nir: Use nir_src_bit_size instead of alu1->dest.dest.ssa.bit_size
[mesa.git] / src / compiler / nir / nir_instr_set.c
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "nir_instr_set.h"
25 #include "nir_vla.h"
26 #include "util/half_float.h"
27
28 #define HASH(hash, data) _mesa_fnv32_1a_accumulate((hash), (data))
29
30 static uint32_t
31 hash_src(uint32_t hash, const nir_src *src)
32 {
33 assert(src->is_ssa);
34 hash = HASH(hash, src->ssa);
35 return hash;
36 }
37
38 static uint32_t
39 hash_alu_src(uint32_t hash, const nir_alu_src *src, unsigned num_components)
40 {
41 hash = HASH(hash, src->abs);
42 hash = HASH(hash, src->negate);
43
44 for (unsigned i = 0; i < num_components; i++)
45 hash = HASH(hash, src->swizzle[i]);
46
47 hash = hash_src(hash, &src->src);
48 return hash;
49 }
50
51 static uint32_t
52 hash_alu(uint32_t hash, const nir_alu_instr *instr)
53 {
54 hash = HASH(hash, instr->op);
55
56 /* We explicitly don't hash instr->exact. */
57 uint8_t flags = instr->no_signed_wrap |
58 instr->no_unsigned_wrap << 1;
59 hash = HASH(hash, flags);
60
61 hash = HASH(hash, instr->dest.dest.ssa.num_components);
62 hash = HASH(hash, instr->dest.dest.ssa.bit_size);
63
64 if (nir_op_infos[instr->op].algebraic_properties & NIR_OP_IS_2SRC_COMMUTATIVE) {
65 assert(nir_op_infos[instr->op].num_inputs >= 2);
66
67 uint32_t hash0 = hash_alu_src(hash, &instr->src[0],
68 nir_ssa_alu_instr_src_components(instr, 0));
69 uint32_t hash1 = hash_alu_src(hash, &instr->src[1],
70 nir_ssa_alu_instr_src_components(instr, 1));
71 /* For commutative operations, we need some commutative way of
72 * combining the hashes. One option would be to XOR them but that
73 * means that anything with two identical sources will hash to 0 and
74 * that's common enough we probably don't want the guaranteed
75 * collision. Either addition or multiplication will also work.
76 */
77 hash = hash0 * hash1;
78
79 for (unsigned i = 2; i < nir_op_infos[instr->op].num_inputs; i++) {
80 hash = hash_alu_src(hash, &instr->src[i],
81 nir_ssa_alu_instr_src_components(instr, i));
82 }
83 } else {
84 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
85 hash = hash_alu_src(hash, &instr->src[i],
86 nir_ssa_alu_instr_src_components(instr, i));
87 }
88 }
89
90 return hash;
91 }
92
93 static uint32_t
94 hash_deref(uint32_t hash, const nir_deref_instr *instr)
95 {
96 hash = HASH(hash, instr->deref_type);
97 hash = HASH(hash, instr->mode);
98 hash = HASH(hash, instr->type);
99
100 if (instr->deref_type == nir_deref_type_var)
101 return HASH(hash, instr->var);
102
103 hash = hash_src(hash, &instr->parent);
104
105 switch (instr->deref_type) {
106 case nir_deref_type_struct:
107 hash = HASH(hash, instr->strct.index);
108 break;
109
110 case nir_deref_type_array:
111 case nir_deref_type_ptr_as_array:
112 hash = hash_src(hash, &instr->arr.index);
113 break;
114
115 case nir_deref_type_cast:
116 hash = HASH(hash, instr->cast.ptr_stride);
117 break;
118
119 case nir_deref_type_var:
120 case nir_deref_type_array_wildcard:
121 /* Nothing to do */
122 break;
123
124 default:
125 unreachable("Invalid instruction deref type");
