4c8028a666fac7469ca39f263e584402017f0120
[mesa.git] / src / compiler / nir / nir_loop_analyze.c
1 /*
2 * Copyright © 2015 Thomas Helland
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "nir.h"
25 #include "nir_constant_expressions.h"
26 #include "nir_loop_analyze.h"
27
28 typedef enum {
29 undefined,
30 invariant,
31 not_invariant,
32 basic_induction
33 } nir_loop_variable_type;
34
35 struct nir_basic_induction_var;
36
37 typedef struct {
38 /* A link for the work list */
39 struct list_head process_link;
40
41 bool in_loop;
42
43 /* The ssa_def associated with this info */
44 nir_ssa_def *def;
45
46 /* The type of this ssa_def */
47 nir_loop_variable_type type;
48
49 /* If this is of type basic_induction */
50 struct nir_basic_induction_var *ind;
51
52 /* True if variable is in an if branch */
53 bool in_if_branch;
54
55 /* True if variable is in a nested loop */
56 bool in_nested_loop;
57
58 } nir_loop_variable;
59
60 typedef struct nir_basic_induction_var {
61 nir_op alu_op; /* The type of alu-operation */
62 nir_loop_variable *alu_def; /* The def of the alu-operation */
63 nir_loop_variable *invariant; /* The invariant alu-operand */
64 nir_loop_variable *def_outside_loop; /* The phi-src outside the loop */
65 } nir_basic_induction_var;
66
67 typedef struct {
68 /* The loop we store information for */
69 nir_loop *loop;
70
71 /* Loop_variable for all ssa_defs in function */
72 nir_loop_variable *loop_vars;
73
74 /* A list of the loop_vars to analyze */
75 struct list_head process_list;
76
77 nir_variable_mode indirect_mask;
78
79 } loop_info_state;
80
81 static nir_loop_variable *
82 get_loop_var(nir_ssa_def *value, loop_info_state *state)
83 {
84 return &(state->loop_vars[value->index]);
85 }
86
87 typedef struct {
88 loop_info_state *state;
89 bool in_if_branch;
90 bool in_nested_loop;
91 } init_loop_state;
92
93 static bool
94 init_loop_def(nir_ssa_def *def, void *void_init_loop_state)
95 {
96 init_loop_state *loop_init_state = void_init_loop_state;
97 nir_loop_variable *var = get_loop_var(def, loop_init_state->state);
98
99 if (loop_init_state->in_nested_loop) {
100 var->in_nested_loop = true;
101 } else if (loop_init_state->in_if_branch) {
102 var->in_if_branch = true;
103 } else {
104 /* Add to the tail of the list. That way we start at the beginning of
105 * the defs in the loop instead of the end when walking the list. This
106 * means less recursive calls. Only add defs that are not in nested
107 * loops or conditional blocks.
108 */
109 list_addtail(&var->process_link, &loop_init_state->state->process_list);
110 }
111
112 var->in_loop = true;
113
114 return true;
115 }
116
117 /** Calculate an estimated cost in number of instructions
118 *
119 * We do this so that we don't unroll loops which will later get massively
120 * inflated due to int64 or fp64 lowering. The estimates provided here don't
121 * have to be massively accurate; they just have to be good enough that loop
122 * unrolling doesn't cause things to blow up too much.
123 */
124 static unsigned
125 instr_cost(nir_instr *instr, const nir_shader_compiler_options *options)
126 {
127 if (instr->type == nir_instr_type_intrinsic ||
128 instr->type == nir_instr_type_tex)
129 return 1;
130
131 if (instr->type != nir_instr_type_alu)
132 return 0;
133
134 nir_alu_instr *alu = nir_instr_as_alu(instr);
135 const nir_op_info *info = &nir_op_infos[alu->op];
136
137 /* Assume everything 16 or 32-bit is cheap.
138 *
139 * There are no 64-bit ops that don't have a 64-bit thing as their
140 * destination or first source.
