6796fcaad5ba511dccf1ab9f528927ec376a2dd0
[mesa.git] / src / compiler / nir / nir_instr_set.c
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "nir_instr_set.h"
25 #include "nir_vla.h"
26 #include "util/half_float.h"
27
28 #define HASH(hash, data) _mesa_fnv32_1a_accumulate((hash), (data))
29
30 static uint32_t
31 hash_src(uint32_t hash, const nir_src *src)
32 {
33 assert(src->is_ssa);
34 hash = HASH(hash, src->ssa);
35 return hash;
36 }
37
38 static uint32_t
39 hash_alu_src(uint32_t hash, const nir_alu_src *src, unsigned num_components)
40 {
41 hash = HASH(hash, src->abs);
42 hash = HASH(hash, src->negate);
43
44 for (unsigned i = 0; i < num_components; i++)
45 hash = HASH(hash, src->swizzle[i]);
46
47 hash = hash_src(hash, &src->src);
48 return hash;
49 }
50
51 static uint32_t
52 hash_alu(uint32_t hash, const nir_alu_instr *instr)
53 {
54 hash = HASH(hash, instr->op);
55
56 /* We explicitly don't hash instr->exact. */
57 uint8_t flags = instr->no_signed_wrap |
58 instr->no_unsigned_wrap << 1;
59 hash = HASH(hash, flags);
60
61 hash = HASH(hash, instr->dest.dest.ssa.num_components);
62 hash = HASH(hash, instr->dest.dest.ssa.bit_size);
63
64 if (nir_op_infos[instr->op].algebraic_properties & NIR_OP_IS_2SRC_COMMUTATIVE) {
65 assert(nir_op_infos[instr->op].num_inputs >= 2);
66
67 uint32_t hash0 = hash_alu_src(hash, &instr->src[0],
68 nir_ssa_alu_instr_src_components(instr, 0));
69 uint32_t hash1 = hash_alu_src(hash, &instr->src[1],
70 nir_ssa_alu_instr_src_components(instr, 1));
71 /* For commutative operations, we need some commutative way of
72 * combining the hashes. One option would be to XOR them but that
73 * means that anything with two identical sources will hash to 0 and
74 * that's common enough we probably don't want the guaranteed
75 * collision. Either addition or multiplication will also work.
76 */
77 hash = hash0 * hash1;
78
79 for (unsigned i = 2; i < nir_op_infos[instr->op].num_inputs; i++) {
80 hash = hash_alu_src(hash, &instr->src[i],
81 nir_ssa_alu_instr_src_components(instr, i));
82 }
83 } else {
84 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
85 hash = hash_alu_src(hash, &instr->src[i],
86 nir_ssa_alu_instr_src_components(instr, i));
87 }
88 }
89
90 return hash;
91 }
92
93 static uint32_t
94 hash_deref(uint32_t hash, const nir_deref_instr *instr)
95 {
96 hash = HASH(hash, instr->deref_type);
97 hash = HASH(hash, instr->mode);
98 hash = HASH(hash, instr->type);
99
100 if (instr->deref_type == nir_deref_type_var)
101 return HASH(hash, instr->var);
102
103 hash = hash_src(hash, &instr->parent);
104
105 switch (instr->deref_type) {
106 case nir_deref_type_struct:
107 hash = HASH(hash, instr->strct.index);
108 break;
109
110 case nir_deref_type_array:
111 case nir_deref_type_ptr_as_array:
112 hash = hash_src(hash, &instr->arr.index);
113 break;
114
115 case nir_deref_type_cast:
116 hash = HASH(hash, instr->cast.ptr_stride);
117 break;
118
119 case nir_deref_type_var:
120 case nir_deref_type_array_wildcard:
121 /* Nothing to do */
122 break;
123
124 default:
125 unreachable("Invalid instruction deref type");
