nir/lower_double_ops: lower trunc()
[mesa.git] / src / compiler / nir / nir_from_ssa.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include "nir.h"
29 #include "nir_vla.h"
30
31 /*
32 * This file implements an out-of-SSA pass as described in "Revisiting
33 * Out-of-SSA Translation for Correctness, Code Quality, and Efficiency" by
34 * Boissinot et. al.
35 */
36
37 struct from_ssa_state {
38 void *mem_ctx;
39 void *dead_ctx;
40 bool phi_webs_only;
41 struct hash_table *merge_node_table;
42 nir_instr *instr;
43 nir_function_impl *impl;
44 };
45
46 /* Returns true if a dominates b */
47 static bool
48 ssa_def_dominates(nir_ssa_def *a, nir_ssa_def *b)
49 {
50 if (a->live_index == 0) {
51 /* SSA undefs always dominate */
52 return true;
53 } else if (b->live_index < a->live_index) {
54 return false;
55 } else if (a->parent_instr->block == b->parent_instr->block) {
56 return a->live_index <= b->live_index;
57 } else {
58 return nir_block_dominates(a->parent_instr->block,
59 b->parent_instr->block);
60 }
61 }
62
63
64 /* The following data structure, which I have named merge_set is a way of
65 * representing a set registers of non-interfering registers. This is
66 * based on the concept of a "dominence forest" presented in "Fast Copy
67 * Coalescing and Live-Range Identification" by Budimlic et. al. but the
68 * implementation concept is taken from "Revisiting Out-of-SSA Translation
69 * for Correctness, Code Quality, and Efficiency" by Boissinot et. al..
70 *
71 * Each SSA definition is associated with a merge_node and the association
72 * is represented by a combination of a hash table and the "def" parameter
73 * in the merge_node structure. The merge_set stores a linked list of
74 * merge_node's in dominence order of the ssa definitions. (Since the
75 * liveness analysis pass indexes the SSA values in dominence order for us,
76 * this is an easy thing to keep up.) It is assumed that no pair of the
77 * nodes in a given set interfere. Merging two sets or checking for
78 * interference can be done in a single linear-time merge-sort walk of the
79 * two lists of nodes.
80 */
81 struct merge_set;
82
83 typedef struct {
84 struct exec_node node;
85 struct merge_set *set;
86 nir_ssa_def *def;
87 } merge_node;
88
89 typedef struct merge_set {
90 struct exec_list nodes;
91 unsigned size;
92 nir_register *reg;
93 } merge_set;
94
95 #if 0
96 static void
97 merge_set_dump(merge_set *set, FILE *fp)
98 {
99 nir_ssa_def *dom[set->size];
100 int dom_idx = -1;
101
102 foreach_list_typed(merge_node, node, node, &set->nodes) {
103 while (dom_idx >= 0 && !ssa_def_dominates(dom[dom_idx], node->def))
104 dom_idx--;
105
106 for (int i = 0; i <= dom_idx; i++)
107 fprintf(fp, " ");
108
109 if (node->def->name)
110 fprintf(fp, "ssa_%d /* %s */\n", node->def->index, node->def->name);
111 else
112 fprintf(fp, "ssa_%d\n", node->def->index);
113
114 dom[++dom_idx] = node->def;
115 }
116 }
117 #endif
118
119 static merge_node *
120 get_merge_node(nir_ssa_def *def, struct from_ssa_state *state)
121 {
122 struct hash_entry *entry =
123 _mesa_hash_table_search(state->merge_node_table, def);
124 if (entry)
125 return entry->data;
126
127 merge_set *set = ralloc(state->dead_ctx, merge_set);
128 exec_list_make_empty(&set->nodes);
129 set->size = 1;
130 set->reg = NULL;
131
132 merge_node *node = ralloc(state->dead_ctx, merge_node);
133 node->set = set;
134 node->def = def;
135 exec_list_push_head(&set->nodes, &node->node);
136
137 _mesa_hash_table_insert(state->merge_node_table, def, node);
138
139 return node;
140 }
141
142 static bool
