nir/algebraic: add fdot2 optimizations
[mesa.git] / src / compiler / nir / nir_loop_analyze.c
1 /*
2 * Copyright © 2015 Thomas Helland
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "nir.h"
25 #include "nir_constant_expressions.h"
26 #include "nir_loop_analyze.h"
27
28 typedef enum {
29 undefined,
30 invariant,
31 not_invariant,
32 basic_induction
33 } nir_loop_variable_type;
34
35 typedef struct nir_basic_induction_var {
36 nir_alu_instr *alu; /* The def of the alu-operation */
37 nir_ssa_def *def_outside_loop; /* The phi-src outside the loop */
38 } nir_basic_induction_var;
39
40 typedef struct {
41 /* A link for the work list */
42 struct list_head process_link;
43
44 bool in_loop;
45
46 /* The ssa_def associated with this info */
47 nir_ssa_def *def;
48
49 /* The type of this ssa_def */
50 nir_loop_variable_type type;
51
52 /* If this is of type basic_induction */
53 struct nir_basic_induction_var *ind;
54
55 /* True if variable is in an if branch */
56 bool in_if_branch;
57
58 /* True if variable is in a nested loop */
59 bool in_nested_loop;
60
61 } nir_loop_variable;
62
63 typedef struct {
64 /* The loop we store information for */
65 nir_loop *loop;
66
67 /* Loop_variable for all ssa_defs in function */
68 nir_loop_variable *loop_vars;
69
70 /* A list of the loop_vars to analyze */
71 struct list_head process_list;
72
73 nir_variable_mode indirect_mask;
74
75 } loop_info_state;
76
77 static nir_loop_variable *
78 get_loop_var(nir_ssa_def *value, loop_info_state *state)
79 {
80 return &(state->loop_vars[value->index]);
81 }
82
83 typedef struct {
84 loop_info_state *state;
85 bool in_if_branch;
86 bool in_nested_loop;
87 } init_loop_state;
88
89 static bool
90 init_loop_def(nir_ssa_def *def, void *void_init_loop_state)
91 {
92 init_loop_state *loop_init_state = void_init_loop_state;
93 nir_loop_variable *var = get_loop_var(def, loop_init_state->state);
94
95 if (loop_init_state->in_nested_loop) {
96 var->in_nested_loop = true;
97 } else if (loop_init_state->in_if_branch) {
98 var->in_if_branch = true;
99 } else {
100 /* Add to the tail of the list. That way we start at the beginning of
101 * the defs in the loop instead of the end when walking the list. This
102 * means less recursive calls. Only add defs that are not in nested
103 * loops or conditional blocks.
104 */
105 list_addtail(&var->process_link, &loop_init_state->state->process_list);
106 }
107
108 var->in_loop = true;
109
110 return true;
111 }
112
113 /** Calculate an estimated cost in number of instructions
114 *
115 * We do this so that we don't unroll loops which will later get massively
116 * inflated due to int64 or fp64 lowering. The estimates provided here don't
117 * have to be massively accurate; they just have to be good enough that loop
118 * unrolling doesn't cause things to blow up too much.
119 */
120 static unsigned
121 instr_cost(nir_instr *instr, const nir_shader_compiler_options *options)
122 {
123 if (instr->type == nir_instr_type_intrinsic ||
124 instr->type == nir_instr_type_tex)
125 return 1;
126
127 if (instr->type != nir_instr_type_alu)
128 return 0;
129
130 nir_alu_instr *alu = nir_instr_as_alu(instr);
131 const nir_op_info *info = &nir_op_infos[alu->op];
132
133 /* Assume everything 16 or 32-bit is cheap.
134 *
135 * There are no 64-bit ops that don't have a 64-bit thing as their
136 * destination or first source.
137 */
138 if (nir_dest_bit_size(alu->dest.dest) < 64 &&
139 nir_src_bit_size(alu->src[0].src) < 64)
140 return 1;
141
142 bool is_fp64 = nir_dest_bit_size(alu->dest.dest) == 64 &&
143 nir_alu_type_get_base_type(info->output_type) == nir_type_float;
144 for (unsigned i = 0; i < info->num_inputs; i++) {
145 if (nir_src_bit_size(alu->src[i].src) == 64 &&
146 nir_alu_type_get_base_type(info->input_types[i]) == nir_type_float)
147 is_fp64 = true;
148 }
149
150 if (is_fp64) {
151 /* If it's something lowered normally, it's expensive. */
152 unsigned cost = 1;
153 if (options->lower_doubles_options &
154 nir_lower_doubles_op_to_options_mask(alu->op))
155 cost *= 20;
156
157 /* If it's full software, it's even more expensive */
158 if (options->lower_doubles_options & nir_lower_fp64_full_software)
159 cost *= 100;
160
161 return cost;
162 } else {
163 if (options->lower_int64_options &
164 nir_lower_int64_op_to_options_mask(alu->op)) {
165 /* These require a doing the division algorithm. */
166 if (alu->op == nir_op_idiv || alu->op == nir_op_udiv ||
167 alu->op == nir_op_imod || alu->op == nir_op_umod ||
168 alu->op == nir_op_irem)
169 return 100;
170
171 /* Other int64 lowering isn't usually all that expensive */
172 return 5;
173 }
174
175 return 1;
176 }
177 }
178
179 static bool
180 init_loop_block(nir_block *block, loop_info_state *state,
181 bool in_if_branch, bool in_nested_loop,
182 const nir_shader_compiler_options *options)
183 {
