treewide: s/comparitor/comparator/
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #pragma once
29
30 #include "util/hash_table.h"
31 #include "compiler/glsl/list.h"
32 #include "GL/gl.h" /* GLenum */
33 #include "util/list.h"
34 #include "util/ralloc.h"
35 #include "util/set.h"
36 #include "util/bitset.h"
37 #include "util/macros.h"
38 #include "compiler/nir_types.h"
39 #include "compiler/shader_enums.h"
40 #include "compiler/shader_info.h"
41 #include <stdio.h>
42
43 #include "nir_opcodes.h"
44
45 #ifdef __cplusplus
46 extern "C" {
47 #endif
48
49 struct gl_program;
50 struct gl_shader_program;
51
52 #define NIR_FALSE 0u
53 #define NIR_TRUE (~0u)
54
55 /** Defines a cast function
56 *
57 * This macro defines a cast function from in_type to out_type where
58 * out_type is some structure type that contains a field of type out_type.
59 *
60 * Note that you have to be a bit careful as the generated cast function
61 * destroys constness.
62 */
63 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
64 type_field, type_value) \
65 static inline out_type * \
66 name(const in_type *parent) \
67 { \
68 assert(parent && parent->type_field == type_value); \
69 return exec_node_data(out_type, parent, field); \
70 }
71
72 struct nir_function;
73 struct nir_shader;
74 struct nir_instr;
75
76
77 /**
78 * Description of built-in state associated with a uniform
79 *
80 * \sa nir_variable::state_slots
81 */
82 typedef struct {
83 int tokens[5];
84 int swizzle;
85 } nir_state_slot;
86
87 typedef enum {
88 nir_var_shader_in = (1 << 0),
89 nir_var_shader_out = (1 << 1),
90 nir_var_global = (1 << 2),
91 nir_var_local = (1 << 3),
92 nir_var_uniform = (1 << 4),
93 nir_var_shader_storage = (1 << 5),
94 nir_var_system_value = (1 << 6),
95 nir_var_param = (1 << 7),
96 nir_var_shared = (1 << 8),
97 nir_var_all = ~0,
98 } nir_variable_mode;
99
100
101 typedef union {
102 float f32[4];
103 double f64[4];
104 int32_t i32[4];
105 uint32_t u32[4];
106 int64_t i64[4];
107 uint64_t u64[4];
108 } nir_const_value;
109
110 typedef struct nir_constant {
111 /**
112 * Value of the constant.
113 *
114 * The field used to back the values supplied by the constant is determined
115 * by the type associated with the \c nir_variable. Constants may be
116 * scalars, vectors, or matrices.
117 */
118 nir_const_value values[4];
119
120 /* we could get this from the var->type but makes clone *much* easier to
121 * not have to care about the type.
122 */
123 unsigned num_elements;
124
125 /* Array elements / Structure Fields */
126 struct nir_constant **elements;
127 } nir_constant;
128
129 /**
130 * \brief Layout qualifiers for gl_FragDepth.
131 *
132 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
133 * with a layout qualifier.
134 */
135 typedef enum {
136 nir_depth_layout_none, /**< No depth layout is specified. */
137 nir_depth_layout_any,
138 nir_depth_layout_greater,
139 nir_depth_layout_less,
140 nir_depth_layout_unchanged
141 } nir_depth_layout;
142
143 /**
144 * Either a uniform, global variable, shader input, or shader output. Based on
145 * ir_variable - it should be easy to translate between the two.
146 */
147
148 typedef struct nir_variable {
149 struct exec_node node;
150
151 /**
152 * Declared type of the variable
153 */
154 const struct glsl_type *type;
155
156 /**
157 * Declared name of the variable
158 */
159 char *name;
160
161 struct nir_variable_data {
162 /**
163 * Storage class of the variable.
164 *
165 * \sa nir_variable_mode
166 */
167 nir_variable_mode mode;
168
169 /**
170 * Is the variable read-only?
171 *
172 * This is set for variables declared as \c const, shader inputs,
173 * and uniforms.
174 */
175 unsigned read_only:1;
176 unsigned centroid:1;
177 unsigned sample:1;
178 unsigned patch:1;
179 unsigned invariant:1;
180
181 /**
182 * Interpolation mode for shader inputs / outputs
183 *
184 * \sa glsl_interp_mode
185 */
186 unsigned interpolation:2;
187
188 /**
189 * \name ARB_fragment_coord_conventions
190 * @{
191 */
192 unsigned origin_upper_left:1;
193 unsigned pixel_center_integer:1;
194 /*@}*/
195
196 /**
197 * If non-zero, then this variable may be packed along with other variables
198 * into a single varying slot, so this offset should be applied when
199 * accessing components. For example, an offset of 1 means that the x
200 * component of this variable is actually stored in component y of the
201 * location specified by \c location.
202 */
203 unsigned location_frac:2;
204
205 /**
206 * If true, this variable represents an array of scalars that should
207 * be tightly packed. In other words, consecutive array elements
208 * should be stored one component apart, rather than one slot apart.
209 */
210 bool compact:1;
211
212 /**
213 * Whether this is a fragment shader output implicitly initialized with
214 * the previous contents of the specified render target at the
215 * framebuffer location corresponding to this shader invocation.
216 */
217 unsigned fb_fetch_output:1;
218
219 /**
220 * \brief Layout qualifier for gl_FragDepth.
221 *
222 * This is not equal to \c ir_depth_layout_none if and only if this
223 * variable is \c gl_FragDepth and a layout qualifier is specified.
224 */
225 nir_depth_layout depth_layout;
226
227 /**
228 * Storage location of the base of this variable
229 *
230 * The precise meaning of this field depends on the nature of the variable.
231 *
232 * - Vertex shader input: one of the values from \c gl_vert_attrib.
233 * - Vertex shader output: one of the values from \c gl_varying_slot.
234 * - Geometry shader input: one of the values from \c gl_varying_slot.
235 * - Geometry shader output: one of the values from \c gl_varying_slot.
236 * - Fragment shader input: one of the values from \c gl_varying_slot.
237 * - Fragment shader output: one of the values from \c gl_frag_result.
238 * - Uniforms: Per-stage uniform slot number for default uniform block.
239 * - Uniforms: Index within the uniform block definition for UBO members.
240 * - Non-UBO Uniforms: uniform slot number.
241 * - Other: This field is not currently used.
242 *
243 * If the variable is a uniform, shader input, or shader output, and the
244 * slot has not been assigned, the value will be -1.
245 */
246 int location;
247
248 /**
249 * The actual location of the variable in the IR. Only valid for inputs
250 * and outputs.
251 */
252 unsigned int driver_location;
253
254 /**
255 * output index for dual source blending.
256 */
257 int index;
258
259 /**
260 * Descriptor set binding for sampler or UBO.
261 */
262 int descriptor_set;
263
264 /**
265 * Initial binding point for a sampler or UBO.
266 *
267 * For array types, this represents the binding point for the first element.
268 */
269 int binding;
270
271 /**
272 * Location an atomic counter is stored at.
273 */
274 unsigned offset;
275
276 /**
277 * ARB_shader_image_load_store qualifiers.
278 */
279 struct {
280 bool read_only; /**< "readonly" qualifier. */
281 bool write_only; /**< "writeonly" qualifier. */
282 bool coherent;
283 bool _volatile;
284 bool restrict_flag;
285
286 /** Image internal format if specified explicitly, otherwise GL_NONE. */
287 GLenum format;
288 } image;
289 } data;
290
291 /**
292 * Built-in state that backs this uniform
293 *
294 * Once set at variable creation, \c state_slots must remain invariant.
295 * This is because, ideally, this array would be shared by all clones of
296 * this variable in the IR tree. In other words, we'd really like for it
297 * to be a fly-weight.
298 *
299 * If the variable is not a uniform, \c num_state_slots will be zero and
300 * \c state_slots will be \c NULL.
301 */
302 /*@{*/
303 unsigned num_state_slots; /**< Number of state slots used */
304 nir_state_slot *state_slots; /**< State descriptors. */
305 /*@}*/
306
307 /**
308 * Constant expression assigned in the initializer of the variable
309 *
310 * This field should only be used temporarily by creators of NIR shaders
311 * and then lower_constant_initializers can be used to get rid of them.
312 * Most of the rest of NIR ignores this field or asserts that it's NULL.
313 */
314 nir_constant *constant_initializer;
315
316 /**
317 * For variables that are in an interface block or are an instance of an
318 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
319 *
320 * \sa ir_variable::location
321 */
322 const struct glsl_type *interface_type;
323 } nir_variable;
324
325 #define nir_foreach_variable(var, var_list) \
326 foreach_list_typed(nir_variable, var, node, var_list)
327
328 #define nir_foreach_variable_safe(var, var_list) \
329 foreach_list_typed_safe(nir_variable, var, node, var_list)
330
331 static inline bool
332 nir_variable_is_global(const nir_variable *var)
333 {
334 return var->data.mode != nir_var_local && var->data.mode != nir_var_param;
335 }
336
337 typedef struct nir_register {
338 struct exec_node node;
339
340 unsigned num_components; /** < number of vector components */
341 unsigned num_array_elems; /** < size of array (0 for no array) */
342
343 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
344 uint8_t bit_size;
345
346 /** generic register index. */
347 unsigned index;
348
349 /** only for debug purposes, can be NULL */
350 const char *name;
351
352 /** whether this register is local (per-function) or global (per-shader) */
353 bool is_global;
354
355 /**
356 * If this flag is set to true, then accessing channels >= num_components
357 * is well-defined, and simply spills over to the next array element. This
358 * is useful for backends that can do per-component accessing, in
359 * particular scalar backends. By setting this flag and making
360 * num_components equal to 1, structures can be packed tightly into
361 * registers and then registers can be accessed per-component to get to
362 * each structure member, even if it crosses vec4 boundaries.