143 merge_nodes_interfere(merge_node *a, merge_node *b)
144 {
145 return nir_ssa_defs_interfere(a->def, b->def);
146 }
147
148 /* Merges b into a */
149 static merge_set *
150 merge_merge_sets(merge_set *a, merge_set *b)
151 {
152 struct exec_node *an = exec_list_get_head(&a->nodes);
153 struct exec_node *bn = exec_list_get_head(&b->nodes);
154 while (!exec_node_is_tail_sentinel(bn)) {
155 merge_node *a_node = exec_node_data(merge_node, an, node);
156 merge_node *b_node = exec_node_data(merge_node, bn, node);
157
158 if (exec_node_is_tail_sentinel(an) ||
159 a_node->def->live_index > b_node->def->live_index) {
160 struct exec_node *next = bn->next;
161 exec_node_remove(bn);
162 exec_node_insert_node_before(an, bn);
163 exec_node_data(merge_node, bn, node)->set = a;
164 bn = next;
165 } else {
166 an = an->next;
167 }
168 }
169
170 a->size += b->size;
171 b->size = 0;
172
173 return a;
174 }
175
176 /* Checks for any interference between two merge sets
177 *
178 * This is an implementation of Algorithm 2 in "Revisiting Out-of-SSA
179 * Translation for Correctness, Code Quality, and Efficiency" by
180 * Boissinot et. al.
181 */
182 static bool
183 merge_sets_interfere(merge_set *a, merge_set *b)
184 {
185 NIR_VLA(merge_node *, dom, a->size + b->size);
186 int dom_idx = -1;
187
188 struct exec_node *an = exec_list_get_head(&a->nodes);
189 struct exec_node *bn = exec_list_get_head(&b->nodes);
190 while (!exec_node_is_tail_sentinel(an) ||
191 !exec_node_is_tail_sentinel(bn)) {
192
193 merge_node *current;
194 if (exec_node_is_tail_sentinel(an)) {
195 current = exec_node_data(merge_node, bn, node);
196 bn = bn->next;
197 } else if (exec_node_is_tail_sentinel(bn)) {
198 current = exec_node_data(merge_node, an, node);
199 an = an->next;
200 } else {
201 merge_node *a_node = exec_node_data(merge_node, an, node);
202 merge_node *b_node = exec_node_data(merge_node, bn, node);
203
204 if (a_node->def->live_index <= b_node->def->live_index) {
205 current = a_node;
206 an = an->next;
207 } else {
208 current = b_node;
209 bn = bn->next;
210 }
211 }
212
213 while (dom_idx >= 0 &&
214 !ssa_def_dominates(dom[dom_idx]->def, current->def))
215 dom_idx--;
216
217 if (dom_idx >= 0 && merge_nodes_interfere(current, dom[dom_idx]))
218 return true;
219
220 dom[++dom_idx] = current;
221 }
222
223 return false;
224 }
225
226 static bool
227 add_parallel_copy_to_end_of_block(nir_block *block, void *void_state)
228 {
229 struct from_ssa_state *state = void_state;
230
231 bool need_end_copy = false;
232 if (block->successors[0]) {
233 nir_instr *instr = nir_block_first_instr(block->successors[0]);
234 if (instr && instr->type == nir_instr_type_phi)
235 need_end_copy = true;
236 }
237
238 if (block->successors[1]) {
239 nir_instr *instr = nir_block_first_instr(block->successors[1]);
240 if (instr && instr->type == nir_instr_type_phi)
241 need_end_copy = true;
242 }
243
244 if (need_end_copy) {
245 /* If one of our successors has at least one phi node, we need to
246 * create a parallel copy at the end of the block but before the jump
247 * (if there is one).
248 */
249 nir_parallel_copy_instr *pcopy =
250 nir_parallel_copy_instr_create(state->dead_ctx);
251
252 nir_instr_insert(nir_after_block_before_jump(block), &pcopy->instr);
253 }
254
255 return true;
256 }
257
258 static nir_parallel_copy_instr *
259 get_parallel_copy_at_end_of_block(nir_block *block)
260 {
261 nir_instr *last_instr = nir_block_last_instr(block);
262 if (last_instr == NULL)
263 return NULL;
264
265 /* The last instruction may be a jump in which case the parallel copy is
266 * right before it.