126 }
127
128 return hash;
129 }
130
131 static uint32_t
132 hash_load_const(uint32_t hash, const nir_load_const_instr *instr)
133 {
134 hash = HASH(hash, instr->def.num_components);
135
136 if (instr->def.bit_size == 1) {
137 for (unsigned i = 0; i < instr->def.num_components; i++) {
138 uint8_t b = instr->value[i].b;
139 hash = HASH(hash, b);
140 }
141 } else {
142 unsigned size = instr->def.num_components * sizeof(*instr->value);
143 hash = _mesa_fnv32_1a_accumulate_block(hash, instr->value, size);
144 }
145
146 return hash;
147 }
148
149 static int
150 cmp_phi_src(const void *data1, const void *data2)
151 {
152 nir_phi_src *src1 = *(nir_phi_src **)data1;
153 nir_phi_src *src2 = *(nir_phi_src **)data2;
154 return src1->pred - src2->pred;
155 }
156
157 static uint32_t
158 hash_phi(uint32_t hash, const nir_phi_instr *instr)
159 {
160 hash = HASH(hash, instr->instr.block);
161
162 /* sort sources by predecessor, since the order shouldn't matter */
163 unsigned num_preds = instr->instr.block->predecessors->entries;
164 NIR_VLA(nir_phi_src *, srcs, num_preds);
165 unsigned i = 0;
166 nir_foreach_phi_src(src, instr) {
167 srcs[i++] = src;
168 }
169
170 qsort(srcs, num_preds, sizeof(nir_phi_src *), cmp_phi_src);
171
172 for (i = 0; i < num_preds; i++) {
173 hash = hash_src(hash, &srcs[i]->src);
174 hash = HASH(hash, srcs[i]->pred);
175 }
176
177 return hash;
178 }
179
180 static uint32_t
181 hash_intrinsic(uint32_t hash, const nir_intrinsic_instr *instr)
182 {
183 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
184 hash = HASH(hash, instr->intrinsic);
185
186 if (info->has_dest) {
187 hash = HASH(hash, instr->dest.ssa.num_components);
188 hash = HASH(hash, instr->dest.ssa.bit_size);
189 }
190
191 hash = _mesa_fnv32_1a_accumulate_block(hash, instr->const_index,
192 info->num_indices
193 * sizeof(instr->const_index[0]));
194 return hash;
195 }
196
197 static uint32_t
198 hash_tex(uint32_t hash, const nir_tex_instr *instr)
199 {
200 hash = HASH(hash, instr->op);
201 hash = HASH(hash, instr->num_srcs);
202
203 for (unsigned i = 0; i < instr->num_srcs; i++) {
204 hash = HASH(hash, instr->src[i].src_type);
205 hash = hash_src(hash, &instr->src[i].src);
206 }
207
208 hash = HASH(hash, instr->coord_components);
209 hash = HASH(hash, instr->sampler_dim);
210 hash = HASH(hash, instr->is_array);
211 hash = HASH(hash, instr->is_shadow);
212 hash = HASH(hash, instr->is_new_style_shadow);
213 unsigned component = instr->component;
214 hash = HASH(hash, component);
215 for (unsigned i = 0; i < 4; ++i)
216 for (unsigned j = 0; j < 2; ++j)
217 hash = HASH(hash, instr->tg4_offsets[i][j]);
218 hash = HASH(hash, instr->texture_index);
219 hash = HASH(hash, instr->texture_array_size);
220 hash = HASH(hash, instr->sampler_index);
221
222 return hash;
223 }
224
225 /* Computes a hash of an instruction for use in a hash table. Note that this
226 * will only work for instructions where instr_can_rewrite() returns true, and
227 * it should return identical hashes for two instructions that are the same
228 * according nir_instrs_equal().