126 }
127
128 return hash;
129 }
130
131 static uint32_t
132 hash_load_const(uint32_t hash, const nir_load_const_instr *instr)
133 {
134 hash = HASH(hash, instr->def.num_components);
135
136 if (instr->def.bit_size == 1) {
137 for (unsigned i = 0; i < instr->def.num_components; i++) {
138 uint8_t b = instr->value[i].b;
139 hash = HASH(hash, b);
140 }
141 } else {
142 unsigned size = instr->def.num_components * sizeof(*instr->value);
143 hash = _mesa_fnv32_1a_accumulate_block(hash, instr->value, size);
144 }
145
146 return hash;
147 }
148
149 static int
150 cmp_phi_src(const void *data1, const void *data2)
151 {
152 nir_phi_src *src1 = *(nir_phi_src **)data1;
153 nir_phi_src *src2 = *(nir_phi_src **)data2;
154 return src1->pred - src2->pred;
155 }
156
157 static uint32_t
158 hash_phi(uint32_t hash, const nir_phi_instr *instr)
159 {
160 hash = HASH(hash, instr->instr.block);
161
162 /* sort sources by predecessor, since the order shouldn't matter */
163 unsigned num_preds = instr->instr.block->predecessors->entries;
164 NIR_VLA(nir_phi_src *, srcs, num_preds);
165 unsigned i = 0;
166 nir_foreach_phi_src(src, instr) {
167 srcs[i++] = src;
168 }
169
170 qsort(srcs, num_preds, sizeof(nir_phi_src *), cmp_phi_src);
171
172 for (i = 0; i < num_preds; i++) {
173 hash = hash_src(hash, &srcs[i]->src);
174 hash = HASH(hash, srcs[i]->pred);
175 }
176
177 return hash;
178 }
179
180 static uint32_t
181 hash_intrinsic(uint32_t hash, const nir_intrinsic_instr *instr)
182 {
183 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
184 hash = HASH(hash, instr->intrinsic);
185
186 if (info->has_dest) {
187 hash = HASH(hash, instr->dest.ssa.num_components);
188 hash = HASH(hash, instr->dest.ssa.bit_size);
189 }
190
191 hash = _mesa_fnv32_1a_accumulate_block(hash, instr->const_index,
192 info->num_indices
193 * sizeof(instr->const_index[0]));
194 return hash;
195 }
196
197 static uint32_t
198 hash_tex(uint32_t hash, const nir_tex_instr *instr)
199 {
200 hash = HASH(hash, instr->op);
201 hash = HASH(hash, instr->num_srcs);
202
203 for (unsigned i = 0; i < instr->num_srcs; i++) {
204 hash = HASH(hash, instr->src[i].src_type);
205 hash = hash_src(hash, &instr->src[i].src);
206 }
207
208 hash = HASH(hash, instr->coord_components);
209 hash = HASH(hash, instr->sampler_dim);
210 hash = HASH(hash, instr->is_array);
211 hash = HASH(hash, instr->is_shadow);
212 hash = HASH(hash, instr->is_new_style_shadow);
213 unsigned component = instr->component;
214 hash = HASH(hash, component);
215 for (unsigned i = 0; i < 4; ++i)
216 for (unsigned j = 0; j < 2; ++j)
217 hash = HASH(hash, instr->tg4_offsets[i][j]);
218 hash = HASH(hash, instr->texture_index);
219 hash = HASH(hash, instr->texture_array_size);
220 hash = HASH(hash, instr->sampler_index);
221
222 return hash;
223 }
224
225 /* Computes a hash of an instruction for use in a hash table. Note that this
226 * will only work for instructions where instr_can_rewrite() returns true, and
227 * it should return identical hashes for two instructions that are the same
228 * according nir_instrs_equal().