141 */
142 if (nir_dest_bit_size(alu->dest.dest) < 64 &&
143 nir_src_bit_size(alu->src[0].src) < 64)
144 return 1;
145
146 bool is_fp64 = nir_dest_bit_size(alu->dest.dest) == 64 &&
147 nir_alu_type_get_base_type(info->output_type) == nir_type_float;
148 for (unsigned i = 0; i < info->num_inputs; i++) {
149 if (nir_src_bit_size(alu->src[i].src) == 64 &&
150 nir_alu_type_get_base_type(info->input_types[i]) == nir_type_float)
151 is_fp64 = true;
152 }
153
154 if (is_fp64) {
155 /* If it's something lowered normally, it's expensive. */
156 unsigned cost = 1;
157 if (options->lower_doubles_options &
158 nir_lower_doubles_op_to_options_mask(alu->op))
159 cost *= 20;
160
161 /* If it's full software, it's even more expensive */
162 if (options->lower_doubles_options & nir_lower_fp64_full_software)
163 cost *= 100;
164
165 return cost;
166 } else {
167 if (options->lower_int64_options &
168 nir_lower_int64_op_to_options_mask(alu->op)) {
169 /* These require a doing the division algorithm. */
170 if (alu->op == nir_op_idiv || alu->op == nir_op_udiv ||
171 alu->op == nir_op_imod || alu->op == nir_op_umod ||
172 alu->op == nir_op_irem)
173 return 100;
174
175 /* Other int64 lowering isn't usually all that expensive */
176 return 5;
177 }
178
179 return 1;
180 }
181 }
182
183 static bool
184 init_loop_block(nir_block *block, loop_info_state *state,
185 bool in_if_branch, bool in_nested_loop,
186 const nir_shader_compiler_options *options)
187 {
188 init_loop_state init_state = {.in_if_branch = in_if_branch,
189 .in_nested_loop = in_nested_loop,
190 .state = state };
191
192 nir_foreach_instr(instr, block) {
193 state->loop->info->instr_cost += instr_cost(instr, options);
194 nir_foreach_ssa_def(instr, init_loop_def, &init_state);
195 }
196
197 return true;
198 }
199
200 static inline bool
201 is_var_alu(nir_loop_variable *var)
202 {
203 return var->def->parent_instr->type == nir_instr_type_alu;
204 }
205
206 static inline bool
207 is_var_constant(nir_loop_variable *var)
208 {
209 return var->def->parent_instr->type == nir_instr_type_load_const;
210 }
211
212 static inline bool
213 is_var_phi(nir_loop_variable *var)
214 {
215 return var->def->parent_instr->type == nir_instr_type_phi;
216 }
217
218 static inline bool
219 mark_invariant(nir_ssa_def *def, loop_info_state *state)
220 {
221 nir_loop_variable *var = get_loop_var(def, state);
222
223 if (var->type == invariant)
224 return true;
225
226 if (!var->in_loop) {
227 var->type = invariant;
228 return true;
229 }
230
231 if (var->type == not_invariant)
232 return false;
233
234 if (is_var_alu(var)) {
235 nir_alu_instr *alu = nir_instr_as_alu(def->parent_instr);
236
237 for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
238 if (!mark_invariant(alu->src[i].src.ssa, state)) {
239 var->type = not_invariant;
240 return false;
241 }
242 }
243 var->type = invariant;
244 return true;
245 }
246
247 /* Phis shouldn't be invariant except if one operand is invariant, and the
248 * other is the phi itself. These should be removed by opt_remove_phis.
249 * load_consts are already set to invariant and constant during init,
250 * and so should return earlier. Remaining op_codes are set undefined.
251 */
252 var->type = not_invariant;
253 return false;
254 }
255
256 static void
257 compute_invariance_information(loop_info_state *state)
258 {
259 /* An expression is invariant in a loop L if:
260 * (base cases)
261 * – it’s a constant
262 * – it’s a variable use, all of whose single defs are outside of L
263 * (inductive cases)
264 * – it’s a pure computation all of whose args are loop invariant
265 * – it’s a variable use whose single reaching def, and the
266 * rhs of that def is loop-invariant
267 */
268 list_for_each_entry_safe(nir_loop_variable, var, &state->process_list,
269 process_link) {
270 assert(!var->in_if_branch && !var->in_nested_loop);
271
272 if (mark_invariant(var->def, state))
273 list_del(&var->process_link);
274 }
275 }
276
277 static bool
278 compute_induction_information(loop_info_state *state)
279 {
280 bool found_induction_var = false;
281 list_for_each_entry_safe(nir_loop_variable, var, &state->process_list,
282 process_link) {
283
284 /* It can't be an induction variable if it is invariant. Invariants and
285 * things in nested loops or conditionals should have been removed from
286 * the list by compute_invariance_information().