184 init_loop_state init_state = {.in_if_branch = in_if_branch,
185 .in_nested_loop = in_nested_loop,
186 .state = state };
187
188 nir_foreach_instr(instr, block) {
189 state->loop->info->instr_cost += instr_cost(instr, options);
190 nir_foreach_ssa_def(instr, init_loop_def, &init_state);
191 }
192
193 return true;
194 }
195
196 static inline bool
197 is_var_alu(nir_loop_variable *var)
198 {
199 return var->def->parent_instr->type == nir_instr_type_alu;
200 }
201
202 static inline bool
203 is_var_constant(nir_loop_variable *var)
204 {
205 return var->def->parent_instr->type == nir_instr_type_load_const;
206 }
207
208 static inline bool
209 is_var_phi(nir_loop_variable *var)
210 {
211 return var->def->parent_instr->type == nir_instr_type_phi;
212 }
213
214 static inline bool
215 mark_invariant(nir_ssa_def *def, loop_info_state *state)
216 {
217 nir_loop_variable *var = get_loop_var(def, state);
218
219 if (var->type == invariant)
220 return true;
221
222 if (!var->in_loop) {
223 var->type = invariant;
224 return true;
225 }
226
227 if (var->type == not_invariant)
228 return false;
229
230 if (is_var_alu(var)) {
231 nir_alu_instr *alu = nir_instr_as_alu(def->parent_instr);
232
233 for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
234 if (!mark_invariant(alu->src[i].src.ssa, state)) {
235 var->type = not_invariant;
236 return false;
237 }
238 }
239 var->type = invariant;
240 return true;
241 }
242
243 /* Phis shouldn't be invariant except if one operand is invariant, and the
244 * other is the phi itself. These should be removed by opt_remove_phis.
245 * load_consts are already set to invariant and constant during init,
246 * and so should return earlier. Remaining op_codes are set undefined.
247 */
248 var->type = not_invariant;
249 return false;
250 }
251
252 static void
253 compute_invariance_information(loop_info_state *state)
254 {
255 /* An expression is invariant in a loop L if:
256 * (base cases)
257 * – it’s a constant
258 * – it’s a variable use, all of whose single defs are outside of L
259 * (inductive cases)
260 * – it’s a pure computation all of whose args are loop invariant
261 * – it’s a variable use whose single reaching def, and the
262 * rhs of that def is loop-invariant
263 */
264 list_for_each_entry_safe(nir_loop_variable, var, &state->process_list,
265 process_link) {
266 assert(!var->in_if_branch && !var->in_nested_loop);
267
268 if (mark_invariant(var->def, state))
269 list_del(&var->process_link);
270 }
271 }
272
273 /* If all of the instruction sources point to identical ALU instructions (as
274 * per nir_instrs_equal), return one of the ALU instructions. Otherwise,
275 * return NULL.
276 */
277 static nir_alu_instr *
278 phi_instr_as_alu(nir_phi_instr *phi)
279 {
280 nir_alu_instr *first = NULL;
281 nir_foreach_phi_src(src, phi) {
282 assert(src->src.is_ssa);
283 if (src->src.ssa->parent_instr->type != nir_instr_type_alu)
284 return NULL;
285
286 nir_alu_instr *alu = nir_instr_as_alu(src->src.ssa->parent_instr);
287 if (first == NULL) {
288 first = alu;
289 } else {
290 if (!nir_instrs_equal(&first->instr, &alu->instr))
291 return NULL;
292 }
293 }
294
295 return first;
296 }
297
298 static bool
299 alu_src_has_identity_swizzle(nir_alu_instr *alu, unsigned src_idx)
300 {
301 assert(nir_op_infos[alu->op].input_sizes[src_idx] == 0);
302 assert(alu->dest.dest.is_ssa);
303 for (unsigned i = 0; i < alu->dest.dest.ssa.num_components; i++) {
304 if (alu->src[src_idx].swizzle[i] != i)
305 return false;
306 }
307
308 return true;
309 }
310
311 static bool
312 compute_induction_information(loop_info_state *state)
313 {
314 bool found_induction_var = false;
315 list_for_each_entry_safe(nir_loop_variable, var, &state->process_list,
316 process_link) {
317
318 /* It can't be an induction variable if it is invariant. Invariants and
319 * things in nested loops or conditionals should have been removed from
320 * the list by compute_invariance_information().
321 */
322 assert(!var->in_if_branch && !var->in_nested_loop &&
323 var->type != invariant);
324
325 /* We are only interested in checking phis for the basic induction
326 * variable case as its simple to detect. All basic induction variables
327 * have a phi node
328 */
329 if (!is_var_phi(var))
330 continue;
331
332 nir_phi_instr *phi = nir_instr_as_phi(var->def->parent_instr);
333 nir_basic_induction_var *biv = rzalloc(state, nir_basic_induction_var);
334
335 nir_loop_variable *alu_src_var = NULL;
336 nir_foreach_phi_src(src, phi) {
337 nir_loop_variable *src_var = get_loop_var(src->src.ssa, state);
338
339 /* If one of the sources is in an if branch or nested loop then don't
340 * attempt to go any further.
341 */
342 if (src_var->in_if_branch || src_var->in_nested_loop)
343 break;
344
345 /* Detect inductions variables that are incremented in both branches
346 * of an unnested if rather than in a loop block.
