nir: Remove some unused fields from nir_variable
[mesa.git] / src / compiler / nir / nir_from_ssa.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include "nir.h"
29 #include "nir_vla.h"
30
31 /*
32 * This file implements an out-of-SSA pass as described in "Revisiting
33 * Out-of-SSA Translation for Correctness, Code Quality, and Efficiency" by
34 * Boissinot et. al.
35 */
36
37 struct from_ssa_state {
38 void *mem_ctx;
39 void *dead_ctx;
40 bool phi_webs_only;
41 struct hash_table *merge_node_table;
42 nir_instr *instr;
43 nir_function_impl *impl;
44 };
45
46 /* Returns true if a dominates b */
47 static bool
48 ssa_def_dominates(nir_ssa_def *a, nir_ssa_def *b)
49 {
50 if (a->live_index == 0) {
51 /* SSA undefs always dominate */
52 return true;
53 } else if (b->live_index < a->live_index) {
54 return false;
55 } else if (a->parent_instr->block == b->parent_instr->block) {
56 return a->live_index <= b->live_index;
57 } else {
58 return nir_block_dominates(a->parent_instr->block,
59 b->parent_instr->block);
60 }
61 }
62
63
64 /* The following data structure, which I have named merge_set is a way of
65 * representing a set registers of non-interfering registers. This is
66 * based on the concept of a "dominence forest" presented in "Fast Copy
67 * Coalescing and Live-Range Identification" by Budimlic et. al. but the
68 * implementation concept is taken from "Revisiting Out-of-SSA Translation
69 * for Correctness, Code Quality, and Efficiency" by Boissinot et. al..
70 *
71 * Each SSA definition is associated with a merge_node and the association
72 * is represented by a combination of a hash table and the "def" parameter
73 * in the merge_node structure. The merge_set stores a linked list of
74 * merge_node's in dominence order of the ssa definitions. (Since the
75 * liveness analysis pass indexes the SSA values in dominence order for us,
76 * this is an easy thing to keep up.) It is assumed that no pair of the
77 * nodes in a given set interfere. Merging two sets or checking for
78 * interference can be done in a single linear-time merge-sort walk of the
79 * two lists of nodes.
80 */
81 struct merge_set;
82
83 typedef struct {
84 struct exec_node node;
85 struct merge_set *set;
86 nir_ssa_def *def;
87 } merge_node;
88
89 typedef struct merge_set {
90 struct exec_list nodes;
91 unsigned size;
92 nir_register *reg;
93 } merge_set;
94
95 #if 0
96 static void
97 merge_set_dump(merge_set *set, FILE *fp)
98 {
99 nir_ssa_def *dom[set->size];
100 int dom_idx = -1;
101
102 foreach_list_typed(merge_node, node, node, &set->nodes) {
103 while (dom_idx >= 0 && !ssa_def_dominates(dom[dom_idx], node->def))
104 dom_idx--;
105
106 for (int i = 0; i <= dom_idx; i++)
107 fprintf(fp, " ");
108
109 if (node->def->name)
110 fprintf(fp, "ssa_%d /* %s */\n", node->def->index, node->def->name);
111 else
112 fprintf(fp, "ssa_%d\n", node->def->index);
113
114 dom[++dom_idx] = node->def;
115 }
116 }
117 #endif
118
119 static merge_node *
120 get_merge_node(nir_ssa_def *def, struct from_ssa_state *state)
121 {
122 struct hash_entry *entry =
123 _mesa_hash_table_search(state->merge_node_table, def);
124 if (entry)
125 return entry->data;
126
127 merge_set *set = ralloc(state->dead_ctx, merge_set);
128 exec_list_make_empty(&set->nodes);
129 set->size = 1;
130 set->reg = NULL;
131
132 merge_node *node = ralloc(state->dead_ctx, merge_node);
133 node->set = set;
134 node->def = def;
135 exec_list_push_head(&set->nodes, &node->node);
136
137 _mesa_hash_table_insert(state->merge_node_table, def, node);
138
139 return node;
140 }
