_alu_type input_types[4];
733
734 nir_op_algebraic_property algebraic_properties;
735 } nir_op_info;
736
737 extern const nir_op_info nir_op_infos[nir_num_opcodes];
738
739 typedef struct nir_alu_instr {
740 nir_instr instr;
741 nir_op op;
742
743 /** Indicates that this ALU instruction generates an exact value
744 *
745 * This is kind of a mixture of GLSL "precise" and "invariant" and not
746 * really equivalent to either. This indicates that the value generated by
747 * this operation is high-precision and any code transformations that touch
748 * it must ensure that the resulting value is bit-for-bit identical to the
749 * original.
750 */
751 bool exact;
752
753 nir_alu_dest dest;
754 nir_alu_src src[];
755 } nir_alu_instr;
756
757 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
758 nir_alu_instr *instr);
759 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
760 nir_alu_instr *instr);
761
762 /* is this source channel used? */
763 static inline bool
764 nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel)
765 {
766 if (nir_op_infos[instr->op].input_sizes[src] > 0)
767 return channel < nir_op_infos[instr->op].input_sizes[src];
768
769 return (instr->dest.write_mask >> channel) & 1;
770 }
771
772 /*
773 * For instructions whose destinations are SSA, get the number of channels
774 * used for a source
775 */
776 static inline unsigned
777 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
778 {
779 assert(instr->dest.dest.is_ssa);
780
781 if (nir_op_infos[instr->op].input_sizes[src] > 0)
782 return nir_op_infos[instr->op].input_sizes[src];
783
784 return instr->dest.dest.ssa.num_components;
785 }
786
787 typedef enum {
788 nir_deref_type_var,
789 nir_deref_type_array,
790 nir_deref_type_struct
791 } nir_deref_type;
792
793 typedef struct nir_deref {
794 nir_deref_type deref_type;
795 struct nir_deref *child;
796 const struct glsl_type *type;
797 } nir_deref;
798
799 typedef struct {
800 nir_deref deref;
801
802 nir_variable *var;
803 } nir_deref_var;
804
805 /* This enum describes how the array is referenced. If the deref is
806 * direct then the base_offset is used. If the deref is indirect then then
807 * offset is given by base_offset + indirect. If the deref is a wildcard
808 * then the deref refers to all of the elements of the array at the same
809 * time. Wildcard dereferences are only ever allowed in copy_var
810 * intrinsics and the source and destination derefs must have matching
811 * wildcards.
812 */
813 typedef enum {
814 nir_deref_array_type_direct,
815 nir_deref_array_type_indirect,
816 nir_deref_array_type_wildcard,
817 } nir_deref_array_type;
818
819 typedef struct {
820 nir_deref deref;
821
822 nir_deref_array_type deref_array_type;
823 unsigned base_offset;
824 nir_src indirect;
825 } nir_deref_array;
826
827 typedef struct {
828 nir_deref deref;
829
830 unsigned index;
831 } nir_deref_struct;
832
833 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref)
834 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref)
835 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref)
836
837 /* Returns the last deref in the chain. */
838 static inline nir_deref *
839 nir_deref_tail(nir_deref *deref)
840 {
841 while (deref->child)
842 deref = deref->child;
843 return deref;
844 }
845
846 typedef struct {
847 nir_instr instr;
848
849 unsigned num_params;
850 nir_deref_var **params;
851 nir_deref_var *return_deref;
852
853 struct nir_function *callee;
854 } nir_call_instr;
855
856 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
857 num_variables, num_indices, idx0, idx1, idx2, flags) \
858 nir_intrinsic_##name,
859
860 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
861
862 typedef enum {
863 #include "nir_intrinsics.h"
864 nir_num_intrinsics = nir_last_intrinsic + 1
865 } nir_intrinsic_op;
866
867 #undef INTRINSIC
868 #undef LAST_INTRINSIC
869
870 #define NIR_INTRINSIC_MAX_CONST_INDEX 3
871
872 /** Represents an intrinsic
873 *
874 * An intrinsic is an instruction type for handling things that are
875 * more-or-less regular operations but don't just consume and produce SSA
876 * values like ALU operations do. Intrinsics are not for things that have
877 * special semantic meaning such as phi nodes and parallel copies.
878 * Examples of intrinsics include variable load/store operations, system
879 * value loads, and the like. Even though texturing more-or-less falls
880 * under this category, texturing is its own instruction type because
881 * trying to represent texturing with intrinsics would lead to a
882 * combinatorial explosion of intrinsic opcodes.
883 *
884 * By having a single instruction type for handling a lot of different
885 * cases, optimization passes can look for intrinsics and, for the most
886 * part, completely ignore them. Each intrinsic type also has a few
887 * possible flags that govern whether or not they can be reordered or
888 * eliminated. That way passes like dead code elimination can still work
889 * on intrisics without understanding the meaning of each.
890 *
891 * Each intrinsic has some number of constant indices, some number of
892 * variables, and some number of sources. What these sources, variables,
893 * and indices mean depends on the intrinsic and is documented with the
894 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
895 * instructions are the only types of instruction that can operate on
896 * variables.
897 */
898 typedef struct {
899 nir_instr instr;
900
901 nir_intrinsic_op intrinsic;
902
903 nir_dest dest;
904
905 /** number of components if this is a vectorized intrinsic
906 *
907 * Similarly to ALU operations, some intrinsics are vectorized.
908 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
909 * For vectorized intrinsics, the num_components field specifies the
910 * number of destination components and the number of source components
911 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
912 */
913 uint8_t num_components;
914
915 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
916
917 nir_deref_var *variables[2];
918
919 nir_src src[];
920 } nir_intrinsic_instr;
921
922 /**
923 * \name NIR intrinsics semantic flags
924 *
925 * information about what the compiler can do with the intrinsics.
926 *
927 * \sa nir_intrinsic_info::flags
928 */
929 typedef enum {
930 /**
931 * whether the intrinsic can be safely eliminated if none of its output
932 * value is not being used.
933 */
934 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
935
936 /**
937 * Whether the intrinsic can be reordered with respect to any other
938 * intrinsic, i.e. whether the only reordering dependencies of the
939 * intrinsic are due to the register reads/writes.
940 */
941 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
942 } nir_intrinsic_semantic_flag;
943
944 /**
945 * \name NIR intrinsics const-index flag
946 *
947 * Indicates the usage of a const_index slot.
948 *
949 * \sa nir_intrinsic_info::index_map
950 */
951 typedef enum {
952 /**
953 * Generally instructions that take a offset src argument, can encode
954 * a constant 'base' value which is added to the offset.
955 */
956 NIR_INTRINSIC_BASE = 1,
957
958 /**
959 * For store instructions, a writemask for the store.
960 */
961 NIR_INTRINSIC_WRMASK = 2,
962
963 /**
964 * The stream-id for GS emit_vertex/end_primitive intrinsics.