229 */
230
231 static uint32_t
232 hash_instr(const void *data)
233 {
234 const nir_instr *instr = data;
235 uint32_t hash = _mesa_fnv32_1a_offset_bias;
236
237 switch (instr->type) {
238 case nir_instr_type_alu:
239 hash = hash_alu(hash, nir_instr_as_alu(instr));
240 break;
241 case nir_instr_type_deref:
242 hash = hash_deref(hash, nir_instr_as_deref(instr));
243 break;
244 case nir_instr_type_load_const:
245 hash = hash_load_const(hash, nir_instr_as_load_const(instr));
246 break;
247 case nir_instr_type_phi:
248 hash = hash_phi(hash, nir_instr_as_phi(instr));
249 break;
250 case nir_instr_type_intrinsic:
251 hash = hash_intrinsic(hash, nir_instr_as_intrinsic(instr));
252 break;
253 case nir_instr_type_tex:
254 hash = hash_tex(hash, nir_instr_as_tex(instr));
255 break;
256 default:
257 unreachable("Invalid instruction type");
258 }
259
260 return hash;
261 }
262
263 bool
264 nir_srcs_equal(nir_src src1, nir_src src2)
265 {
266 if (src1.is_ssa) {
267 if (src2.is_ssa) {
268 return src1.ssa == src2.ssa;
269 } else {
270 return false;
271 }
272 } else {
273 if (src2.is_ssa) {
274 return false;
275 } else {
276 if ((src1.reg.indirect == NULL) != (src2.reg.indirect == NULL))
277 return false;
278
279 if (src1.reg.indirect) {
280 if (!nir_srcs_equal(*src1.reg.indirect, *src2.reg.indirect))
281 return false;
282 }
283
284 return src1.reg.reg == src2.reg.reg &&
285 src1.reg.base_offset == src2.reg.base_offset;
286 }
287 }
288 }
289
290 /**
291 * If the \p s is an SSA value that was generated by a negation instruction,
292 * that instruction is returned as a \c nir_alu_instr. Otherwise \c NULL is
293 * returned.
294 */
295 static nir_alu_instr *
296 get_neg_instr(nir_src s)
297 {
298 nir_alu_instr *alu = nir_src_as_alu_instr(s);
299
300 return alu != NULL && (alu->op == nir_op_fneg || alu->op == nir_op_ineg)
301 ? alu : NULL;
302 }
303
304 bool
305 nir_const_value_negative_equal(nir_const_value c1,
306 nir_const_value c2,
307 nir_alu_type full_type)
308 {
309 assert(nir_alu_type_get_base_type(full_type) != nir_type_invalid);
310 assert(nir_alu_type_get_type_size(full_type) != 0);
311
312 switch (full_type) {
313 case nir_type_float16:
314 return _mesa_half_to_float(c1.u16) == -_mesa_half_to_float(c2.u16);
315
316 case nir_type_float32:
317 return c1.f32 == -c2.f32;
318
319 case nir_type_float64:
320 return c1.f64 == -c2.f64;
321
322 case nir_type_int8:
323 case nir_type_uint8:
324 return c1.i8 == -c2.i8;
325
326 case nir_type_int16:
327 case nir_type_uint16:
328 return c1.i16 == -c2.i16;
329
330 case nir_type_int32:
331 case nir_type_uint32:
332 return c1.i32 == -c2.i32;
333
334 case nir_type_int64:
335 case nir_type_uint64:
336 return c1.i64 == -c2.i64;
337
338 default:
339 break;
340 }
341
342 return false;
343 }
344
345 /**
346 * Shallow compare of ALU srcs to determine if one is the negation of the other
347 *
348 * This function detects cases where \p alu1 is a constant and \p alu2 is a
349 * constant that is its negation. It will also detect cases where \p alu2 is
350 * an SSA value that is a \c nir_op_fneg applied to \p alu1 (and vice versa).
351 *
352 * This function does not detect the general case when \p alu1 and \p alu2 are
353 * SSA values that are the negations of each other (e.g., \p alu1 represents
354 * (a * b) and \p alu2 represents (-a * b)).
355 */
356 bool
357 nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
358 const nir_alu_instr *alu2,
359 unsigned src1, unsigned src2)
360 {
361 if (alu1->src[src1].abs != alu2->src[src2].abs)
362 return false;
363
364 bool parity = alu1->src[src1].negate != alu2->src[src2].negate;
365
366 /* Handling load_const instructions is tricky. */
367
368 const nir_const_value *const const1 =
369 nir_src_as_const_value(alu1->src[src1].src);
370
371 if (const1 != NULL) {
372 /* Assume that constant folding will eliminate source mods and unary
373 * ops.