141
142 static bool
143 merge_nodes_interfere(merge_node *a, merge_node *b)
144 {
145 return nir_ssa_defs_interfere(a->def, b->def);
146 }
147
148 /* Merges b into a */
149 static merge_set *
150 merge_merge_sets(merge_set *a, merge_set *b)
151 {
152 struct exec_node *an = exec_list_get_head(&a->nodes);
153 struct exec_node *bn = exec_list_get_head(&b->nodes);
154 while (!exec_node_is_tail_sentinel(bn)) {
155 merge_node *a_node = exec_node_data(merge_node, an, node);
156 merge_node *b_node = exec_node_data(merge_node, bn, node);
157
158 if (exec_node_is_tail_sentinel(an) ||
159 a_node->def->live_index > b_node->def->live_index) {
160 struct exec_node *next = bn->next;
161 exec_node_remove(bn);
162 exec_node_insert_node_before(an, bn);
163 exec_node_data(merge_node, bn, node)->set = a;
164 bn = next;
165 } else {
166 an = an->next;
167 }
168 }
169
170 a->size += b->size;
171 b->size = 0;
172
173 return a;
174 }
175
176 /* Checks for any interference between two merge sets
177 *
178 * This is an implementation of Algorithm 2 in "Revisiting Out-of-SSA
179 * Translation for Correctness, Code Quality, and Efficiency" by
180 * Boissinot et. al.
181 */
182 static bool
183 merge_sets_interfere(merge_set *a, merge_set *b)
184 {
185 NIR_VLA(merge_node *, dom, a->size + b->size);
186 int dom_idx = -1;
187
188 struct exec_node *an = exec_list_get_head(&a->nodes);
189 struct exec_node *bn = exec_list_get_head(&b->nodes);
190 while (!exec_node_is_tail_sentinel(an) ||
191 !exec_node_is_tail_sentinel(bn)) {
192
193 merge_node *current;
194 if (exec_node_is_tail_sentinel(an)) {
195 current = exec_node_data(merge_node, bn, node);
196 bn = bn->next;
197 } else if (exec_node_is_tail_sentinel(bn)) {
198 current = exec_node_data(merge_node, an, node);
199 an = an->next;
200 } else {
201 merge_node *a_node = exec_node_data(merge_node, an, node);
202 merge_node *b_node = exec_node_data(merge_node, bn, node);
203
204 if (a_node->def->live_index <= b_node->def->live_index) {
205 current = a_node;
206 an = an->next;
207 } else {
208 current = b_node;
209 bn = bn->next;
210 }
211 }
212
213 while (dom_idx >= 0 &&
214 !ssa_def_dominates(dom[dom_idx]->def, current->def))
215 dom_idx--;
216
217 if (dom_idx >= 0 && merge_nodes_interfere(current, dom[dom_idx]))
218 return true;
219
220 dom[++dom_idx] = current;
221 }
222
223 return false;
224 }
225
226 static bool
227 add_parallel_copy_to_end_of_block(nir_block *block, void *dead_ctx)
228 {
229
230 bool need_end_copy = false;
231 if (block->successors[0]) {
232 nir_instr *instr = nir_block_first_instr(block->successors[0]);
233 if (instr && instr->type == nir_instr_type_phi)
234 need_end_copy = true;
235 }
236
237 if (block->successors[1]) {
238 nir_instr *instr = nir_block_first_instr(block->successors[1]);
239 if (instr && instr->type == nir_instr_type_phi)
240 need_end_copy = true;
241 }
242
243 if (need_end_copy) {
244 /* If one of our successors has at least one phi node, we need to
245 * create a parallel copy at the end of the block but before the jump
246 * (if there is one).
247 */
248 nir_parallel_copy_instr *pcopy =
249 nir_parallel_copy_instr_create(dead_ctx);
250
251 nir_instr_insert(nir_after_block_before_jump(block), &pcopy->instr);
252 }
253
254 return true;
255 }
256
257 static nir_parallel_copy_instr *
258 get_parallel_copy_at_end_of_block(nir_block *block)
259 {
260 nir_instr *last_instr = nir_block_last_instr(block);
261 if (last_instr == NULL)
262 return NULL;
263
264 /* The last instruction may be a jump in which case the parallel copy is
265 * right before it.