965 */
966 NIR_INTRINSIC_STREAM_ID = 3,
967
968 /**
969 * The clip-plane id for load_user_clip_plane intrinsic.
970 */
971 NIR_INTRINSIC_UCP_ID = 4,
972
973 /**
974 * The amount of data, starting from BASE, that this instruction may
975 * access. This is used to provide bounds if the offset is not constant.
976 */
977 NIR_INTRINSIC_RANGE = 5,
978
979 /**
980 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
981 */
982 NIR_INTRINSIC_DESC_SET = 6,
983
984 /**
985 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
986 */
987 NIR_INTRINSIC_BINDING = 7,
988
989 NIR_INTRINSIC_NUM_INDEX_FLAGS,
990
991 } nir_intrinsic_index_flag;
992
993 #define NIR_INTRINSIC_MAX_INPUTS 4
994
995 typedef struct {
996 const char *name;
997
998 unsigned num_srcs; /** < number of register/SSA inputs */
999
1000 /** number of components of each input register
1001 *
1002 * If this value is 0, the number of components is given by the
1003 * num_components field of nir_intrinsic_instr.
1004 */
1005 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
1006
1007 bool has_dest;
1008
1009 /** number of components of the output register
1010 *
1011 * If this value is 0, the number of components is given by the
1012 * num_components field of nir_intrinsic_instr.
1013 */
1014 unsigned dest_components;
1015
1016 /** the number of inputs/outputs that are variables */
1017 unsigned num_variables;
1018
1019 /** the number of constant indices used by the intrinsic */
1020 unsigned num_indices;
1021
1022 /** indicates the usage of intr->const_index[n] */
1023 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1024
1025 /** semantic flags for calls to this intrinsic */
1026 nir_intrinsic_semantic_flag flags;
1027 } nir_intrinsic_info;
1028
1029 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1030
1031
1032 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1033 static inline type \
1034 nir_intrinsic_##name(nir_intrinsic_instr *instr) \
1035 { \
1036 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1037 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1038 return instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1039 } \
1040 static inline void \
1041 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1042 { \
1043 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1044 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1045 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1046 }
1047
1048 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1049 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1050 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1051 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1052 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1053 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1054 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1055
1056 /**
1057 * \group texture information
1058 *
1059 * This gives semantic information about textures which is useful to the
1060 * frontend, the backend, and lowering passes, but not the optimizer.
1061 */
1062
1063 typedef enum {
1064 nir_tex_src_coord,
1065 nir_tex_src_projector,
1066 nir_tex_src_comparitor, /* shadow comparitor */
1067 nir_tex_src_offset,
1068 nir_tex_src_bias,
1069 nir_tex_src_lod,
1070 nir_tex_src_ms_index, /* MSAA sample index */
1071 nir_tex_src_ms_mcs, /* MSAA compression value */
1072 nir_tex_src_ddx,
1073 nir_tex_src_ddy,
1074 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1075 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1076 nir_num_tex_src_types
1077 } nir_tex_src_type;
1078
1079 typedef struct {
1080 nir_src src;
1081 nir_tex_src_type src_type;
1082 } nir_tex_src;
1083
1084 typedef enum {
1085 nir_texop_tex, /**< Regular texture look-up */
1086 nir_texop_txb, /**< Texture look-up with LOD bias */
1087 nir_texop_txl, /**< Texture look-up with explicit LOD */
1088 nir_texop_txd, /**< Texture look-up with partial derivatvies */
1089 nir_texop_txf, /**< Texel fetch with explicit LOD */
1090 nir_texop_txf_ms, /**< Multisample texture fetch */
1091 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1092 nir_texop_txs, /**< Texture size */
1093 nir_texop_lod, /**< Texture lod query */
1094 nir_texop_tg4, /**< Texture gather */
1095 nir_texop_query_levels, /**< Texture levels query */
1096 nir_texop_texture_samples, /**< Texture samples query */
1097 nir_texop_samples_identical, /**< Query whether all samples are definitely
1098 * identical.
1099 */
1100 } nir_texop;
1101
1102 typedef struct {
1103 nir_instr instr;
1104
1105 enum glsl_sampler_dim sampler_dim;
1106 nir_alu_type dest_type;
1107
1108 nir_texop op;
1109 nir_dest dest;
1110 nir_tex_src *src;
1111 unsigned num_srcs, coord_components;
1112 bool is_array, is_shadow;
1113
1114 /**
1115 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1116 * components or the new-style shadow that outputs 1 component.
1117 */
1118 bool is_new_style_shadow;
1119
1120 /* gather component selector */
1121 unsigned component : 2;
1122
1123 /** The texture index
1124 *
1125 * If this texture instruction has a nir_tex_src_texture_offset source,
1126 * then the texture index is given by texture_index + texture_offset.
1127 */
1128 unsigned texture_index;
1129
1130 /** The size of the texture array or 0 if it's not an array */
1131 unsigned texture_array_size;
1132
1133 /** The texture deref
1134 *
1135 * If this is null, use texture_index instead.
1136 */
1137 nir_deref_var *texture;
1138
1139 /** The sampler index
1140 *
1141 * The following operations do not require a sampler and, as such, this
1142 * field should be ignored:
1143 * - nir_texop_txf
1144 * - nir_texop_txf_ms
1145 * - nir_texop_txs
1146 * - nir_texop_lod
1147 * - nir_texop_tg4
1148 * - nir_texop_query_levels
1149 * - nir_texop_texture_samples
1150 * - nir_texop_samples_identical
1151 *
1152 * If this texture instruction has a nir_tex_src_sampler_offset source,
1153 * then the sampler index is given by sampler_index + sampler_offset.
1154 */
1155 unsigned sampler_index;
1156
1157 /** The sampler deref
1158 *
1159 * If this is null, use sampler_index instead.
1160 */
1161 nir_deref_var *sampler;
1162 } nir_tex_instr;
1163
1164 static inline unsigned
1165 nir_tex_instr_dest_size(nir_tex_instr *instr)
1166 {
1167 switch (instr->op) {
1168 case nir_texop_txs: {
1169 unsigned ret;
1170 switch (instr->sampler_dim) {
1171 case GLSL_SAMPLER_DIM_1D:
1172 case GLSL_SAMPLER_DIM_BUF:
1173 ret = 1;
1174 break;
1175 case GLSL_SAMPLER_DIM_2D:
1176 case GLSL_SAMPLER_DIM_CUBE:
1177 case GLSL_SAMPLER_DIM_MS:
1178 case GLSL_SAMPLER_DIM_RECT:
1179 case GLSL_SAMPLER_DIM_EXTERNAL:
1180 ret = 2;
1181 break;
1182 case GLSL_SAMPLER_DIM_3D:
1183 ret = 3;
1184 break;
1185 default:
1186 unreachable("not reached");
1187 }
1188 if (instr->is_array)
1189 ret++;
1190 return ret;
1191 }
1192
1193 case nir_texop_lod:
1194 return 2;
1195
1196 case nir_texop_texture_samples:
1197 case nir_texop_query_levels:
1198 case nir_texop_samples_identical:
1199 return 1;
1200
1201 default:
1202 if (instr->is_shadow && instr->is_new_style_shadow)
1203 return 1;
1204
1205 return 4;
1206 }
1207 }
1208
1209 /* Returns true if this texture operation queries something about the texture
1210 * rather than actually sampling it.