363 */
364 bool is_packed;
365
366 /** set of nir_src's where this register is used (read from) */
367 struct list_head uses;
368
369 /** set of nir_dest's where this register is defined (written to) */
370 struct list_head defs;
371
372 /** set of nir_if's where this register is used as a condition */
373 struct list_head if_uses;
374 } nir_register;
375
376 typedef enum {
377 nir_instr_type_alu,
378 nir_instr_type_call,
379 nir_instr_type_tex,
380 nir_instr_type_intrinsic,
381 nir_instr_type_load_const,
382 nir_instr_type_jump,
383 nir_instr_type_ssa_undef,
384 nir_instr_type_phi,
385 nir_instr_type_parallel_copy,
386 } nir_instr_type;
387
388 typedef struct nir_instr {
389 struct exec_node node;
390 nir_instr_type type;
391 struct nir_block *block;
392
393 /** generic instruction index. */
394 unsigned index;
395
396 /* A temporary for optimization and analysis passes to use for storing
397 * flags. For instance, DCE uses this to store the "dead/live" info.
398 */
399 uint8_t pass_flags;
400 } nir_instr;
401
402 static inline nir_instr *
403 nir_instr_next(nir_instr *instr)
404 {
405 struct exec_node *next = exec_node_get_next(&instr->node);
406 if (exec_node_is_tail_sentinel(next))
407 return NULL;
408 else
409 return exec_node_data(nir_instr, next, node);
410 }
411
412 static inline nir_instr *
413 nir_instr_prev(nir_instr *instr)
414 {
415 struct exec_node *prev = exec_node_get_prev(&instr->node);
416 if (exec_node_is_head_sentinel(prev))
417 return NULL;
418 else
419 return exec_node_data(nir_instr, prev, node);
420 }
421
422 static inline bool
423 nir_instr_is_first(nir_instr *instr)
424 {
425 return exec_node_is_head_sentinel(exec_node_get_prev(&instr->node));
426 }
427
428 static inline bool
429 nir_instr_is_last(nir_instr *instr)
430 {
431 return exec_node_is_tail_sentinel(exec_node_get_next(&instr->node));
432 }
433
434 typedef struct nir_ssa_def {
435 /** for debugging only, can be NULL */
436 const char* name;
437
438 /** generic SSA definition index. */
439 unsigned index;
440
441 /** Index into the live_in and live_out bitfields */
442 unsigned live_index;
443
444 nir_instr *parent_instr;
445
446 /** set of nir_instr's where this register is used (read from) */
447 struct list_head uses;
448
449 /** set of nir_if's where this register is used as a condition */
450 struct list_head if_uses;
451
452 uint8_t num_components;
453
454 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
455 uint8_t bit_size;
456 } nir_ssa_def;
457
458 struct nir_src;
459
460 typedef struct {
461 nir_register *reg;
462 struct nir_src *indirect; /** < NULL for no indirect offset */
463 unsigned base_offset;
464
465 /* TODO use-def chain goes here */
466 } nir_reg_src;
467
468 typedef struct {
469 nir_instr *parent_instr;
470 struct list_head def_link;
471
472 nir_register *reg;
473 struct nir_src *indirect; /** < NULL for no indirect offset */
474 unsigned base_offset;
475
476 /* TODO def-use chain goes here */
477 } nir_reg_dest;
478
479 struct nir_if;
480
481 typedef struct nir_src {
482 union {
483 nir_instr *parent_instr;
484 struct nir_if *parent_if;
485 };
486
487 struct list_head use_link;
488
489 union {
490 nir_reg_src reg;
491 nir_ssa_def *ssa;
492 };
493
494 bool is_ssa;
495 } nir_src;
496
497 static inline nir_src
498 nir_src_init(void)
499 {
500 nir_src src = { { NULL } };
501 return src;
502 }
503
504 #define NIR_SRC_INIT nir_src_init()
505
506 #define nir_foreach_use(src, reg_or_ssa_def) \
507 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
508
509 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
510 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
511
512 #define nir_foreach_if_use(src, reg_or_ssa_def) \
513 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
514
515 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
516 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
517
518 typedef struct {
519 union {
520 nir_reg_dest reg;
521 nir_ssa_def ssa;
522 };
523
524 bool is_ssa;
525 } nir_dest;
526
527 static inline nir_dest
528 nir_dest_init(void)
529 {
530 nir_dest dest = { { { NULL } } };
531 return dest;
532 }
533
534 #define NIR_DEST_INIT nir_dest_init()
535
536 #define nir_foreach_def(dest, reg) \
537 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
538
539 #define nir_foreach_def_safe(dest, reg) \
540 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
541
542 static inline nir_src
543 nir_src_for_ssa(nir_ssa_def *def)
544 {
545 nir_src src = NIR_SRC_INIT;
546
547 src.is_ssa = true;
548 src.ssa = def;
549
550 return src;
551 }
552
553 static inline nir_src
554 nir_src_for_reg(nir_register *reg)
555 {
556 nir_src src = NIR_SRC_INIT;
557
558 src.is_ssa = false;
559 src.reg.reg = reg;
560 src.reg.indirect = NULL;
561 src.reg.base_offset = 0;
562
563 return src;
564 }
565
566 static inline nir_dest
567 nir_dest_for_reg(nir_register *reg)
568 {
569 nir_dest dest = NIR_DEST_INIT;
570
571 dest.reg.reg = reg;
572
573 return dest;
574 }
575
576 static inline unsigned
577 nir_src_bit_size(nir_src src)
578 {
579 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
580 }
581
582 static inline unsigned
583 nir_dest_bit_size(nir_dest dest)
584 {
585 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
586 }
587
588 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
589 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
590
591 typedef struct {
592 nir_src src;
593
594 /**
595 * \name input modifiers
596 */
597 /*@{*/
598 /**
599 * For inputs interpreted as floating point, flips the sign bit. For
600 * inputs interpreted as integers, performs the two's complement negation.
601 */
602 bool negate;
603
604 /**
605 * Clears the sign bit for floating point values, and computes the integer
606 * absolute value for integers. Note that the negate modifier acts after
607 * the absolute value modifier, therefore if both are set then all inputs
608 * will become negative.
609 */
610 bool abs;
611 /*@}*/
612
613 /**
614 * For each input component, says which component of the register it is
615 * chosen from. Note that which elements of the swizzle are used and which
616 * are ignored are based on the write mask for most opcodes - for example,
617 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
618 * a swizzle of {2, x, 1, 0} where x means "don't care."
619 */
620 uint8_t swizzle[4];
621 } nir_alu_src;
622
623 typedef struct {
624 nir_dest dest;
625
626 /**
627 * \name saturate output modifier
628 *
629 * Only valid for opcodes that output floating-point numbers. Clamps the
630 * output to between 0.0 and 1.0 inclusive.
631 */
632
633 bool saturate;
634
635 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
636 } nir_alu_dest;
637
638 typedef enum {
639 nir_type_invalid = 0, /* Not a valid type */
640 nir_type_float,
641 nir_type_int,
642 nir_type_uint,
643 nir_type_bool,
644 nir_type_bool32 = 32 | nir_type_bool,
645 nir_type_int8 = 8 | nir_type_int,
646 nir_type_int16 = 16 | nir_type_int,
647 nir_type_int32 = 32 | nir_type_int,
648 nir_type_int64 = 64 | nir_type_int,
649 nir_type_uint8 = 8 | nir_type_uint,
650 nir_type_uint16 = 16 | nir_type_uint,
651 nir_type_uint32 = 32 | nir_type_uint,
652 nir_type_uint64 = 64 | nir_type_uint,
653 nir_type_float16 = 16 | nir_type_float,
654 nir_type_float32 = 32 | nir_type_float,
655 nir_type_float64 = 64 | nir_type_float,
656 } nir_alu_type;
657
658 #define NIR_ALU_TYPE_SIZE_MASK 0xfffffff8
659 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x00000007
660
661 static inline unsigned
662 nir_alu_type_get_type_size(nir_alu_type type)
663 {
664 return type & NIR_ALU_TYPE_SIZE_MASK;
665 }
666
667 static inline unsigned
668 nir_alu_type_get_base_type(nir_alu_type type)
669 {
670 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
671 }
672
673 typedef enum {
674 NIR_OP_IS_COMMUTATIVE = (1 << 0),
675 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
676 } nir_op_algebraic_property;
677
678 typedef struct {
679 const char *name;
680
681 unsigned num_inputs;
682
683 /**
684 * The number of components in the output
685 *
686 * If non-zero, this is the size of the output and input sizes are
687 * explicitly given; swizzle and writemask are still in effect, but if
688 * the output component is masked out, then the input component may
689 * still be in use.
690 *
691 * If zero, the opcode acts in the standard, per-component manner; the
692 * operation is performed on each component (except the ones that are
693 * masked out) with the input being taken from the input swizzle for
694 * that component.