374 */
375 if (parity)
376 return false;
377
378 const nir_const_value *const const2 =
379 nir_src_as_const_value(alu2->src[src2].src);
380
381 if (const2 == NULL)
382 return false;
383
384 if (nir_src_bit_size(alu1->src[src1].src) !=
385 nir_src_bit_size(alu2->src[src2].src))
386 return false;
387
388 /* FINISHME: Apply the swizzle? */
389 const unsigned components = nir_ssa_alu_instr_src_components(alu1, src1);
390 const nir_alu_type full_type = nir_op_infos[alu1->op].input_types[src1] |
391 nir_src_bit_size(alu1->src[src1].src);
392 for (unsigned i = 0; i < components; i++) {
393 if (!nir_const_value_negative_equal(const1[i], const2[i], full_type))
394 return false;
395 }
396
397 return true;
398 }
399
400 uint8_t alu1_swizzle[4] = {0};
401 nir_src alu1_actual_src;
402 nir_alu_instr *neg1 = get_neg_instr(alu1->src[src1].src);
403
404 if (neg1) {
405 parity = !parity;
406 alu1_actual_src = neg1->src[0].src;
407
408 for (unsigned i = 0; i < nir_ssa_alu_instr_src_components(neg1, 0); i++)
409 alu1_swizzle[i] = neg1->src[0].swizzle[i];
410 } else {
411 alu1_actual_src = alu1->src[src1].src;
412
413 for (unsigned i = 0; i < nir_ssa_alu_instr_src_components(alu1, src1); i++)
414 alu1_swizzle[i] = i;
415 }
416
417 uint8_t alu2_swizzle[4] = {0};
418 nir_src alu2_actual_src;
419 nir_alu_instr *neg2 = get_neg_instr(alu2->src[src2].src);
420
421 if (neg2) {
422 parity = !parity;
423 alu2_actual_src = neg2->src[0].src;
424
425 for (unsigned i = 0; i < nir_ssa_alu_instr_src_components(neg2, 0); i++)
426 alu2_swizzle[i] = neg2->src[0].swizzle[i];
427 } else {
428 alu2_actual_src = alu2->src[src2].src;
429
430 for (unsigned i = 0; i < nir_ssa_alu_instr_src_components(alu2, src2); i++)
431 alu2_swizzle[i] = i;
432 }
433
434 for (unsigned i = 0; i < nir_ssa_alu_instr_src_components(alu1, src1); i++) {
435 if (alu1_swizzle[alu1->src[src1].swizzle[i]] !=
436 alu2_swizzle[alu2->src[src2].swizzle[i]])
437 return false;
438 }
439
440 return parity && nir_srcs_equal(alu1_actual_src, alu2_actual_src);
441 }
442
443 bool
444 nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
445 unsigned src1, unsigned src2)
446 {
447 if (alu1->src[src1].abs != alu2->src[src2].abs ||
448 alu1->src[src1].negate != alu2->src[src2].negate)
449 return false;
450
451 for (unsigned i = 0; i < nir_ssa_alu_instr_src_components(alu1, src1); i++) {
452 if (alu1->src[src1].swizzle[i] != alu2->src[src2].swizzle[i])
453 return false;
454 }
455
456 return nir_srcs_equal(alu1->src[src1].src, alu2->src[src2].src);
457 }
458
459 /* Returns "true" if two instructions are equal. Note that this will only
460 * work for the subset of instructions defined by instr_can_rewrite(). Also,
461 * it should only return "true" for instructions that hash_instr() will return
462 * the same hash for (ignoring collisions, of course).
