nir: Transform -fabs(a) >= 0 to a == 0
[mesa.git] / src / compiler / nir / nir_lower_tex.c
1 /*
2 * Copyright © 2015 Broadcom
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /*
25 * This lowering pass supports (as configured via nir_lower_tex_options)
26 * various texture related conversions:
27 * + texture projector lowering: converts the coordinate division for
28 * texture projection to be done in ALU instructions instead of
29 * asking the texture operation to do so.
30 * + lowering RECT: converts the un-normalized RECT texture coordinates
31 * to normalized coordinates with txs plus ALU instructions
32 * + saturate s/t/r coords: to emulate certain texture clamp/wrap modes,
33 * inserts instructions to clamp specified coordinates to [0.0, 1.0].
34 * Note that this automatically triggers texture projector lowering if
35 * needed, since clamping must happen after projector lowering.
36 */
37
38 #include "nir.h"
39 #include "nir_builder.h"
40 #include "nir_format_convert.h"
41
42 static void
43 project_src(nir_builder *b, nir_tex_instr *tex)
44 {
45 /* Find the projector in the srcs list, if present. */
46 int proj_index = nir_tex_instr_src_index(tex, nir_tex_src_projector);
47 if (proj_index < 0)
48 return;
49
50 b->cursor = nir_before_instr(&tex->instr);
51
52 nir_ssa_def *inv_proj =
53 nir_frcp(b, nir_ssa_for_src(b, tex->src[proj_index].src, 1));
54
55 /* Walk through the sources projecting the arguments. */
56 for (unsigned i = 0; i < tex->num_srcs; i++) {
57 switch (tex->src[i].src_type) {
58 case nir_tex_src_coord:
59 case nir_tex_src_comparator:
60 break;
61 default:
62 continue;
63 }
64 nir_ssa_def *unprojected =
65 nir_ssa_for_src(b, tex->src[i].src, nir_tex_instr_src_size(tex, i));
66 nir_ssa_def *projected = nir_fmul(b, unprojected, inv_proj);
67
68 /* Array indices don't get projected, so make an new vector with the
69 * coordinate's array index untouched.
70 */
71 if (tex->is_array && tex->src[i].src_type == nir_tex_src_coord) {
72 switch (tex->coord_components) {
73 case 4:
74 projected = nir_vec4(b,
75 nir_channel(b, projected, 0),
76 nir_channel(b, projected, 1),
77 nir_channel(b, projected, 2),
78 nir_channel(b, unprojected, 3));
79 break;
80 case 3:
81 projected = nir_vec3(b,
82 nir_channel(b, projected, 0),
83 nir_channel(b, projected, 1),
84 nir_channel(b, unprojected, 2));
85 break;
86 case 2:
87 projected = nir_vec2(b,
88 nir_channel(b, projected, 0),
89 nir_channel(b, unprojected, 1));
90 break;
91 default:
92 unreachable("bad texture coord count for array");
93 break;
94 }
95 }
96
97 nir_instr_rewrite_src(&tex->instr,
98 &tex->src[i].src,
99 nir_src_for_ssa(projected));
100 }
101
102 nir_tex_instr_remove_src(tex, proj_index);
103 }
104
105 static nir_ssa_def *
106 get_texture_size(nir_builder *b, nir_tex_instr *tex)
107 {
108 b->cursor = nir_before_instr(&tex->instr);
109
110 nir_tex_instr *txs;
111
112 unsigned num_srcs = 1; /* One for the LOD */
113 for (unsigned i = 0; i < tex->num_srcs; i++) {
114 if (tex->src[i].src_type == nir_tex_src_texture_deref ||
115 tex->src[i].src_type == nir_tex_src_sampler_deref ||
116 tex->src[i].src_type == nir_tex_src_texture_offset ||
117 tex->src[i].src_type == nir_tex_src_sampler_offset)
118 num_srcs++;
119 }
120
121 txs = nir_tex_instr_create(b->shader, num_srcs);
122 txs->op = nir_texop_txs;
123 txs->sampler_dim = tex->sampler_dim;
124 txs->is_array = tex->is_array;
125 txs->is_shadow = tex->is_shadow;
126 txs->is_new_style_shadow = tex->is_new_style_shadow;
127 txs->texture_index = tex->texture_index;