347 */
348 if (is_var_phi(src_var)) {
349 nir_phi_instr *src_phi =
350 nir_instr_as_phi(src_var->def->parent_instr);
351 nir_alu_instr *src_phi_alu = phi_instr_as_alu(src_phi);
352 if (src_phi_alu) {
353 src_var = get_loop_var(&src_phi_alu->dest.dest.ssa, state);
354 if (!src_var->in_if_branch)
355 break;
356 }
357 }
358
359 if (!src_var->in_loop && !biv->def_outside_loop) {
360 biv->def_outside_loop = src_var->def;
361 } else if (is_var_alu(src_var) && !biv->alu) {
362 alu_src_var = src_var;
363 nir_alu_instr *alu = nir_instr_as_alu(src_var->def->parent_instr);
364
365 if (nir_op_infos[alu->op].num_inputs == 2) {
366 for (unsigned i = 0; i < 2; i++) {
367 /* Is one of the operands const, and the other the phi. The
368 * phi source can't be swizzled in any way.
369 */
370 if (nir_src_is_const(alu->src[i].src) &&
371 alu->src[1-i].src.ssa == &phi->dest.ssa &&
372 alu_src_has_identity_swizzle(alu, 1 - i))
373 biv->alu = alu;
374 }
375 }
376
377 if (!biv->alu)
378 break;
379 } else {
380 biv->alu = NULL;
381 break;
382 }
383 }
384
385 if (biv->alu && biv->def_outside_loop &&
386 biv->def_outside_loop->parent_instr->type == nir_instr_type_load_const) {
387 alu_src_var->type = basic_induction;
388 alu_src_var->ind = biv;
389 var->type = basic_induction;
390 var->ind = biv;
391
392 found_induction_var = true;
393 } else {
394 ralloc_free(biv);
395 }
396 }
397 return found_induction_var;
398 }
399
400 static bool
401 initialize_ssa_def(nir_ssa_def *def, void *void_state)
402 {
403 loop_info_state *state = void_state;
404 nir_loop_variable *var = get_loop_var(def, state);
405
406 var->in_loop = false;
407 var->def = def;
408
409 if (def->parent_instr->type == nir_instr_type_load_const) {
410 var->type = invariant;
411 } else {
412 var->type = undefined;
413 }
414
415 return true;
416 }
417
418 static bool
419 find_loop_terminators(loop_info_state *state)
420 {
421 bool success = false;
422 foreach_list_typed_safe(nir_cf_node, node, node, &state->loop->body) {
423 if (node->type == nir_cf_node_if) {
424 nir_if *nif = nir_cf_node_as_if(node);
425
426 nir_block *break_blk = NULL;
427 nir_block *continue_from_blk = NULL;
428 bool continue_from_then = true;
429
430 nir_block *last_then = nir_if_last_then_block(nif);
431 nir_block *last_else = nir_if_last_else_block(nif);
432 if (nir_block_ends_in_break(last_then)) {
433 break_blk = last_then;
434 continue_from_blk = last_else;
435 continue_from_then = false;
436 } else if (nir_block_ends_in_break(last_else)) {
437 break_blk = last_else;
438 continue_from_blk = last_then;
439 }
440
441 /* If there is a break then we should find a terminator. If we can
442 * not find a loop terminator, but there is a break-statement then
443 * we should return false so that we do not try to find trip-count
444 */
445 if (!nir_is_trivial_loop_if(nif, break_blk)) {
446 state->loop->info->complex_loop = true;
447 return false;
448 }
449
450 /* Continue if the if contained no jumps at all */
451 if (!break_blk)
452 continue;
453
454 if (nif->condition.ssa->parent_instr->type == nir_instr_type_phi) {
455 state->loop->info->complex_loop = true;
456 return false;
457 }
458
459 nir_loop_terminator *terminator =
460 rzalloc(state->loop->info, nir_loop_terminator);
461
462 list_addtail(&terminator->loop_terminator_link,
463 &state->loop->info->loop_terminator_list);
464
465 terminator->nif = nif;
466 terminator->break_block = break_blk;
467 terminator->continue_from_block = continue_from_blk;
468 terminator->continue_from_then = continue_from_then;
469 terminator->conditional_instr = nif->condition.ssa->parent_instr;
470
471 success = true;
472 }
473 }
474
475 return success;
476 }
477
478 /* This function looks for an array access within a loop that uses an
479 * induction variable for the array index. If found it returns the size of the
480 * array, otherwise 0 is returned. If we find an induction var we pass it back
481 * to the caller via array_index_out.