463 */
464
465 static bool
466 nir_instrs_equal(const nir_instr *instr1, const nir_instr *instr2)
467 {
468 if (instr1->type != instr2->type)
469 return false;
470
471 switch (instr1->type) {
472 case nir_instr_type_alu: {
473 nir_alu_instr *alu1 = nir_instr_as_alu(instr1);
474 nir_alu_instr *alu2 = nir_instr_as_alu(instr2);
475
476 if (alu1->op != alu2->op)
477 return false;
478
479 /* We explicitly don't compare instr->exact. */
480
481 if (alu1->no_signed_wrap != alu2->no_signed_wrap)
482 return false;
483
484 if (alu1->no_unsigned_wrap != alu2->no_unsigned_wrap)
485 return false;
486
487 /* TODO: We can probably acutally do something more inteligent such
488 * as allowing different numbers and taking a maximum or something
489 * here */
490 if (alu1->dest.dest.ssa.num_components != alu2->dest.dest.ssa.num_components)
491 return false;
492
493 if (alu1->dest.dest.ssa.bit_size != alu2->dest.dest.ssa.bit_size)
494 return false;
495
496 if (nir_op_infos[alu1->op].algebraic_properties & NIR_OP_IS_2SRC_COMMUTATIVE) {
497 if ((!nir_alu_srcs_equal(alu1, alu2, 0, 0) ||
498 !nir_alu_srcs_equal(alu1, alu2, 1, 1)) &&
499 (!nir_alu_srcs_equal(alu1, alu2, 0, 1) ||
500 !nir_alu_srcs_equal(alu1, alu2, 1, 0)))
501 return false;
502
503 for (unsigned i = 2; i < nir_op_infos[alu1->op].num_inputs; i++) {
504 if (!nir_alu_srcs_equal(alu1, alu2, i, i))
505 return false;
506 }
507 } else {
508 for (unsigned i = 0; i < nir_op_infos[alu1->op].num_inputs; i++) {
509 if (!nir_alu_srcs_equal(alu1, alu2, i, i))
510 return false;
511 }
512 }
513 return true;
514 }
515 case nir_instr_type_deref: {
516 nir_deref_instr *deref1 = nir_instr_as_deref(instr1);
517 nir_deref_instr *deref2 = nir_instr_as_deref(instr2);
518
519 if (deref1->deref_type != deref2->deref_type ||
520 deref1->mode != deref2->mode ||
521 deref1->type != deref2->type)
522 return false;
523
524 if (deref1->deref_type == nir_deref_type_var)
525 return deref1->var == deref2->var;
526
527 if (!nir_srcs_equal(deref1->parent, deref2->parent))
528 return false;
529
530 switch (deref1->deref_type) {
531 case nir_deref_type_struct:
532 if (deref1->strct.index != deref2->strct.index)
533 return false;
534 break;
535
536 case nir_deref_type_array:
537 case nir_deref_type_ptr_as_array:
538 if (!nir_srcs_equal(deref1->arr.index, deref2->arr.index))
539 return false;
540 break;
541
542 case nir_deref_type_cast:
543 if (deref1->cast.ptr_stride != deref2->cast.ptr_stride)
544 return false;
545 break;
546
547 case nir_deref_type_var:
548 case nir_deref_type_array_wildcard:
549 /* Nothing to do */
550 break;
551
552 default:
553 unreachable("Invalid instruction deref type");
554 }
555 return true;
556 }
557 case nir_instr_type_tex: {
558 nir_tex_instr *tex1 = nir_instr_as_tex(instr1);
559 nir_tex_instr *tex2 = nir_instr_as_tex(instr2);
560
561 if (tex1->op != tex2->op)
562 return false;
563
564 if (tex1->num_srcs != tex2->num_srcs)
565 return false;
566 for (unsigned i = 0; i < tex1->num_srcs; i++) {
567 if (tex1->src[i].src_type != tex2->src[i].src_type ||
568 !nir_srcs_equal(tex1->src[i].src, tex2->src[i].src)) {
569 return false;
570 }
571 }
572
573 if (tex1->coord_components != tex2->coord_components ||
574 tex1->sampler_dim != tex2->sampler_dim ||
575 tex1->is_array != tex2->is_array ||
576 tex1->is_shadow != tex2->is_shadow ||
577 tex1->is_new_style_shadow != tex2->is_new_style_shadow ||
578 tex1->component != tex2->component ||
579 tex1->texture_index != tex2->texture_index ||