128 txs->sampler_index = tex->sampler_index;
129 txs->dest_type = nir_type_int;
130
131 unsigned idx = 0;
132 for (unsigned i = 0; i < tex->num_srcs; i++) {
133 if (tex->src[i].src_type == nir_tex_src_texture_deref ||
134 tex->src[i].src_type == nir_tex_src_sampler_deref ||
135 tex->src[i].src_type == nir_tex_src_texture_offset ||
136 tex->src[i].src_type == nir_tex_src_sampler_offset) {
137 nir_src_copy(&txs->src[idx].src, &tex->src[i].src, txs);
138 txs->src[idx].src_type = tex->src[i].src_type;
139 idx++;
140 }
141 }
142 /* Add in an LOD because some back-ends require it */
143 txs->src[idx].src = nir_src_for_ssa(nir_imm_int(b, 0));
144 txs->src[idx].src_type = nir_tex_src_lod;
145
146 nir_ssa_dest_init(&txs->instr, &txs->dest,
147 nir_tex_instr_dest_size(txs), 32, NULL);
148 nir_builder_instr_insert(b, &txs->instr);
149
150 return nir_i2f32(b, &txs->dest.ssa);
151 }
152
153 static bool
154 lower_offset(nir_builder *b, nir_tex_instr *tex)
155 {
156 int offset_index = nir_tex_instr_src_index(tex, nir_tex_src_offset);
157 if (offset_index < 0)
158 return false;
159
160 int coord_index = nir_tex_instr_src_index(tex, nir_tex_src_coord);
161 assert(coord_index >= 0);
162
163 assert(tex->src[offset_index].src.is_ssa);
164 assert(tex->src[coord_index].src.is_ssa);
165 nir_ssa_def *offset = tex->src[offset_index].src.ssa;
166 nir_ssa_def *coord = tex->src[coord_index].src.ssa;
167
168 b->cursor = nir_before_instr(&tex->instr);
169
170 nir_ssa_def *offset_coord;
171 if (nir_tex_instr_src_type(tex, coord_index) == nir_type_float) {
172 if (tex->sampler_dim == GLSL_SAMPLER_DIM_RECT) {
173 offset_coord = nir_fadd(b, coord, nir_i2f32(b, offset));
174 } else {
175 nir_ssa_def *txs = get_texture_size(b, tex);
176 nir_ssa_def *scale = nir_frcp(b, txs);
177
178 offset_coord = nir_fadd(b, coord,
179 nir_fmul(b,
180 nir_i2f32(b, offset),
181 scale));
182 }
183 } else {
184 offset_coord = nir_iadd(b, coord, offset);
185 }
186
187 if (tex->is_array) {
188 /* The offset is not applied to the array index */
189 if (tex->coord_components == 2) {
190 offset_coord = nir_vec2(b, nir_channel(b, offset_coord, 0),
191 nir_channel(b, coord, 1));
192 } else if (tex->coord_components == 3) {
193 offset_coord = nir_vec3(b, nir_channel(b, offset_coord, 0),
194 nir_channel(b, offset_coord, 1),
195 nir_channel(b, coord, 2));
196 } else {
197 unreachable("Invalid number of components");
198 }
199 }
200
201 nir_instr_rewrite_src(&tex->instr, &tex->src[coord_index].src,
202 nir_src_for_ssa(offset_coord));
203
204 nir_tex_instr_remove_src(tex, offset_index);
205
206 return true;
207 }
208
209 static void
210 lower_rect(nir_builder *b, nir_tex_instr *tex)
211 {
212 nir_ssa_def *txs = get_texture_size(b, tex);
213 nir_ssa_def *scale = nir_frcp(b, txs);
214
215 /* Walk through the sources normalizing the requested arguments. */
216 for (unsigned i = 0; i < tex->num_srcs; i++) {
217 if (tex->src[i].src_type != nir_tex_src_coord)
218 continue;
219
220 nir_ssa_def *coords =
221 nir_ssa_for_src(b, tex->src[i].src, tex->coord_components);
222 nir_instr_rewrite_src(&tex->instr,
223 &tex->src[i].src,
224 nir_src_for_ssa(nir_fmul(b, coords, scale)));
225 }
226
227 tex->sampler_dim = GLSL_SAMPLER_DIM_2D;
228 }
229
230 static nir_ssa_def *
231 sample_plane(nir_builder *b, nir_tex_instr *tex, int plane)
232 {
233 assert(tex->dest.is_ssa);
234 assert(nir_tex_instr_dest_size(tex) == 4);
235 assert(nir_alu_type_get_base_type(tex->dest_type) == nir_type_float);
236 assert(tex->op == nir_texop_tex);