695 *
696 * The size of some of the inputs may be given (i.e. non-zero) even
697 * though output_size is zero; in that case, the inputs with a zero
698 * size act per-component, while the inputs with non-zero size don't.
699 */
700 unsigned output_size;
701
702 /**
703 * The type of vector that the instruction outputs. Note that the
704 * staurate modifier is only allowed on outputs with the float type.
705 */
706
707 nir_alu_type output_type;
708
709 /**
710 * The number of components in each input
711 */
712 unsigned input_sizes[4];
713
714 /**
715 * The type of vector that each input takes. Note that negate and
716 * absolute value are only allowed on inputs with int or float type and
717 * behave differently on the two.
718 */
719 nir_alu_type input_types[4];
720
721 nir_op_algebraic_property algebraic_properties;
722 } nir_op_info;
723
724 extern const nir_op_info nir_op_infos[nir_num_opcodes];
725
726 typedef struct nir_alu_instr {
727 nir_instr instr;
728 nir_op op;
729
730 /** Indicates that this ALU instruction generates an exact value
731 *
732 * This is kind of a mixture of GLSL "precise" and "invariant" and not
733 * really equivalent to either. This indicates that the value generated by
734 * this operation is high-precision and any code transformations that touch
735 * it must ensure that the resulting value is bit-for-bit identical to the
736 * original.
737 */
738 bool exact;
739
740 nir_alu_dest dest;
741 nir_alu_src src[];
742 } nir_alu_instr;
743
744 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
745 nir_alu_instr *instr);
746 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
747 nir_alu_instr *instr);
748
749 /* is this source channel used? */
750 static inline bool
751 nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel)
752 {
753 if (nir_op_infos[instr->op].input_sizes[src] > 0)
754 return channel < nir_op_infos[instr->op].input_sizes[src];
755
756 return (instr->dest.write_mask >> channel) & 1;
757 }
758
759 /*
760 * For instructions whose destinations are SSA, get the number of channels
761 * used for a source
762 */
763 static inline unsigned
764 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
765 {
766 assert(instr->dest.dest.is_ssa);
767
768 if (nir_op_infos[instr->op].input_sizes[src] > 0)
769 return nir_op_infos[instr->op].input_sizes[src];
770
771 return instr->dest.dest.ssa.num_components;
772 }
773
774 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
775 unsigned src1, unsigned src2);
776
777 typedef enum {
778 nir_deref_type_var,
779 nir_deref_type_array,
780 nir_deref_type_struct
781 } nir_deref_type;
782
783 typedef struct nir_deref {
784 nir_deref_type deref_type;
785 struct nir_deref *child;
786 const struct glsl_type *type;
787 } nir_deref;
788
789 typedef struct {
790 nir_deref deref;
791
792 nir_variable *var;
793 } nir_deref_var;
794
795 /* This enum describes how the array is referenced. If the deref is
796 * direct then the base_offset is used. If the deref is indirect then
797 * offset is given by base_offset + indirect. If the deref is a wildcard
798 * then the deref refers to all of the elements of the array at the same
799 * time. Wildcard dereferences are only ever allowed in copy_var
800 * intrinsics and the source and destination derefs must have matching
801 * wildcards.
802 */
803 typedef enum {
804 nir_deref_array_type_direct,
805 nir_deref_array_type_indirect,
806 nir_deref_array_type_wildcard,
807 } nir_deref_array_type;
808
809 typedef struct {
810 nir_deref deref;
811
812 nir_deref_array_type deref_array_type;
813 unsigned base_offset;
814 nir_src indirect;
815 } nir_deref_array;
816
817 typedef struct {
818 nir_deref deref;
819
820 unsigned index;
821 } nir_deref_struct;
822
823 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref,
824 deref_type, nir_deref_type_var)
825 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref,
826 deref_type, nir_deref_type_array)
827 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref,
828 deref_type, nir_deref_type_struct)
829
830 /* Returns the last deref in the chain. */
831 static inline nir_deref *
832 nir_deref_tail(nir_deref *deref)
833 {
834 while (deref->child)
835 deref = deref->child;
836 return deref;
837 }
838
839 typedef struct {
840 nir_instr instr;
841
842 unsigned num_params;
843 nir_deref_var **params;
844 nir_deref_var *return_deref;
845
846 struct nir_function *callee;
847 } nir_call_instr;
848
849 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
850 num_variables, num_indices, idx0, idx1, idx2, flags) \
851 nir_intrinsic_##name,
852
853 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
854
855 typedef enum {
856 #include "nir_intrinsics.h"
857 nir_num_intrinsics = nir_last_intrinsic + 1
858 } nir_intrinsic_op;
859
860 #define NIR_INTRINSIC_MAX_CONST_INDEX 3
861
862 /** Represents an intrinsic
863 *
864 * An intrinsic is an instruction type for handling things that are
865 * more-or-less regular operations but don't just consume and produce SSA
866 * values like ALU operations do. Intrinsics are not for things that have
867 * special semantic meaning such as phi nodes and parallel copies.
868 * Examples of intrinsics include variable load/store operations, system
869 * value loads, and the like. Even though texturing more-or-less falls
870 * under this category, texturing is its own instruction type because
871 * trying to represent texturing with intrinsics would lead to a
872 * combinatorial explosion of intrinsic opcodes.
873 *
874 * By having a single instruction type for handling a lot of different
875 * cases, optimization passes can look for intrinsics and, for the most
876 * part, completely ignore them. Each intrinsic type also has a few
877 * possible flags that govern whether or not they can be reordered or
878 * eliminated. That way passes like dead code elimination can still work
879 * on intrisics without understanding the meaning of each.
880 *
881 * Each intrinsic has some number of constant indices, some number of
882 * variables, and some number of sources. What these sources, variables,
883 * and indices mean depends on the intrinsic and is documented with the
884 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
885 * instructions are the only types of instruction that can operate on
886 * variables.
887 */
888 typedef struct {
889 nir_instr instr;
890
891 nir_intrinsic_op intrinsic;
892
893 nir_dest dest;
894
895 /** number of components if this is a vectorized intrinsic
896 *
897 * Similarly to ALU operations, some intrinsics are vectorized.
898 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
899 * For vectorized intrinsics, the num_components field specifies the
900 * number of destination components and the number of source components
901 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
902 */
903 uint8_t num_components;
904
905 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
906
907 nir_deref_var *variables[2];
908
909 nir_src src[];
910 } nir_intrinsic_instr;
911
912 /**
913 * \name NIR intrinsics semantic flags
914 *
915 * information about what the compiler can do with the intrinsics.
916 *
917 * \sa nir_intrinsic_info::flags
918 */
919 typedef enum {
920 /**
921 * whether the intrinsic can be safely eliminated if none of its output
922 * value is not being used.
923 */
924 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
925
926 /**
927 * Whether the intrinsic can be reordered with respect to any other
928 * intrinsic, i.e. whether the only reordering dependencies of the
929 * intrinsic are due to the register reads/writes.
930 */
931 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
932 } nir_intrinsic_semantic_flag;
933
934 /**
935 * \name NIR intrinsics const-index flag
936 *
937 * Indicates the usage of a const_index slot.
938 *
939 * \sa nir_intrinsic_info::index_map
940 */
941 typedef enum {
942 /**
943 * Generally instructions that take a offset src argument, can encode
944 * a constant 'base' value which is added to the offset.
945 */
946 NIR_INTRINSIC_BASE = 1,
947
948 /**
949 * For store instructions, a writemask for the store.
950 */
951 NIR_INTRINSIC_WRMASK = 2,
952
953 /**
954 * The stream-id for GS emit_vertex/end_primitive intrinsics.
955 */
956 NIR_INTRINSIC_STREAM_ID = 3,
957
958 /**
959 * The clip-plane id for load_user_clip_plane intrinsic.
960 */
961 NIR_INTRINSIC_UCP_ID = 4,
962
963 /**
964 * The amount of data, starting from BASE, that this instruction may
965 * access. This is used to provide bounds if the offset is not constant.
966 */
967 NIR_INTRINSIC_RANGE = 5,
968
969 /**
970 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
971 */
972 NIR_INTRINSIC_DESC_SET = 6,
973
974 /**
975 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
976 */
977 NIR_INTRINSIC_BINDING = 7,
978
979 /**
980 * Component offset.
981 */
982 NIR_INTRINSIC_COMPONENT = 8,
983
984 /**
985 * Interpolation mode (only meaningful for FS inputs).
986 */
987 NIR_INTRINSIC_INTERP_MODE = 9,
988
989 NIR_INTRINSIC_NUM_INDEX_FLAGS,
990
991 } nir_intrinsic_index_flag;
992
993 #define NIR_INTRINSIC_MAX_INPUTS 4
994
995 typedef struct {
996 const char *name;
997
998 unsigned num_srcs; /** < number of register/SSA inputs */
999
1000 /** number of components of each input register
1001 *
1002 * If this value is 0, the number of components is given by the
1003 * num_components field of nir_intrinsic_instr.
1004 */
1005 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
1006
1007 bool has_dest;
1008
1009 /** number of components of the output register
1010 *
1011 * If this value is 0, the number of components is given by the
1012 * num_components field of nir_intrinsic_instr.