482 */
483 static unsigned
484 find_array_access_via_induction(loop_info_state *state,
485 nir_deref_instr *deref,
486 nir_loop_variable **array_index_out)
487 {
488 for (nir_deref_instr *d = deref; d; d = nir_deref_instr_parent(d)) {
489 if (d->deref_type != nir_deref_type_array)
490 continue;
491
492 assert(d->arr.index.is_ssa);
493 nir_loop_variable *array_index = get_loop_var(d->arr.index.ssa, state);
494
495 if (array_index->type != basic_induction)
496 continue;
497
498 if (array_index_out)
499 *array_index_out = array_index;
500
501 nir_deref_instr *parent = nir_deref_instr_parent(d);
502 if (glsl_type_is_array_or_matrix(parent->type)) {
503 return glsl_get_length(parent->type);
504 } else {
505 assert(glsl_type_is_vector(parent->type));
506 return glsl_get_vector_elements(parent->type);
507 }
508 }
509
510 return 0;
511 }
512
513 static bool
514 guess_loop_limit(loop_info_state *state, nir_const_value *limit_val,
515 nir_ssa_scalar basic_ind)
516 {
517 unsigned min_array_size = 0;
518
519 nir_foreach_block_in_cf_node(block, &state->loop->cf_node) {
520 nir_foreach_instr(instr, block) {
521 if (instr->type != nir_instr_type_intrinsic)
522 continue;
523
524 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
525
526 /* Check for arrays variably-indexed by a loop induction variable. */
527 if (intrin->intrinsic == nir_intrinsic_load_deref ||
528 intrin->intrinsic == nir_intrinsic_store_deref ||
529 intrin->intrinsic == nir_intrinsic_copy_deref) {
530
531 nir_loop_variable *array_idx = NULL;
532 unsigned array_size =
533 find_array_access_via_induction(state,
534 nir_src_as_deref(intrin->src[0]),
535 &array_idx);
536 if (array_idx && basic_ind.def == array_idx->def &&
537 (min_array_size == 0 || min_array_size > array_size)) {
538 /* Array indices are scalars */
539 assert(basic_ind.def->num_components == 1);
540 min_array_size = array_size;
541 }
542
543 if (intrin->intrinsic != nir_intrinsic_copy_deref)
544 continue;
545
546 array_size =
547 find_array_access_via_induction(state,
548 nir_src_as_deref(intrin->src[1]),
549 &array_idx);
550 if (array_idx && basic_ind.def == array_idx->def &&
551 (min_array_size == 0 || min_array_size > array_size)) {
552 /* Array indices are scalars */
553 assert(basic_ind.def->num_components == 1);
554 min_array_size = array_size;
555 }
556 }
557 }
558 }
559
560 if (min_array_size) {
561 *limit_val = nir_const_value_for_uint(min_array_size,
562 basic_ind.def->bit_size);
563 return true;
564 }
565
566 return false;
567 }
568
569 static bool
570 try_find_limit_of_alu(nir_ssa_scalar limit, nir_const_value *limit_val,
571 nir_loop_terminator *terminator, loop_info_state *state)
572 {
573 if (!nir_ssa_scalar_is_alu(limit))
574 return false;
575
576 nir_op limit_op = nir_ssa_scalar_alu_op(limit);
577 if (limit_op == nir_op_imin || limit_op == nir_op_fmin) {
578 for (unsigned i = 0; i < 2; i++) {
579 nir_ssa_scalar src = nir_ssa_scalar_chase_alu_src(limit, i);
580 if (nir_ssa_scalar_is_const(src)) {
581 *limit_val = nir_ssa_scalar_as_const_value(src);
582 terminator->exact_trip_count_unknown = true;
583 return true;
584 }
585 }
586 }
587
588 return false;
589 }
590
591 static nir_const_value
592 eval_const_unop(nir_op op, unsigned bit_size, nir_const_value src0)
593 {
594 assert(nir_op_infos[op].num_inputs == 1);
595 nir_const_value dest;
596 nir_const_value *src[1] = { &src0 };
597 nir_eval_const_opcode(op, &dest, 1, bit_size, src);
598 return dest;
599 }
600
601 static nir_const_value
602 eval_const_binop(nir_op op, unsigned bit_size,
603 nir_const_value src0, nir_const_value src1)
604 {
605 assert(nir_op_infos[op].num_inputs == 2);
606 nir_const_value dest;
607 nir_const_value *src[2] = { &src0, &src1 };
608 nir_eval_const_opcode(op, &dest, 1, bit_size, src);
609 return dest;
610 }
611
612 static int32_t
613 get_iteration(nir_op cond_op, nir_const_value initial, nir_const_value step,
614 nir_const_value limit, unsigned bit_size)
615 {
616 nir_const_value span, iter;
617
618 switch (cond_op) {
619 case nir_op_ige:
620 case nir_op_ilt:
621 case nir_op_ieq:
622 case nir_op_ine:
623 span = eval_const_binop(nir_op_isub, bit_size, limit, initial);
624 iter = eval_const_binop(nir_op_idiv, bit_size, span, step);
625 break;
626
627 case nir_op_uge:
628 case nir_op_ult:
629 span = eval_const_binop(nir_op_isub, bit_size, limit, initial);
630 iter = eval_const_binop(nir_op_udiv, bit_size, span, step);
631 break;
632
633 case nir_op_fge:
634 case nir_op_flt:
635 case nir_op_feq:
636 case nir_op_fne:
637 span = eval_const_binop(nir_op_fsub, bit_size, limit, initial);
638 iter = eval_const_binop(nir_op_fdiv, bit_size, span, step);
639 iter = eval_const_unop(nir_op_f2i64, bit_size, iter);
640 break;
641
642 default:
643 return -1;
644 }
645
646 uint64_t iter_u64 = nir_const_value_as_uint(iter, bit_size);
647 return iter_u64 > INT_MAX ? -1 : (int)iter_u64;
648 }
649
650 static bool
651 test_iterations(int32_t iter_int, nir_const_value step,
652 nir_const_value limit, nir_op cond_op, unsigned bit_size,
653 nir_alu_type induction_base_type,
654 nir_const_value initial, bool limit_rhs, bool invert_cond)
655 {
656 assert(nir_op_infos[cond_op].num_inputs == 2);
657
658 nir_const_value iter_src;
659 nir_op mul_op;
660 nir_op add_op;
661 switch (induction_base_type) {
662 case nir_type_float:
663 iter_src = nir_const_value_for_float(iter_int, bit_size);
664 mul_op = nir_op_fmul;
665 add_op = nir_op_fadd;
666 break;
667 case nir_type_int:
668 case nir_type_uint:
669 iter_src = nir_const_value_for_int(iter_int, bit_size);
670 mul_op = nir_op_imul;
671 add_op = nir_op_iadd;
672 break;
673 default:
674 unreachable("Unhandled induction variable base type!");
675 }
676
677 /* Multiple the iteration count we are testing by the number of times we
678 * step the induction variable each iteration.