267 */
268 if (last_instr->type == nir_instr_type_jump)
269 last_instr = nir_instr_prev(last_instr);
270
271 if (last_instr && last_instr->type == nir_instr_type_parallel_copy)
272 return nir_instr_as_parallel_copy(last_instr);
273 else
274 return NULL;
275 }
276
277 /** Isolate phi nodes with parallel copies
278 *
279 * In order to solve the dependency problems with the sources and
280 * destinations of phi nodes, we first isolate them by adding parallel
281 * copies to the beginnings and ends of basic blocks. For every block with
282 * phi nodes, we add a parallel copy immediately following the last phi
283 * node that copies the destinations of all of the phi nodes to new SSA
284 * values. We also add a parallel copy to the end of every block that has
285 * a successor with phi nodes that, for each phi node in each successor,
286 * copies the corresponding sorce of the phi node and adjust the phi to
287 * used the destination of the parallel copy.
288 *
289 * In SSA form, each value has exactly one definition. What this does is
290 * ensure that each value used in a phi also has exactly one use. The
291 * destinations of phis are only used by the parallel copy immediately
292 * following the phi nodes and. Thanks to the parallel copy at the end of
293 * the predecessor block, the sources of phi nodes are are the only use of
294 * that value. This allows us to immediately assign all the sources and
295 * destinations of any given phi node to the same register without worrying
296 * about interference at all. We do coalescing to get rid of the parallel
297 * copies where possible.
298 *
299 * Before this pass can be run, we have to iterate over the blocks with
300 * add_parallel_copy_to_end_of_block to ensure that the parallel copies at
301 * the ends of blocks exist. We can create the ones at the beginnings as
302 * we go, but the ones at the ends of blocks need to be created ahead of
303 * time because of potential back-edges in the CFG.
304 */
305 static bool
306 isolate_phi_nodes_block(nir_block *block, void *void_state)
307 {
308 struct from_ssa_state *state = void_state;
309
310 nir_instr *last_phi_instr = NULL;
311 nir_foreach_instr(block, instr) {
312 /* Phi nodes only ever come at the start of a block */
313 if (instr->type != nir_instr_type_phi)
314 break;
315
316 last_phi_instr = instr;
317 }
318
319 /* If we don't have any phi's, then there's nothing for us to do. */
320 if (last_phi_instr == NULL)
321 return true;
322
323 /* If we have phi nodes, we need to create a parallel copy at the
324 * start of this block but after the phi nodes.
325 */
326 nir_parallel_copy_instr *block_pcopy =
327 nir_parallel_copy_instr_create(state->dead_ctx);
328 nir_instr_insert_after(last_phi_instr, &block_pcopy->instr);
329
330 nir_foreach_instr(block, instr) {
331 /* Phi nodes only ever come at the start of a block */
332 if (instr->type != nir_instr_type_phi)
333 break;
334
335 nir_phi_instr *phi = nir_instr_as_phi(instr);
336 assert(phi->dest.is_ssa);
337 nir_foreach_phi_src(phi, src) {
338 nir_parallel_copy_instr *pcopy =
339 get_parallel_copy_at_end_of_block(src->pred);
340 assert(pcopy);
341
342 nir_parallel_copy_entry *entry = rzalloc(state->dead_ctx,
343 nir_parallel_copy_entry);
344 nir_ssa_dest_init(&pcopy->instr, &entry->dest,
345 phi->dest.ssa.num_components,
346 phi->dest.ssa.bit_size, src->src.ssa->name);
347 exec_list_push_tail(&pcopy->entries, &entry->node);
348
349 assert(src->src.is_ssa);
350 nir_instr_rewrite_src(&pcopy->instr, &entry->src, src->src);
351
352 nir_instr_rewrite_src(&phi->instr, &src->src,