1013 */
1014 unsigned dest_components;
1015
1016 /** the number of inputs/outputs that are variables */
1017 unsigned num_variables;
1018
1019 /** the number of constant indices used by the intrinsic */
1020 unsigned num_indices;
1021
1022 /** indicates the usage of intr->const_index[n] */
1023 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1024
1025 /** semantic flags for calls to this intrinsic */
1026 nir_intrinsic_semantic_flag flags;
1027 } nir_intrinsic_info;
1028
1029 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1030
1031
1032 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1033 static inline type \
1034 nir_intrinsic_##name(nir_intrinsic_instr *instr) \
1035 { \
1036 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1037 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1038 return instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1039 } \
1040 static inline void \
1041 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1042 { \
1043 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1044 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1045 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1046 }
1047
1048 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1049 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1050 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1051 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1052 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1053 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1054 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1055 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1056 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1057
1058 /**
1059 * \group texture information
1060 *
1061 * This gives semantic information about textures which is useful to the
1062 * frontend, the backend, and lowering passes, but not the optimizer.
1063 */
1064
1065 typedef enum {
1066 nir_tex_src_coord,
1067 nir_tex_src_projector,
1068 nir_tex_src_comparator, /* shadow comparator */
1069 nir_tex_src_offset,
1070 nir_tex_src_bias,
1071 nir_tex_src_lod,
1072 nir_tex_src_ms_index, /* MSAA sample index */
1073 nir_tex_src_ms_mcs, /* MSAA compression value */
1074 nir_tex_src_ddx,
1075 nir_tex_src_ddy,
1076 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1077 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1078 nir_tex_src_plane, /* < selects plane for planar textures */
1079 nir_num_tex_src_types
1080 } nir_tex_src_type;
1081
1082 typedef struct {
1083 nir_src src;
1084 nir_tex_src_type src_type;
1085 } nir_tex_src;
1086
1087 typedef enum {
1088 nir_texop_tex, /**< Regular texture look-up */
1089 nir_texop_txb, /**< Texture look-up with LOD bias */
1090 nir_texop_txl, /**< Texture look-up with explicit LOD */
1091 nir_texop_txd, /**< Texture look-up with partial derivatvies */
1092 nir_texop_txf, /**< Texel fetch with explicit LOD */
1093 nir_texop_txf_ms, /**< Multisample texture fetch */
1094 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1095 nir_texop_txs, /**< Texture size */
1096 nir_texop_lod, /**< Texture lod query */
1097 nir_texop_tg4, /**< Texture gather */
1098 nir_texop_query_levels, /**< Texture levels query */
1099 nir_texop_texture_samples, /**< Texture samples query */
1100 nir_texop_samples_identical, /**< Query whether all samples are definitely
1101 * identical.
1102 */
1103 } nir_texop;
1104
1105 typedef struct {
1106 nir_instr instr;
1107
1108 enum glsl_sampler_dim sampler_dim;
1109 nir_alu_type dest_type;
1110
1111 nir_texop op;
1112 nir_dest dest;
1113 nir_tex_src *src;
1114 unsigned num_srcs, coord_components;
1115 bool is_array, is_shadow;
1116
1117 /**
1118 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1119 * components or the new-style shadow that outputs 1 component.
1120 */
1121 bool is_new_style_shadow;
1122
1123 /* gather component selector */
1124 unsigned component : 2;
1125
1126 /** The texture index
1127 *
1128 * If this texture instruction has a nir_tex_src_texture_offset source,
1129 * then the texture index is given by texture_index + texture_offset.
1130 */
1131 unsigned texture_index;
1132
1133 /** The size of the texture array or 0 if it's not an array */
1134 unsigned texture_array_size;
1135
1136 /** The texture deref
1137 *
1138 * If this is null, use texture_index instead.
1139 */
1140 nir_deref_var *texture;
1141
1142 /** The sampler index
1143 *
1144 * The following operations do not require a sampler and, as such, this
1145 * field should be ignored:
1146 * - nir_texop_txf
1147 * - nir_texop_txf_ms
1148 * - nir_texop_txs
1149 * - nir_texop_lod
1150 * - nir_texop_tg4
1151 * - nir_texop_query_levels
1152 * - nir_texop_texture_samples
1153 * - nir_texop_samples_identical
1154 *
1155 * If this texture instruction has a nir_tex_src_sampler_offset source,
1156 * then the sampler index is given by sampler_index + sampler_offset.
1157 */
1158 unsigned sampler_index;
1159
1160 /** The sampler deref
1161 *
1162 * If this is null, use sampler_index instead.
1163 */
1164 nir_deref_var *sampler;
1165 } nir_tex_instr;
1166
1167 static inline unsigned
1168 nir_tex_instr_dest_size(nir_tex_instr *instr)
1169 {
1170 switch (instr->op) {
1171 case nir_texop_txs: {
1172 unsigned ret;
1173 switch (instr->sampler_dim) {
1174 case GLSL_SAMPLER_DIM_1D:
1175 case GLSL_SAMPLER_DIM_BUF:
1176 ret = 1;
1177 break;
1178 case GLSL_SAMPLER_DIM_2D:
1179 case GLSL_SAMPLER_DIM_CUBE:
1180 case GLSL_SAMPLER_DIM_MS:
1181 case GLSL_SAMPLER_DIM_RECT:
1182 case GLSL_SAMPLER_DIM_EXTERNAL:
1183 case GLSL_SAMPLER_DIM_SUBPASS:
1184 ret = 2;
1185 break;
1186 case GLSL_SAMPLER_DIM_3D:
1187 ret = 3;
1188 break;
1189 default:
1190 unreachable("not reached");
1191 }
1192 if (instr->is_array)
1193 ret++;
1194 return ret;
1195 }
1196
1197 case nir_texop_lod:
1198 return 2;
1199
1200 case nir_texop_texture_samples:
1201 case nir_texop_query_levels:
1202 case nir_texop_samples_identical:
1203 return 1;
1204
1205 default:
1206 if (instr->is_shadow && instr->is_new_style_shadow)
1207 return 1;
1208
1209 return 4;
1210 }
1211 }
1212
1213 /* Returns true if this texture operation queries something about the texture
1214 * rather than actually sampling it.
1215 */
1216 static inline bool
1217 nir_tex_instr_is_query(nir_tex_instr *instr)
1218 {
1219 switch (instr->op) {
1220 case nir_texop_txs:
1221 case nir_texop_lod:
1222 case nir_texop_texture_samples:
1223 case nir_texop_query_levels:
1224 case nir_texop_txf_ms_mcs:
1225 return true;
1226 case nir_texop_tex:
1227 case nir_texop_txb:
1228 case nir_texop_txl:
1229 case nir_texop_txd:
1230 case nir_texop_txf:
1231 case nir_texop_txf_ms:
1232 case nir_texop_tg4:
1233 return false;
1234 default:
1235 unreachable("Invalid texture opcode");
1236 }
1237 }
1238
1239 static inline nir_alu_type
1240 nir_tex_instr_src_type(nir_tex_instr *instr, unsigned src)
1241 {
1242 switch (instr->src[src].src_type) {
1243 case nir_tex_src_coord:
1244 switch (instr->op) {
1245 case nir_texop_txf:
1246 case nir_texop_txf_ms:
1247 case nir_texop_txf_ms_mcs:
1248 case nir_texop_samples_identical:
1249 return nir_type_int;
1250
1251 default:
1252 return nir_type_float;
1253 }
1254
1255 case nir_tex_src_lod:
1256 switch (instr->op) {
1257 case nir_texop_txs:
1258 case nir_texop_txf:
1259 return nir_type_int;
1260
1261 default:
1262 return nir_type_float;
1263 }
1264
1265 case nir_tex_src_projector:
1266 case nir_tex_src_comparator:
1267 case nir_tex_src_bias:
1268 case nir_tex_src_ddx:
1269 case nir_tex_src_ddy:
1270 return nir_type_float;
1271
1272 case nir_tex_src_offset:
1273 case nir_tex_src_ms_index:
1274 case nir_tex_src_texture_offset:
1275 case nir_tex_src_sampler_offset:
1276 return nir_type_int;
1277
1278 default:
1279 unreachable("Invalid texture source type");
1280 }
1281 }
1282
1283 static inline unsigned
1284 nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src)
1285 {
1286 if (instr->src[src].src_type == nir_tex_src_coord)
1287 return instr->coord_components;
1288
1289 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1290 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1291 return 4;
1292
1293 if (instr->src[src].src_type == nir_tex_src_offset ||
1294 instr->src[src].src_type == nir_tex_src_ddx ||
1295 instr->src[src].src_type == nir_tex_src_ddy) {
1296 if (instr->is_array)
1297 return instr->coord_components - 1;
1298 else
1299 return instr->coord_components;
1300 }
1301
1302 return 1;
1303 }
1304
1305 static inline int
1306 nir_tex_instr_src_index(nir_tex_instr *instr, nir_tex_src_type type)
1307 {
1308 for (unsigned i = 0; i < instr->num_srcs; i++)
1309 if (instr->src[i].src_type == type)
1310 return (int) i;
1311
1312 return -1;
1313 }
1314
1315 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1316
1317 typedef struct {
1318 nir_instr instr;
1319
1320 nir_const_value value;
1321
1322 nir_ssa_def def;
1323 } nir_load_const_instr;
1324
1325 typedef enum {
1326 nir_jump_return,
1327 nir_jump_break,
1328 nir_jump_continue,
1329 } nir_jump_type;
1330
1331 typedef struct {
1332 nir_instr instr;
1333 nir_jump_type type;
1334 } nir_jump_instr;
1335
1336 /* creates a new SSA variable in an undefined state */
1337
1338 typedef struct {
1339 nir_instr instr;
1340 nir_ssa_def def;
1341 } nir_ssa_undef_instr;
1342
1343 typedef struct {
1344 struct exec_node node;
1345
1346 /* The predecessor block corresponding to this source */
1347 struct nir_block *pred;
1348
1349 nir_src src;
1350 } nir_phi_src;
1351
1352 #define nir_foreach_phi_src(phi_src, phi) \
1353 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1354 #define nir_foreach_phi_src_safe(phi_src, phi) \
1355 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1356
1357 typedef struct {
1358 nir_instr instr;
1359
1360 struct exec_list srcs; /** < list of nir_phi_src */
1361
1362 nir_dest dest;
1363 } nir_phi_instr;
1364
1365 typedef struct {
1366 struct exec_node node;
1367 nir_src src;
1368 nir_dest dest;
1369 } nir_parallel_copy_entry;
1370
1371 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1372 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1373
1374 typedef struct {
1375 nir_instr instr;
1376
1377 /* A list of nir_parallel_copy_entry's. The sources of all of the
1378 * entries are copied to the corresponding destinations "in parallel".