287 */
288 assert(!var->in_if_branch && !var->in_nested_loop &&
289 var->type != invariant);
290
291 /* We are only interested in checking phis for the basic induction
292 * variable case as its simple to detect. All basic induction variables
293 * have a phi node
294 */
295 if (!is_var_phi(var))
296 continue;
297
298 nir_phi_instr *phi = nir_instr_as_phi(var->def->parent_instr);
299 nir_basic_induction_var *biv = rzalloc(state, nir_basic_induction_var);
300
301 nir_foreach_phi_src(src, phi) {
302 nir_loop_variable *src_var = get_loop_var(src->src.ssa, state);
303
304 /* If one of the sources is in an if branch or nested loop then don't
305 * attempt to go any further.
306 */
307 if (src_var->in_if_branch || src_var->in_nested_loop)
308 break;
309
310 /* Detect inductions variables that are incremented in both branches
311 * of an unnested if rather than in a loop block.
312 */
313 if (is_var_phi(src_var)) {
314 nir_phi_instr *src_phi =
315 nir_instr_as_phi(src_var->def->parent_instr);
316
317 nir_op alu_op = nir_num_opcodes; /* avoid uninitialized warning */
318 nir_ssa_def *alu_srcs[2] = {0};
319 nir_foreach_phi_src(src2, src_phi) {
320 nir_loop_variable *src_var2 =
321 get_loop_var(src2->src.ssa, state);
322
323 if (!src_var2->in_if_branch || !is_var_alu(src_var2))
324 break;
325
326 nir_alu_instr *alu =
327 nir_instr_as_alu(src_var2->def->parent_instr);
328 if (nir_op_infos[alu->op].num_inputs != 2)
329 break;
330
331 if (alu->src[0].src.ssa == alu_srcs[0] &&
332 alu->src[1].src.ssa == alu_srcs[1] &&
333 alu->op == alu_op) {
334 /* Both branches perform the same calculation so we can use
335 * one of them to find the induction variable.
336 */
337 src_var = src_var2;
338 } else {
339 alu_srcs[0] = alu->src[0].src.ssa;
340 alu_srcs[1] = alu->src[1].src.ssa;
341 alu_op = alu->op;
342 }
343 }
344 }
345
346 if (!src_var->in_loop) {
347 biv->def_outside_loop = src_var;
348 } else if (is_var_alu(src_var)) {
349 nir_alu_instr *alu = nir_instr_as_alu(src_var->def->parent_instr);
350
351 if (nir_op_infos[alu->op].num_inputs == 2) {
352 biv->alu_def = src_var;
353 biv->alu_op = alu->op;
354
355 for (unsigned i = 0; i < 2; i++) {
356 /* Is one of the operands const, and the other the phi */
357 if (alu->src[i].src.ssa->parent_instr->type == nir_instr_type_load_const &&
358 alu->src[1-i].src.ssa == &phi->dest.ssa)
359 biv->invariant = get_loop_var(alu->src[i].src.ssa, state);
360 }
361 }
362 }
363 }
364
365 if (biv->alu_def && biv->def_outside_loop && biv->invariant &&
366 is_var_constant(biv->def_outside_loop)) {
367 assert(is_var_constant(biv->invariant));
368 biv->alu_def->type = basic_induction;
369 biv->alu_def->ind = biv;
370 var->type = basic_induction;
371 var->ind = biv;
372
373 found_induction_var = true;
374 } else {
375 ralloc_free(biv);
376 }
377 }
378 return found_induction_var;
379 }
380
381 static bool
382 initialize_ssa_def(nir_ssa_def *def, void *void_state)
383 {
384 loop_info_state *state = void_state;
385 nir_loop_variable *var = get_loop_var(def, state);
386
387 var->in_loop = false;
388 var->def = def;
389
390 if (def->parent_instr->type == nir_instr_type_load_const) {
391 var->type = invariant;
392 } else {
393 var->type = undefined;
394 }
395
396 return true;
397 }
398
399 static bool
400 find_loop_terminators(loop_info_state *state)
401 {
402 bool success = false;
403 foreach_list_typed_safe(nir_cf_node, node, node, &state->loop->body) {
404 if (node->type == nir_cf_node_if) {
405 nir_if *nif = nir_cf_node_as_if(node);
406
407 nir_block *break_blk = NULL;
408 nir_block *continue_from_blk = NULL;
409 bool continue_from_then = true;
410
411 nir_block *last_then = nir_if_last_then_block(nif);
412 nir_block *last_else = nir_if_last_else_block(nif);
413 if (nir_block_ends_in_break(last_then)) {
414 break_blk = last_then;