353 nir_src_for_ssa(&entry->dest.ssa));
354 }
355
356 nir_parallel_copy_entry *entry = rzalloc(state->dead_ctx,
357 nir_parallel_copy_entry);
358 nir_ssa_dest_init(&block_pcopy->instr, &entry->dest,
359 phi->dest.ssa.num_components, phi->dest.ssa.bit_size,
360 phi->dest.ssa.name);
361 exec_list_push_tail(&block_pcopy->entries, &entry->node);
362
363 nir_ssa_def_rewrite_uses(&phi->dest.ssa,
364 nir_src_for_ssa(&entry->dest.ssa));
365
366 nir_instr_rewrite_src(&block_pcopy->instr, &entry->src,
367 nir_src_for_ssa(&phi->dest.ssa));
368 }
369
370 return true;
371 }
372
373 static bool
374 coalesce_phi_nodes_block(nir_block *block, void *void_state)
375 {
376 struct from_ssa_state *state = void_state;
377
378 nir_foreach_instr(block, instr) {
379 /* Phi nodes only ever come at the start of a block */
380 if (instr->type != nir_instr_type_phi)
381 break;
382
383 nir_phi_instr *phi = nir_instr_as_phi(instr);
384
385 assert(phi->dest.is_ssa);
386 merge_node *dest_node = get_merge_node(&phi->dest.ssa, state);
387
388 nir_foreach_phi_src(phi, src) {
389 assert(src->src.is_ssa);
390 merge_node *src_node = get_merge_node(src->src.ssa, state);
391 if (src_node->set != dest_node->set)
392 merge_merge_sets(dest_node->set, src_node->set);
393 }
394 }
395
396 return true;
397 }
398
399 static void
400 aggressive_coalesce_parallel_copy(nir_parallel_copy_instr *pcopy,
401 struct from_ssa_state *state)
402 {
403 nir_foreach_parallel_copy_entry(pcopy, entry) {
404 if (!entry->src.is_ssa)
405 continue;
406
407 /* Since load_const instructions are SSA only, we can't replace their
408 * destinations with registers and, therefore, can't coalesce them.
409 */
410 if (entry->src.ssa->parent_instr->type == nir_instr_type_load_const)
411 continue;
412
413 /* Don't try and coalesce these */
414 if (entry->dest.ssa.num_components != entry->src.ssa->num_components)
415 continue;
416
417 merge_node *src_node = get_merge_node(entry->src.ssa, state);
418 merge_node *dest_node = get_merge_node(&entry->dest.ssa, state);
419
420 if (src_node->set == dest_node->set)
421 continue;
422
423 if (!merge_sets_interfere(src_node->set, dest_node->set))
424 merge_merge_sets(src_node->set, dest_node->set);
425 }
426 }
427
428 static bool
429 aggressive_coalesce_block(nir_block *block, void *void_state)
430 {
431 struct from_ssa_state *state = void_state;
432
433 nir_parallel_copy_instr *start_pcopy = NULL;
434 nir_foreach_instr(block, instr) {
435 /* Phi nodes only ever come at the start of a block */
436 if (instr->type != nir_instr_type_phi) {
437 if (instr->type != nir_instr_type_parallel_copy)
438 break; /* The parallel copy must be right after the phis */
439
440 start_pcopy = nir_instr_as_parallel_copy(instr);
441
442 aggressive_coalesce_parallel_copy(start_pcopy, state);
443
444 break;
445 }
446 }
447
448 nir_parallel_copy_instr *end_pcopy =
449 get_parallel_copy_at_end_of_block(block);
450
451 if (end_pcopy && end_pcopy != start_pcopy)
452 aggressive_coalesce_parallel_copy(end_pcopy, state);
453
454 return true;
455 }
456
457 static bool
458 rewrite_ssa_def(nir_ssa_def *def, void *void_state)
459 {
460 struct from_ssa_state *state = void_state;
461 nir_register *reg;
462
463 struct hash_entry *entry =
464 _mesa_hash_table_search(state->merge_node_table, def);
465 if (entry) {
466 /* In this case, we're part of a phi web. Use the web's register. */
467 merge_node *node = (merge_node *)entry->data;
468
469 /* If it doesn't have a register yet, create one. Note that all of
470 * the things in the merge set should be the same so it doesn't
471 * matter which node's definition we use.