679 */
680 nir_const_value mul_result =
681 eval_const_binop(mul_op, bit_size, iter_src, step);
682
683 /* Add the initial value to the accumulated induction variable total */
684 nir_const_value add_result =
685 eval_const_binop(add_op, bit_size, mul_result, initial);
686
687 nir_const_value *src[2];
688 src[limit_rhs ? 0 : 1] = &add_result;
689 src[limit_rhs ? 1 : 0] = &limit;
690
691 /* Evaluate the loop exit condition */
692 nir_const_value result;
693 nir_eval_const_opcode(cond_op, &result, 1, bit_size, src);
694
695 return invert_cond ? !result.b : result.b;
696 }
697
698 static int
699 calculate_iterations(nir_const_value initial, nir_const_value step,
700 nir_const_value limit, nir_alu_instr *alu,
701 nir_ssa_scalar cond, nir_op alu_op, bool limit_rhs,
702 bool invert_cond)
703 {
704 /* nir_op_isub should have been lowered away by this point */
705 assert(alu->op != nir_op_isub);
706
707 /* Make sure the alu type for our induction variable is compatible with the
708 * conditional alus input type. If its not something has gone really wrong.
709 */
710 nir_alu_type induction_base_type =
711 nir_alu_type_get_base_type(nir_op_infos[alu->op].output_type);
712 if (induction_base_type == nir_type_int || induction_base_type == nir_type_uint) {
713 assert(nir_alu_type_get_base_type(nir_op_infos[alu_op].input_types[1]) == nir_type_int ||
714 nir_alu_type_get_base_type(nir_op_infos[alu_op].input_types[1]) == nir_type_uint);
715 } else {
716 assert(nir_alu_type_get_base_type(nir_op_infos[alu_op].input_types[0]) ==
717 induction_base_type);
718 }
719
720 /* Check for nsupported alu operations */
721 if (alu->op != nir_op_iadd && alu->op != nir_op_fadd)
722 return -1;
723
724 /* do-while loops can increment the starting value before the condition is
725 * checked. e.g.
726 *
727 * do {
728 * ndx++;
729 * } while (ndx < 3);
730 *
731 * Here we check if the induction variable is used directly by the loop
732 * condition and if so we assume we need to step the initial value.
733 */
734 unsigned trip_offset = 0;
735 nir_alu_instr *cond_alu = nir_instr_as_alu(cond.def->parent_instr);
736 if (cond_alu->src[0].src.ssa == &alu->dest.dest.ssa ||
737 cond_alu->src[1].src.ssa == &alu->dest.dest.ssa) {
738 trip_offset = 1;
739 }
740
741 assert(nir_src_bit_size(alu->src[0].src) ==
742 nir_src_bit_size(alu->src[1].src));
743 unsigned bit_size = nir_src_bit_size(alu->src[0].src);
744 int iter_int = get_iteration(alu_op, initial, step, limit, bit_size);
745
746 /* If iter_int is negative the loop is ill-formed or is the conditional is
747 * unsigned with a huge iteration count so don't bother going any further.
748 */
749 if (iter_int < 0)
750 return -1;
751
752 /* An explanation from the GLSL unrolling pass:
753 *
754 * Make sure that the calculated number of iterations satisfies the exit
755 * condition. This is needed to catch off-by-one errors and some types of
756 * ill-formed loops. For example, we need to detect that the following
757 * loop does not have a maximum iteration count.