229 */
230
231 static uint32_t
232 hash_instr(const void *data)
233 {
234 const nir_instr *instr = data;
235 uint32_t hash = _mesa_fnv32_1a_offset_bias;
236
237 switch (instr->type) {
238 case nir_instr_type_alu:
239 hash = hash_alu(hash, nir_instr_as_alu(instr));
240 break;
241 case nir_instr_type_deref:
242 hash = hash_deref(hash, nir_instr_as_deref(instr));
243 break;
244 case nir_instr_type_load_const:
245 hash = hash_load_const(hash, nir_instr_as_load_const(instr));
246 break;
247 case nir_instr_type_phi:
248 hash = hash_phi(hash, nir_instr_as_phi(instr));
249 break;
250 case nir_instr_type_intrinsic:
251 hash = hash_intrinsic(hash, nir_instr_as_intrinsic(instr));
252 break;
253 case nir_instr_type_tex:
254 hash = hash_tex(hash, nir_instr_as_tex(instr));
255 break;
256 default:
257 unreachable("Invalid instruction type");
258 }
259
260 return hash;
261 }
262
263 bool
264 nir_srcs_equal(nir_src src1, nir_src src2)
265 {
266 if (src1.is_ssa) {
267 if (src2.is_ssa) {
268 return src1.ssa == src2.ssa;
269 } else {
270 return false;
271 }
272 } else {
273 if (src2.is_ssa) {
274 return false;
275 } else {
276 if ((src1.reg.indirect == NULL) != (src2.reg.indirect == NULL))
277 return false;
278
279 if (src1.reg.indirect) {
280 if (!nir_srcs_equal(*src1.reg.indirect, *src2.reg.indirect))
281 return false;
282 }
283
284 return src1.reg.reg == src2.reg.reg &&
285 src1.reg.base_offset == src2.reg.base_offset;
286 }
287 }
288 }
289
290 /**
291 * If the \p s is an SSA value that was generated by a negation instruction,
292 * that instruction is returned as a \c nir_alu_instr. Otherwise \c NULL is
293 * returned.
294 */
295 static nir_alu_instr *
296 get_neg_instr(nir_src s)
297 {
298 nir_alu_instr *alu = nir_src_as_alu_instr(s);
299
300 return alu != NULL && (alu->op == nir_op_fneg || alu->op == nir_op_ineg)
301 ? alu : NULL;
302 }
303
304 bool
305 nir_const_value_negative_equal(const nir_const_value *c1,
306 const nir_const_value *c2,
307 unsigned components,
308 nir_alu_type base_type,
309 unsigned bits)
310 {
311 assert(base_type == nir_alu_type_get_base_type(base_type));
312 assert(base_type != nir_type_invalid);
313
314 /* This can occur for 1-bit Boolean values. */
315 if (bits == 1)
316 return false;
317
318 switch (base_type) {
319 case nir_type_float:
320 switch (bits) {
321 case 16:
322 for (unsigned i = 0; i < components; i++) {
323 if (_mesa_half_to_float(c1[i].u16) !=
324 -_mesa_half_to_float(c2[i].u16)) {
325 return false;
326 }
327 }
328
329 return true;
330
331 case 32:
332 for (unsigned i = 0; i < components; i++) {
333 if (c1[i].f32 != -c2[i].f32)
334 return false;
335 }
336
337 return true;
338
339 case 64:
340 for (unsigned i = 0; i < components; i++) {
341 if (c1[i].f64 != -c2[i].f64)
342 return false;
343 }
344
345 return true;
346
347 default:
348 unreachable("unknown bit size");
349 }
350
351 break;
352
353 case nir_type_int:
354 case nir_type_uint:
355 switch (bits) {
356 case 8:
357 for (unsigned i = 0; i < components; i++) {
358 if (c1[i].i8 != -c2[i].i8)
359 return false;
360 }
361
362 return true;
363
364 case 16:
365 for (unsigned i = 0; i < components; i++) {
366 if (c1[i].i16 != -c2[i].i16)
367 return false;
368 }
369
370 return true;
371 break;
372
373 case 32:
374 for (unsigned i = 0; i < components; i++) {
375 if (c1[i].i32 != -c2[i].i32)
376 return false;
377 }
378
379 return true;
380
381 case 64:
382 for (unsigned i = 0; i < components; i++) {
383 if (c1[i].i64 != -c2[i].i64)
384 return false;
385 }
386
387 return true;
388
389 default:
390 unreachable("unknown bit size");
391 }
392
393 break;
394
395 case nir_type_bool:
396 return false;
397
398 default:
399 break;
400 }
401
402 return false;
403 }
404
405 /**
406 * Shallow compare of ALU srcs to determine if one is the negation of the other
407 *
408 * This function detects cases where \p alu1 is a constant and \p alu2 is a
409 * constant that is its negation. It will also detect cases where \p alu2 is
410 * an SSA value that is a \c nir_op_fneg applied to \p alu1 (and vice versa).