237 assert(tex->coord_components == 2);
238
239 nir_tex_instr *plane_tex =
240 nir_tex_instr_create(b->shader, tex->num_srcs + 1);
241 for (unsigned i = 0; i < tex->num_srcs; i++) {
242 nir_src_copy(&plane_tex->src[i].src, &tex->src[i].src, plane_tex);
243 plane_tex->src[i].src_type = tex->src[i].src_type;
244 }
245 plane_tex->src[tex->num_srcs].src = nir_src_for_ssa(nir_imm_int(b, plane));
246 plane_tex->src[tex->num_srcs].src_type = nir_tex_src_plane;
247 plane_tex->op = nir_texop_tex;
248 plane_tex->sampler_dim = GLSL_SAMPLER_DIM_2D;
249 plane_tex->dest_type = nir_type_float;
250 plane_tex->coord_components = 2;
251
252 plane_tex->texture_index = tex->texture_index;
253 plane_tex->sampler_index = tex->sampler_index;
254
255 nir_ssa_dest_init(&plane_tex->instr, &plane_tex->dest, 4, 32, NULL);
256
257 nir_builder_instr_insert(b, &plane_tex->instr);
258
259 return &plane_tex->dest.ssa;
260 }
261
262 static void
263 convert_yuv_to_rgb(nir_builder *b, nir_tex_instr *tex,
264 nir_ssa_def *y, nir_ssa_def *u, nir_ssa_def *v)
265 {
266 nir_const_value m[3] = {
267 { .f32 = { 1.0f, 0.0f, 1.59602678f, 0.0f } },
268 { .f32 = { 1.0f, -0.39176229f, -0.81296764f, 0.0f } },
269 { .f32 = { 1.0f, 2.01723214f, 0.0f, 0.0f } }
270 };
271
272 nir_ssa_def *yuv =
273 nir_vec4(b,
274 nir_fmul(b, nir_imm_float(b, 1.16438356f),
275 nir_fadd(b, y, nir_imm_float(b, -16.0f / 255.0f))),
276 nir_channel(b, nir_fadd(b, u, nir_imm_float(b, -128.0f / 255.0f)), 0),
277 nir_channel(b, nir_fadd(b, v, nir_imm_float(b, -128.0f / 255.0f)), 0),
278 nir_imm_float(b, 0.0));
279
280 nir_ssa_def *red = nir_fdot4(b, yuv, nir_build_imm(b, 4, 32, m[0]));
281 nir_ssa_def *green = nir_fdot4(b, yuv, nir_build_imm(b, 4, 32, m[1]));
282 nir_ssa_def *blue = nir_fdot4(b, yuv, nir_build_imm(b, 4, 32, m[2]));
283
284 nir_ssa_def *result = nir_vec4(b, red, green, blue, nir_imm_float(b, 1.0f));
285
286 nir_ssa_def_rewrite_uses(&tex->dest.ssa, nir_src_for_ssa(result));
287 }
288
289 static void
290 lower_y_uv_external(nir_builder *b, nir_tex_instr *tex)
291 {
292 b->cursor = nir_after_instr(&tex->instr);
293
294 nir_ssa_def *y = sample_plane(b, tex, 0);
295 nir_ssa_def *uv = sample_plane(b, tex, 1);
296
297 convert_yuv_to_rgb(b, tex,
298 nir_channel(b, y, 0),
299 nir_channel(b, uv, 0),
300 nir_channel(b, uv, 1));
301 }
302
303 static void
304 lower_y_u_v_external(nir_builder *b, nir_tex_instr *tex)
305 {
306 b->cursor = nir_after_instr(&tex->instr);
307
308 nir_ssa_def *y = sample_plane(b, tex, 0);
309 nir_ssa_def *u = sample_plane(b, tex, 1);
310 nir_ssa_def *v = sample_plane(b, tex, 2);
311
312 convert_yuv_to_rgb(b, tex,
313 nir_channel(b, y, 0),
314 nir_channel(b, u, 0),
315 nir_channel(b, v, 0));
316 }
317
318 static void
319 lower_yx_xuxv_external(nir_builder *b, nir_tex_instr *tex)
320 {
321 b->cursor = nir_after_instr(&tex->instr);
322
323 nir_ssa_def *y = sample_plane(b, tex, 0);
324 nir_ssa_def *xuxv = sample_plane(b, tex, 1);
325
326 convert_yuv_to_rgb(b, tex,
327 nir_channel(b, y, 0),
328 nir_channel(b, xuxv, 1),
329 nir_channel(b, xuxv, 3));
330 }
331
332 static void
333 lower_xy_uxvx_external(nir_builder *b, nir_tex_instr *tex)
334 {
335 b->cursor = nir_after_instr(&tex->instr);
336
337 nir_ssa_def *y = sample_plane(b, tex, 0);
338 nir_ssa_def *uxvx = sample_plane(b, tex, 1);
339
340 convert_yuv_to_rgb(b, tex,
341 nir_channel(b, y, 1),
342 nir_channel(b, uxvx, 0),
343 nir_channel(b, uxvx, 2));
344 }
345
346 /*
347 * Emits a textureLod operation used to replace an existing
348 * textureGrad instruction.