415 continue_from_blk = last_else;
416 continue_from_then = false;
417 } else if (nir_block_ends_in_break(last_else)) {
418 break_blk = last_else;
419 continue_from_blk = last_then;
420 }
421
422 /* If there is a break then we should find a terminator. If we can
423 * not find a loop terminator, but there is a break-statement then
424 * we should return false so that we do not try to find trip-count
425 */
426 if (!nir_is_trivial_loop_if(nif, break_blk)) {
427 state->loop->info->complex_loop = true;
428 return false;
429 }
430
431 /* Continue if the if contained no jumps at all */
432 if (!break_blk)
433 continue;
434
435 if (nif->condition.ssa->parent_instr->type == nir_instr_type_phi) {
436 state->loop->info->complex_loop = true;
437 return false;
438 }
439
440 nir_loop_terminator *terminator =
441 rzalloc(state->loop->info, nir_loop_terminator);
442
443 list_addtail(&terminator->loop_terminator_link,
444 &state->loop->info->loop_terminator_list);
445
446 terminator->nif = nif;
447 terminator->break_block = break_blk;
448 terminator->continue_from_block = continue_from_blk;
449 terminator->continue_from_then = continue_from_then;
450 terminator->conditional_instr = nif->condition.ssa->parent_instr;
451
452 success = true;
453 }
454 }
455
456 return success;
457 }
458
459 /* This function looks for an array access within a loop that uses an
460 * induction variable for the array index. If found it returns the size of the
461 * array, otherwise 0 is returned. If we find an induction var we pass it back
462 * to the caller via array_index_out.
463 */
464 static unsigned
465 find_array_access_via_induction(loop_info_state *state,
466 nir_deref_instr *deref,
467 nir_loop_variable **array_index_out)
468 {
469 for (nir_deref_instr *d = deref; d; d = nir_deref_instr_parent(d)) {
470 if (d->deref_type != nir_deref_type_array)
471 continue;
472
473 assert(d->arr.index.is_ssa);
474 nir_loop_variable *array_index = get_loop_var(d->arr.index.ssa, state);
475
476 if (array_index->type != basic_induction)
477 continue;
478
479 if (array_index_out)
480 *array_index_out = array_index;
481
482 nir_deref_instr *parent = nir_deref_instr_parent(d);
483 assert(glsl_type_is_array_or_matrix(parent->type));
484
485 return glsl_get_length(parent->type);
486 }
487
488 return 0;
489 }
490
491 static bool
492 guess_loop_limit(loop_info_state *state, nir_const_value *limit_val,
493 nir_loop_variable *basic_ind)
494 {
495 unsigned min_array_size = 0;
496
497 nir_foreach_block_in_cf_node(block, &state->loop->cf_node) {
498 nir_foreach_instr(instr, block) {
499 if (instr->type != nir_instr_type_intrinsic)
500 continue;
501
502 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
503
504 /* Check for arrays variably-indexed by a loop induction variable. */
505 if (intrin->intrinsic == nir_intrinsic_load_deref ||
506 intrin->intrinsic == nir_intrinsic_store_deref ||
507 intrin->intrinsic == nir_intrinsic_copy_deref) {
508
509 nir_loop_variable *array_idx = NULL;
510 unsigned array_size =
511 find_array_access_via_induction(state,
512 nir_src_as_deref(intrin->src[0]),
513 &array_idx);
514 if (basic_ind == array_idx &&
515 (min_array_size == 0 || min_array_size > array_size)) {
516 min_array_size = array_size;
517 }
518
519 if (intrin->intrinsic != nir_intrinsic_copy_deref)
520 continue;
521
522 array_size =
523 find_array_access_via_induction(state,
524 nir_src_as_deref(intrin->src[1]),
525 &array_idx);
526 if (basic_ind == array_idx &&
527 (min_array_size == 0 || min_array_size > array_size)) {
528 min_array_size = array_size;
529 }
530 }
531 }
532 }
533
534 if (min_array_size) {
535 limit_val->i32[0] = min_array_size;
536 return true;
537 }
538
539 return false;
540 }
541
542 static bool
543 try_find_limit_of_alu(nir_loop_variable *limit, nir_const_value *limit_val,