472 */
473 if (node->set->reg == NULL) {
474 node->set->reg = nir_local_reg_create(state->impl);
475 node->set->reg->name = def->name;
476 node->set->reg->num_components = def->num_components;
477 node->set->reg->bit_size = def->bit_size;
478 node->set->reg->num_array_elems = 0;
479 }
480
481 reg = node->set->reg;
482 } else {
483 if (state->phi_webs_only)
484 return true;
485
486 /* We leave load_const SSA values alone. They act as immediates to
487 * the backend. If it got coalesced into a phi, that's ok.
488 */
489 if (def->parent_instr->type == nir_instr_type_load_const)
490 return true;
491
492 reg = nir_local_reg_create(state->impl);
493 reg->name = def->name;
494 reg->num_components = def->num_components;
495 reg->bit_size = def->bit_size;
496 reg->num_array_elems = 0;
497 }
498
499 nir_ssa_def_rewrite_uses(def, nir_src_for_reg(reg));
500 assert(list_empty(&def->uses) && list_empty(&def->if_uses));
501
502 if (def->parent_instr->type == nir_instr_type_ssa_undef) {
503 /* If it's an ssa_undef instruction, remove it since we know we just got
504 * rid of all its uses.
505 */
506 nir_instr *parent_instr = def->parent_instr;
507 nir_instr_remove(parent_instr);
508 ralloc_steal(state->dead_ctx, parent_instr);
509 return true;
510 }
511
512 assert(def->parent_instr->type != nir_instr_type_load_const);
513
514 /* At this point we know a priori that this SSA def is part of a
515 * nir_dest. We can use exec_node_data to get the dest pointer.
516 */
517 nir_dest *dest = exec_node_data(nir_dest, def, ssa);
518
519 nir_instr_rewrite_dest(state->instr, dest, nir_dest_for_reg(reg));
520
521 return true;
522 }
523
524 /* Resolves ssa definitions to registers. While we're at it, we also
525 * remove phi nodes.
526 */
527 static bool
528 resolve_registers_block(nir_block *block, void *void_state)
529 {
530 struct from_ssa_state *state = void_state;
531
532 nir_foreach_instr_safe(block, instr) {
533 state->instr = instr;
534 nir_foreach_ssa_def(instr, rewrite_ssa_def, state);
535
536 if (instr->type == nir_instr_type_phi) {
537 nir_instr_remove(instr);
538 ralloc_steal(state->dead_ctx, instr);
539 }
540 }
541 state->instr = NULL;
542
543 return true;
544 }
545
546 static void
547 emit_copy(nir_parallel_copy_instr *pcopy, nir_src src, nir_src dest_src,
548 void *mem_ctx)
549 {
550 assert(!dest_src.is_ssa &&
551 dest_src.reg.indirect == NULL &&
552 dest_src.reg.base_offset == 0);
553
554 if (src.is_ssa)
555 assert(src.ssa->num_components >= dest_src.reg.reg->num_components);
556 else
557 assert(src.reg.reg->num_components >= dest_src.reg.reg->num_components);
558
559 nir_alu_instr *mov = nir_alu_instr_create(mem_ctx, nir_op_imov);
560 nir_src_copy(&mov->src[0].src, &src, mov);
561 mov->dest.dest = nir_dest_for_reg(dest_src.reg.reg);
562 mov->dest.write_mask = (1 << dest_src.reg.reg->num_components) - 1;
563
564 nir_instr_insert_before(&pcopy->instr, &mov->instr);
565 }
566
567 /* Resolves a single parallel copy operation into a sequence of mov's
568 *
569 * This is based on Algorithm 1 from "Revisiting Out-of-SSA Translation for
570 * Correctness, Code Quality, and Efficiency" by Boissinot et. al..
571 * However, I never got the algorithm to work as written, so this version
572 * is slightly modified.
573 *
574 * The algorithm works by playing this little shell game with the values.
575 * We start by recording where every source value is and which source value
576 * each destination value should receive. We then grab any copy whose
577 * destination is "empty", i.e. not used as a source, and do the following:
578 * - Find where its source value currently lives
579 * - Emit the move instruction
580 * - Set the location of the source value to the destination
581 * - Mark the location containing the source value
582 * - Mark the destination as no longer needing to be copied
583 *
584 * When we run out of "empty" destinations, we have a cycle and so we
585 * create a temporary register, copy to that register, and mark the value
586 * we copied as living in that temporary. Now, the cycle is broken, so we
587 * can continue with the above steps.