349 */
350 static void
351 replace_gradient_with_lod(nir_builder *b, nir_ssa_def *lod, nir_tex_instr *tex)
352 {
353 /* We are going to emit a textureLod() with the same parameters except that
354 * we replace ddx/ddy with lod.
355 */
356 int num_srcs = tex->num_srcs - 1;
357 nir_tex_instr *txl = nir_tex_instr_create(b->shader, num_srcs);
358
359 txl->op = nir_texop_txl;
360 txl->sampler_dim = tex->sampler_dim;
361 txl->texture_index = tex->texture_index;
362 txl->dest_type = tex->dest_type;
363 txl->is_array = tex->is_array;
364 txl->is_shadow = tex->is_shadow;
365 txl->is_new_style_shadow = tex->is_new_style_shadow;
366 txl->sampler_index = tex->sampler_index;
367 txl->coord_components = tex->coord_components;
368
369 nir_ssa_dest_init(&txl->instr, &txl->dest, 4, 32, NULL);
370
371 int src_num = 0;
372 for (int i = 0; i < tex->num_srcs; i++) {
373 if (tex->src[i].src_type == nir_tex_src_ddx ||
374 tex->src[i].src_type == nir_tex_src_ddy)
375 continue;
376 nir_src_copy(&txl->src[src_num].src, &tex->src[i].src, txl);
377 txl->src[src_num].src_type = tex->src[i].src_type;
378 src_num++;
379 }
380
381 txl->src[src_num].src = nir_src_for_ssa(lod);
382 txl->src[src_num].src_type = nir_tex_src_lod;
383 src_num++;
384
385 assert(src_num == num_srcs);
386
387 nir_ssa_dest_init(&txl->instr, &txl->dest,
388 tex->dest.ssa.num_components, 32, NULL);
389 nir_builder_instr_insert(b, &txl->instr);
390
391 nir_ssa_def_rewrite_uses(&tex->dest.ssa, nir_src_for_ssa(&txl->dest.ssa));
392
393 nir_instr_remove(&tex->instr);
394 }
395
396 static void
397 lower_gradient_cube_map(nir_builder *b, nir_tex_instr *tex)
398 {
399 assert(tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE);
400 assert(tex->op == nir_texop_txd);
401 assert(tex->dest.is_ssa);
402
403 /* Use textureSize() to get the width and height of LOD 0 */
404 nir_ssa_def *size = get_texture_size(b, tex);
405
406 /* Cubemap texture lookups first generate a texture coordinate normalized
407 * to [-1, 1] on the appropiate face. The appropiate face is determined
408 * by which component has largest magnitude and its sign. The texture
409 * coordinate is the quotient of the remaining texture coordinates against
410 * that absolute value of the component of largest magnitude. This
411 * division requires that the computing of the derivative of the texel
412 * coordinate must use the quotient rule. The high level GLSL code is as
413 * follows:
414 *
415 * Step 1: selection
416 *
417 * vec3 abs_p, Q, dQdx, dQdy;
418 * abs_p = abs(ir->coordinate);
419 * if (abs_p.x >= max(abs_p.y, abs_p.z)) {
420 * Q = ir->coordinate.yzx;
421 * dQdx = ir->lod_info.grad.dPdx.yzx;
422 * dQdy = ir->lod_info.grad.dPdy.yzx;
423 * }
424 * if (abs_p.y >= max(abs_p.x, abs_p.z)) {
425 * Q = ir->coordinate.xzy;
426 * dQdx = ir->lod_info.grad.dPdx.xzy;
427 * dQdy = ir->lod_info.grad.dPdy.xzy;
428 * }
429 * if (abs_p.z >= max(abs_p.x, abs_p.y)) {
430 * Q = ir->coordinate;
431 * dQdx = ir->lod_info.grad.dPdx;
432 * dQdy = ir->lod_info.grad.dPdy;
433 * }
434 *
435 * Step 2: use quotient rule to compute derivative. The normalized to
436 * [-1, 1] texel coordinate is given by Q.xy / (sign(Q.z) * Q.z). We are
437 * only concerned with the magnitudes of the derivatives whose values are
438 * not affected by the sign. We drop the sign from the computation.