266 */
267 if (last_instr->type == nir_instr_type_jump)
268 last_instr = nir_instr_prev(last_instr);
269
270 if (last_instr && last_instr->type == nir_instr_type_parallel_copy)
271 return nir_instr_as_parallel_copy(last_instr);
272 else
273 return NULL;
274 }
275
276 /** Isolate phi nodes with parallel copies
277 *
278 * In order to solve the dependency problems with the sources and
279 * destinations of phi nodes, we first isolate them by adding parallel
280 * copies to the beginnings and ends of basic blocks. For every block with
281 * phi nodes, we add a parallel copy immediately following the last phi
282 * node that copies the destinations of all of the phi nodes to new SSA
283 * values. We also add a parallel copy to the end of every block that has
284 * a successor with phi nodes that, for each phi node in each successor,
285 * copies the corresponding sorce of the phi node and adjust the phi to
286 * used the destination of the parallel copy.
287 *
288 * In SSA form, each value has exactly one definition. What this does is
289 * ensure that each value used in a phi also has exactly one use. The
290 * destinations of phis are only used by the parallel copy immediately
291 * following the phi nodes and. Thanks to the parallel copy at the end of
292 * the predecessor block, the sources of phi nodes are are the only use of
293 * that value. This allows us to immediately assign all the sources and
294 * destinations of any given phi node to the same register without worrying
295 * about interference at all. We do coalescing to get rid of the parallel
296 * copies where possible.
297 *
298 * Before this pass can be run, we have to iterate over the blocks with
299 * add_parallel_copy_to_end_of_block to ensure that the parallel copies at
300 * the ends of blocks exist. We can create the ones at the beginnings as
301 * we go, but the ones at the ends of blocks need to be created ahead of
302 * time because of potential back-edges in the CFG.
303 */
304 static bool
305 isolate_phi_nodes_block(nir_block *block, void *dead_ctx)
306 {
307 nir_instr *last_phi_instr = NULL;
308 nir_foreach_instr(instr, block) {
309 /* Phi nodes only ever come at the start of a block */
310 if (instr->type != nir_instr_type_phi)
311 break;
312
313 last_phi_instr = instr;
314 }
315
316 /* If we don't have any phi's, then there's nothing for us to do. */
317 if (last_phi_instr == NULL)
318 return true;
319
320 /* If we have phi nodes, we need to create a parallel copy at the
321 * start of this block but after the phi nodes.
322 */
323 nir_parallel_copy_instr *block_pcopy =
324 nir_parallel_copy_instr_create(dead_ctx);
325 nir_instr_insert_after(last_phi_instr, &block_pcopy->instr);
326
327 nir_foreach_instr(instr, block) {
328 /* Phi nodes only ever come at the start of a block */
329 if (instr->type != nir_instr_type_phi)
330 break;
331
332 nir_phi_instr *phi = nir_instr_as_phi(instr);
333 assert(phi->dest.is_ssa);
334 nir_foreach_phi_src(src, phi) {
335 nir_parallel_copy_instr *pcopy =
336 get_parallel_copy_at_end_of_block(src->pred);
337 assert(pcopy);
338
339 nir_parallel_copy_entry *entry = rzalloc(dead_ctx,
340 nir_parallel_copy_entry);
341 nir_ssa_dest_init(&pcopy->instr, &entry->dest,
342 phi->dest.ssa.num_components,
343 phi->dest.ssa.bit_size, src->src.ssa->name);
344 exec_list_push_tail(&pcopy->entries, &entry->node);
345
346 assert(src->src.is_ssa);
347 nir_instr_rewrite_src(&pcopy->instr, &entry->src, src->src);
348
349 nir_instr_rewrite_src(&phi->instr, &src->src,
350 nir_src_for_ssa(&entry->dest.ssa));
351 }
352
353 nir_parallel_copy_entry *entry = rzalloc(dead_ctx,
354 nir_parallel_copy_entry);
355 nir_ssa_dest_init(&block_pcopy->instr, &entry->dest,
356 phi->dest.ssa.num_components, phi->dest.ssa.bit_size,