411 *
412 * This function does not detect the general case when \p alu1 and \p alu2 are
413 * SSA values that are the negations of each other (e.g., \p alu1 represents
414 * (a * b) and \p alu2 represents (-a * b)).
415 */
416 bool
417 nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
418 const nir_alu_instr *alu2,
419 unsigned src1, unsigned src2)
420 {
421 if (alu1->src[src1].abs != alu2->src[src2].abs)
422 return false;
423
424 bool parity = alu1->src[src1].negate != alu2->src[src2].negate;
425
426 /* Handling load_const instructions is tricky. */
427
428 const nir_const_value *const const1 =
429 nir_src_as_const_value(alu1->src[src1].src);
430
431 if (const1 != NULL) {
432 /* Assume that constant folding will eliminate source mods and unary
433 * ops.
434 */
435 if (parity)
436 return false;
437
438 const nir_const_value *const const2 =
439 nir_src_as_const_value(alu2->src[src2].src);
440
441 if (const2 == NULL)
442 return false;
443
444 if (nir_src_bit_size(alu1->src[src1].src) !=
445 nir_src_bit_size(alu2->src[src2].src))
446 return false;
447
448 /* FINISHME: Apply the swizzle? */
449 return nir_const_value_negative_equal(const1,
450 const2,
451 nir_ssa_alu_instr_src_components(alu1, src1),
452 nir_op_infos[alu1->op].input_types[src1],
453 nir_src_bit_size(alu1->src[src1].src));
454 }
455
456 uint8_t alu1_swizzle[4] = {0};
457 nir_src alu1_actual_src;
458 nir_alu_instr *neg1 = get_neg_instr(alu1->src[src1].src);
459
460 if (neg1) {
461 parity = !parity;
462 alu1_actual_src = neg1->src[0].src;
463
464 for (unsigned i = 0; i < nir_ssa_alu_instr_src_components(neg1, 0); i++)
465 alu1_swizzle[i] = neg1->src[0].swizzle[i];
466 } else {
467 alu1_actual_src = alu1->src[src1].src;
468
469 for (unsigned i = 0; i < nir_ssa_alu_instr_src_components(alu1, src1); i++)
470 alu1_swizzle[i] = i;
471 }
472
473 uint8_t alu2_swizzle[4] = {0};
474 nir_src alu2_actual_src;
475 nir_alu_instr *neg2 = get_neg_instr(alu2->src[src2].src);
476
477 if (neg2) {
478 parity = !parity;
479 alu2_actual_src = neg2->src[0].src;
480
481 for (unsigned i = 0; i < nir_ssa_alu_instr_src_components(neg2, 0); i++)
482 alu2_swizzle[i] = neg2->src[0].swizzle[i];
483 } else {
484 alu2_actual_src = alu2->src[src2].src;
485
486 for (unsigned i = 0; i < nir_ssa_alu_instr_src_components(alu2, src2); i++)
487 alu2_swizzle[i] = i;
488 }
489
490 for (unsigned i = 0; i < nir_ssa_alu_instr_src_components(alu1, src1); i++) {
491 if (alu1_swizzle[alu1->src[src1].swizzle[i]] !=
492 alu2_swizzle[alu2->src[src2].swizzle[i]])
493 return false;
494 }
495
496 return parity && nir_srcs_equal(alu1_actual_src, alu2_actual_src);
497 }
498
499 bool
500 nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
501 unsigned src1, unsigned src2)
502 {
503 if (alu1->src[src1].abs != alu2->src[src2].abs ||
504 alu1->src[src1].negate != alu2->src[src2].negate)
505 return false;
506
507 for (unsigned i = 0; i < nir_ssa_alu_instr_src_components(alu1, src1); i++) {
508 if (alu1->src[src1].swizzle[i] != alu2->src[src2].swizzle[i])
509 return false;
510 }
511
512 return nir_srcs_equal(alu1->src[src1].src, alu2->src[src2].src);
513 }
514
515 /* Returns "true" if two instructions are equal. Note that this will only
516 * work for the subset of instructions defined by instr_can_rewrite(). Also,
517 * it should only return "true" for instructions that hash_instr() will return
518 * the same hash for (ignoring collisions, of course).