439 *
440 * vec2 dx, dy;
441 * float recip;
442 *
443 * recip = 1.0 / Q.z;
444 * dx = recip * ( dQdx.xy - Q.xy * (dQdx.z * recip) );
445 * dy = recip * ( dQdy.xy - Q.xy * (dQdy.z * recip) );
446 *
447 * Step 3: compute LOD. At this point we have the derivatives of the
448 * texture coordinates normalized to [-1,1]. We take the LOD to be
449 * result = log2(max(sqrt(dot(dx, dx)), sqrt(dy, dy)) * 0.5 * L)
450 * = -1.0 + log2(max(sqrt(dot(dx, dx)), sqrt(dy, dy)) * L)
451 * = -1.0 + log2(sqrt(max(dot(dx, dx), dot(dy,dy))) * L)
452 * = -1.0 + log2(sqrt(L * L * max(dot(dx, dx), dot(dy,dy))))
453 * = -1.0 + 0.5 * log2(L * L * max(dot(dx, dx), dot(dy,dy)))
454 * where L is the dimension of the cubemap. The code is:
455 *
456 * float M, result;
457 * M = max(dot(dx, dx), dot(dy, dy));
458 * L = textureSize(sampler, 0).x;
459 * result = -1.0 + 0.5 * log2(L * L * M);
460 */
461
462 /* coordinate */
463 nir_ssa_def *p =
464 tex->src[nir_tex_instr_src_index(tex, nir_tex_src_coord)].src.ssa;
465
466 /* unmodified dPdx, dPdy values */
467 nir_ssa_def *dPdx =
468 tex->src[nir_tex_instr_src_index(tex, nir_tex_src_ddx)].src.ssa;
469 nir_ssa_def *dPdy =
470 tex->src[nir_tex_instr_src_index(tex, nir_tex_src_ddy)].src.ssa;
471
472 nir_ssa_def *abs_p = nir_fabs(b, p);
473 nir_ssa_def *abs_p_x = nir_channel(b, abs_p, 0);
474 nir_ssa_def *abs_p_y = nir_channel(b, abs_p, 1);
475 nir_ssa_def *abs_p_z = nir_channel(b, abs_p, 2);
476
477 /* 1. compute selector */
478 nir_ssa_def *Q, *dQdx, *dQdy;
479
480 nir_ssa_def *cond_z = nir_fge(b, abs_p_z, nir_fmax(b, abs_p_x, abs_p_y));
481 nir_ssa_def *cond_y = nir_fge(b, abs_p_y, nir_fmax(b, abs_p_x, abs_p_z));
482
483 unsigned yzx[3] = { 1, 2, 0 };
484 unsigned xzy[3] = { 0, 2, 1 };
485
486 Q = nir_bcsel(b, cond_z,
487 p,
488 nir_bcsel(b, cond_y,
489 nir_swizzle(b, p, xzy, 3, false),
490 nir_swizzle(b, p, yzx, 3, false)));
491
492 dQdx = nir_bcsel(b, cond_z,
493 dPdx,
494 nir_bcsel(b, cond_y,
495 nir_swizzle(b, dPdx, xzy, 3, false),
496 nir_swizzle(b, dPdx, yzx, 3, false)));
497
498 dQdy = nir_bcsel(b, cond_z,
499 dPdy,
500 nir_bcsel(b, cond_y,
501 nir_swizzle(b, dPdy, xzy, 3, false),
502 nir_swizzle(b, dPdy, yzx, 3, false)));
503
504 /* 2. quotient rule */
505
506 /* tmp = Q.xy * recip;
507 * dx = recip * ( dQdx.xy - (tmp * dQdx.z) );
508 * dy = recip * ( dQdy.xy - (tmp * dQdy.z) );
509 */
510 nir_ssa_def *rcp_Q_z = nir_frcp(b, nir_channel(b, Q, 2));
511
512 nir_ssa_def *Q_xy = nir_channels(b, Q, 0x3);
513 nir_ssa_def *tmp = nir_fmul(b, Q_xy, rcp_Q_z);
514
515 nir_ssa_def *dQdx_xy = nir_channels(b, dQdx, 0x3);
516 nir_ssa_def *dQdx_z = nir_channel(b, dQdx, 2);
517 nir_ssa_def *dx =
518 nir_fmul(b, rcp_Q_z, nir_fsub(b, dQdx_xy, nir_fmul(b, tmp, dQdx_z)));
519
520 nir_ssa_def *dQdy_xy = nir_channels(b, dQdy, 0x3);
521 nir_ssa_def *dQdy_z = nir_channel(b, dQdy, 2);
522 nir_ssa_def *dy =
523 nir_fmul(b, rcp_Q_z, nir_fsub(b, dQdy_xy, nir_fmul(b, tmp, dQdy_z)));
524
525 /* M = max(dot(dx, dx), dot(dy, dy)); */
526 nir_ssa_def *M = nir_fmax(b, nir_fdot(b, dx, dx), nir_fdot(b, dy, dy));
527
528 /* size has textureSize() of LOD 0 */
529 nir_ssa_def *L = nir_channel(b, size, 0);
530
531 /* lod = -1.0 + 0.5 * log2(L * L * M); */
532 nir_ssa_def *lod =
533 nir_fadd(b,
534 nir_imm_float(b, -1.0f),
535 nir_fmul(b,
536 nir_imm_float(b, 0.5f),
537 nir_flog2(b, nir_fmul(b, L, nir_fmul(b, L, M)))));