544 nir_loop_terminator *terminator, loop_info_state *state)
545 {
546 if(!is_var_alu(limit))
547 return false;
548
549 nir_alu_instr *limit_alu = nir_instr_as_alu(limit->def->parent_instr);
550
551 if (limit_alu->op == nir_op_imin ||
552 limit_alu->op == nir_op_fmin) {
553 limit = get_loop_var(limit_alu->src[0].src.ssa, state);
554
555 if (!is_var_constant(limit))
556 limit = get_loop_var(limit_alu->src[1].src.ssa, state);
557
558 if (!is_var_constant(limit))
559 return false;
560
561 *limit_val = nir_instr_as_load_const(limit->def->parent_instr)->value;
562
563 terminator->exact_trip_count_unknown = true;
564
565 return true;
566 }
567
568 return false;
569 }
570
571 static int32_t
572 get_iteration(nir_op cond_op, nir_const_value *initial, nir_const_value *step,
573 nir_const_value *limit)
574 {
575 int32_t iter;
576
577 switch (cond_op) {
578 case nir_op_ige:
579 case nir_op_ilt:
580 case nir_op_ieq:
581 case nir_op_ine: {
582 int32_t initial_val = initial->i32[0];
583 int32_t span = limit->i32[0] - initial_val;
584 iter = span / step->i32[0];
585 break;
586 }
587 case nir_op_uge:
588 case nir_op_ult: {
589 uint32_t initial_val = initial->u32[0];
590 uint32_t span = limit->u32[0] - initial_val;
591 iter = span / step->u32[0];
592 break;
593 }
594 case nir_op_fge:
595 case nir_op_flt:
596 case nir_op_feq:
597 case nir_op_fne: {
598 float initial_val = initial->f32[0];
599 float span = limit->f32[0] - initial_val;
600 iter = span / step->f32[0];
601 break;
602 }
603 default:
604 return -1;
605 }
606
607 return iter;
608 }
609
610 static bool
611 test_iterations(int32_t iter_int, nir_const_value *step,
612 nir_const_value *limit, nir_op cond_op, unsigned bit_size,
613 nir_alu_type induction_base_type,
614 nir_const_value *initial, bool limit_rhs, bool invert_cond)
615 {
616 assert(nir_op_infos[cond_op].num_inputs == 2);
617
618 nir_const_value iter_src = { {0, } };
619 nir_op mul_op;
620 nir_op add_op;
621 switch (induction_base_type) {
622 case nir_type_float:
623 iter_src.f32[0] = (float) iter_int;
624 mul_op = nir_op_fmul;
625 add_op = nir_op_fadd;
626 break;
627 case nir_type_int:
628 case nir_type_uint:
629 iter_src.i32[0] = iter_int;
630 mul_op = nir_op_imul;
631 add_op = nir_op_iadd;
632 break;
633 default:
634 unreachable("Unhandled induction variable base type!");
635 }
636
637 /* Multiple the iteration count we are testing by the number of times we
638 * step the induction variable each iteration.
639 */
640 nir_const_value mul_src[2] = { iter_src, *step };
641 nir_const_value mul_result =
642 nir_eval_const_opcode(mul_op, 1, bit_size, mul_src);
643
644 /* Add the initial value to the accumulated induction variable total */
645 nir_const_value add_src[2] = { mul_result, *initial };
646 nir_const_value add_result =
647 nir_eval_const_opcode(add_op, 1, bit_size, add_src);
648
649 nir_const_value src[2] = { { {0, } }, { {0, } } };
650 src[limit_rhs ? 0 : 1] = add_result;
651 src[limit_rhs ? 1 : 0] = *limit;
652
653 /* Evaluate the loop exit condition */
654 nir_const_value result = nir_eval_const_opcode(cond_op, 1, bit_size, src);
655
656 return invert_cond ? (result.u32[0] == 0) : (result.u32[0] != 0);
657 }
658
659 static int
660 calculate_iterations(nir_const_value *initial, nir_const_value *step,
661 nir_const_value *limit, nir_loop_variable *alu_def,
662 nir_alu_instr *cond_alu, bool limit_rhs, bool invert_cond)
663 {
664 assert(initial != NULL && step != NULL && limit != NULL);
665
666 nir_alu_instr *alu = nir_instr_as_alu(alu_def->def->parent_instr);
667
668 /* nir_op_isub should have been lowered away by this point */
669 assert(alu->op != nir_op_isub);
670
671 /* Make sure the alu type for our induction variable is compatible with the
672 * conditional alus input type. If its not something has gone really wrong.