588 */
589 static void
590 resolve_parallel_copy(nir_parallel_copy_instr *pcopy,
591 struct from_ssa_state *state)
592 {
593 unsigned num_copies = 0;
594 nir_foreach_parallel_copy_entry(pcopy, entry) {
595 /* Sources may be SSA */
596 if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg)
597 continue;
598
599 num_copies++;
600 }
601
602 if (num_copies == 0) {
603 /* Hooray, we don't need any copies! */
604 nir_instr_remove(&pcopy->instr);
605 return;
606 }
607
608 /* The register/source corresponding to the given index */
609 NIR_VLA_ZERO(nir_src, values, num_copies * 2);
610
611 /* The current location of a given piece of data. We will use -1 for "null" */
612 NIR_VLA_FILL(int, loc, num_copies * 2, -1);
613
614 /* The piece of data that the given piece of data is to be copied from. We will use -1 for "null" */
615 NIR_VLA_FILL(int, pred, num_copies * 2, -1);
616
617 /* The destinations we have yet to properly fill */
618 NIR_VLA(int, to_do, num_copies * 2);
619 int to_do_idx = -1;
620
621 /* Now we set everything up:
622 * - All values get assigned a temporary index
623 * - Current locations are set from sources
624 * - Predicessors are recorded from sources and destinations
625 */
626 int num_vals = 0;
627 nir_foreach_parallel_copy_entry(pcopy, entry) {
628 /* Sources may be SSA */
629 if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg)
630 continue;
631
632 int src_idx = -1;
633 for (int i = 0; i < num_vals; ++i) {
634 if (nir_srcs_equal(values[i], entry->src))
635 src_idx = i;
636 }
637 if (src_idx < 0) {
638 src_idx = num_vals++;
639 values[src_idx] = entry->src;
640 }
641
642 nir_src dest_src = nir_src_for_reg(entry->dest.reg.reg);
643
644 int dest_idx = -1;
645 for (int i = 0; i < num_vals; ++i) {
646 if (nir_srcs_equal(values[i], dest_src)) {
647 /* Each destination of a parallel copy instruction should be
648 * unique. A destination may get used as a source, so we still
649 * have to walk the list. However, the predecessor should not,
650 * at this point, be set yet, so we should have -1 here.
651 */
652 assert(pred[i] == -1);
653 dest_idx = i;
654 }
655 }
656 if (dest_idx < 0) {
657 dest_idx = num_vals++;
658 values[dest_idx] = dest_src;
659 }
660
661 loc[src_idx] = src_idx;
662 pred[dest_idx] = src_idx;
663
664 to_do[++to_do_idx] = dest_idx;
665 }
666
667 /* Currently empty destinations we can go ahead and fill */
668 NIR_VLA(int, ready, num_copies * 2);
669 int ready_idx = -1;
670
671 /* Mark the ones that are ready for copying. We know an index is a
672 * destination if it has a predecessor and it's ready for copying if
673 * it's not marked as containing data.
674 */
675 for (int i = 0; i < num_vals; i++) {
676 if (pred[i] != -1 && loc[i] == -1)
677 ready[++ready_idx] = i;
678 }
679
680 while (to_do_idx >= 0) {
681 while (ready_idx >= 0) {
682 int b = ready[ready_idx--];
683 int a = pred[b];
684 emit_copy(pcopy, values[loc[a]], values[b], state->mem_ctx);
685
686 /* If any other copies want a they can find it at b */
687 loc[a] = b;
688
689 /* b has been filled, mark it as not needing to be copied */
690 pred[b] = -1;
691
692 /* If a needs to be filled, it's ready for copying now */
693 if (pred[a] != -1)
694 ready[++ready_idx] = a;
695 }
696 int b = to_do[to_do_idx--];
697 if (pred[b] == -1)
698 continue;
699
700 /* If we got here, then we don't have any more trivial copies that we
701 * can do. We have to break a cycle, so we create a new temporary
702 * register for that purpose. Normally, if going out of SSA after
703 * register allocation, you would want to avoid creating temporary
704 * registers. However, we are going out of SSA before register
705 * allocation, so we would rather not create extra register
706 * dependencies for the backend to deal with. If it wants, the
707 * backend can coalesce the (possibly multiple) temporaries.