538
539 /* 3. Replace the gradient instruction with an equivalent lod instruction */
540 replace_gradient_with_lod(b, lod, tex);
541 }
542
543 static void
544 lower_gradient(nir_builder *b, nir_tex_instr *tex)
545 {
546 assert(tex->sampler_dim != GLSL_SAMPLER_DIM_CUBE);
547 assert(tex->op == nir_texop_txd);
548 assert(tex->dest.is_ssa);
549
550 /* Use textureSize() to get the width and height of LOD 0 */
551 unsigned component_mask;
552 switch (tex->sampler_dim) {
553 case GLSL_SAMPLER_DIM_3D:
554 component_mask = 7;
555 break;
556 case GLSL_SAMPLER_DIM_1D:
557 component_mask = 1;
558 break;
559 default:
560 component_mask = 3;
561 break;
562 }
563
564 nir_ssa_def *size =
565 nir_channels(b, get_texture_size(b, tex), component_mask);
566
567 /* Scale the gradients by width and height. Effectively, the incoming
568 * gradients are s'(x,y), t'(x,y), and r'(x,y) from equation 3.19 in the
569 * GL 3.0 spec; we want u'(x,y), which is w_t * s'(x,y).
570 */
571 nir_ssa_def *ddx =
572 tex->src[nir_tex_instr_src_index(tex, nir_tex_src_ddx)].src.ssa;
573 nir_ssa_def *ddy =
574 tex->src[nir_tex_instr_src_index(tex, nir_tex_src_ddy)].src.ssa;
575
576 nir_ssa_def *dPdx = nir_fmul(b, ddx, size);
577 nir_ssa_def *dPdy = nir_fmul(b, ddy, size);
578
579 nir_ssa_def *rho;
580 if (dPdx->num_components == 1) {
581 rho = nir_fmax(b, nir_fabs(b, dPdx), nir_fabs(b, dPdy));
582 } else {
583 rho = nir_fmax(b,
584 nir_fsqrt(b, nir_fdot(b, dPdx, dPdx)),
585 nir_fsqrt(b, nir_fdot(b, dPdy, dPdy)));
586 }
587
588 /* lod = log2(rho). We're ignoring GL state biases for now. */
589 nir_ssa_def *lod = nir_flog2(b, rho);
590
591 /* Replace the gradient instruction with an equivalent lod instruction */
592 replace_gradient_with_lod(b, lod, tex);
593 }
594
595 static void
596 saturate_src(nir_builder *b, nir_tex_instr *tex, unsigned sat_mask)
597 {
598 b->cursor = nir_before_instr(&tex->instr);
599
600 /* Walk through the sources saturating the requested arguments. */
601 for (unsigned i = 0; i < tex->num_srcs; i++) {
602 if (tex->src[i].src_type != nir_tex_src_coord)
603 continue;
604
605 nir_ssa_def *src =
606 nir_ssa_for_src(b, tex->src[i].src, tex->coord_components);
607
608 /* split src into components: */
609 nir_ssa_def *comp[4];
610
611 assume(tex->coord_components >= 1);
612
613 for (unsigned j = 0; j < tex->coord_components; j++)
614 comp[j] = nir_channel(b, src, j);
615
616 /* clamp requested components, array index does not get clamped: */
617 unsigned ncomp = tex->coord_components;
618 if (tex->is_array)
619 ncomp--;
620
621 for (unsigned j = 0; j < ncomp; j++) {
622 if ((1 << j) & sat_mask) {
623 if (tex->sampler_dim == GLSL_SAMPLER_DIM_RECT) {
624 /* non-normalized texture coords, so clamp to texture
625 * size rather than [0.0, 1.0]
626 */
627 nir_ssa_def *txs = get_texture_size(b, tex);
628 comp[j] = nir_fmax(b, comp[j], nir_imm_float(b, 0.0));
629 comp[j] = nir_fmin(b, comp[j], nir_channel(b, txs, j));
630 } else {
631 comp[j] = nir_fsat(b, comp[j]);
632 }
633 }
634 }
635
636 /* and move the result back into a single vecN: */
637 src = nir_vec(b, comp, tex->coord_components);
638
639 nir_instr_rewrite_src(&tex->instr,
640 &tex->src[i].src,
641 nir_src_for_ssa(src));
642 }
643 }
644
645 static nir_ssa_def *
646 get_zero_or_one(nir_builder *b, nir_alu_type type, uint8_t swizzle_val)
647 {
648 nir_const_value v;
