nir: Fix interaction of GL_CLAMP lowering with texture offsets.
[mesa.git] / src / compiler / nir / nir_lower_tex.c
1 /*
2 * Copyright © 2015 Broadcom
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /*
25 * This lowering pass supports (as configured via nir_lower_tex_options)
26 * various texture related conversions:
27 * + texture projector lowering: converts the coordinate division for
28 * texture projection to be done in ALU instructions instead of
29 * asking the texture operation to do so.
30 * + lowering RECT: converts the un-normalized RECT texture coordinates
31 * to normalized coordinates with txs plus ALU instructions
32 * + saturate s/t/r coords: to emulate certain texture clamp/wrap modes,
33 * inserts instructions to clamp specified coordinates to [0.0, 1.0].
34 * Note that this automatically triggers texture projector lowering if
35 * needed, since clamping must happen after projector lowering.
36 */
37
38 #include "nir.h"
39 #include "nir_builder.h"
40
41 static void
42 project_src(nir_builder *b, nir_tex_instr *tex)
43 {
44 /* Find the projector in the srcs list, if present. */
45 int proj_index = nir_tex_instr_src_index(tex, nir_tex_src_projector);
46 if (proj_index < 0)
47 return;
48
49 b->cursor = nir_before_instr(&tex->instr);
50
51 nir_ssa_def *inv_proj =
52 nir_frcp(b, nir_ssa_for_src(b, tex->src[proj_index].src, 1));
53
54 /* Walk through the sources projecting the arguments. */
55 for (unsigned i = 0; i < tex->num_srcs; i++) {
56 switch (tex->src[i].src_type) {
57 case nir_tex_src_coord:
58 case nir_tex_src_comparator:
59 break;
60 default:
61 continue;
62 }
63 nir_ssa_def *unprojected =
64 nir_ssa_for_src(b, tex->src[i].src, nir_tex_instr_src_size(tex, i));
65 nir_ssa_def *projected = nir_fmul(b, unprojected, inv_proj);
66
67 /* Array indices don't get projected, so make an new vector with the
68 * coordinate's array index untouched.
69 */
70 if (tex->is_array && tex->src[i].src_type == nir_tex_src_coord) {
71 switch (tex->coord_components) {
72 case 4:
73 projected = nir_vec4(b,
74 nir_channel(b, projected, 0),
75 nir_channel(b, projected, 1),
76 nir_channel(b, projected, 2),
77 nir_channel(b, unprojected, 3));
78 break;
79 case 3:
80 projected = nir_vec3(b,
81 nir_channel(b, projected, 0),
82 nir_channel(b, projected, 1),
83 nir_channel(b, unprojected, 2));
84 break;
85 case 2:
86 projected = nir_vec2(b,
87 nir_channel(b, projected, 0),
88 nir_channel(b, unprojected, 1));
89 break;
90 default:
91 unreachable("bad texture coord count for array");
92 break;
93 }
94 }
95
96 nir_instr_rewrite_src(&tex->instr,
97 &tex->src[i].src,
98 nir_src_for_ssa(projected));
99 }
100
101 nir_tex_instr_remove_src(tex, proj_index);
102 }
103
104 static nir_ssa_def *
105 get_texture_size(nir_builder *b, nir_tex_instr *tex)
106 {
107 b->cursor = nir_before_instr(&tex->instr);
108
109 nir_tex_instr *txs;
110
111 txs = nir_tex_instr_create(b->shader, 1);
112 txs->op = nir_texop_txs;
113 txs->sampler_dim = tex->sampler_dim;
114 txs->is_array = tex->is_array;
115 txs->is_shadow = tex->is_shadow;
116 txs->is_new_style_shadow = tex->is_new_style_shadow;
117 txs->texture_index = tex->texture_index;
118 txs->texture = nir_deref_var_clone(tex->texture, txs);
119 txs->sampler_index = tex->sampler_index;
120 txs->sampler = nir_deref_var_clone(tex->sampler, txs);
121 txs->dest_type = nir_type_int;
122
123 /* only single src, the lod: */
124 txs->src[0].src = nir_src_for_ssa(nir_imm_int(b, 0));
125 txs->src[0].src_type = nir_tex_src_lod;
126
127 nir_ssa_dest_init(&txs->instr, &txs->dest,
128 nir_tex_instr_dest_size(txs), 32, NULL);
129 nir_builder_instr_insert(b, &txs->instr);
130
131 return nir_i2f32(b, &txs->dest.ssa);
132 }
133
134 static bool
135 lower_offset(nir_builder *b, nir_tex_instr *tex)
136 {
137 int offset_index = nir_tex_instr_src_index(tex, nir_tex_src_offset);
138 if (offset_index < 0)
139 return false;
140
141 int coord_index = nir_tex_instr_src_index(tex, nir_tex_src_coord);
142 assert(coord_index >= 0);
143
144 assert(tex->src[offset_index].src.is_ssa);