357 phi->dest.ssa.name);
358 exec_list_push_tail(&block_pcopy->entries, &entry->node);
359
360 nir_ssa_def_rewrite_uses(&phi->dest.ssa,
361 nir_src_for_ssa(&entry->dest.ssa));
362
363 nir_instr_rewrite_src(&block_pcopy->instr, &entry->src,
364 nir_src_for_ssa(&phi->dest.ssa));
365 }
366
367 return true;
368 }
369
370 static bool
371 coalesce_phi_nodes_block(nir_block *block, struct from_ssa_state *state)
372 {
373 nir_foreach_instr(instr, block) {
374 /* Phi nodes only ever come at the start of a block */
375 if (instr->type != nir_instr_type_phi)
376 break;
377
378 nir_phi_instr *phi = nir_instr_as_phi(instr);
379
380 assert(phi->dest.is_ssa);
381 merge_node *dest_node = get_merge_node(&phi->dest.ssa, state);
382
383 nir_foreach_phi_src(src, phi) {
384 assert(src->src.is_ssa);
385 merge_node *src_node = get_merge_node(src->src.ssa, state);
386 if (src_node->set != dest_node->set)
387 merge_merge_sets(dest_node->set, src_node->set);
388 }
389 }
390
391 return true;
392 }
393
394 static void
395 aggressive_coalesce_parallel_copy(nir_parallel_copy_instr *pcopy,
396 struct from_ssa_state *state)
397 {
398 nir_foreach_parallel_copy_entry(entry, pcopy) {
399 if (!entry->src.is_ssa)
400 continue;
401
402 /* Since load_const instructions are SSA only, we can't replace their
403 * destinations with registers and, therefore, can't coalesce them.
404 */
405 if (entry->src.ssa->parent_instr->type == nir_instr_type_load_const)
406 continue;
407
408 /* Don't try and coalesce these */
409 if (entry->dest.ssa.num_components != entry->src.ssa->num_components)
410 continue;
411
412 merge_node *src_node = get_merge_node(entry->src.ssa, state);
413 merge_node *dest_node = get_merge_node(&entry->dest.ssa, state);
414
415 if (src_node->set == dest_node->set)
416 continue;
417
418 if (!merge_sets_interfere(src_node->set, dest_node->set))
419 merge_merge_sets(src_node->set, dest_node->set);
420 }
421 }
422
423 static bool
424 aggressive_coalesce_block(nir_block *block, struct from_ssa_state *state)
425 {
426 nir_parallel_copy_instr *start_pcopy = NULL;
427 nir_foreach_instr(instr, block) {
428 /* Phi nodes only ever come at the start of a block */
429 if (instr->type != nir_instr_type_phi) {
430 if (instr->type != nir_instr_type_parallel_copy)
431 break; /* The parallel copy must be right after the phis */
432
433 start_pcopy = nir_instr_as_parallel_copy(instr);
434
435 aggressive_coalesce_parallel_copy(start_pcopy, state);
436
437 break;
438 }
439 }
440
441 nir_parallel_copy_instr *end_pcopy =
442 get_parallel_copy_at_end_of_block(block);
443
444 if (end_pcopy && end_pcopy != start_pcopy)
445 aggressive_coalesce_parallel_copy(end_pcopy, state);
446
447 return true;
448 }
449
450 static bool
451 rewrite_ssa_def(nir_ssa_def *def, void *void_state)
452 {
453 struct from_ssa_state *state = void_state;
454 nir_register *reg;
455
456 struct hash_entry *entry =
457 _mesa_hash_table_search(state->merge_node_table, def);
458 if (entry) {
459 /* In this case, we're part of a phi web. Use the web's register. */
460 merge_node *node = (merge_node *)entry->data;
461
462 /* If it doesn't have a register yet, create one. Note that all of
463 * the things in the merge set should be the same so it doesn't
464 * matter which node's definition we use.
465 */
466 if (node->set->reg == NULL) {
467 node->set->reg = nir_local_reg_create(state->impl);
468 node->set->reg->name = def->name;
469 node->set->reg->num_components = def->num_components;
470 node->set->reg->bit_size = def->bit_size;
471 node->set->reg->num_array_elems = 0;
472 }
473
474 reg = node->set->reg;
475 } else {
476 if (state->phi_webs_only)
477 return true;
478
479 /* We leave load_const SSA values alone. They act as immediates to
480 * the backend. If it got coalesced into a phi, that's ok.