580 tex1->texture_array_size != tex2->texture_array_size ||
581 tex1->sampler_index != tex2->sampler_index) {
582 return false;
583 }
584
585 if (memcmp(tex1->tg4_offsets, tex2->tg4_offsets,
586 sizeof(tex1->tg4_offsets)))
587 return false;
588
589 return true;
590 }
591 case nir_instr_type_load_const: {
592 nir_load_const_instr *load1 = nir_instr_as_load_const(instr1);
593 nir_load_const_instr *load2 = nir_instr_as_load_const(instr2);
594
595 if (load1->def.num_components != load2->def.num_components)
596 return false;
597
598 if (load1->def.bit_size != load2->def.bit_size)
599 return false;
600
601 if (load1->def.bit_size == 1) {
602 for (unsigned i = 0; i < load1->def.num_components; ++i) {
603 if (load1->value[i].b != load2->value[i].b)
604 return false;
605 }
606 } else {
607 unsigned size = load1->def.num_components * sizeof(*load1->value);
608 if (memcmp(load1->value, load2->value, size) != 0)
609 return false;
610 }
611 return true;
612 }
613 case nir_instr_type_phi: {
614 nir_phi_instr *phi1 = nir_instr_as_phi(instr1);
615 nir_phi_instr *phi2 = nir_instr_as_phi(instr2);
616
617 if (phi1->instr.block != phi2->instr.block)
618 return false;
619
620 nir_foreach_phi_src(src1, phi1) {
621 nir_foreach_phi_src(src2, phi2) {
622 if (src1->pred == src2->pred) {
623 if (!nir_srcs_equal(src1->src, src2->src))
624 return false;
625
626 break;
627 }
628 }
629 }
630
631 return true;
632 }
633 case nir_instr_type_intrinsic: {
634 nir_intrinsic_instr *intrinsic1 = nir_instr_as_intrinsic(instr1);
635 nir_intrinsic_instr *intrinsic2 = nir_instr_as_intrinsic(instr2);
636 const nir_intrinsic_info *info =
637 &nir_intrinsic_infos[intrinsic1->intrinsic];
638
639 if (intrinsic1->intrinsic != intrinsic2->intrinsic ||
640 intrinsic1->num_components != intrinsic2->num_components)
641 return false;
642
643 if (info->has_dest && intrinsic1->dest.ssa.num_components !=
644 intrinsic2->dest.ssa.num_components)
645 return false;
646
647 if (info->has_dest && intrinsic1->dest.ssa.bit_size !=
648 intrinsic2->dest.ssa.bit_size)
649 return false;
650
651 for (unsigned i = 0; i < info->num_srcs; i++) {
652 if (!nir_srcs_equal(intrinsic1->src[i], intrinsic2->src[i]))
653 return false;
654 }
655
656 for (unsigned i = 0; i < info->num_indices; i++) {
657 if (intrinsic1->const_index[i] != intrinsic2->const_index[i])
658 return false;
659 }
660
661 return true;
662 }
663 case nir_instr_type_call:
664 case nir_instr_type_jump:
665 case nir_instr_type_ssa_undef:
666 case nir_instr_type_parallel_copy:
667 default:
668 unreachable("Invalid instruction type");
669 }
670
671 unreachable("All cases in the above switch should return");
672 }
673
674 static bool
675 src_is_ssa(nir_src *src, void *data)
676 {
677 (void) data;
678 return src->is_ssa;
679 }
680
681 static bool
682 dest_is_ssa(nir_dest *dest, void *data)
683 {
684 (void) data;
685 return dest->is_ssa;
686 }
687
688 static inline bool
689 instr_each_src_and_dest_is_ssa(nir_instr *instr)
690 {
691 if (!nir_foreach_dest(instr, dest_is_ssa, NULL) ||
692 !nir_foreach_src(instr, src_is_ssa, NULL))
693 return false;
694
695 return true;
696 }
697
698 /* This function determines if uses of an instruction can safely be rewritten
699 * to use another identical instruction instead. Note that this function must
700 * be kept in sync with hash_instr() and nir_instrs_equal() -- only
701 * instructions that pass this test will be handed on to those functions, and
702 * conversely they must handle everything that this function returns true for.