649
650 memset(&v, 0, sizeof(v));
651
652 if (swizzle_val == 4) {
653 v.u32[0] = v.u32[1] = v.u32[2] = v.u32[3] = 0;
654 } else {
655 assert(swizzle_val == 5);
656 if (type == nir_type_float)
657 v.f32[0] = v.f32[1] = v.f32[2] = v.f32[3] = 1.0;
658 else
659 v.u32[0] = v.u32[1] = v.u32[2] = v.u32[3] = 1;
660 }
661
662 return nir_build_imm(b, 4, 32, v);
663 }
664
665 static void
666 swizzle_result(nir_builder *b, nir_tex_instr *tex, const uint8_t swizzle[4])
667 {
668 assert(tex->dest.is_ssa);
669
670 b->cursor = nir_after_instr(&tex->instr);
671
672 nir_ssa_def *swizzled;
673 if (tex->op == nir_texop_tg4) {
674 if (swizzle[tex->component] < 4) {
675 /* This one's easy */
676 tex->component = swizzle[tex->component];
677 return;
678 } else {
679 swizzled = get_zero_or_one(b, tex->dest_type, swizzle[tex->component]);
680 }
681 } else {
682 assert(nir_tex_instr_dest_size(tex) == 4);
683 if (swizzle[0] < 4 && swizzle[1] < 4 &&
684 swizzle[2] < 4 && swizzle[3] < 4) {
685 unsigned swiz[4] = { swizzle[0], swizzle[1], swizzle[2], swizzle[3] };
686 /* We have no 0s or 1s, just emit a swizzling MOV */
687 swizzled = nir_swizzle(b, &tex->dest.ssa, swiz, 4, false);
688 } else {
689 nir_ssa_def *srcs[4];
690 for (unsigned i = 0; i < 4; i++) {
691 if (swizzle[i] < 4) {
692 srcs[i] = nir_channel(b, &tex->dest.ssa, swizzle[i]);
693 } else {
694 srcs[i] = get_zero_or_one(b, tex->dest_type, swizzle[i]);
695 }
696 }
697 swizzled = nir_vec(b, srcs, 4);
698 }
699 }
700
701 nir_ssa_def_rewrite_uses_after(&tex->dest.ssa, nir_src_for_ssa(swizzled),
702 swizzled->parent_instr);
703 }
704
705 static void
706 linearize_srgb_result(nir_builder *b, nir_tex_instr *tex)
707 {
708 assert(tex->dest.is_ssa);
709 assert(nir_tex_instr_dest_size(tex) == 4);
710 assert(nir_alu_type_get_base_type(tex->dest_type) == nir_type_float);
711
712 b->cursor = nir_after_instr(&tex->instr);
713
714 nir_ssa_def *rgb =
715 nir_format_srgb_to_linear(b, nir_channels(b, &tex->dest.ssa, 0x7));
716
717 /* alpha is untouched: */
718 nir_ssa_def *result = nir_vec4(b,
719 nir_channel(b, rgb, 0),
720 nir_channel(b, rgb, 1),
721 nir_channel(b, rgb, 2),
722 nir_channel(b, &tex->dest.ssa, 3));
723
724 nir_ssa_def_rewrite_uses_after(&tex->dest.ssa, nir_src_for_ssa(result),
725 result->parent_instr);
726 }
727
728 static bool
729 nir_lower_tex_block(nir_block *block, nir_builder *b,
730 const nir_lower_tex_options *options)
731 {
732 bool progress = false;
733
734 nir_foreach_instr_safe(instr, block) {
735 if (instr->type != nir_instr_type_tex)
736 continue;
737
738 nir_tex_instr *tex = nir_instr_as_tex(instr);
739 bool lower_txp = !!(options->lower_txp & (1 << tex->sampler_dim));
740
741 /* mask of src coords to saturate (clamp): */
742 unsigned sat_mask = 0;
743
744 if ((1 << tex->sampler_index) & options->saturate_r)
745 sat_mask |= (1 << 2); /* .z */
746 if ((1 << tex->sampler_index) & options->saturate_t)
747 sat_mask |= (1 << 1); /* .y */
748 if ((1 << tex->sampler_index) & options->saturate_s)
749 sat_mask |= (1 << 0); /* .x */
750
751 /* If we are clamping any coords, we must lower projector first
752 * as clamping happens *after* projection:
753 */
754 if (lower_txp || sat_mask) {
755 project_src(b, tex);
756 progress = true;
757 }
758
759 if ((tex->op == nir_texop_txf && options->lower_txf_offset) ||