1379 * In other words, if we have two entries: a -> b and b -> a, the values
1380 * get swapped.
1381 */
1382 struct exec_list entries;
1383 } nir_parallel_copy_instr;
1384
1385 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1386 type, nir_instr_type_alu)
1387 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1388 type, nir_instr_type_call)
1389 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1390 type, nir_instr_type_jump)
1391 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1392 type, nir_instr_type_tex)
1393 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1394 type, nir_instr_type_intrinsic)
1395 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1396 type, nir_instr_type_load_const)
1397 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1398 type, nir_instr_type_ssa_undef)
1399 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1400 type, nir_instr_type_phi)
1401 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1402 nir_parallel_copy_instr, instr,
1403 type, nir_instr_type_parallel_copy)
1404
1405 /*
1406 * Control flow
1407 *
1408 * Control flow consists of a tree of control flow nodes, which include
1409 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1410 * instructions that always run start-to-finish. Each basic block also keeps
1411 * track of its successors (blocks which may run immediately after the current
1412 * block) and predecessors (blocks which could have run immediately before the
1413 * current block). Each function also has a start block and an end block which
1414 * all return statements point to (which is always empty). Together, all the
1415 * blocks with their predecessors and successors make up the control flow
1416 * graph (CFG) of the function. There are helpers that modify the tree of
1417 * control flow nodes while modifying the CFG appropriately; these should be
1418 * used instead of modifying the tree directly.
1419 */
1420
1421 typedef enum {
1422 nir_cf_node_block,
1423 nir_cf_node_if,
1424 nir_cf_node_loop,
1425 nir_cf_node_function
1426 } nir_cf_node_type;
1427
1428 typedef struct nir_cf_node {
1429 struct exec_node node;
1430 nir_cf_node_type type;
1431 struct nir_cf_node *parent;
1432 } nir_cf_node;
1433
1434 typedef struct nir_block {
1435 nir_cf_node cf_node;
1436
1437 struct exec_list instr_list; /** < list of nir_instr */
1438
1439 /** generic block index; generated by nir_index_blocks */
1440 unsigned index;
1441
1442 /*
1443 * Each block can only have up to 2 successors, so we put them in a simple
1444 * array - no need for anything more complicated.
1445 */
1446 struct nir_block *successors[2];
1447
1448 /* Set of nir_block predecessors in the CFG */
1449 struct set *predecessors;
1450
1451 /*
1452 * this node's immediate dominator in the dominance tree - set to NULL for
1453 * the start block.
1454 */
1455 struct nir_block *imm_dom;
1456
1457 /* This node's children in the dominance tree */
1458 unsigned num_dom_children;
1459 struct nir_block **dom_children;
1460
1461 /* Set of nir_block's on the dominance frontier of this block */
1462 struct set *dom_frontier;
1463
1464 /*
1465 * These two indices have the property that dom_{pre,post}_index for each
1466 * child of this block in the dominance tree will always be between
1467 * dom_pre_index and dom_post_index for this block, which makes testing if
1468 * a given block is dominated by another block an O(1) operation.
1469 */
1470 unsigned dom_pre_index, dom_post_index;
1471
1472 /* live in and out for this block; used for liveness analysis */
1473 BITSET_WORD *live_in;
1474 BITSET_WORD *live_out;
1475 } nir_block;
1476
1477 static inline nir_instr *
1478 nir_block_first_instr(nir_block *block)
1479 {
1480 struct exec_node *head = exec_list_get_head(&block->instr_list);
1481 return exec_node_data(nir_instr, head, node);
1482 }
1483
1484 static inline nir_instr *
1485 nir_block_last_instr(nir_block *block)
1486 {
1487 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1488 return exec_node_data(nir_instr, tail, node);
1489 }
1490
1491 #define nir_foreach_instr(instr, block) \
1492 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1493 #define nir_foreach_instr_reverse(instr, block) \
1494 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1495 #define nir_foreach_instr_safe(instr, block) \
1496 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1497 #define nir_foreach_instr_reverse_safe(instr, block) \
1498 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1499
1500 typedef struct nir_if {
1501 nir_cf_node cf_node;
1502 nir_src condition;
1503
1504 struct exec_list then_list; /** < list of nir_cf_node */
1505 struct exec_list else_list; /** < list of nir_cf_node */
1506 } nir_if;
1507
1508 typedef struct {
1509 nir_cf_node cf_node;
1510
1511 struct exec_list body; /** < list of nir_cf_node */
1512 } nir_loop;
1513
1514 /**
1515 * Various bits of metadata that can may be created or required by
1516 * optimization and analysis passes
1517 */
1518 typedef enum {
1519 nir_metadata_none = 0x0,
1520 nir_metadata_block_index = 0x1,
1521 nir_metadata_dominance = 0x2,
1522 nir_metadata_live_ssa_defs = 0x4,
1523 nir_metadata_not_properly_reset = 0x8,
1524 } nir_metadata;
1525
1526 typedef struct {
1527 nir_cf_node cf_node;
1528
1529 /** pointer to the function of which this is an implementation */
1530 struct nir_function *function;
1531
1532 struct exec_list body; /** < list of nir_cf_node */
1533
1534 nir_block *end_block;
1535
1536 /** list for all local variables in the function */
1537 struct exec_list locals;
1538
1539 /** array of variables used as parameters */
1540 unsigned num_params;
1541 nir_variable **params;
1542
1543 /** variable used to hold the result of the function */
1544 nir_variable *return_var;
1545
1546 /** list of local registers in the function */
1547 struct exec_list registers;
1548
1549 /** next available local register index */
1550 unsigned reg_alloc;
1551
1552 /** next available SSA value index */
1553 unsigned ssa_alloc;
1554
1555 /* total number of basic blocks, only valid when block_index_dirty = false */
1556 unsigned num_blocks;
1557
1558 nir_metadata valid_metadata;
1559 } nir_function_impl;
1560
1561 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1562 nir_start_block(nir_function_impl *impl)
1563 {
1564 return (nir_block *) impl->body.head_sentinel.next;
1565 }
1566
1567 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
1568 nir_impl_last_block(nir_function_impl *impl)
1569 {
1570 return (nir_block *) impl->body.tail_sentinel.prev;
1571 }
1572
1573 static inline nir_cf_node *
1574 nir_cf_node_next(nir_cf_node *node)
1575 {
1576 struct exec_node *next = exec_node_get_next(&node->node);
1577 if (exec_node_is_tail_sentinel(next))
1578 return NULL;
1579 else
1580 return exec_node_data(nir_cf_node, next, node);
1581 }
1582
1583 static inline nir_cf_node *
1584 nir_cf_node_prev(nir_cf_node *node)
1585 {
1586 struct exec_node *prev = exec_node_get_prev(&node->node);
1587 if (exec_node_is_head_sentinel(prev))
1588 return NULL;
1589 else
1590 return exec_node_data(nir_cf_node, prev, node);
1591 }
1592
1593 static inline bool
1594 nir_cf_node_is_first(const nir_cf_node *node)
1595 {
1596 return exec_node_is_head_sentinel(node->node.prev);
1597 }
1598
1599 static inline bool
1600 nir_cf_node_is_last(const nir_cf_node *node)
1601 {
1602 return exec_node_is_tail_sentinel(node->node.next);
1603 }
1604
1605 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
1606 type, nir_cf_node_block)
1607 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
1608 type, nir_cf_node_if)
1609 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
1610 type, nir_cf_node_loop)
1611 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
1612 nir_function_impl, cf_node, type, nir_cf_node_function)
1613
1614 static inline nir_block *
1615 nir_if_first_then_block(nir_if *if_stmt)
1616 {
1617 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1618 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1619 }
1620
1621 static inline nir_block *
1622 nir_if_last_then_block(nir_if *if_stmt)
1623 {
1624 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1625 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1626 }
1627
1628 static inline nir_block *
1629 nir_if_first_else_block(nir_if *if_stmt)
1630 {
1631 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1632 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1633 }
1634
1635 static inline nir_block *
1636 nir_if_last_else_block(nir_if *if_stmt)
1637 {
1638 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1639 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1640 }
1641
1642 static inline nir_block *
1643 nir_loop_first_block(nir_loop *loop)
1644 {
1645 struct exec_node *head = exec_list_get_head(&loop->body);
1646 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
1647 }
1648
1649 static inline nir_block *
1650 nir_loop_last_block(nir_loop *loop)
1651 {
1652 struct exec_node *tail = exec_list_get_tail(&loop->body);
1653 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
1654 }
1655
1656 typedef enum {
1657 nir_parameter_in,
1658 nir_parameter_out,
1659 nir_parameter_inout,
1660 } nir_parameter_type;
1661
1662 typedef struct {
1663 nir_parameter_type param_type;
1664 const struct glsl_type *type;
1665 } nir_parameter;
1666
1667 typedef struct nir_function {
1668 struct exec_node node;
1669
1670 const char *name;
1671 struct nir_shader *shader;
1672
1673 unsigned num_params;
1674 nir_parameter *params;
1675 const struct glsl_type *return_type;
1676
1677 /** The implementation of this function.