673 */
674 nir_alu_type induction_base_type =
675 nir_alu_type_get_base_type(nir_op_infos[alu->op].output_type);
676 if (induction_base_type == nir_type_int || induction_base_type == nir_type_uint) {
677 assert(nir_alu_type_get_base_type(nir_op_infos[cond_alu->op].input_types[1]) == nir_type_int ||
678 nir_alu_type_get_base_type(nir_op_infos[cond_alu->op].input_types[1]) == nir_type_uint);
679 } else {
680 assert(nir_alu_type_get_base_type(nir_op_infos[cond_alu->op].input_types[0]) ==
681 induction_base_type);
682 }
683
684 /* Check for nsupported alu operations */
685 if (alu->op != nir_op_iadd && alu->op != nir_op_fadd)
686 return -1;
687
688 /* do-while loops can increment the starting value before the condition is
689 * checked. e.g.
690 *
691 * do {
692 * ndx++;
693 * } while (ndx < 3);
694 *
695 * Here we check if the induction variable is used directly by the loop
696 * condition and if so we assume we need to step the initial value.
697 */
698 unsigned trip_offset = 0;
699 if (cond_alu->src[0].src.ssa == alu_def->def ||
700 cond_alu->src[1].src.ssa == alu_def->def) {
701 trip_offset = 1;
702 }
703
704 int iter_int = get_iteration(cond_alu->op, initial, step, limit);
705
706 /* If iter_int is negative the loop is ill-formed or is the conditional is
707 * unsigned with a huge iteration count so don't bother going any further.
708 */
709 if (iter_int < 0)
710 return -1;
711
712 /* An explanation from the GLSL unrolling pass:
713 *
714 * Make sure that the calculated number of iterations satisfies the exit
715 * condition. This is needed to catch off-by-one errors and some types of
716 * ill-formed loops. For example, we need to detect that the following
717 * loop does not have a maximum iteration count.
718 *
719 * for (float x = 0.0; x != 0.9; x += 0.2);
720 */
721 assert(nir_src_bit_size(alu->src[0].src) ==
722 nir_src_bit_size(alu->src[1].src));
723 unsigned bit_size = nir_src_bit_size(alu->src[0].src);
724 for (int bias = -1; bias <= 1; bias++) {
725 const int iter_bias = iter_int + bias;
726
727 if (test_iterations(iter_bias, step, limit, cond_alu->op, bit_size,
728 induction_base_type, initial,
729 limit_rhs, invert_cond)) {
730 return iter_bias > 0 ? iter_bias - trip_offset : iter_bias;
731 }
732 }
733
734 return -1;
735 }
736
737 /* Run through each of the terminators of the loop and try to infer a possible
738 * trip-count. We need to check them all, and set the lowest trip-count as the
739 * trip-count of our loop. If one of the terminators has an undecidable
740 * trip-count we can not safely assume anything about the duration of the
741 * loop.
742 */
743 static void
744 find_trip_count(loop_info_state *state)
745 {
746 bool trip_count_known = true;
747 bool guessed_trip_count = false;
748 nir_loop_terminator *limiting_terminator = NULL;
749 int max_trip_count = -1;
750
751 list_for_each_entry(nir_loop_terminator, terminator,
752 &state->loop->info->loop_terminator_list,
753 loop_terminator_link) {
754
755 if (terminator->conditional_instr->type != nir_instr_type_alu) {
756 /* If we get here the loop is dead and will get cleaned up by the
757 * nir_opt_dead_cf pass.
758 */
759 trip_count_known = false;
760 continue;
761 }
762
763 nir_alu_instr *alu = nir_instr_as_alu(terminator->conditional_instr);
764 nir_loop_variable *basic_ind = NULL;
765 nir_loop_variable *limit = NULL;
766 bool limit_rhs = true;
767
768 switch (alu->op) {
769 case nir_op_fge: case nir_op_ige: case nir_op_uge:
770 case nir_op_flt: case nir_op_ilt: case nir_op_ult:
771 case nir_op_feq: case nir_op_ieq:
772 case nir_op_fne: case nir_op_ine:
773
774 /* We assume that the limit is the "right" operand */
775 basic_ind = get_loop_var(alu->src[0].src.ssa, state);
776 limit = get_loop_var(alu->src[1].src.ssa, state);
777
778 if (basic_ind->type != basic_induction) {
779 /* We had it the wrong way, flip things around */
780 basic_ind = get_loop_var(alu->src[1].src.ssa, state);
781 limit = get_loop_var(alu->src[0].src.ssa, state);
782 limit_rhs = false;
783 terminator->induction_rhs = true;
784 }
785
786 /* The comparison has to have a basic induction variable for us to be
787 * able to find trip counts.