481 */
482 if (def->parent_instr->type == nir_instr_type_load_const)
483 return true;
484
485 reg = nir_local_reg_create(state->impl);
486 reg->name = def->name;
487 reg->num_components = def->num_components;
488 reg->bit_size = def->bit_size;
489 reg->num_array_elems = 0;
490 }
491
492 nir_ssa_def_rewrite_uses(def, nir_src_for_reg(reg));
493 assert(list_empty(&def->uses) && list_empty(&def->if_uses));
494
495 if (def->parent_instr->type == nir_instr_type_ssa_undef) {
496 /* If it's an ssa_undef instruction, remove it since we know we just got
497 * rid of all its uses.
498 */
499 nir_instr *parent_instr = def->parent_instr;
500 nir_instr_remove(parent_instr);
501 ralloc_steal(state->dead_ctx, parent_instr);
502 return true;
503 }
504
505 assert(def->parent_instr->type != nir_instr_type_load_const);
506
507 /* At this point we know a priori that this SSA def is part of a
508 * nir_dest. We can use exec_node_data to get the dest pointer.
509 */
510 nir_dest *dest = exec_node_data(nir_dest, def, ssa);
511
512 nir_instr_rewrite_dest(state->instr, dest, nir_dest_for_reg(reg));
513
514 return true;
515 }
516
517 /* Resolves ssa definitions to registers. While we're at it, we also
518 * remove phi nodes.
519 */
520 static bool
521 resolve_registers_block(nir_block *block, struct from_ssa_state *state)
522 {
523 nir_foreach_instr_safe(instr, block) {
524 state->instr = instr;
525 nir_foreach_ssa_def(instr, rewrite_ssa_def, state);
526
527 if (instr->type == nir_instr_type_phi) {
528 nir_instr_remove(instr);
529 ralloc_steal(state->dead_ctx, instr);
530 }
531 }
532 state->instr = NULL;
533
534 return true;
535 }
536
537 static void
538 emit_copy(nir_parallel_copy_instr *pcopy, nir_src src, nir_src dest_src,
539 void *mem_ctx)
540 {
541 assert(!dest_src.is_ssa &&
542 dest_src.reg.indirect == NULL &&
543 dest_src.reg.base_offset == 0);
544
545 if (src.is_ssa)
546 assert(src.ssa->num_components >= dest_src.reg.reg->num_components);
547 else
548 assert(src.reg.reg->num_components >= dest_src.reg.reg->num_components);
549
550 nir_alu_instr *mov = nir_alu_instr_create(mem_ctx, nir_op_imov);
551 nir_src_copy(&mov->src[0].src, &src, mov);
552 mov->dest.dest = nir_dest_for_reg(dest_src.reg.reg);
553 mov->dest.write_mask = (1 << dest_src.reg.reg->num_components) - 1;
554
555 nir_instr_insert_before(&pcopy->instr, &mov->instr);
556 }
557
558 /* Resolves a single parallel copy operation into a sequence of mov's
559 *
560 * This is based on Algorithm 1 from "Revisiting Out-of-SSA Translation for
561 * Correctness, Code Quality, and Efficiency" by Boissinot et. al..
562 * However, I never got the algorithm to work as written, so this version
563 * is slightly modified.
564 *
565 * The algorithm works by playing this little shell game with the values.
566 * We start by recording where every source value is and which source value
567 * each destination value should receive. We then grab any copy whose
568 * destination is "empty", i.e. not used as a source, and do the following:
569 * - Find where its source value currently lives
570 * - Emit the move instruction
571 * - Set the location of the source value to the destination
572 * - Mark the location containing the source value
573 * - Mark the destination as no longer needing to be copied
574 *
575 * When we run out of "empty" destinations, we have a cycle and so we
576 * create a temporary register, copy to that register, and mark the value
577 * we copied as living in that temporary. Now, the cycle is broken, so we
578 * can continue with the above steps.