1678 *
1679 * If the function is only declared and not implemented, this is NULL.
1680 */
1681 nir_function_impl *impl;
1682 } nir_function;
1683
1684 typedef struct nir_shader_compiler_options {
1685 bool lower_fdiv;
1686 bool lower_ffma;
1687 bool fuse_ffma;
1688 bool lower_flrp32;
1689 /** Lowers flrp when it does not support doubles */
1690 bool lower_flrp64;
1691 bool lower_fpow;
1692 bool lower_fsat;
1693 bool lower_fsqrt;
1694 bool lower_fmod32;
1695 bool lower_fmod64;
1696 bool lower_bitfield_extract;
1697 bool lower_bitfield_insert;
1698 bool lower_uadd_carry;
1699 bool lower_usub_borrow;
1700 /** lowers fneg and ineg to fsub and isub. */
1701 bool lower_negate;
1702 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1703 bool lower_sub;
1704
1705 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1706 bool lower_scmp;
1707
1708 /** enables rules to lower idiv by power-of-two: */
1709 bool lower_idiv;
1710
1711 /* Does the native fdot instruction replicate its result for four
1712 * components? If so, then opt_algebraic_late will turn all fdotN
1713 * instructions into fdot_replicatedN instructions.
1714 */
1715 bool fdot_replicates;
1716
1717 /** lowers ffract to fsub+ffloor: */
1718 bool lower_ffract;
1719
1720 bool lower_pack_half_2x16;
1721 bool lower_pack_unorm_2x16;
1722 bool lower_pack_snorm_2x16;
1723 bool lower_pack_unorm_4x8;
1724 bool lower_pack_snorm_4x8;
1725 bool lower_unpack_half_2x16;
1726 bool lower_unpack_unorm_2x16;
1727 bool lower_unpack_snorm_2x16;
1728 bool lower_unpack_unorm_4x8;
1729 bool lower_unpack_snorm_4x8;
1730
1731 bool lower_extract_byte;
1732 bool lower_extract_word;
1733
1734 /**
1735 * Does the driver support real 32-bit integers? (Otherwise, integers
1736 * are simulated by floats.)
1737 */
1738 bool native_integers;
1739
1740 /* Indicates that the driver only has zero-based vertex id */
1741 bool vertex_id_zero_based;
1742
1743 bool lower_cs_local_index_from_id;
1744
1745 /**
1746 * Should nir_lower_io() create load_interpolated_input intrinsics?
1747 *
1748 * If not, it generates regular load_input intrinsics and interpolation
1749 * information must be inferred from the list of input nir_variables.
1750 */
1751 bool use_interpolated_input_intrinsics;
1752 } nir_shader_compiler_options;
1753
1754 typedef struct nir_shader {
1755 /** list of uniforms (nir_variable) */
1756 struct exec_list uniforms;
1757
1758 /** list of inputs (nir_variable) */
1759 struct exec_list inputs;
1760
1761 /** list of outputs (nir_variable) */
1762 struct exec_list outputs;
1763
1764 /** list of shared compute variables (nir_variable) */
1765 struct exec_list shared;
1766
1767 /** Set of driver-specific options for the shader.
1768 *
1769 * The memory for the options is expected to be kept in a single static
1770 * copy by the driver.
1771 */
1772 const struct nir_shader_compiler_options *options;
1773
1774 /** Various bits of compile-time information about a given shader */
1775 struct shader_info *info;
1776
1777 /** list of global variables in the shader (nir_variable) */
1778 struct exec_list globals;
1779
1780 /** list of system value variables in the shader (nir_variable) */
1781 struct exec_list system_values;
1782
1783 struct exec_list functions; /** < list of nir_function */
1784
1785 /** list of global register in the shader */
1786 struct exec_list registers;
1787
1788 /** next available global register index */
1789 unsigned reg_alloc;
1790
1791 /**
1792 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1793 * access plus one
1794 */
1795 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
1796
1797 /** The shader stage, such as MESA_SHADER_VERTEX. */
1798 gl_shader_stage stage;
1799 } nir_shader;
1800
1801 static inline nir_function_impl *
1802 nir_shader_get_entrypoint(nir_shader *shader)
1803 {
1804 assert(exec_list_length(&shader->functions) == 1);
1805 struct exec_node *func_node = exec_list_get_head(&shader->functions);
1806 nir_function *func = exec_node_data(nir_function, func_node, node);
1807 assert(func->return_type == glsl_void_type());
1808 assert(func->num_params == 0);
1809 assert(func->impl);
1810 return func->impl;
1811 }
1812
1813 #define nir_foreach_function(func, shader) \
1814 foreach_list_typed(nir_function, func, node, &(shader)->functions)
1815
1816 nir_shader *nir_shader_create(void *mem_ctx,
1817 gl_shader_stage stage,
1818 const nir_shader_compiler_options *options,
1819 shader_info *si);
1820
1821 /** creates a register, including assigning it an index and adding it to the list */
1822 nir_register *nir_global_reg_create(nir_shader *shader);
1823
1824 nir_register *nir_local_reg_create(nir_function_impl *impl);
1825
1826 void nir_reg_remove(nir_register *reg);
1827
1828 /** Adds a variable to the appropreate list in nir_shader */
1829 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
1830
1831 static inline void
1832 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
1833 {
1834 assert(var->data.mode == nir_var_local);
1835 exec_list_push_tail(&impl->locals, &var->node);
1836 }
1837
1838 /** creates a variable, sets a few defaults, and adds it to the list */
1839 nir_variable *nir_variable_create(nir_shader *shader,
1840 nir_variable_mode mode,
1841 const struct glsl_type *type,
1842 const char *name);
1843 /** creates a local variable and adds it to the list */
1844 nir_variable *nir_local_variable_create(nir_function_impl *impl,
1845 const struct glsl_type *type,
1846 const char *name);
1847
1848 /** creates a function and adds it to the shader's list of functions */
1849 nir_function *nir_function_create(nir_shader *shader, const char *name);
1850
1851 nir_function_impl *nir_function_impl_create(nir_function *func);
1852 /** creates a function_impl that isn't tied to any particular function */
1853 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
1854
1855 nir_block *nir_block_create(nir_shader *shader);
1856 nir_if *nir_if_create(nir_shader *shader);
1857 nir_loop *nir_loop_create(nir_shader *shader);
1858
1859 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1860
1861 /** requests that the given pieces of metadata be generated */
1862 void nir_metadata_require(nir_function_impl *impl, nir_metadata required);
1863 /** dirties all but the preserved metadata */
1864 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1865
1866 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1867 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
1868
1869 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
1870
1871 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
1872 unsigned num_components,
1873 unsigned bit_size);
1874
1875 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
1876 nir_intrinsic_op op);
1877
1878 nir_call_instr *nir_call_instr_create(nir_shader *shader,
1879 nir_function *callee);
1880
1881 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
1882
1883 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
1884
1885 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
1886
1887 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
1888 unsigned num_components,
1889 unsigned bit_size);
1890
1891 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1892 nir_deref_array *nir_deref_array_create(void *mem_ctx);
1893 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
1894
1895 nir_deref *nir_copy_deref(void *mem_ctx, nir_deref *deref);
1896
1897 typedef bool (*nir_deref_foreach_leaf_cb)(nir_deref_var *deref, void *state);
1898 bool nir_deref_foreach_leaf(nir_deref_var *deref,
1899 nir_deref_foreach_leaf_cb cb, void *state);
1900
1901 nir_load_const_instr *
1902 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
1903
1904 /**
1905 * NIR Cursors and Instruction Insertion API
1906 * @{
1907 *
1908 * A tiny struct representing a point to insert/extract instructions or
1909 * control flow nodes. Helps reduce the combinatorial explosion of possible
1910 * points to insert/extract.