788 */
789 if (basic_ind->type != basic_induction) {
790 trip_count_known = false;
791 continue;
792 }
793
794 /* Attempt to find a constant limit for the loop */
795 nir_const_value limit_val;
796 if (is_var_constant(limit)) {
797 limit_val =
798 nir_instr_as_load_const(limit->def->parent_instr)->value;
799 } else {
800 trip_count_known = false;
801
802 if (!try_find_limit_of_alu(limit, &limit_val, terminator, state)) {
803 /* Guess loop limit based on array access */
804 if (!guess_loop_limit(state, &limit_val, basic_ind)) {
805 continue;
806 }
807
808 guessed_trip_count = true;
809 }
810 }
811
812 /* We have determined that we have the following constants:
813 * (With the typical int i = 0; i < x; i++; as an example)
814 * - Upper limit.
815 * - Starting value
816 * - Step / iteration size
817 * Thats all thats needed to calculate the trip-count
818 */
819
820 nir_const_value initial_val =
821 nir_instr_as_load_const(basic_ind->ind->def_outside_loop->
822 def->parent_instr)->value;
823
824 nir_const_value step_val =
825 nir_instr_as_load_const(basic_ind->ind->invariant->def->
826 parent_instr)->value;
827
828 int iterations = calculate_iterations(&initial_val, &step_val,
829 &limit_val,
830 basic_ind->ind->alu_def, alu,
831 limit_rhs,
832 terminator->continue_from_then);
833
834 /* Where we not able to calculate the iteration count */
835 if (iterations == -1) {
836 trip_count_known = false;
837 guessed_trip_count = false;
838 continue;
839 }
840
841 if (guessed_trip_count) {
842 guessed_trip_count = false;
843 if (state->loop->info->guessed_trip_count == 0 ||
844 state->loop->info->guessed_trip_count > iterations)
845 state->loop->info->guessed_trip_count = iterations;
846
847 continue;
848 }
849
850 /* If this is the first run or we have found a smaller amount of
851 * iterations than previously (we have identified a more limiting
852 * terminator) set the trip count and limiting terminator.
853 */
854 if (max_trip_count == -1 || iterations < max_trip_count) {
855 max_trip_count = iterations;
856 limiting_terminator = terminator;
857 }
858 break;
859
860 default:
861 trip_count_known = false;
862 }
863 }
864
865 state->loop->info->exact_trip_count_known = trip_count_known;
866 if (max_trip_count > -1)
867 state->loop->info->max_trip_count = max_trip_count;
868 state->loop->info->limiting_terminator = limiting_terminator;
869 }
870
871 static bool
872 force_unroll_array_access(loop_info_state *state, nir_deref_instr *deref)
873 {
874 unsigned array_size = find_array_access_via_induction(state, deref, NULL);
875 if (array_size) {
876 if (array_size == state->loop->info->max_trip_count)
877 return true;
878
879 if (deref->mode & state->indirect_mask)
880 return true;
881 }
882
883 return false;
884 }
885
886 static bool
887 force_unroll_heuristics(loop_info_state *state, nir_block *block)
888 {
889 nir_foreach_instr(instr, block) {
890 if (instr->type != nir_instr_type_intrinsic)
891 continue;
892
893 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
894
895 /* Check for arrays variably-indexed by a loop induction variable.
896 * Unrolling the loop may convert that access into constant-indexing.