1211 */
1212 static inline bool
1213 nir_tex_instr_is_query(nir_tex_instr *instr)
1214 {
1215 switch (instr->op) {
1216 case nir_texop_txs:
1217 case nir_texop_lod:
1218 case nir_texop_texture_samples:
1219 case nir_texop_query_levels:
1220 case nir_texop_txf_ms_mcs:
1221 return true;
1222 case nir_texop_tex:
1223 case nir_texop_txb:
1224 case nir_texop_txl:
1225 case nir_texop_txd:
1226 case nir_texop_txf:
1227 case nir_texop_txf_ms:
1228 case nir_texop_tg4:
1229 return false;
1230 default:
1231 unreachable("Invalid texture opcode");
1232 }
1233 }
1234
1235 static inline unsigned
1236 nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src)
1237 {
1238 if (instr->src[src].src_type == nir_tex_src_coord)
1239 return instr->coord_components;
1240
1241 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1242 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1243 return 4;
1244
1245 if (instr->src[src].src_type == nir_tex_src_offset ||
1246 instr->src[src].src_type == nir_tex_src_ddx ||
1247 instr->src[src].src_type == nir_tex_src_ddy) {
1248 if (instr->is_array)
1249 return instr->coord_components - 1;
1250 else
1251 return instr->coord_components;
1252 }
1253
1254 return 1;
1255 }
1256
1257 static inline int
1258 nir_tex_instr_src_index(nir_tex_instr *instr, nir_tex_src_type type)
1259 {
1260 for (unsigned i = 0; i < instr->num_srcs; i++)
1261 if (instr->src[i].src_type == type)
1262 return (int) i;
1263
1264 return -1;
1265 }
1266
1267 typedef struct {
1268 union {
1269 float f32[4];
1270 double f64[4];
1271 int32_t i32[4];
1272 uint32_t u32[4];
1273 int64_t i64[4];
1274 uint64_t u64[4];
1275 };
1276 } nir_const_value;
1277
1278 typedef struct {
1279 nir_instr instr;
1280
1281 nir_const_value value;
1282
1283 nir_ssa_def def;
1284 } nir_load_const_instr;
1285
1286 typedef enum {
1287 nir_jump_return,
1288 nir_jump_break,
1289 nir_jump_continue,
1290 } nir_jump_type;
1291
1292 typedef struct {
1293 nir_instr instr;
1294 nir_jump_type type;
1295 } nir_jump_instr;
1296
1297 /* creates a new SSA variable in an undefined state */
1298
1299 typedef struct {
1300 nir_instr instr;
1301 nir_ssa_def def;
1302 } nir_ssa_undef_instr;
1303
1304 typedef struct {
1305 struct exec_node node;
1306
1307 /* The predecessor block corresponding to this source */
1308 struct nir_block *pred;
1309
1310 nir_src src;
1311 } nir_phi_src;
1312
1313 #define nir_foreach_phi_src(phi_src, phi) \
1314 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1315 #define nir_foreach_phi_src_safe(phi_src, phi) \
1316 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1317
1318 typedef struct {
1319 nir_instr instr;
1320
1321 struct exec_list srcs; /** < list of nir_phi_src */
1322
1323 nir_dest dest;
1324 } nir_phi_instr;
1325
1326 typedef struct {
1327 struct exec_node node;
1328 nir_src src;
1329 nir_dest dest;
1330 } nir_parallel_copy_entry;
1331
1332 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1333 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1334
1335 typedef struct {
1336 nir_instr instr;
1337
1338 /* A list of nir_parallel_copy_entry's. The sources of all of the
1339 * entries are copied to the corresponding destinations "in parallel".
1340 * In other words, if we have two entries: a -> b and b -> a, the values
1341 * get swapped.
1342 */
1343 struct exec_list entries;
1344 } nir_parallel_copy_instr;
1345
1346 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr)
1347 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr)
1348 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr)
1349 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr)
1350 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr)
1351 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr)
1352 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr)
1353 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr)
1354 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1355 nir_parallel_copy_instr, instr)
1356
1357 /*
1358 * Control flow
1359 *
1360 * Control flow consists of a tree of control flow nodes, which include
1361 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1362 * instructions that always run start-to-finish. Each basic block also keeps
1363 * track of its successors (blocks which may run immediately after the current
1364 * block) and predecessors (blocks which could have run immediately before the
1365 * current block). Each function also has a start block and an end block which
1366 * all return statements point to (which is always empty). Together, all the
1367 * blocks with their predecessors and successors make up the control flow
1368 * graph (CFG) of the function. There are helpers that modify the tree of
1369 * control flow nodes while modifying the CFG appropriately; these should be
1370 * used instead of modifying the tree directly.
1371 */
1372
1373 typedef enum {
1374 nir_cf_node_block,
1375 nir_cf_node_if,
1376 nir_cf_node_loop,
1377 nir_cf_node_function
1378 } nir_cf_node_type;
1379
1380 typedef struct nir_cf_node {
1381 struct exec_node node;
1382 nir_cf_node_type type;
1383 struct nir_cf_node *parent;
1384 } nir_cf_node;
1385
1386 typedef struct nir_block {
1387 nir_cf_node cf_node;
1388
1389 struct exec_list instr_list; /** < list of nir_instr */
1390
1391 /** generic block index; generated by nir_index_blocks */
1392 unsigned index;
1393
1394 /*
1395 * Each block can only have up to 2 successors, so we put them in a simple
1396 * array - no need for anything more complicated.
1397 */
1398 struct nir_block *successors[2];
1399
1400 /* Set of nir_block predecessors in the CFG */
1401 struct set *predecessors;
1402
1403 /*
1404 * this node's immediate dominator in the dominance tree - set to NULL for
1405 * the start block.
1406 */
1407 struct nir_block *imm_dom;
1408
1409 /* This node's children in the dominance tree */
1410 unsigned num_dom_children;
1411 struct nir_block **dom_children;
1412
1413 /* Set of nir_block's on the dominance frontier of this block */
1414 struct set *dom_frontier;
1415
1416 /*
1417 * These two indices have the property that dom_{pre,post}_index for each
1418 * child of this block in the dominance tree will always be between
1419 * dom_pre_index and dom_post_index for this block, which makes testing if
1420 * a given block is dominated by another block an O(1) operation.