1911 *
1912 * \sa nir_control_flow.h
1913 */
1914 typedef enum {
1915 nir_cursor_before_block,
1916 nir_cursor_after_block,
1917 nir_cursor_before_instr,
1918 nir_cursor_after_instr,
1919 } nir_cursor_option;
1920
1921 typedef struct {
1922 nir_cursor_option option;
1923 union {
1924 nir_block *block;
1925 nir_instr *instr;
1926 };
1927 } nir_cursor;
1928
1929 static inline nir_block *
1930 nir_cursor_current_block(nir_cursor cursor)
1931 {
1932 if (cursor.option == nir_cursor_before_instr ||
1933 cursor.option == nir_cursor_after_instr) {
1934 return cursor.instr->block;
1935 } else {
1936 return cursor.block;
1937 }
1938 }
1939
1940 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
1941
1942 static inline nir_cursor
1943 nir_before_block(nir_block *block)
1944 {
1945 nir_cursor cursor;
1946 cursor.option = nir_cursor_before_block;
1947 cursor.block = block;
1948 return cursor;
1949 }
1950
1951 static inline nir_cursor
1952 nir_after_block(nir_block *block)
1953 {
1954 nir_cursor cursor;
1955 cursor.option = nir_cursor_after_block;
1956 cursor.block = block;
1957 return cursor;
1958 }
1959
1960 static inline nir_cursor
1961 nir_before_instr(nir_instr *instr)
1962 {
1963 nir_cursor cursor;
1964 cursor.option = nir_cursor_before_instr;
1965 cursor.instr = instr;
1966 return cursor;
1967 }
1968
1969 static inline nir_cursor
1970 nir_after_instr(nir_instr *instr)
1971 {
1972 nir_cursor cursor;
1973 cursor.option = nir_cursor_after_instr;
1974 cursor.instr = instr;
1975 return cursor;
1976 }
1977
1978 static inline nir_cursor
1979 nir_after_block_before_jump(nir_block *block)
1980 {
1981 nir_instr *last_instr = nir_block_last_instr(block);
1982 if (last_instr && last_instr->type == nir_instr_type_jump) {
1983 return nir_before_instr(last_instr);
1984 } else {
1985 return nir_after_block(block);
1986 }
1987 }
1988
1989 static inline nir_cursor
1990 nir_before_cf_node(nir_cf_node *node)
1991 {
1992 if (node->type == nir_cf_node_block)
1993 return nir_before_block(nir_cf_node_as_block(node));
1994
1995 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
1996 }
1997
1998 static inline nir_cursor
1999 nir_after_cf_node(nir_cf_node *node)
2000 {
2001 if (node->type == nir_cf_node_block)
2002 return nir_after_block(nir_cf_node_as_block(node));
2003
2004 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2005 }
2006
2007 static inline nir_cursor
2008 nir_after_phis(nir_block *block)
2009 {
2010 nir_foreach_instr(instr, block) {
2011 if (instr->type != nir_instr_type_phi)
2012 return nir_before_instr(instr);
2013 }
2014 return nir_after_block(block);
2015 }
2016
2017 static inline nir_cursor
2018 nir_after_cf_node_and_phis(nir_cf_node *node)
2019 {
2020 if (node->type == nir_cf_node_block)
2021 return nir_after_block(nir_cf_node_as_block(node));
2022
2023 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2024
2025 return nir_after_phis(block);
2026 }
2027
2028 static inline nir_cursor
2029 nir_before_cf_list(struct exec_list *cf_list)
2030 {
2031 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2032 exec_list_get_head(cf_list), node);
2033 return nir_before_cf_node(first_node);
2034 }
2035
2036 static inline nir_cursor
2037 nir_after_cf_list(struct exec_list *cf_list)
2038 {
2039 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2040 exec_list_get_tail(cf_list), node);
2041 return nir_after_cf_node(last_node);
2042 }
2043
2044 /**
2045 * Insert a NIR instruction at the given cursor.
2046 *
2047 * Note: This does not update the cursor.
2048 */
2049 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2050
2051 static inline void
2052 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2053 {
2054 nir_instr_insert(nir_before_instr(instr), before);
2055 }
2056
2057 static inline void
2058 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2059 {
2060 nir_instr_insert(nir_after_instr(instr), after);
2061 }
2062
2063 static inline void
2064 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2065 {
2066 nir_instr_insert(nir_before_block(block), before);
2067 }
2068
2069 static inline void
2070 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2071 {
2072 nir_instr_insert(nir_after_block(block), after);
2073 }
2074
2075 static inline void
2076 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2077 {
2078 nir_instr_insert(nir_before_cf_node(node), before);
2079 }
2080
2081 static inline void
2082 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2083 {
2084 nir_instr_insert(nir_after_cf_node(node), after);
2085 }
2086
2087 static inline void
2088 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2089 {
2090 nir_instr_insert(nir_before_cf_list(list), before);
2091 }
2092
2093 static inline void
2094 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2095 {
2096 nir_instr_insert(nir_after_cf_list(list), after);
2097 }
2098
2099 void nir_instr_remove(nir_instr *instr);
2100
2101 /** @} */
2102
2103 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2104 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2105 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2106 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2107 void *state);
2108 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2109 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2110
2111 nir_const_value *nir_src_as_const_value(nir_src src);
2112 bool nir_src_is_dynamically_uniform(nir_src src);
2113 bool nir_srcs_equal(nir_src src1, nir_src src2);
2114 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2115 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2116 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2117 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2118 nir_dest new_dest);
2119
2120 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2121 unsigned num_components, unsigned bit_size,
2122 const char *name);
2123 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2124 unsigned num_components, unsigned bit_size,
2125 const char *name);
2126 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2127 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2128 nir_instr *after_me);
2129
2130 uint8_t nir_ssa_def_components_read(nir_ssa_def *def);
2131
2132 /*
2133 * finds the next basic block in source-code order, returns NULL if there is
2134 * none
2135 */
2136
2137 nir_block *nir_block_cf_tree_next(nir_block *block);
2138
2139 /* Performs the opposite of nir_block_cf_tree_next() */
2140
2141 nir_block *nir_block_cf_tree_prev(nir_block *block);
2142
2143 /* Gets the first block in a CF node in source-code order */
2144
2145 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2146
2147 /* Gets the last block in a CF node in source-code order */
2148
2149 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2150
2151 /* Gets the next block after a CF node in source-code order */
2152
2153 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2154
2155 /* Macros for loops that visit blocks in source-code order */
2156
2157 #define nir_foreach_block(block, impl) \
2158 for (nir_block *block = nir_start_block(impl); block != NULL; \
2159 block = nir_block_cf_tree_next(block))
2160
2161 #define nir_foreach_block_safe(block, impl) \
2162 for (nir_block *block = nir_start_block(impl), \
2163 *next = nir_block_cf_tree_next(block); \
2164 block != NULL; \
2165 block = next, next = nir_block_cf_tree_next(block))
2166
2167 #define nir_foreach_block_reverse(block, impl) \
2168 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2169 block = nir_block_cf_tree_prev(block))
2170
2171 #define nir_foreach_block_reverse_safe(block, impl) \
2172 for (nir_block *block = nir_impl_last_block(impl), \
2173 *prev = nir_block_cf_tree_prev(block); \
2174 block != NULL; \
2175 block = prev, prev = nir_block_cf_tree_prev(block))
2176
2177 #define nir_foreach_block_in_cf_node(block, node) \
2178 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2179 block != nir_cf_node_cf_tree_next(node); \
2180 block = nir_block_cf_tree_next(block))
2181
2182 /* If the following CF node is an if, this function returns that if.
2183 * Otherwise, it returns NULL.