760 (sat_mask && nir_tex_instr_src_index(tex, nir_tex_src_coord) >= 0) ||
761 (tex->sampler_dim == GLSL_SAMPLER_DIM_RECT &&
762 options->lower_rect_offset)) {
763 progress = lower_offset(b, tex) || progress;
764 }
765
766 if ((tex->sampler_dim == GLSL_SAMPLER_DIM_RECT) && options->lower_rect) {
767 lower_rect(b, tex);
768 progress = true;
769 }
770
771 if ((1 << tex->texture_index) & options->lower_y_uv_external) {
772 lower_y_uv_external(b, tex);
773 progress = true;
774 }
775
776 if ((1 << tex->texture_index) & options->lower_y_u_v_external) {
777 lower_y_u_v_external(b, tex);
778 progress = true;
779 }
780
781 if ((1 << tex->texture_index) & options->lower_yx_xuxv_external) {
782 lower_yx_xuxv_external(b, tex);
783 progress = true;
784 }
785
786 if ((1 << tex->texture_index) & options->lower_xy_uxvx_external) {
787 lower_xy_uxvx_external(b, tex);
788 progress = true;
789 }
790
791 if (sat_mask) {
792 saturate_src(b, tex, sat_mask);
793 progress = true;
794 }
795
796 if (((1 << tex->texture_index) & options->swizzle_result) &&
797 !nir_tex_instr_is_query(tex) &&
798 !(tex->is_shadow && tex->is_new_style_shadow)) {
799 swizzle_result(b, tex, options->swizzles[tex->texture_index]);
800 progress = true;
801 }
802
803 /* should be after swizzle so we know which channels are rgb: */
804 if (((1 << tex->texture_index) & options->lower_srgb) &&
805 !nir_tex_instr_is_query(tex) && !tex->is_shadow) {
806 linearize_srgb_result(b, tex);
807 progress = true;
808 }
809
810 if (tex->op == nir_texop_txd &&
811 tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
812 (options->lower_txd ||
813 options->lower_txd_cube_map ||
814 (tex->is_shadow && options->lower_txd_shadow))) {
815 lower_gradient_cube_map(b, tex);
816 progress = true;
817 continue;
818 }
819
820 if (tex->op == nir_texop_txd &&
821 (options->lower_txd ||
822 (options->lower_txd_shadow &&
823 tex->is_shadow && tex->sampler_dim != GLSL_SAMPLER_DIM_CUBE))) {
824 lower_gradient(b, tex);
825 progress = true;
826 continue;
827 }
828
829 /* TXF, TXS and TXL require a LOD but not everything we implement using those
830 * three opcodes provides one. Provide a default LOD of 0.
831 */
832 if ((nir_tex_instr_src_index(tex, nir_tex_src_lod) == -1) &&
833 (tex->op == nir_texop_txf || tex->op == nir_texop_txs ||
834 tex->op == nir_texop_txl || tex->op == nir_texop_query_levels ||
835 (tex->op == nir_texop_tex &&
836 b->shader->info.stage != MESA_SHADER_FRAGMENT))) {
837 b->cursor = nir_before_instr(&tex->instr);
838 nir_tex_instr_add_src(tex, nir_tex_src_lod, nir_src_for_ssa(nir_imm_int(b, 0)));
839 progress = true;
840 continue;
841 }
842 }
843
844 return progress;
845 }
846
847 static bool
848 nir_lower_tex_impl(nir_function_impl *impl,
849 const nir_lower_tex_options *options)
850 {
851 bool progress = false;
852 nir_builder builder;
853 nir_builder_init(&builder, impl);
854
855 nir_foreach_block(block, impl) {
856 progress |= nir_lower_tex_block(block, &builder, options);
857 }
858
859 nir_metadata_preserve(impl, nir_metadata_block_index |
860 nir_metadata_dominance);
861 return progress;
862 }
863
864 bool
865 nir_lower_tex(nir_shader *shader, const nir_lower_tex_options *options)
866 {
867 bool progress = false;
868
869 nir_foreach_function(function, shader) {
870 if (function->impl)
871 progress |= nir_lower_tex_impl(function->impl, options);
872 }
873
874 return progress;
875 }