519 */
520
521 static bool
522 nir_instrs_equal(const nir_instr *instr1, const nir_instr *instr2)
523 {
524 if (instr1->type != instr2->type)
525 return false;
526
527 switch (instr1->type) {
528 case nir_instr_type_alu: {
529 nir_alu_instr *alu1 = nir_instr_as_alu(instr1);
530 nir_alu_instr *alu2 = nir_instr_as_alu(instr2);
531
532 if (alu1->op != alu2->op)
533 return false;
534
535 /* We explicitly don't compare instr->exact. */
536
537 if (alu1->no_signed_wrap != alu2->no_signed_wrap)
538 return false;
539
540 if (alu1->no_unsigned_wrap != alu2->no_unsigned_wrap)
541 return false;
542
543 /* TODO: We can probably acutally do something more inteligent such
544 * as allowing different numbers and taking a maximum or something
545 * here */
546 if (alu1->dest.dest.ssa.num_components != alu2->dest.dest.ssa.num_components)
547 return false;
548
549 if (alu1->dest.dest.ssa.bit_size != alu2->dest.dest.ssa.bit_size)
550 return false;
551
552 if (nir_op_infos[alu1->op].algebraic_properties & NIR_OP_IS_2SRC_COMMUTATIVE) {
553 if ((!nir_alu_srcs_equal(alu1, alu2, 0, 0) ||
554 !nir_alu_srcs_equal(alu1, alu2, 1, 1)) &&
555 (!nir_alu_srcs_equal(alu1, alu2, 0, 1) ||
556 !nir_alu_srcs_equal(alu1, alu2, 1, 0)))
557 return false;
558
559 for (unsigned i = 2; i < nir_op_infos[alu1->op].num_inputs; i++) {
560 if (!nir_alu_srcs_equal(alu1, alu2, i, i))
561 return false;
562 }
563 } else {
564 for (unsigned i = 0; i < nir_op_infos[alu1->op].num_inputs; i++) {
565 if (!nir_alu_srcs_equal(alu1, alu2, i, i))
566 return false;
567 }
568 }
569 return true;
570 }
571 case nir_instr_type_deref: {
572 nir_deref_instr *deref1 = nir_instr_as_deref(instr1);
573 nir_deref_instr *deref2 = nir_instr_as_deref(instr2);
574
575 if (deref1->deref_type != deref2->deref_type ||
576 deref1->mode != deref2->mode ||
577 deref1->type != deref2->type)
578 return false;
579
580 if (deref1->deref_type == nir_deref_type_var)
581 return deref1->var == deref2->var;
582
583 if (!nir_srcs_equal(deref1->parent, deref2->parent))
584 return false;
585
586 switch (deref1->deref_type) {
587 case nir_deref_type_struct:
588 if (deref1->strct.index != deref2->strct.index)
589 return false;
590 break;
591
592 case nir_deref_type_array:
593 case nir_deref_type_ptr_as_array:
594 if (!nir_srcs_equal(deref1->arr.index, deref2->arr.index))
595 return false;
596 break;
597
598 case nir_deref_type_cast:
599 if (deref1->cast.ptr_stride != deref2->cast.ptr_stride)
600 return false;
601 break;
602
603 case nir_deref_type_var:
604 case nir_deref_type_array_wildcard:
605 /* Nothing to do */
606 break;
607
608 default:
609 unreachable("Invalid instruction deref type");
610 }
611 return true;
612 }
613 case nir_instr_type_tex: {
614 nir_tex_instr *tex1 = nir_instr_as_tex(instr1);
615 nir_tex_instr *tex2 = nir_instr_as_tex(instr2);
616
617 if (tex1->op != tex2->op)
618 return false;
619
620 if (tex1->num_srcs != tex2->num_srcs)
621 return false;
622 for (unsigned i = 0; i < tex1->num_srcs; i++) {
623 if (tex1->src[i].src_type != tex2->src[i].src_type ||
624 !nir_srcs_equal(tex1->src[i].src, tex2->src[i].src)) {
625 return false;
626 }
627 }
628
629 if (tex1->coord_components != tex2->coord_components ||
630 tex1->sampler_dim != tex2->sampler_dim ||
631 tex1->is_array != tex2->is_array ||
632 tex1->is_shadow != tex2->is_shadow ||
633 tex1->is_new_style_shadow != tex2->is_new_style_shadow ||
634 tex1->component != tex2->component ||
635 tex1->texture_index != tex2->texture_index ||