2184 */
2185 nir_if *nir_block_get_following_if(nir_block *block);
2186
2187 nir_loop *nir_block_get_following_loop(nir_block *block);
2188
2189 void nir_index_local_regs(nir_function_impl *impl);
2190 void nir_index_global_regs(nir_shader *shader);
2191 void nir_index_ssa_defs(nir_function_impl *impl);
2192 unsigned nir_index_instrs(nir_function_impl *impl);
2193
2194 void nir_index_blocks(nir_function_impl *impl);
2195
2196 void nir_print_shader(nir_shader *shader, FILE *fp);
2197 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2198 void nir_print_instr(const nir_instr *instr, FILE *fp);
2199
2200 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2201 nir_function_impl *nir_function_impl_clone(const nir_function_impl *fi);
2202 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2203 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2204
2205 #ifdef DEBUG
2206 void nir_validate_shader(nir_shader *shader);
2207 void nir_metadata_set_validation_flag(nir_shader *shader);
2208 void nir_metadata_check_validation_flag(nir_shader *shader);
2209
2210 #include "util/debug.h"
2211 static inline bool
2212 should_clone_nir(void)
2213 {
2214 static int should_clone = -1;
2215 if (should_clone < 0)
2216 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2217
2218 return should_clone;
2219 }
2220 #else
2221 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
2222 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
2223 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
2224 static inline bool should_clone_nir(void) { return false; }
2225 #endif /* DEBUG */
2226
2227 #define _PASS(nir, do_pass) do { \
2228 do_pass \
2229 nir_validate_shader(nir); \
2230 if (should_clone_nir()) { \
2231 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
2232 ralloc_free(nir); \
2233 nir = clone; \
2234 } \
2235 } while (0)
2236
2237 #define NIR_PASS(progress, nir, pass, ...) _PASS(nir, \
2238 nir_metadata_set_validation_flag(nir); \
2239 if (pass(nir, ##__VA_ARGS__)) { \
2240 progress = true; \
2241 nir_metadata_check_validation_flag(nir); \
2242 } \
2243 )
2244
2245 #define NIR_PASS_V(nir, pass, ...) _PASS(nir, \
2246 pass(nir, ##__VA_ARGS__); \
2247 )
2248
2249 void nir_calc_dominance_impl(nir_function_impl *impl);
2250 void nir_calc_dominance(nir_shader *shader);
2251
2252 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
2253 bool nir_block_dominates(nir_block *parent, nir_block *child);
2254
2255 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
2256 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
2257
2258 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
2259 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
2260
2261 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
2262 void nir_dump_cfg(nir_shader *shader, FILE *fp);
2263
2264 int nir_gs_count_vertices(const nir_shader *shader);
2265
2266 bool nir_split_var_copies(nir_shader *shader);
2267
2268 bool nir_lower_returns_impl(nir_function_impl *impl);
2269 bool nir_lower_returns(nir_shader *shader);
2270
2271 bool nir_inline_functions(nir_shader *shader);
2272
2273 bool nir_propagate_invariant(nir_shader *shader);
2274
2275 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, void *mem_ctx);
2276 void nir_lower_var_copies(nir_shader *shader);
2277
2278 bool nir_lower_global_vars_to_local(nir_shader *shader);
2279
2280 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
2281
2282 bool nir_lower_locals_to_regs(nir_shader *shader);
2283
2284 void nir_lower_io_to_temporaries(nir_shader *shader,
2285 nir_function_impl *entrypoint,
2286 bool outputs, bool inputs);
2287
2288 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
2289
2290 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
2291 int (*type_size)(const struct glsl_type *));
2292
2293 typedef enum {
2294 /* If set, this forces all non-flat fragment shader inputs to be
2295 * interpolated as if with the "sample" qualifier. This requires
2296 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
2297 */
2298 nir_lower_io_force_sample_interpolation = (1 << 1),
2299 } nir_lower_io_options;
2300 void nir_lower_io(nir_shader *shader,
2301 nir_variable_mode modes,
2302 int (*type_size)(const struct glsl_type *),
2303 nir_lower_io_options);
2304 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
2305 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
2306
2307 bool nir_is_per_vertex_io(nir_variable *var, gl_shader_stage stage);
2308
2309 void nir_lower_io_types(nir_shader *shader);
2310 void nir_lower_vars_to_ssa(nir_shader *shader);
2311
2312 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
2313 bool nir_lower_constant_initializers(nir_shader *shader,
2314 nir_variable_mode modes);
2315
2316 void nir_move_vec_src_uses_to_dest(nir_shader *shader);
2317 bool nir_lower_vec_to_movs(nir_shader *shader);
2318 bool nir_lower_alu_to_scalar(nir_shader *shader);
2319 void nir_lower_load_const_to_scalar(nir_shader *shader);
2320
2321 bool nir_lower_phis_to_scalar(nir_shader *shader);
2322 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
2323
2324 void nir_lower_samplers(nir_shader *shader,
2325 const struct gl_shader_program *shader_program);
2326
2327 bool nir_lower_system_values(nir_shader *shader);
2328
2329 typedef struct nir_lower_tex_options {
2330 /**
2331 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2332 * sampler types a texture projector is lowered.
2333 */
2334 unsigned lower_txp;
2335
2336 /**
2337 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
2338 */
2339 bool lower_txf_offset;
2340
2341 /**
2342 * If true, lower away nir_tex_src_offset for all rect textures.
2343 */
2344 bool lower_rect_offset;
2345
2346 /**
2347 * If true, lower rect textures to 2D, using txs to fetch the
2348 * texture dimensions and dividing the texture coords by the
2349 * texture dims to normalize.
2350 */
2351 bool lower_rect;
2352
2353 /**
2354 * If true, convert yuv to rgb.
2355 */
2356 unsigned lower_y_uv_external;
2357 unsigned lower_y_u_v_external;
2358 unsigned lower_yx_xuxv_external;
2359
2360 /**
2361 * To emulate certain texture wrap modes, this can be used
2362 * to saturate the specified tex coord to [0.0, 1.0]. The
2363 * bits are according to sampler #, ie. if, for example:
2364 *
2365 * (conf->saturate_s & (1 << n))
2366 *
2367 * is true, then the s coord for sampler n is saturated.
2368 *
2369 * Note that clamping must happen *after* projector lowering
2370 * so any projected texture sample instruction with a clamped
2371 * coordinate gets automatically lowered, regardless of the
2372 * 'lower_txp' setting.
2373 */
2374 unsigned saturate_s;
2375 unsigned saturate_t;
2376 unsigned saturate_r;
2377
2378 /* Bitmask of textures that need swizzling.
2379 *
2380 * If (swizzle_result & (1 << texture_index)), then the swizzle in
2381 * swizzles[texture_index] is applied to the result of the texturing
2382 * operation.
2383 */
2384 unsigned swizzle_result;
2385
2386 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
2387 * while 4 and 5 represent 0 and 1 respectively.
2388 */
2389 uint8_t swizzles[32][4];
2390
2391 /**
2392 * Bitmap of textures that need srgb to linear conversion. If
2393 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
2394 * of the texture are lowered to linear.
2395 */
2396 unsigned lower_srgb;
2397 } nir_lower_tex_options;
2398
2399 bool nir_lower_tex(nir_shader *shader,
2400 const nir_lower_tex_options *options);
2401
2402 bool nir_lower_idiv(nir_shader *shader);
2403
2404 void nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
2405 void nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
2406 void nir_lower_clip_cull_distance_arrays(nir_shader *nir);
2407
2408 void nir_lower_two_sided_color(nir_shader *shader);
2409
2410 void nir_lower_clamp_color_outputs(nir_shader *shader);
2411
2412 void nir_lower_passthrough_edgeflags(nir_shader *shader);
2413
2414 typedef struct nir_lower_wpos_ytransform_options {
2415 int state_tokens[5];
2416 bool fs_coord_origin_upper_left :1;
2417 bool fs_coord_origin_lower_left :1;
2418 bool fs_coord_pixel_center_integer :1;
2419 bool fs_coord_pixel_center_half_integer :1;
2420 } nir_lower_wpos_ytransform_options;
2421
2422 bool nir_lower_wpos_ytransform(nir_shader *shader,
2423 const nir_lower_wpos_ytransform_options *options);
2424 bool nir_lower_wpos_center(nir_shader *shader);
2425
2426 typedef struct nir_lower_drawpixels_options {
2427 int texcoord_state_tokens[5];
2428 int scale_state_tokens[5];
2429 int bias_state_tokens[5];
2430 unsigned drawpix_sampler;
2431 unsigned pixelmap_sampler;
2432 bool pixel_maps :1;
2433 bool scale_and_bias :1;
2434 } nir_lower_drawpixels_options;
2435
2436 void nir_lower_drawpixels(nir_shader *shader,
2437 const nir_lower_drawpixels_options *options);
2438
2439 typedef struct nir_lower_bitmap_options {
2440 unsigned sampler;
2441 bool swizzle_xxxx;
2442 } nir_lower_bitmap_options;
2443
2444 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
2445
2446 void nir_lower_atomics(nir_shader *shader,
2447 const struct gl_shader_program *shader_program);
2448 void nir_lower_to_source_mods(nir_shader *shader);
2449
2450 bool nir_lower_gs_intrinsics(nir_shader *shader);
2451
2452 typedef enum {
2453 nir_lower_drcp = (1 << 0),
2454 nir_lower_dsqrt = (1 << 1),
2455 nir_lower_drsq = (1 << 2),
2456 nir_lower_dtrunc = (1 << 3),
2457 nir_lower_dfloor = (1 << 4),
2458 nir_lower_dceil = (1 << 5),
2459 nir_lower_dfract = (1 << 6),
2460 nir_lower_dround_even = (1 << 7),
2461 nir_lower_dmod = (1 << 8)
2462 } nir_lower_doubles_options;
2463
2464 void nir_lower_doubles(nir_shader *shader, nir_lower_doubles_options options);
2465 void nir_lower_double_pack(nir_shader *shader);
2466
2467 bool nir_normalize_cubemap_coords(nir_shader *shader);
2468
2469 void nir_live_ssa_defs_impl(nir_function_impl *impl);
2470 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
2471
2472 void nir_convert_to_ssa_impl(nir_function_impl *impl);
2473 void nir_convert_to_ssa(nir_shader *shader);
2474
2475 bool nir_repair_ssa_impl(nir_function_impl *impl);
2476 bool nir_repair_ssa(nir_shader *shader);
2477
2478 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
2479 * registers. If false, convert all values (even those not involved in a phi
2480 * node) to registers.
2481 */
2482 void nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
2483
2484 bool nir_opt_algebraic(nir_shader *shader);
2485 bool nir_opt_algebraic_late(nir_shader *shader);
2486 bool nir_opt_constant_folding(nir_shader *shader);
2487
2488 bool nir_opt_global_to_local(nir_shader *shader);
2489
2490 bool nir_copy_prop(nir_shader *shader);
2491
2492 bool nir_opt_cse(nir_shader *shader);
2493
2494 bool nir_opt_dce(nir_shader *shader);
2495
2496 bool nir_opt_dead_cf(nir_shader *shader);
2497
2498 bool nir_opt_gcm(nir_shader *shader, bool value_number);
2499
2500 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit);
2501
2502 bool nir_opt_remove_phis(nir_shader *shader);
2503
2504 bool nir_opt_undef(nir_shader *shader);
2505
2506 bool nir_opt_conditional_discard(nir_shader *shader);
2507
2508 void nir_sweep(nir_shader *shader);
2509
2510 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
2511 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
2512
2513 #ifdef __cplusplus
2514 } /* extern "C" */
2515 #endif