758 *
759 * for (float x = 0.0; x != 0.9; x += 0.2);
760 */
761 for (int bias = -1; bias <= 1; bias++) {
762 const int iter_bias = iter_int + bias;
763
764 if (test_iterations(iter_bias, step, limit, alu_op, bit_size,
765 induction_base_type, initial,
766 limit_rhs, invert_cond)) {
767 return iter_bias > 0 ? iter_bias - trip_offset : iter_bias;
768 }
769 }
770
771 return -1;
772 }
773
774 static nir_op
775 inverse_comparison(nir_op alu_op)
776 {
777 switch (alu_op) {
778 case nir_op_fge:
779 return nir_op_flt;
780 case nir_op_ige:
781 return nir_op_ilt;
782 case nir_op_uge:
783 return nir_op_ult;
784 case nir_op_flt:
785 return nir_op_fge;
786 case nir_op_ilt:
787 return nir_op_ige;
788 case nir_op_ult:
789 return nir_op_uge;
790 case nir_op_feq:
791 return nir_op_fne;
792 case nir_op_ieq:
793 return nir_op_ine;
794 case nir_op_fne:
795 return nir_op_feq;
796 case nir_op_ine:
797 return nir_op_ieq;
798 default:
799 unreachable("Unsuported comparison!");
800 }
801 }
802
803 static bool
804 is_supported_terminator_condition(nir_ssa_scalar cond)
805 {
806 if (!nir_ssa_scalar_is_alu(cond))
807 return false;
808
809 nir_alu_instr *alu = nir_instr_as_alu(cond.def->parent_instr);
810 return nir_alu_instr_is_comparison(alu) &&
811 nir_op_infos[alu->op].num_inputs == 2;
812 }
813
814 static bool
815 get_induction_and_limit_vars(nir_ssa_scalar cond,
816 nir_ssa_scalar *ind,
817 nir_ssa_scalar *limit,
818 bool *limit_rhs,
819 loop_info_state *state)
820 {
821 nir_ssa_scalar rhs, lhs;
822 lhs = nir_ssa_scalar_chase_alu_src(cond, 0);
823 rhs = nir_ssa_scalar_chase_alu_src(cond, 1);
824
825 if (get_loop_var(lhs.def, state)->type == basic_induction) {
826 *ind = lhs;
827 *limit = rhs;
828 *limit_rhs = true;
829 return true;
830 } else if (get_loop_var(rhs.def, state)->type == basic_induction) {
831 *ind = rhs;
832 *limit = lhs;
833 *limit_rhs = false;
834 return true;
835 } else {
836 return false;
837 }
838 }
839
840 static bool
841 try_find_trip_count_vars_in_iand(nir_ssa_scalar *cond,
842 nir_ssa_scalar *ind,
843 nir_ssa_scalar *limit,
844 bool *limit_rhs,
845 loop_info_state *state)
846 {
847 const nir_op alu_op = nir_ssa_scalar_alu_op(*cond);
848 assert(alu_op == nir_op_ieq || alu_op == nir_op_inot);
849
850 nir_ssa_scalar iand = nir_ssa_scalar_chase_alu_src(*cond, 0);
851
852 if (alu_op == nir_op_ieq) {
853 nir_ssa_scalar zero = nir_ssa_scalar_chase_alu_src(*cond, 1);
854
855 if (!nir_ssa_scalar_is_alu(iand) || !nir_ssa_scalar_is_const(zero)) {
856 /* Maybe we had it the wrong way, flip things around */
857 nir_ssa_scalar tmp = zero;
858 zero = iand;
859 iand = tmp;
860
861 /* If we still didn't find what we need then return */
862 if (!nir_ssa_scalar_is_const(zero))
863 return false;
864 }
865
866 /* If the loop is not breaking on (x && y) == 0 then return */
867 if (nir_ssa_scalar_as_uint(zero) != 0)
868 return false;
869 }
870
871 if (!nir_ssa_scalar_is_alu(iand))
872 return false;
873
874 if (nir_ssa_scalar_alu_op(iand) != nir_op_iand)
875 return false;
876
877 /* Check if iand src is a terminator condition and try get induction var
878 * and trip limit var.
879 */
880 bool found_induction_var = false;
881 for (unsigned i = 0; i < 2; i++) {
882 nir_ssa_scalar src = nir_ssa_scalar_chase_alu_src(iand, i);
883 if (is_supported_terminator_condition(src) &&
884 get_induction_and_limit_vars(src, ind, limit, limit_rhs, state)) {
885 *cond = src;
886 found_induction_var = true;
887
888 /* If we've found one with a constant limit, stop. */
889 if (nir_ssa_scalar_is_const(*limit))
890 return true;
891 }
892 }
893
894 return found_induction_var;
895 }
896
897 /* Run through each of the terminators of the loop and try to infer a possible
898 * trip-count. We need to check them all, and set the lowest trip-count as the
899 * trip-count of our loop. If one of the terminators has an undecidable
900 * trip-count we can not safely assume anything about the duration of the
901 * loop.
902 */
903 static void
904 find_trip_count(loop_info_state *state)
905 {
906 bool trip_count_known = true;
907 bool guessed_trip_count = false;
908 nir_loop_terminator *limiting_terminator = NULL;
909 int max_trip_count = -1;
910
911 list_for_each_entry(nir_loop_terminator, terminator,
912 &state->loop->info->loop_terminator_list,
913 loop_terminator_link) {
914 assert(terminator->nif->condition.is_ssa);
915 nir_ssa_scalar cond = { terminator->nif->condition.ssa, 0 };
916
917 if (!nir_ssa_scalar_is_alu(cond)) {
918 /* If we get here the loop is dead and will get cleaned up by the
919 * nir_opt_dead_cf pass.
920 */
921 trip_count_known = false;
922 continue;
923 }
924
925 nir_op alu_op = nir_ssa_scalar_alu_op(cond);
926
927 bool limit_rhs;
928 nir_ssa_scalar basic_ind = { NULL, 0 };
929 nir_ssa_scalar limit;
930 if ((alu_op == nir_op_inot || alu_op == nir_op_ieq) &&
931 try_find_trip_count_vars_in_iand(&cond, &basic_ind, &limit,
932 &limit_rhs, state)) {
933
934 /* The loop is exiting on (x && y) == 0 so we need to get the
935 * inverse of x or y (i.e. which ever contained the induction var) in
936 * order to compute the trip count.