636 tex1->texture_array_size != tex2->texture_array_size ||
637 tex1->sampler_index != tex2->sampler_index) {
638 return false;
639 }
640
641 if (memcmp(tex1->tg4_offsets, tex2->tg4_offsets,
642 sizeof(tex1->tg4_offsets)))
643 return false;
644
645 return true;
646 }
647 case nir_instr_type_load_const: {
648 nir_load_const_instr *load1 = nir_instr_as_load_const(instr1);
649 nir_load_const_instr *load2 = nir_instr_as_load_const(instr2);
650
651 if (load1->def.num_components != load2->def.num_components)
652 return false;
653
654 if (load1->def.bit_size != load2->def.bit_size)
655 return false;
656
657 if (load1->def.bit_size == 1) {
658 for (unsigned i = 0; i < load1->def.num_components; ++i) {
659 if (load1->value[i].b != load2->value[i].b)
660 return false;
661 }
662 } else {
663 unsigned size = load1->def.num_components * sizeof(*load1->value);
664 if (memcmp(load1->value, load2->value, size) != 0)
665 return false;
666 }
667 return true;
668 }
669 case nir_instr_type_phi: {
670 nir_phi_instr *phi1 = nir_instr_as_phi(instr1);
671 nir_phi_instr *phi2 = nir_instr_as_phi(instr2);
672
673 if (phi1->instr.block != phi2->instr.block)
674 return false;
675
676 nir_foreach_phi_src(src1, phi1) {
677 nir_foreach_phi_src(src2, phi2) {
678 if (src1->pred == src2->pred) {
679 if (!nir_srcs_equal(src1->src, src2->src))
680 return false;
681
682 break;
683 }
684 }
685 }
686
687 return true;
688 }
689 case nir_instr_type_intrinsic: {
690 nir_intrinsic_instr *intrinsic1 = nir_instr_as_intrinsic(instr1);
691 nir_intrinsic_instr *intrinsic2 = nir_instr_as_intrinsic(instr2);
692 const nir_intrinsic_info *info =
693 &nir_intrinsic_infos[intrinsic1->intrinsic];
694
695 if (intrinsic1->intrinsic != intrinsic2->intrinsic ||
696 intrinsic1->num_components != intrinsic2->num_components)
697 return false;
698
699 if (info->has_dest && intrinsic1->dest.ssa.num_components !=
700 intrinsic2->dest.ssa.num_components)
701 return false;
702
703 if (info->has_dest && intrinsic1->dest.ssa.bit_size !=
704 intrinsic2->dest.ssa.bit_size)
705 return false;
706
707 for (unsigned i = 0; i < info->num_srcs; i++) {
708 if (!nir_srcs_equal(intrinsic1->src[i], intrinsic2->src[i]))
709 return false;
710 }
711
712 for (unsigned i = 0; i < info->num_indices; i++) {
713 if (intrinsic1->const_index[i] != intrinsic2->const_index[i])
714 return false;
715 }
716
717 return true;
718 }
719 case nir_instr_type_call:
720 case nir_instr_type_jump:
721 case nir_instr_type_ssa_undef:
722 case nir_instr_type_parallel_copy:
723 default:
724 unreachable("Invalid instruction type");
725 }
726
727 unreachable("All cases in the above switch should return");
728 }
729
730 static bool
731 src_is_ssa(nir_src *src, void *data)
732 {
733 (void) data;
734 return src->is_ssa;
735 }
736
737 static bool
738 dest_is_ssa(nir_dest *dest, void *data)
739 {
740 (void) data;
741 return dest->is_ssa;
742 }
743
744 static inline bool
745 instr_each_src_and_dest_is_ssa(nir_instr *instr)
746 {
747 if (!nir_foreach_dest(instr, dest_is_ssa, NULL) ||
748 !nir_foreach_src(instr, src_is_ssa, NULL))
749 return false;
750
751 return true;
752 }
753
754 /* This function determines if uses of an instruction can safely be rewritten
755 * to use another identical instruction instead. Note that this function must
756 * be kept in sync with hash_instr() and nir_instrs_equal() -- only
757 * instructions that pass this test will be handed on to those functions, and
758 * conversely they must handle everything that this function returns true for.