1421 */
1422 unsigned dom_pre_index, dom_post_index;
1423
1424 /* live in and out for this block; used for liveness analysis */
1425 BITSET_WORD *live_in;
1426 BITSET_WORD *live_out;
1427 } nir_block;
1428
1429 static inline nir_instr *
1430 nir_block_first_instr(nir_block *block)
1431 {
1432 struct exec_node *head = exec_list_get_head(&block->instr_list);
1433 return exec_node_data(nir_instr, head, node);
1434 }
1435
1436 static inline nir_instr *
1437 nir_block_last_instr(nir_block *block)
1438 {
1439 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1440 return exec_node_data(nir_instr, tail, node);
1441 }
1442
1443 #define nir_foreach_instr(instr, block) \
1444 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1445 #define nir_foreach_instr_reverse(instr, block) \
1446 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1447 #define nir_foreach_instr_safe(instr, block) \
1448 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1449 #define nir_foreach_instr_reverse_safe(instr, block) \
1450 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1451
1452 typedef struct nir_if {
1453 nir_cf_node cf_node;
1454 nir_src condition;
1455
1456 struct exec_list then_list; /** < list of nir_cf_node */
1457 struct exec_list else_list; /** < list of nir_cf_node */
1458 } nir_if;
1459
1460 static inline nir_cf_node *
1461 nir_if_first_then_node(nir_if *if_stmt)
1462 {
1463 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1464 return exec_node_data(nir_cf_node, head, node);
1465 }
1466
1467 static inline nir_cf_node *
1468 nir_if_last_then_node(nir_if *if_stmt)
1469 {
1470 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1471 return exec_node_data(nir_cf_node, tail, node);
1472 }
1473
1474 static inline nir_cf_node *
1475 nir_if_first_else_node(nir_if *if_stmt)
1476 {
1477 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1478 return exec_node_data(nir_cf_node, head, node);
1479 }
1480
1481 static inline nir_cf_node *
1482 nir_if_last_else_node(nir_if *if_stmt)
1483 {
1484 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1485 return exec_node_data(nir_cf_node, tail, node);
1486 }
1487
1488 typedef struct {
1489 nir_cf_node cf_node;
1490
1491 struct exec_list body; /** < list of nir_cf_node */
1492 } nir_loop;
1493
1494 static inline nir_cf_node *
1495 nir_loop_first_cf_node(nir_loop *loop)
1496 {
1497 return exec_node_data(nir_cf_node, exec_list_get_head(&loop->body), node);
1498 }
1499
1500 static inline nir_cf_node *
1501 nir_loop_last_cf_node(nir_loop *loop)
1502 {
1503 return exec_node_data(nir_cf_node, exec_list_get_tail(&loop->body), node);
1504 }
1505
1506 /**
1507 * Various bits of metadata that can may be created or required by
1508 * optimization and analysis passes
1509 */
1510 typedef enum {
1511 nir_metadata_none = 0x0,
1512 nir_metadata_block_index = 0x1,
1513 nir_metadata_dominance = 0x2,
1514 nir_metadata_live_ssa_defs = 0x4,
1515 nir_metadata_not_properly_reset = 0x8,
1516 } nir_metadata;
1517
1518 typedef struct {
1519 nir_cf_node cf_node;
1520
1521 /** pointer to the function of which this is an implementation */
1522 struct nir_function *function;
1523
1524 struct exec_list body; /** < list of nir_cf_node */
1525
1526 nir_block *end_block;
1527
1528 /** list for all local variables in the function */
1529 struct exec_list locals;
1530
1531 /** array of variables used as parameters */
1532 unsigned num_params;
1533 nir_variable **params;
1534
1535 /** variable used to hold the result of the function */
1536 nir_variable *return_var;
1537
1538 /** list of local registers in the function */
1539 struct exec_list registers;
1540
1541 /** next available local register index */
1542 unsigned reg_alloc;
1543
1544 /** next available SSA value index */
1545 unsigned ssa_alloc;
1546
1547 /* total number of basic blocks, only valid when block_index_dirty = false */
1548 unsigned num_blocks;
1549
1550 nir_metadata valid_metadata;
1551 } nir_function_impl;
1552
1553 static inline nir_block *
1554 nir_start_block(nir_function_impl *impl)
1555 {
1556 return (nir_block *) exec_list_get_head(&impl->body);
1557 }
1558
1559 static inline nir_block *
1560 nir_impl_last_block(nir_function_impl *impl)
1561 {
1562 return (nir_block *) exec_list_get_tail(&impl->body);
1563 }
1564
1565 static inline nir_cf_node *
1566 nir_cf_node_next(nir_cf_node *node)
1567 {
1568 struct exec_node *next = exec_node_get_next(&node->node);
1569 if (exec_node_is_tail_sentinel(next))
1570 return NULL;
1571 else
1572 return exec_node_data(nir_cf_node, next, node);
1573 }
1574
1575 static inline nir_cf_node *
1576 nir_cf_node_prev(nir_cf_node *node)
1577 {
1578 struct exec_node *prev = exec_node_get_prev(&node->node);
1579 if (exec_node_is_head_sentinel(prev))
1580 return NULL;
1581 else
1582 return exec_node_data(nir_cf_node, prev, node);
1583 }
1584
1585 static inline bool
1586 nir_cf_node_is_first(const nir_cf_node *node)
1587 {
1588 return exec_node_is_head_sentinel(node->node.prev);
1589 }
1590
1591 static inline bool
1592 nir_cf_node_is_last(const nir_cf_node *node)
1593 {
1594 return exec_node_is_tail_sentinel(node->node.next);
1595 }
1596
1597 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node)
1598 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node)
1599 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node)
1600 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node, nir_function_impl, cf_node)
1601
1602 typedef enum {
1603 nir_parameter_in,
1604 nir_parameter_out,
1605 nir_parameter_inout,
1606 } nir_parameter_type;
1607
1608 typedef struct {
1609 nir_parameter_type param_type;
1610 const struct glsl_type *type;
1611 } nir_parameter;
1612
1613 typedef struct nir_function {
1614 struct exec_node node;
1615
1616 const char *name;
1617 struct nir_shader *shader;
1618
1619 unsigned num_params;
1620 nir_parameter *params;
1621 const struct glsl_type *return_type;
1622
1623 /** The implementation of this function.
1624 *
1625 * If the function is only declared and not implemented, this is NULL.