579 */
580 static void
581 resolve_parallel_copy(nir_parallel_copy_instr *pcopy,
582 struct from_ssa_state *state)
583 {
584 unsigned num_copies = 0;
585 nir_foreach_parallel_copy_entry(entry, pcopy) {
586 /* Sources may be SSA */
587 if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg)
588 continue;
589
590 num_copies++;
591 }
592
593 if (num_copies == 0) {
594 /* Hooray, we don't need any copies! */
595 nir_instr_remove(&pcopy->instr);
596 return;
597 }
598
599 /* The register/source corresponding to the given index */
600 NIR_VLA_ZERO(nir_src, values, num_copies * 2);
601
602 /* The current location of a given piece of data. We will use -1 for "null" */
603 NIR_VLA_FILL(int, loc, num_copies * 2, -1);
604
605 /* The piece of data that the given piece of data is to be copied from. We will use -1 for "null" */
606 NIR_VLA_FILL(int, pred, num_copies * 2, -1);
607
608 /* The destinations we have yet to properly fill */
609 NIR_VLA(int, to_do, num_copies * 2);
610 int to_do_idx = -1;
611
612 /* Now we set everything up:
613 * - All values get assigned a temporary index
614 * - Current locations are set from sources
615 * - Predicessors are recorded from sources and destinations
616 */
617 int num_vals = 0;
618 nir_foreach_parallel_copy_entry(entry, pcopy) {
619 /* Sources may be SSA */
620 if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg)
621 continue;
622
623 int src_idx = -1;
624 for (int i = 0; i < num_vals; ++i) {
625 if (nir_srcs_equal(values[i], entry->src))
626 src_idx = i;
627 }
628 if (src_idx < 0) {
629 src_idx = num_vals++;
630 values[src_idx] = entry->src;
631 }
632
633 nir_src dest_src = nir_src_for_reg(entry->dest.reg.reg);
634
635 int dest_idx = -1;
636 for (int i = 0; i < num_vals; ++i) {
637 if (nir_srcs_equal(values[i], dest_src)) {
638 /* Each destination of a parallel copy instruction should be
639 * unique. A destination may get used as a source, so we still
640 * have to walk the list. However, the predecessor should not,
641 * at this point, be set yet, so we should have -1 here.
642 */
643 assert(pred[i] == -1);
644 dest_idx = i;
645 }
646 }
647 if (dest_idx < 0) {
648 dest_idx = num_vals++;
649 values[dest_idx] = dest_src;
650 }
651
652 loc[src_idx] = src_idx;
653 pred[dest_idx] = src_idx;
654
655 to_do[++to_do_idx] = dest_idx;
656 }
657
658 /* Currently empty destinations we can go ahead and fill */
659 NIR_VLA(int, ready, num_copies * 2);
660 int ready_idx = -1;
661
662 /* Mark the ones that are ready for copying. We know an index is a
663 * destination if it has a predecessor and it's ready for copying if
664 * it's not marked as containing data.
665 */
666 for (int i = 0; i < num_vals; i++) {
667 if (pred[i] != -1 && loc[i] == -1)
668 ready[++ready_idx] = i;
669 }
670
671 while (to_do_idx >= 0) {
672 while (ready_idx >= 0) {
673 int b = ready[ready_idx--];
674 int a = pred[b];
675 emit_copy(pcopy, values[loc[a]], values[b], state->mem_ctx);
676
677 /* If any other copies want a they can find it at b */
678 loc[a] = b;
679
680 /* b has been filled, mark it as not needing to be copied */
681 pred[b] = -1;
682
683 /* If a needs to be filled, it's ready for copying now */
684 if (pred[a] != -1)
685 ready[++ready_idx] = a;
686 }
687 int b = to_do[to_do_idx--];
688 if (pred[b] == -1)
689 continue;
690
691 /* If we got here, then we don't have any more trivial copies that we
692 * can do. We have to break a cycle, so we create a new temporary
693 * register for that purpose. Normally, if going out of SSA after
694 * register allocation, you would want to avoid creating temporary
695 * registers. However, we are going out of SSA before register
696 * allocation, so we would rather not create extra register
697 * dependencies for the backend to deal with. If it wants, the
698 * backend can coalesce the (possibly multiple) temporaries.