897 */
898 if (intrin->intrinsic == nir_intrinsic_load_deref ||
899 intrin->intrinsic == nir_intrinsic_store_deref ||
900 intrin->intrinsic == nir_intrinsic_copy_deref) {
901 if (force_unroll_array_access(state,
902 nir_src_as_deref(intrin->src[0])))
903 return true;
904
905 if (intrin->intrinsic == nir_intrinsic_copy_deref &&
906 force_unroll_array_access(state,
907 nir_src_as_deref(intrin->src[1])))
908 return true;
909 }
910 }
911
912 return false;
913 }
914
915 static void
916 get_loop_info(loop_info_state *state, nir_function_impl *impl)
917 {
918 nir_shader *shader = impl->function->shader;
919 const nir_shader_compiler_options *options = shader->options;
920
921 /* Initialize all variables to "outside_loop". This also marks defs
922 * invariant and constant if they are nir_instr_type_load_consts
923 */
924 nir_foreach_block(block, impl) {
925 nir_foreach_instr(instr, block)
926 nir_foreach_ssa_def(instr, initialize_ssa_def, state);
927 }
928
929 /* Add all entries in the outermost part of the loop to the processing list
930 * Mark the entries in conditionals or in nested loops accordingly
931 */
932 foreach_list_typed_safe(nir_cf_node, node, node, &state->loop->body) {
933 switch (node->type) {
934
935 case nir_cf_node_block:
936 init_loop_block(nir_cf_node_as_block(node), state,
937 false, false, options);
938 break;
939
940 case nir_cf_node_if:
941 nir_foreach_block_in_cf_node(block, node)
942 init_loop_block(block, state, true, false, options);
943 break;
944
945 case nir_cf_node_loop:
946 nir_foreach_block_in_cf_node(block, node) {
947 init_loop_block(block, state, false, true, options);
948 }
949 break;
950
951 case nir_cf_node_function:
952 break;
953 }
954 }
955
956 /* Try to find all simple terminators of the loop. If we can't find any,
957 * or we find possible terminators that have side effects then bail.
958 */
959 if (!find_loop_terminators(state)) {
960 list_for_each_entry_safe(nir_loop_terminator, terminator,
961 &state->loop->info->loop_terminator_list,
962 loop_terminator_link) {
963 list_del(&terminator->loop_terminator_link);
964 ralloc_free(terminator);
965 }
966 return;
967 }
968
969 /* Induction analysis needs invariance information so get that first */
970 compute_invariance_information(state);
971
972 /* We have invariance information so try to find induction variables */
973 if (!compute_induction_information(state))
974 return;
975
976 /* Run through each of the terminators and try to compute a trip-count */
977 find_trip_count(state);
978
979 nir_foreach_block_in_cf_node(block, &state->loop->cf_node) {
980 if (force_unroll_heuristics(state, block)) {
981 state->loop->info->force_unroll = true;
982 break;
983 }
984 }
985 }
986
987 static loop_info_state *
988 initialize_loop_info_state(nir_loop *loop, void *mem_ctx,
989 nir_function_impl *impl)
990 {
991 loop_info_state *state = rzalloc(mem_ctx, loop_info_state);
992 state->loop_vars = rzalloc_array(mem_ctx, nir_loop_variable,
993 impl->ssa_alloc);
994 state->loop = loop;
995
996 list_inithead(&state->process_list);
997
998 if (loop->info)
999 ralloc_free(loop->info);
1000
1001 loop->info = rzalloc(loop, nir_loop_info);
1002
1003 list_inithead(&loop->info->loop_terminator_list);
1004
1005 return state;
1006 }
1007
1008 static void
1009 process_loops(nir_cf_node *cf_node, nir_variable_mode indirect_mask)
1010 {
1011 switch (cf_node->type) {
1012 case nir_cf_node_block:
1013 return;
1014 case nir_cf_node_if: {
1015 nir_if *if_stmt = nir_cf_node_as_if(cf_node);
1016 foreach_list_typed(nir_cf_node, nested_node, node, &if_stmt->then_list)
1017 process_loops(nested_node, indirect_mask);
1018 foreach_list_typed(nir_cf_node, nested_node, node, &if_stmt->else_list)
1019 process_loops(nested_node, indirect_mask);
1020 return;
1021 }
1022 case nir_cf_node_loop: {
1023 nir_loop *loop = nir_cf_node_as_loop(cf_node);
1024 foreach_list_typed(nir_cf_node, nested_node, node, &loop->body)
1025 process_loops(nested_node, indirect_mask);
1026 break;
1027 }
1028 default:
1029 unreachable("unknown cf node type");
1030 }
1031
1032 nir_loop *loop = nir_cf_node_as_loop(cf_node);
1033 nir_function_impl *impl = nir_cf_node_get_function(cf_node);
1034 void *mem_ctx = ralloc_context(NULL);
1035
1036 loop_info_state *state = initialize_loop_info_state(loop, mem_ctx, impl);
1037 state->indirect_mask = indirect_mask;
1038
1039 get_loop_info(state, impl);
1040
1041 ralloc_free(mem_ctx);
1042 }
1043
1044 void
1045 nir_loop_analyze_impl(nir_function_impl *impl,
1046 nir_variable_mode indirect_mask)
1047 {
1048 nir_index_ssa_defs(impl);
1049 foreach_list_typed(nir_cf_node, node, node, &impl->body)
1050 process_loops(node, indirect_mask);
1051 }