937 */
938 alu_op = inverse_comparison(nir_ssa_scalar_alu_op(cond));
939 trip_count_known = false;
940 terminator->exact_trip_count_unknown = true;
941 }
942
943 if (!basic_ind.def) {
944 if (is_supported_terminator_condition(cond)) {
945 get_induction_and_limit_vars(cond, &basic_ind,
946 &limit, &limit_rhs, state);
947 }
948 }
949
950 /* The comparison has to have a basic induction variable for us to be
951 * able to find trip counts.
952 */
953 if (!basic_ind.def) {
954 trip_count_known = false;
955 continue;
956 }
957
958 terminator->induction_rhs = !limit_rhs;
959
960 /* Attempt to find a constant limit for the loop */
961 nir_const_value limit_val;
962 if (nir_ssa_scalar_is_const(limit)) {
963 limit_val = nir_ssa_scalar_as_const_value(limit);
964 } else {
965 trip_count_known = false;
966
967 if (!try_find_limit_of_alu(limit, &limit_val, terminator, state)) {
968 /* Guess loop limit based on array access */
969 if (!guess_loop_limit(state, &limit_val, basic_ind)) {
970 continue;
971 }
972
973 guessed_trip_count = true;
974 }
975 }
976
977 /* We have determined that we have the following constants:
978 * (With the typical int i = 0; i < x; i++; as an example)
979 * - Upper limit.
980 * - Starting value
981 * - Step / iteration size
982 * Thats all thats needed to calculate the trip-count
983 */
984
985 nir_basic_induction_var *ind_var =
986 get_loop_var(basic_ind.def, state)->ind;
987
988 /* The basic induction var might be a vector but, because we guarantee
989 * earlier that the phi source has a scalar swizzle, we can take the
990 * component from basic_ind.
991 */
992 nir_ssa_scalar initial_s = { ind_var->def_outside_loop, basic_ind.comp };
993 nir_ssa_scalar alu_s = { &ind_var->alu->dest.dest.ssa, basic_ind.comp };
994
995 nir_const_value initial_val = nir_ssa_scalar_as_const_value(initial_s);
996
997 /* We are guaranteed by earlier code that at least one of these sources
998 * is a constant but we don't know which.
999 */
1000 nir_const_value step_val;
1001 memset(&step_val, 0, sizeof(step_val));
1002 UNUSED bool found_step_value = false;
1003 assert(nir_op_infos[ind_var->alu->op].num_inputs == 2);
1004 for (unsigned i = 0; i < 2; i++) {
1005 nir_ssa_scalar alu_src = nir_ssa_scalar_chase_alu_src(alu_s, i);
1006 if (nir_ssa_scalar_is_const(alu_src)) {
1007 found_step_value = true;
1008 step_val = nir_ssa_scalar_as_const_value(alu_src);
1009 break;
1010 }
1011 }
1012 assert(found_step_value);
1013
1014 int iterations = calculate_iterations(initial_val, step_val, limit_val,
1015 ind_var->alu, cond,
1016 alu_op, limit_rhs,
1017 terminator->continue_from_then);
1018
1019 /* Where we not able to calculate the iteration count */
1020 if (iterations == -1) {
1021 trip_count_known = false;
1022 guessed_trip_count = false;
1023 continue;
1024 }
1025
1026 if (guessed_trip_count) {
1027 guessed_trip_count = false;
1028 if (state->loop->info->guessed_trip_count == 0 ||
1029 state->loop->info->guessed_trip_count > iterations)
1030 state->loop->info->guessed_trip_count = iterations;
1031
1032 continue;
1033 }
1034
1035 /* If this is the first run or we have found a smaller amount of
1036 * iterations than previously (we have identified a more limiting
1037 * terminator) set the trip count and limiting terminator.
1038 */
1039 if (max_trip_count == -1 || iterations < max_trip_count) {
1040 max_trip_count = iterations;
1041 limiting_terminator = terminator;
1042 }
1043 }
1044
1045 state->loop->info->exact_trip_count_known = trip_count_known;
1046 if (max_trip_count > -1)
1047 state->loop->info->max_trip_count = max_trip_count;
1048 state->loop->info->limiting_terminator = limiting_terminator;
1049 }
1050
1051 static bool
1052 force_unroll_array_access(loop_info_state *state, nir_deref_instr *deref)
1053 {
1054 unsigned array_size = find_array_access_via_induction(state, deref, NULL);
1055 if (array_size) {
1056 if (array_size == state->loop->info->max_trip_count)
1057 return true;
1058
1059 if (deref->mode & state->indirect_mask)
1060 return true;
1061 }
1062
1063 return false;
1064 }
1065
1066 static bool
1067 force_unroll_heuristics(loop_info_state *state, nir_block *block)
1068 {
1069 nir_foreach_instr(instr, block) {
1070 if (instr->type != nir_instr_type_intrinsic)
1071 continue;
1072
1073 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
1074
1075 /* Check for arrays variably-indexed by a loop induction variable.
1076 * Unrolling the loop may convert that access into constant-indexing.