1626 */
1627 nir_function_impl *impl;
1628 } nir_function;
1629
1630 typedef struct nir_shader_compiler_options {
1631 bool lower_fdiv;
1632 bool lower_ffma;
1633 bool fuse_ffma;
1634 bool lower_flrp32;
1635 /** Lowers flrp when it does not support doubles */
1636 bool lower_flrp64;
1637 bool lower_fpow;
1638 bool lower_fsat;
1639 bool lower_fsqrt;
1640 bool lower_fmod32;
1641 bool lower_fmod64;
1642 bool lower_bitfield_extract;
1643 bool lower_bitfield_insert;
1644 bool lower_uadd_carry;
1645 bool lower_usub_borrow;
1646 /** lowers fneg and ineg to fsub and isub. */
1647 bool lower_negate;
1648 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1649 bool lower_sub;
1650
1651 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1652 bool lower_scmp;
1653
1654 /* Does the native fdot instruction replicate its result for four
1655 * components? If so, then opt_algebraic_late will turn all fdotN
1656 * instructions into fdot_replicatedN instructions.
1657 */
1658 bool fdot_replicates;
1659
1660 /** lowers ffract to fsub+ffloor: */
1661 bool lower_ffract;
1662
1663 bool lower_pack_half_2x16;
1664 bool lower_pack_unorm_2x16;
1665 bool lower_pack_snorm_2x16;
1666 bool lower_pack_unorm_4x8;
1667 bool lower_pack_snorm_4x8;
1668 bool lower_unpack_half_2x16;
1669 bool lower_unpack_unorm_2x16;
1670 bool lower_unpack_snorm_2x16;
1671 bool lower_unpack_unorm_4x8;
1672 bool lower_unpack_snorm_4x8;
1673
1674 bool lower_extract_byte;
1675 bool lower_extract_word;
1676
1677 /**
1678 * Does the driver support real 32-bit integers? (Otherwise, integers
1679 * are simulated by floats.)
1680 */
1681 bool native_integers;
1682
1683 /* Indicates that the driver only has zero-based vertex id */
1684 bool vertex_id_zero_based;
1685 } nir_shader_compiler_options;
1686
1687 typedef struct nir_shader_info {
1688 const char *name;
1689
1690 /* Descriptive name provided by the client; may be NULL */
1691 const char *label;
1692
1693 /* Number of textures used by this shader */
1694 unsigned num_textures;
1695 /* Number of uniform buffers used by this shader */
1696 unsigned num_ubos;
1697 /* Number of atomic buffers used by this shader */
1698 unsigned num_abos;
1699 /* Number of shader storage buffers used by this shader */
1700 unsigned num_ssbos;
1701 /* Number of images used by this shader */
1702 unsigned num_images;
1703
1704 /* Which inputs are actually read */
1705 uint64_t inputs_read;
1706 /* Which outputs are actually written */
1707 uint64_t outputs_written;
1708 /* Which system values are actually read */
1709 uint64_t system_values_read;
1710
1711 /* Which patch inputs are actually read */
1712 uint32_t patch_inputs_read;
1713 /* Which patch outputs are actually written */
1714 uint32_t patch_outputs_written;
1715
1716 /* Whether or not this shader ever uses textureGather() */
1717 bool uses_texture_gather;
1718
1719 /* Whether or not this shader uses the gl_ClipDistance output */
1720 bool uses_clip_distance_out;
1721
1722 /* Whether or not separate shader objects were used */
1723 bool separate_shader;
1724
1725 /** Was this shader linked with any transform feedback varyings? */
1726 bool has_transform_feedback_varyings;
1727
1728 union {
1729 struct {
1730 /** The number of vertices recieves per input primitive */
1731 unsigned vertices_in;
1732
1733 /** The output primitive type (GL enum value) */
1734 unsigned output_primitive;
1735
1736 /** The maximum number of vertices the geometry shader might write. */
1737 unsigned vertices_out;
1738
1739 /** 1 .. MAX_GEOMETRY_SHADER_INVOCATIONS */
1740 unsigned invocations;
1741
1742 /** Whether or not this shader uses EndPrimitive */
1743 bool uses_end_primitive;
1744
1745 /** Whether or not this shader uses non-zero streams */
1746 bool uses_streams;
1747 } gs;
1748
1749 struct {
1750 bool uses_discard;
1751
1752 /**
1753 * Whether any inputs are declared with the "sample" qualifier.
1754 */
1755 bool uses_sample_qualifier;
1756
1757 /**
1758 * Whether early fragment tests are enabled as defined by
1759 * ARB_shader_image_load_store.
1760 */
1761 bool early_fragment_tests;
1762
1763 /** gl_FragDepth layout for ARB_conservative_depth. */
1764 enum gl_frag_depth_layout depth_layout;
1765 } fs;
1766
1767 struct {
1768 unsigned local_size[3];
1769 } cs;
1770
1771 struct {
1772 /** The number of vertices in the TCS output patch. */
1773 unsigned vertices_out;
1774 } tcs;
1775 };
1776 } nir_shader_info;
1777
1778 typedef struct nir_shader {
1779 /** list of uniforms (nir_variable) */
1780 struct exec_list uniforms;
1781
1782 /** list of inputs (nir_variable) */
1783 struct exec_list inputs;
1784
1785 /** list of outputs (nir_variable) */
1786 struct exec_list outputs;
1787
1788 /** list of shared compute variables (nir_variable) */
1789 struct exec_list shared;
1790
1791 /** Set of driver-specific options for the shader.
1792 *
1793 * The memory for the options is expected to be kept in a single static
1794 * copy by the driver.