703 */
704
705 static bool
706 instr_can_rewrite(nir_instr *instr)
707 {
708 /* We only handle SSA. */
709 assert(instr_each_src_and_dest_is_ssa(instr));
710
711 switch (instr->type) {
712 case nir_instr_type_alu:
713 case nir_instr_type_deref:
714 case nir_instr_type_tex:
715 case nir_instr_type_load_const:
716 case nir_instr_type_phi:
717 return true;
718 case nir_instr_type_intrinsic:
719 return nir_intrinsic_can_reorder(nir_instr_as_intrinsic(instr));
720 case nir_instr_type_call:
721 case nir_instr_type_jump:
722 case nir_instr_type_ssa_undef:
723 return false;
724 case nir_instr_type_parallel_copy:
725 default:
726 unreachable("Invalid instruction type");
727 }
728
729 return false;
730 }
731
732 static nir_ssa_def *
733 nir_instr_get_dest_ssa_def(nir_instr *instr)
734 {
735 switch (instr->type) {
736 case nir_instr_type_alu:
737 assert(nir_instr_as_alu(instr)->dest.dest.is_ssa);
738 return &nir_instr_as_alu(instr)->dest.dest.ssa;
739 case nir_instr_type_deref:
740 assert(nir_instr_as_deref(instr)->dest.is_ssa);
741 return &nir_instr_as_deref(instr)->dest.ssa;
742 case nir_instr_type_load_const:
743 return &nir_instr_as_load_const(instr)->def;
744 case nir_instr_type_phi:
745 assert(nir_instr_as_phi(instr)->dest.is_ssa);
746 return &nir_instr_as_phi(instr)->dest.ssa;
747 case nir_instr_type_intrinsic:
748 assert(nir_instr_as_intrinsic(instr)->dest.is_ssa);
749 return &nir_instr_as_intrinsic(instr)->dest.ssa;
750 case nir_instr_type_tex:
751 assert(nir_instr_as_tex(instr)->dest.is_ssa);
752 return &nir_instr_as_tex(instr)->dest.ssa;
753 default:
754 unreachable("We never ask for any of these");
755 }
756 }
757
758 static bool
759 cmp_func(const void *data1, const void *data2)
760 {
761 return nir_instrs_equal(data1, data2);
762 }
763
764 struct set *
765 nir_instr_set_create(void *mem_ctx)
766 {
767 return _mesa_set_create(mem_ctx, hash_instr, cmp_func);
768 }
769
770 void
771 nir_instr_set_destroy(struct set *instr_set)
772 {
773 _mesa_set_destroy(instr_set, NULL);
774 }
775
776 bool
777 nir_instr_set_add_or_rewrite(struct set *instr_set, nir_instr *instr)
778 {
779 if (!instr_can_rewrite(instr))
780 return false;
781
782 struct set_entry *e = _mesa_set_search_or_add(instr_set, instr);
783 nir_instr *match = (nir_instr *) e->key;
784 if (match != instr) {
785 nir_ssa_def *def = nir_instr_get_dest_ssa_def(instr);
786 nir_ssa_def *new_def = nir_instr_get_dest_ssa_def(match);
787
788 /* It's safe to replace an exact instruction with an inexact one as
789 * long as we make it exact. If we got here, the two instructions are
790 * exactly identical in every other way so, once we've set the exact
791 * bit, they are the same.
792 */
793 if (instr->type == nir_instr_type_alu && nir_instr_as_alu(instr)->exact)
794 nir_instr_as_alu(match)->exact = true;
795
796 nir_ssa_def_rewrite_uses(def, nir_src_for_ssa(new_def));
797 return true;
798 }
799
800 return false;
801 }
802
803 void
804 nir_instr_set_remove(struct set *instr_set, nir_instr *instr)
805 {
806 if (!instr_can_rewrite(instr))
807 return;
808
809 struct set_entry *entry = _mesa_set_search(instr_set, instr);
810 if (entry)
811 _mesa_set_remove(instr_set, entry);
812 }
813