1077 */
1078 if (intrin->intrinsic == nir_intrinsic_load_deref ||
1079 intrin->intrinsic == nir_intrinsic_store_deref ||
1080 intrin->intrinsic == nir_intrinsic_copy_deref) {
1081 if (force_unroll_array_access(state,
1082 nir_src_as_deref(intrin->src[0])))
1083 return true;
1084
1085 if (intrin->intrinsic == nir_intrinsic_copy_deref &&
1086 force_unroll_array_access(state,
1087 nir_src_as_deref(intrin->src[1])))
1088 return true;
1089 }
1090 }
1091
1092 return false;
1093 }
1094
1095 static void
1096 get_loop_info(loop_info_state *state, nir_function_impl *impl)
1097 {
1098 nir_shader *shader = impl->function->shader;
1099 const nir_shader_compiler_options *options = shader->options;
1100
1101 /* Initialize all variables to "outside_loop". This also marks defs
1102 * invariant and constant if they are nir_instr_type_load_consts
1103 */
1104 nir_foreach_block(block, impl) {
1105 nir_foreach_instr(instr, block)
1106 nir_foreach_ssa_def(instr, initialize_ssa_def, state);
1107 }
1108
1109 /* Add all entries in the outermost part of the loop to the processing list
1110 * Mark the entries in conditionals or in nested loops accordingly
1111 */
1112 foreach_list_typed_safe(nir_cf_node, node, node, &state->loop->body) {
1113 switch (node->type) {
1114
1115 case nir_cf_node_block:
1116 init_loop_block(nir_cf_node_as_block(node), state,
1117 false, false, options);
1118 break;
1119
1120 case nir_cf_node_if:
1121 nir_foreach_block_in_cf_node(block, node)
1122 init_loop_block(block, state, true, false, options);
1123 break;
1124
1125 case nir_cf_node_loop:
1126 nir_foreach_block_in_cf_node(block, node) {
1127 init_loop_block(block, state, false, true, options);
1128 }
1129 break;
1130
1131 case nir_cf_node_function:
1132 break;
1133 }
1134 }
1135
1136 /* Try to find all simple terminators of the loop. If we can't find any,
1137 * or we find possible terminators that have side effects then bail.
1138 */
1139 if (!find_loop_terminators(state)) {
1140 list_for_each_entry_safe(nir_loop_terminator, terminator,
1141 &state->loop->info->loop_terminator_list,
1142 loop_terminator_link) {
1143 list_del(&terminator->loop_terminator_link);
1144 ralloc_free(terminator);
1145 }
1146 return;
1147 }
1148
1149 /* Induction analysis needs invariance information so get that first */
1150 compute_invariance_information(state);
1151
1152 /* We have invariance information so try to find induction variables */
1153 if (!compute_induction_information(state))
1154 return;
1155
1156 /* Run through each of the terminators and try to compute a trip-count */
1157 find_trip_count(state);
1158
1159 nir_foreach_block_in_cf_node(block, &state->loop->cf_node) {
1160 if (force_unroll_heuristics(state, block)) {
1161 state->loop->info->force_unroll = true;
1162 break;
1163 }
1164 }
1165 }
1166
1167 static loop_info_state *
1168 initialize_loop_info_state(nir_loop *loop, void *mem_ctx,
1169 nir_function_impl *impl)
1170 {
1171 loop_info_state *state = rzalloc(mem_ctx, loop_info_state);
1172 state->loop_vars = rzalloc_array(mem_ctx, nir_loop_variable,
1173 impl->ssa_alloc);
1174 state->loop = loop;
1175
1176 list_inithead(&state->process_list);
1177
1178 if (loop->info)
1179 ralloc_free(loop->info);
1180
1181 loop->info = rzalloc(loop, nir_loop_info);
1182
1183 list_inithead(&loop->info->loop_terminator_list);
1184
1185 return state;
1186 }
1187
1188 static void
1189 process_loops(nir_cf_node *cf_node, nir_variable_mode indirect_mask)
1190 {
1191 switch (cf_node->type) {
1192 case nir_cf_node_block:
1193 return;
1194 case nir_cf_node_if: {
1195 nir_if *if_stmt = nir_cf_node_as_if(cf_node);
1196 foreach_list_typed(nir_cf_node, nested_node, node, &if_stmt->then_list)
1197 process_loops(nested_node, indirect_mask);
1198 foreach_list_typed(nir_cf_node, nested_node, node, &if_stmt->else_list)
1199 process_loops(nested_node, indirect_mask);
1200 return;
1201 }
1202 case nir_cf_node_loop: {
1203 nir_loop *loop = nir_cf_node_as_loop(cf_node);
1204 foreach_list_typed(nir_cf_node, nested_node, node, &loop->body)
1205 process_loops(nested_node, indirect_mask);
1206 break;
1207 }
1208 default:
1209 unreachable("unknown cf node type");
1210 }
1211
1212 nir_loop *loop = nir_cf_node_as_loop(cf_node);
1213 nir_function_impl *impl = nir_cf_node_get_function(cf_node);
1214 void *mem_ctx = ralloc_context(NULL);
1215
1216 loop_info_state *state = initialize_loop_info_state(loop, mem_ctx, impl);
1217 state->indirect_mask = indirect_mask;
1218
1219 get_loop_info(state, impl);
1220
1221 ralloc_free(mem_ctx);
1222 }
1223
1224 void
1225 nir_loop_analyze_impl(nir_function_impl *impl,
1226 nir_variable_mode indirect_mask)
1227 {
1228 nir_index_ssa_defs(impl);
1229 foreach_list_typed(nir_cf_node, node, node, &impl->body)
1230 process_loops(node, indirect_mask);
1231 }