1795 */
1796 const struct nir_shader_compiler_options *options;
1797
1798 /** Various bits of compile-time information about a given shader */
1799 struct nir_shader_info info;
1800
1801 /** list of global variables in the shader (nir_variable) */
1802 struct exec_list globals;
1803
1804 /** list of system value variables in the shader (nir_variable) */
1805 struct exec_list system_values;
1806
1807 struct exec_list functions; /** < list of nir_function */
1808
1809 /** list of global register in the shader */
1810 struct exec_list registers;
1811
1812 /** next available global register index */
1813 unsigned reg_alloc;
1814
1815 /**
1816 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1817 * access plus one
1818 */
1819 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
1820
1821 /** The shader stage, such as MESA_SHADER_VERTEX. */
1822 gl_shader_stage stage;
1823 } nir_shader;
1824
1825 static inline nir_function *
1826 nir_shader_get_entrypoint(nir_shader *shader)
1827 {
1828 assert(exec_list_length(&shader->functions) == 1);
1829 struct exec_node *func_node = exec_list_get_head(&shader->functions);
1830 nir_function *func = exec_node_data(nir_function, func_node, node);
1831 assert(func->return_type == glsl_void_type());
1832 assert(func->num_params == 0);
1833 return func;
1834 }
1835
1836 #define nir_foreach_function(func, shader) \
1837 foreach_list_typed(nir_function, func, node, &(shader)->functions)
1838
1839 nir_shader *nir_shader_create(void *mem_ctx,
1840 gl_shader_stage stage,
1841 const nir_shader_compiler_options *options);
1842
1843 /** creates a register, including assigning it an index and adding it to the list */
1844 nir_register *nir_global_reg_create(nir_shader *shader);
1845
1846 nir_register *nir_local_reg_create(nir_function_impl *impl);
1847
1848 void nir_reg_remove(nir_register *reg);
1849
1850 /** Adds a variable to the appropreate list in nir_shader */
1851 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
1852
1853 static inline void
1854 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
1855 {
1856 assert(var->data.mode == nir_var_local);
1857 exec_list_push_tail(&impl->locals, &var->node);
1858 }
1859
1860 /** creates a variable, sets a few defaults, and adds it to the list */
1861 nir_variable *nir_variable_create(nir_shader *shader,
1862 nir_variable_mode mode,
1863 const struct glsl_type *type,
1864 const char *name);
1865 /** creates a local variable and adds it to the list */
1866 nir_variable *nir_local_variable_create(nir_function_impl *impl,
1867 const struct glsl_type *type,
1868 const char *name);
1869
1870 /** creates a function and adds it to the shader's list of functions */
1871 nir_function *nir_function_create(nir_shader *shader, const char *name);
1872
1873 nir_function_impl *nir_function_impl_create(nir_function *func);
1874 /** creates a function_impl that isn't tied to any particular function */
1875 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
1876
1877 nir_block *nir_block_create(nir_shader *shader);
1878 nir_if *nir_if_create(nir_shader *shader);
1879 nir_loop *nir_loop_create(nir_shader *shader);
1880
1881 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1882
1883 /** requests that the given pieces of metadata be generated */
1884 void nir_metadata_require(nir_function_impl *impl, nir_metadata required);
1885 /** dirties all but the preserved metadata */
1886 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1887
1888 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1889 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
1890
1891 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
1892
1893 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
1894 unsigned num_components,
1895 unsigned bit_size);
1896
1897 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
1898 nir_intrinsic_op op);
1899
1900 nir_call_instr *nir_call_instr_create(nir_shader *shader,
1901 nir_function *callee);
1902
1903 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
1904
1905 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
1906
1907 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
1908
1909 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
1910 unsigned num_components,
1911 unsigned bit_size);
1912
1913 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1914 nir_deref_array *nir_deref_array_create(void *mem_ctx);
1915 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
1916
1917 nir_deref *nir_copy_deref(void *mem_ctx, nir_deref *deref);
1918
1919 nir_load_const_instr *
1920 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
1921
1922 /**
1923 * NIR Cursors and Instruction Insertion API
1924 * @{
1925 *
1926 * A tiny struct representing a point to insert/extract instructions or
1927 * control flow nodes. Helps reduce the combinatorial explosion of possible
1928 * points to insert/extract.
1929 *
1930 * \sa nir_control_flow.h
1931 */
1932 typedef enum {
1933 nir_cursor_before_block,
1934 nir_cursor_after_block,
1935 nir_cursor_before_instr,
1936 nir_cursor_after_instr,
1937 } nir_cursor_option;
1938
1939 typedef struct {
1940 nir_cursor_option option;
1941 union {
1942 nir_block *block;
1943 nir_instr *instr;
1944 };
1945 } nir_cursor;
1946
1947 static inline nir_block *
1948 nir_cursor_current_block(nir_cursor cursor)
1949 {
1950 if (cursor.option == nir_cursor_before_instr ||
1951 cursor.option == nir_cursor_after_instr) {
1952 return cursor.instr->block;
1953 } else {
1954 return cursor.block;
1955 }
1956 }
1957
1958 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
1959
1960 static inline nir_cursor
1961 nir_before_block(nir_block *block)
1962 {
1963 nir_cursor cursor;
1964 cursor.option = nir_cursor_before_block;
1965 cursor.block = block;
1966 return cursor;
1967 }
1968
1969 static inline nir_cursor
1970 nir_after_block(nir_block *block)
1971 {
1972 nir_cursor cursor;
1973 cursor.option = nir_cursor_after_block;
1974 cursor.block = block;
1975 return cursor;
1976 }
1977
1978 static inline nir_cursor
1979 nir_before_instr(nir_instr *instr)
1980 {
1981 nir_cursor cursor;
1982 cursor.option = nir_cursor_before_instr;
1983 cursor.instr = instr;
1984 return cursor;
1985 }
1986
1987 static inline nir_cursor
1988 nir_after_instr(nir_instr *instr)
1989 {
1990 nir_cursor cursor;
1991 cursor.option = nir_cursor_after_instr;
1992 cursor.instr = instr;
1993 return cursor;
1994 }
1995
1996 static inline nir_cursor
1997 nir_after_block_before_jump(nir_block *block)
1998 {
1999 nir_instr *last_instr = nir_block_last_instr(block);
2000 if (last_instr && last_instr->type == nir_instr_type_jump) {
2001 return nir_before_instr(last_instr);
2002 } else {
2003 return nir_after_block(block);
2004 }
2005 }
2006
2007 static inline nir_cursor
2008 nir_before_cf_node(nir_cf_node *node)
2009 {
2010 if (node->type == nir_cf_node_block)
2011 return nir_before_block(nir_cf_node_as_block(node));
2012
2013 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2014 }
2015
2016 static inline nir_cursor
2017 nir_after_cf_node(nir_cf_node *node)
2018 {
2019 if (node->type == nir_cf_node_block)
2020 return nir_after_block(nir_cf_node_as_block(node));
2021
2022 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2023 }
2024
2025 static inline nir_cursor
2026 nir_after_cf_node_and_phis(nir_cf_node *node)
2027 {
2028 if (node->type == nir_cf_node_block)
2029 return nir_after_block(nir_cf_node_as_block(node));
2030
2031 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2032 assert(block->cf_node.type == nir_cf_node_block);
2033
2034 nir_foreach_instr(instr, block) {
2035 if (instr->type != nir_instr_type_phi)
2036 return nir_before_instr(instr);
2037 }
2038 return nir_after_block(block);
2039 }
2040
2041 static inline nir_cursor
2042 nir_before_cf_list(struct exec_list *cf_list)
2043 {
2044 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2045 exec_list_get_head(cf_list), node);
2046 return nir_before_cf_node(first_node);
2047 }
2048
2049 static inline nir_cursor
2050 nir_after_cf_list(struct exec_list *cf_list)
2051 {
2052 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2053 exec_list_get_tail(cf_list), node);
2054 return nir_after_cf_node(last_node);
2055 }
2056
2057 /**
2058 * Insert a NIR instruction at the given cursor.
2059 *
2060 * Note: This does not update the cursor.