699 */
700 assert(num_vals < num_copies * 2);
701 nir_register *reg = nir_local_reg_create(state->impl);
702 reg->name = "copy_temp";
703 reg->num_array_elems = 0;
704 if (values[b].is_ssa)
705 reg->num_components = values[b].ssa->num_components;
706 else
707 reg->num_components = values[b].reg.reg->num_components;
708 values[num_vals].is_ssa = false;
709 values[num_vals].reg.reg = reg;
710
711 emit_copy(pcopy, values[b], values[num_vals], state->mem_ctx);
712 loc[b] = num_vals;
713 ready[++ready_idx] = b;
714 num_vals++;
715 }
716
717 nir_instr_remove(&pcopy->instr);
718 }
719
720 /* Resolves the parallel copies in a block. Each block can have at most
721 * two: One at the beginning, right after all the phi noces, and one at
722 * the end (or right before the final jump if it exists).
723 */
724 static bool
725 resolve_parallel_copies_block(nir_block *block, struct from_ssa_state *state)
726 {
727 /* At this point, we have removed all of the phi nodes. If a parallel
728 * copy existed right after the phi nodes in this block, it is now the
729 * first instruction.
730 */
731 nir_instr *first_instr = nir_block_first_instr(block);
732 if (first_instr == NULL)
733 return true; /* Empty, nothing to do. */
734
735 if (first_instr->type == nir_instr_type_parallel_copy) {
736 nir_parallel_copy_instr *pcopy = nir_instr_as_parallel_copy(first_instr);
737
738 resolve_parallel_copy(pcopy, state);
739 }
740
741 /* It's possible that the above code already cleaned up the end parallel
742 * copy. However, doing so removed it form the instructions list so we
743 * won't find it here. Therefore, it's safe to go ahead and just look
744 * for one and clean it up if it exists.
745 */
746 nir_parallel_copy_instr *end_pcopy =
747 get_parallel_copy_at_end_of_block(block);
748 if (end_pcopy)
749 resolve_parallel_copy(end_pcopy, state);
750
751 return true;
752 }
753
754 static void
755 nir_convert_from_ssa_impl(nir_function_impl *impl, bool phi_webs_only)
756 {
757 struct from_ssa_state state;
758
759 state.mem_ctx = ralloc_parent(impl);
760 state.dead_ctx = ralloc_context(NULL);
761 state.impl = impl;
762 state.phi_webs_only = phi_webs_only;
763 state.merge_node_table = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
764 _mesa_key_pointer_equal);
765
766 nir_foreach_block(block, impl) {
767 add_parallel_copy_to_end_of_block(block, state.dead_ctx);
768 }
769
770 nir_foreach_block(block, impl) {
771 isolate_phi_nodes_block(block, state.dead_ctx);
772 }
773
774 /* Mark metadata as dirty before we ask for liveness analysis */
775 nir_metadata_preserve(impl, nir_metadata_block_index |
776 nir_metadata_dominance);
777
778 nir_metadata_require(impl, nir_metadata_live_ssa_defs |
779 nir_metadata_dominance);
780
781 nir_foreach_block(block, impl) {
782 coalesce_phi_nodes_block(block, &state);
783 }
784
785 nir_foreach_block(block, impl) {
786 aggressive_coalesce_block(block, &state);
787 }
788
789 nir_foreach_block(block, impl) {
790 resolve_registers_block(block, &state);
791 }
792
793 nir_foreach_block(block, impl) {
794 resolve_parallel_copies_block(block, &state);
795 }
796
797 nir_metadata_preserve(impl, nir_metadata_block_index |
798 nir_metadata_dominance);
799
800 /* Clean up dead instructions and the hash tables */
801 _mesa_hash_table_destroy(state.merge_node_table, NULL);
802 ralloc_free(state.dead_ctx);
803 }
804
805 void
806 nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only)
807 {
808 nir_foreach_function(function, shader) {
809 if (function->impl)
810 nir_convert_from_ssa_impl(function->impl, phi_webs_only);
811 }
812 }