759 */
760
761 static bool
762 instr_can_rewrite(nir_instr *instr)
763 {
764 /* We only handle SSA. */
765 assert(instr_each_src_and_dest_is_ssa(instr));
766
767 switch (instr->type) {
768 case nir_instr_type_alu:
769 case nir_instr_type_deref:
770 case nir_instr_type_tex:
771 case nir_instr_type_load_const:
772 case nir_instr_type_phi:
773 return true;
774 case nir_instr_type_intrinsic:
775 return nir_intrinsic_can_reorder(nir_instr_as_intrinsic(instr));
776 case nir_instr_type_call:
777 case nir_instr_type_jump:
778 case nir_instr_type_ssa_undef:
779 return false;
780 case nir_instr_type_parallel_copy:
781 default:
782 unreachable("Invalid instruction type");
783 }
784
785 return false;
786 }
787
788 static nir_ssa_def *
789 nir_instr_get_dest_ssa_def(nir_instr *instr)
790 {
791 switch (instr->type) {
792 case nir_instr_type_alu:
793 assert(nir_instr_as_alu(instr)->dest.dest.is_ssa);
794 return &nir_instr_as_alu(instr)->dest.dest.ssa;
795 case nir_instr_type_deref:
796 assert(nir_instr_as_deref(instr)->dest.is_ssa);
797 return &nir_instr_as_deref(instr)->dest.ssa;
798 case nir_instr_type_load_const:
799 return &nir_instr_as_load_const(instr)->def;
800 case nir_instr_type_phi:
801 assert(nir_instr_as_phi(instr)->dest.is_ssa);
802 return &nir_instr_as_phi(instr)->dest.ssa;
803 case nir_instr_type_intrinsic:
804 assert(nir_instr_as_intrinsic(instr)->dest.is_ssa);
805 return &nir_instr_as_intrinsic(instr)->dest.ssa;
806 case nir_instr_type_tex:
807 assert(nir_instr_as_tex(instr)->dest.is_ssa);
808 return &nir_instr_as_tex(instr)->dest.ssa;
809 default:
810 unreachable("We never ask for any of these");
811 }
812 }
813
814 static bool
815 cmp_func(const void *data1, const void *data2)
816 {
817 return nir_instrs_equal(data1, data2);
818 }
819
820 struct set *
821 nir_instr_set_create(void *mem_ctx)
822 {
823 return _mesa_set_create(mem_ctx, hash_instr, cmp_func);
824 }
825
826 void
827 nir_instr_set_destroy(struct set *instr_set)
828 {
829 _mesa_set_destroy(instr_set, NULL);
830 }
831
832 bool
833 nir_instr_set_add_or_rewrite(struct set *instr_set, nir_instr *instr)
834 {
835 if (!instr_can_rewrite(instr))
836 return false;
837
838 struct set_entry *e = _mesa_set_search_or_add(instr_set, instr);
839 nir_instr *match = (nir_instr *) e->key;
840 if (match != instr) {
841 nir_ssa_def *def = nir_instr_get_dest_ssa_def(instr);
842 nir_ssa_def *new_def = nir_instr_get_dest_ssa_def(match);
843
844 /* It's safe to replace an exact instruction with an inexact one as
845 * long as we make it exact. If we got here, the two instructions are
846 * exactly identical in every other way so, once we've set the exact
847 * bit, they are the same.
848 */
849 if (instr->type == nir_instr_type_alu && nir_instr_as_alu(instr)->exact)
850 nir_instr_as_alu(match)->exact = true;
851
852 nir_ssa_def_rewrite_uses(def, nir_src_for_ssa(new_def));
853 return true;
854 }
855
856 return false;
857 }
858
859 void
860 nir_instr_set_remove(struct set *instr_set, nir_instr *instr)
861 {
862 if (!instr_can_rewrite(instr))
863 return;
864
865 struct set_entry *entry = _mesa_set_search(instr_set, instr);
866 if (entry)
867 _mesa_set_remove(instr_set, entry);
868 }
869