2061 */
2062 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2063
2064 static inline void
2065 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2066 {
2067 nir_instr_insert(nir_before_instr(instr), before);
2068 }
2069
2070 static inline void
2071 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2072 {
2073 nir_instr_insert(nir_after_instr(instr), after);
2074 }
2075
2076 static inline void
2077 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2078 {
2079 nir_instr_insert(nir_before_block(block), before);
2080 }
2081
2082 static inline void
2083 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2084 {
2085 nir_instr_insert(nir_after_block(block), after);
2086 }
2087
2088 static inline void
2089 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2090 {
2091 nir_instr_insert(nir_before_cf_node(node), before);
2092 }
2093
2094 static inline void
2095 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2096 {
2097 nir_instr_insert(nir_after_cf_node(node), after);
2098 }
2099
2100 static inline void
2101 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2102 {
2103 nir_instr_insert(nir_before_cf_list(list), before);
2104 }
2105
2106 static inline void
2107 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2108 {
2109 nir_instr_insert(nir_after_cf_list(list), after);
2110 }
2111
2112 void nir_instr_remove(nir_instr *instr);
2113
2114 /** @} */
2115
2116 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2117 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2118 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2119 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2120 void *state);
2121 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2122 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2123
2124 nir_const_value *nir_src_as_const_value(nir_src src);
2125 bool nir_src_is_dynamically_uniform(nir_src src);
2126 bool nir_srcs_equal(nir_src src1, nir_src src2);
2127 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2128 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2129 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2130 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2131 nir_dest new_dest);
2132
2133 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2134 unsigned num_components, unsigned bit_size,
2135 const char *name);
2136 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2137 unsigned num_components, unsigned bit_size,
2138 const char *name);
2139 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2140 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2141 nir_instr *after_me);
2142
2143 uint8_t nir_ssa_def_components_read(nir_ssa_def *def);
2144
2145 /*
2146 * finds the next basic block in source-code order, returns NULL if there is
2147 * none
2148 */
2149
2150 nir_block *nir_block_cf_tree_next(nir_block *block);
2151
2152 /* Performs the opposite of nir_block_cf_tree_next() */
2153
2154 nir_block *nir_block_cf_tree_prev(nir_block *block);
2155
2156 /* Gets the first block in a CF node in source-code order */
2157
2158 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2159
2160 /* Gets the last block in a CF node in source-code order */
2161
2162 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2163
2164 /* Gets the next block after a CF node in source-code order */
2165
2166 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2167
2168 /* Macros for loops that visit blocks in source-code order */
2169
2170 #define nir_foreach_block(block, impl) \
2171 for (nir_block *block = nir_start_block(impl); block != NULL; \
2172 block = nir_block_cf_tree_next(block))
2173
2174 #define nir_foreach_block_safe(block, impl) \
2175 for (nir_block *block = nir_start_block(impl), \
2176 *next = nir_block_cf_tree_next(block); \
2177 block != NULL; \
2178 block = next, next = nir_block_cf_tree_next(block))
2179
2180 #define nir_foreach_block_reverse(block, impl) \
2181 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2182 block = nir_block_cf_tree_prev(block))
2183
2184 #define nir_foreach_block_reverse_safe(block, impl) \
2185 for (nir_block *block = nir_impl_last_block(impl), \
2186 *prev = nir_block_cf_tree_prev(block); \
2187 block != NULL; \
2188 block = prev, prev = nir_block_cf_tree_prev(block))
2189
2190 #define nir_foreach_block_in_cf_node(block, node) \
2191 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2192 block != nir_cf_node_cf_tree_next(node); \
2193 block = nir_block_cf_tree_next(block))
2194
2195 /* If the following CF node is an if, this function returns that if.
2196 * Otherwise, it returns NULL.
2197 */
2198 nir_if *nir_block_get_following_if(nir_block *block);
2199
2200 nir_loop *nir_block_get_following_loop(nir_block *block);
2201
2202 void nir_index_local_regs(nir_function_impl *impl);
2203 void nir_index_global_regs(nir_shader *shader);
2204 void nir_index_ssa_defs(nir_function_impl *impl);
2205 unsigned nir_index_instrs(nir_function_impl *impl);
2206
2207 void nir_index_blocks(nir_function_impl *impl);
2208
2209 void nir_print_shader(nir_shader *shader, FILE *fp);
2210 void nir_print_instr(const nir_instr *instr, FILE *fp);
2211
2212 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2213 nir_function_impl *nir_function_impl_clone(const nir_function_impl *fi);
2214 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2215 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2216
2217 #ifdef DEBUG
2218 void nir_validate_shader(nir_shader *shader);
2219 void nir_metadata_set_validation_flag(nir_shader *shader);
2220 void nir_metadata_check_validation_flag(nir_shader *shader);
2221
2222 #include "util/debug.h"
2223 static inline bool
2224 should_clone_nir(void)
2225 {
2226 static int should_clone = -1;
2227 if (should_clone < 0)
2228 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2229
2230 return should_clone;
2231 }
2232 #else
2233 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
2234 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2235 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2236 static inline bool should_clone_nir(void) { return false; }
2237 #endif /* DEBUG */
2238
2239 #define _PASS(nir, do_pass) do { \
2240 do_pass \
2241 nir_validate_shader(nir); \
2242 if (should_clone_nir()) { \
2243 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2244 ralloc_free(nir); \
2245 nir = clone; \
2246 } \
2247 } while (0)
2248
2249 #define NIR_PASS(progress, nir, pass, ...) _PASS(nir, \
2250 nir_metadata_set_validation_flag(nir); \
2251 if (pass(nir, ##__VA_ARGS__)) { \
2252 progress = true; \
2253 nir_metadata_check_validation_flag(nir); \
2254 } \
2255 )
2256
2257 #define NIR_PASS_V(nir, pass, ...) _PASS(nir, \
2258 pass(nir, ##__VA_ARGS__); \
2259 )
2260
2261 void nir_calc_dominance_impl(nir_function_impl *impl);
2262 void nir_calc_dominance(nir_shader *shader);
2263
2264 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2265 bool nir_block_dominates(nir_block *parent, nir_block *child);
2266
2267 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2268 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2269
2270 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2271 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2272
2273 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2274 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2275
2276 int nir_gs_count_vertices(const nir_shader *shader);
2277
2278 bool nir_split_var_copies(nir_shader *shader);
2279
2280 bool nir_lower_returns_impl(nir_function_impl *impl);
2281 bool nir_lower_returns(nir_shader *shader);
2282
2283 bool nir_inline_functions(nir_shader *shader);
2284
2285 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, void *mem_ctx);
2286 void nir_lower_var_copies(nir_shader *shader);
2287
2288 bool nir_lower_global_vars_to_local(nir_shader *shader);
2289
2290 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
2291
2292 bool nir_lower_locals_to_regs(nir_shader *shader);
2293
2294 void nir_lower_io_to_temporaries(nir_shader *shader, nir_function *entrypoint,
2295 bool outputs, bool inputs);
2296
2297 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2298
2299 void nir_assign_var_locations(struct exec_list *var_list,
2300 unsigned *size,
2301 int (*type_size)(const struct glsl_type *));
2302
2303 void nir_lower_io(nir_shader *shader,
2304 nir_variable_mode modes,
2305 int (*type_size)(const struct glsl_type *));
2306 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2307 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2308
2309 void nir_lower_io_types(nir_shader *shader);
2310 void nir_lower_vars_to_ssa(nir_shader *shader);
2311
2312 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
2313
2314 void nir_move_vec_src_uses_to_dest(nir_shader *shader);
2315 bool nir_lower_vec_to_movs(nir_shader *shader);
2316 void nir_lower_alu_to_scalar(nir_shader *shader);
2317 void nir_lower_load_const_to_scalar(nir_shader *shader);
2318
2319 void nir_lower_phis_to_scalar(nir_shader *shader);
2320
2321 void nir_lower_samplers(nir_shader *shader,
2322 const struct gl_shader_program *shader_program);
2323
2324 bool nir_lower_system_values(nir_shader *shader);
2325
2326 typedef struct nir_lower_tex_options {
2327 /**
2328 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2329 * sampler types a texture projector is lowered.