708 */
709 assert(num_vals < num_copies * 2);
710 nir_register *reg = nir_local_reg_create(state->impl);
711 reg->name = "copy_temp";
712 reg->num_array_elems = 0;
713 if (values[b].is_ssa)
714 reg->num_components = values[b].ssa->num_components;
715 else
716 reg->num_components = values[b].reg.reg->num_components;
717 values[num_vals].is_ssa = false;
718 values[num_vals].reg.reg = reg;
719
720 emit_copy(pcopy, values[b], values[num_vals], state->mem_ctx);
721 loc[b] = num_vals;
722 ready[++ready_idx] = b;
723 num_vals++;
724 }
725
726 nir_instr_remove(&pcopy->instr);
727 }
728
729 /* Resolves the parallel copies in a block. Each block can have at most
730 * two: One at the beginning, right after all the phi noces, and one at
731 * the end (or right before the final jump if it exists).
732 */
733 static bool
734 resolve_parallel_copies_block(nir_block *block, void *void_state)
735 {
736 struct from_ssa_state *state = void_state;
737
738 /* At this point, we have removed all of the phi nodes. If a parallel
739 * copy existed right after the phi nodes in this block, it is now the
740 * first instruction.
741 */
742 nir_instr *first_instr = nir_block_first_instr(block);
743 if (first_instr == NULL)
744 return true; /* Empty, nothing to do. */
745
746 if (first_instr->type == nir_instr_type_parallel_copy) {
747 nir_parallel_copy_instr *pcopy = nir_instr_as_parallel_copy(first_instr);
748
749 resolve_parallel_copy(pcopy, state);
750 }
751
752 /* It's possible that the above code already cleaned up the end parallel
753 * copy. However, doing so removed it form the instructions list so we
754 * won't find it here. Therefore, it's safe to go ahead and just look
755 * for one and clean it up if it exists.
756 */
757 nir_parallel_copy_instr *end_pcopy =
758 get_parallel_copy_at_end_of_block(block);
759 if (end_pcopy)
760 resolve_parallel_copy(end_pcopy, state);
761
762 return true;
763 }
764
765 static void
766 nir_convert_from_ssa_impl(nir_function_impl *impl, bool phi_webs_only)
767 {
768 struct from_ssa_state state;
769
770 state.mem_ctx = ralloc_parent(impl);
771 state.dead_ctx = ralloc_context(NULL);
772 state.impl = impl;
773 state.phi_webs_only = phi_webs_only;
774 state.merge_node_table = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
775 _mesa_key_pointer_equal);
776
777 nir_foreach_block_call(impl, add_parallel_copy_to_end_of_block, &state);
778 nir_foreach_block_call(impl, isolate_phi_nodes_block, &state);
779
780 /* Mark metadata as dirty before we ask for liveness analysis */
781 nir_metadata_preserve(impl, nir_metadata_block_index |
782 nir_metadata_dominance);
783
784 nir_metadata_require(impl, nir_metadata_live_ssa_defs |
785 nir_metadata_dominance);
786
787 nir_foreach_block_call(impl, coalesce_phi_nodes_block, &state);
788 nir_foreach_block_call(impl, aggressive_coalesce_block, &state);
789
790 nir_foreach_block_call(impl, resolve_registers_block, &state);
791
792 nir_foreach_block_call(impl, resolve_parallel_copies_block, &state);
793
794 nir_metadata_preserve(impl, nir_metadata_block_index |
795 nir_metadata_dominance);
796
797 /* Clean up dead instructions and the hash tables */
798 _mesa_hash_table_destroy(state.merge_node_table, NULL);
799 ralloc_free(state.dead_ctx);
800 }
801
802 void
803 nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only)
804 {
805 nir_foreach_function(shader, function) {
806 if (function->impl)
807 nir_convert_from_ssa_impl(function->impl, phi_webs_only);
808 }
809 }