2330 */
2331 unsigned lower_txp;
2332
2333 /**
2334 * If true, lower rect textures to 2D, using txs to fetch the
2335 * texture dimensions and dividing the texture coords by the
2336 * texture dims to normalize.
2337 */
2338 bool lower_rect;
2339
2340 /**
2341 * To emulate certain texture wrap modes, this can be used
2342 * to saturate the specified tex coord to [0.0, 1.0]. The
2343 * bits are according to sampler #, ie. if, for example:
2344 *
2345 * (conf->saturate_s & (1 << n))
2346 *
2347 * is true, then the s coord for sampler n is saturated.
2348 *
2349 * Note that clamping must happen *after* projector lowering
2350 * so any projected texture sample instruction with a clamped
2351 * coordinate gets automatically lowered, regardless of the
2352 * 'lower_txp' setting.
2353 */
2354 unsigned saturate_s;
2355 unsigned saturate_t;
2356 unsigned saturate_r;
2357
2358 /* Bitmask of textures that need swizzling.
2359 *
2360 * If (swizzle_result & (1 << texture_index)), then the swizzle in
2361 * swizzles[texture_index] is applied to the result of the texturing
2362 * operation.
2363 */
2364 unsigned swizzle_result;
2365
2366 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
2367 * while 4 and 5 represent 0 and 1 respectively.
2368 */
2369 uint8_t swizzles[32][4];
2370
2371 /**
2372 * Bitmap of textures that need srgb to linear conversion. If
2373 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
2374 * of the texture are lowered to linear.
2375 */
2376 unsigned lower_srgb;
2377 } nir_lower_tex_options;
2378
2379 bool nir_lower_tex(nir_shader *shader,
2380 const nir_lower_tex_options *options);
2381
2382 void nir_lower_idiv(nir_shader *shader);
2383
2384 void nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
2385 void nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
2386
2387 void nir_lower_two_sided_color(nir_shader *shader);
2388
2389 void nir_lower_clamp_color_outputs(nir_shader *shader);
2390
2391 void nir_lower_passthrough_edgeflags(nir_shader *shader);
2392
2393 typedef struct nir_lower_wpos_ytransform_options {
2394 int state_tokens[5];
2395 bool fs_coord_origin_upper_left :1;
2396 bool fs_coord_origin_lower_left :1;
2397 bool fs_coord_pixel_center_integer :1;
2398 bool fs_coord_pixel_center_half_integer :1;
2399 } nir_lower_wpos_ytransform_options;
2400
2401 bool nir_lower_wpos_ytransform(nir_shader *shader,
2402 const nir_lower_wpos_ytransform_options *options);
2403
2404 typedef struct nir_lower_drawpixels_options {
2405 int texcoord_state_tokens[5];
2406 int scale_state_tokens[5];
2407 int bias_state_tokens[5];
2408 unsigned drawpix_sampler;
2409 unsigned pixelmap_sampler;
2410 bool pixel_maps :1;
2411 bool scale_and_bias :1;
2412 } nir_lower_drawpixels_options;
2413
2414 void nir_lower_drawpixels(nir_shader *shader,
2415 const nir_lower_drawpixels_options *options);
2416
2417 typedef struct nir_lower_bitmap_options {
2418 unsigned sampler;
2419 bool swizzle_xxxx;
2420 } nir_lower_bitmap_options;
2421
2422 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
2423
2424 void nir_lower_atomics(nir_shader *shader,
2425 const struct gl_shader_program *shader_program);
2426 void nir_lower_to_source_mods(nir_shader *shader);
2427
2428 bool nir_lower_gs_intrinsics(nir_shader *shader);
2429
2430 typedef enum {
2431 nir_lower_drcp = (1 << 0),
2432 nir_lower_dsqrt = (1 << 1),
2433 nir_lower_drsq = (1 << 2),
2434 nir_lower_dtrunc = (1 << 3),
2435 nir_lower_dfloor = (1 << 4),
2436 nir_lower_dceil = (1 << 5),
2437 nir_lower_dfract = (1 << 6),
2438 nir_lower_dround_even = (1 << 7),
2439 nir_lower_dmod = (1 << 8)
2440 } nir_lower_doubles_options;
2441
2442 void nir_lower_doubles(nir_shader *shader, nir_lower_doubles_options options);
2443 void nir_lower_double_pack(nir_shader *shader);
2444
2445 bool nir_normalize_cubemap_coords(nir_shader *shader);
2446
2447 void nir_live_ssa_defs_impl(nir_function_impl *impl);
2448 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
2449
2450 void nir_convert_to_ssa_impl(nir_function_impl *impl);
2451 void nir_convert_to_ssa(nir_shader *shader);
2452
2453 bool nir_repair_ssa_impl(nir_function_impl *impl);
2454 bool nir_repair_ssa(nir_shader *shader);
2455
2456 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
2457 * registers. If false, convert all values (even those not involved in a phi
2458 * node) to registers.
2459 */
2460 void nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
2461
2462 bool nir_opt_algebraic(nir_shader *shader);
2463 bool nir_opt_algebraic_late(nir_shader *shader);
2464 bool nir_opt_constant_folding(nir_shader *shader);
2465
2466 bool nir_opt_global_to_local(nir_shader *shader);
2467
2468 bool nir_copy_prop(nir_shader *shader);
2469
2470 bool nir_opt_cse(nir_shader *shader);
2471
2472 bool nir_opt_dce(nir_shader *shader);
2473
2474 bool nir_opt_dead_cf(nir_shader *shader);
2475
2476 void nir_opt_gcm(nir_shader *shader);
2477
2478 bool nir_opt_peephole_select(nir_shader *shader);
2479
2480 bool nir_opt_remove_phis(nir_shader *shader);
2481
2482 bool nir_opt_undef(nir_shader *shader);
2483
2484 void nir_sweep(nir_shader *shader);
2485
2486 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
2487 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
2488
2489 #ifdef __cplusplus
2490 } /* extern "C" */
2491 #endif