145 assert(tex->src[coord_index].src.is_ssa);
146 nir_ssa_def *offset = tex->src[offset_index].src.ssa;
147 nir_ssa_def *coord = tex->src[coord_index].src.ssa;
148
149 b->cursor = nir_before_instr(&tex->instr);
150
151 nir_ssa_def *offset_coord;
152 if (nir_tex_instr_src_type(tex, coord_index) == nir_type_float) {
153 if (tex->sampler_dim == GLSL_SAMPLER_DIM_RECT) {
154 offset_coord = nir_fadd(b, coord, nir_i2f32(b, offset));
155 } else {
156 nir_ssa_def *txs = get_texture_size(b, tex);
157 nir_ssa_def *scale = nir_frcp(b, txs);
158
159 offset_coord = nir_fadd(b, coord,
160 nir_fmul(b,
161 nir_i2f32(b, offset),
162 scale));
163 }
164 } else {
165 offset_coord = nir_iadd(b, coord, offset);
166 }
167
168 if (tex->is_array) {
169 /* The offset is not applied to the array index */
170 if (tex->coord_components == 2) {
171 offset_coord = nir_vec2(b, nir_channel(b, offset_coord, 0),
172 nir_channel(b, coord, 1));
173 } else if (tex->coord_components == 3) {
174 offset_coord = nir_vec3(b, nir_channel(b, offset_coord, 0),
175 nir_channel(b, offset_coord, 1),
176 nir_channel(b, coord, 2));
177 } else {
178 unreachable("Invalid number of components");
179 }
180 }
181
182 nir_instr_rewrite_src(&tex->instr, &tex->src[coord_index].src,
183 nir_src_for_ssa(offset_coord));
184
185 nir_tex_instr_remove_src(tex, offset_index);
186
187 return true;
188 }
189
190 static void
191 lower_rect(nir_builder *b, nir_tex_instr *tex)
192 {
193 nir_ssa_def *txs = get_texture_size(b, tex);
194 nir_ssa_def *scale = nir_frcp(b, txs);
195
196 /* Walk through the sources normalizing the requested arguments. */
197 for (unsigned i = 0; i < tex->num_srcs; i++) {
198 if (tex->src[i].src_type != nir_tex_src_coord)
199 continue;
200
201 nir_ssa_def *coords =
202 nir_ssa_for_src(b, tex->src[i].src, tex->coord_components);
203 nir_instr_rewrite_src(&tex->instr,
204 &tex->src[i].src,
205 nir_src_for_ssa(nir_fmul(b, coords, scale)));
206 }
207
208 tex->sampler_dim = GLSL_SAMPLER_DIM_2D;
209 }
210
211 static nir_ssa_def *
212 sample_plane(nir_builder *b, nir_tex_instr *tex, int plane)
213 {
214 assert(tex->dest.is_ssa);
215 assert(nir_tex_instr_dest_size(tex) == 4);
216 assert(nir_alu_type_get_base_type(tex->dest_type) == nir_type_float);
217 assert(tex->op == nir_texop_tex);
218 assert(tex->coord_components == 2);
219
220 nir_tex_instr *plane_tex = nir_tex_instr_create(b->shader, 2);
221 nir_src_copy(&plane_tex->src[0].src, &tex->src[0].src, plane_tex);
222 plane_tex->src[0].src_type = nir_tex_src_coord;
223 plane_tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, plane));
224 plane_tex->src[1].src_type = nir_tex_src_plane;
225 plane_tex->op = nir_texop_tex;
226 plane_tex->sampler_dim = GLSL_SAMPLER_DIM_2D;
227 plane_tex->dest_type = nir_type_float;
228 plane_tex->coord_components = 2;
229
230 plane_tex->texture_index = tex->texture_index;
231 plane_tex->texture = nir_deref_var_clone(tex->texture, plane_tex);
232 plane_tex->sampler_index = tex->sampler_index;
233 plane_tex->sampler = nir_deref_var_clone(tex->sampler, plane_tex);
234
235 nir_ssa_dest_init(&plane_tex->instr, &plane_tex->dest, 4, 32, NULL);
236
237 nir_builder_instr_insert(b, &plane_tex->instr);
238
239 return &plane_tex->dest.ssa;
240 }
241
242 static void
243 convert_yuv_to_rgb(nir_builder *b, nir_tex_instr *tex,
244 nir_ssa_def *y, nir_ssa_def *u, nir_ssa_def *v)
245 {
246 nir_const_value m[3] = {
247 { .f32 = { 1.0f, 0.0f, 1.59602678f, 0.0f } },
248 { .f32 = { 1.0f, -0.39176229f, -0.81296764f, 0.0f } },
249 { .f32 = { 1.0f, 2.01723214f, 0.0f, 0.0f } }
250 };
251
252 nir_ssa_def *yuv =
253 nir_vec4(b,
254 nir_fmul(b, nir_imm_float(b, 1.16438356f),
255 nir_fadd(b, y, nir_imm_float(b, -16.0f / 255.0f))),
256 nir_channel(b, nir_fadd(b, u, nir_imm_float(b, -128.0f / 255.0f)), 0),
257 nir_channel(b, nir_fadd(b, v, nir_imm_float(b, -128.0f / 255.0f)), 0),
258 nir_imm_float(b, 0.0));
259
260 nir_ssa_def *red = nir_fdot4(b, yuv, nir_build_imm(b, 4, 32, m[0]));
261 nir_ssa_def *green = nir_fdot4(b, yuv, nir_build_imm(b, 4, 32, m[1]));
262 nir_ssa_def *blue = nir_fdot4(b, yuv, nir_build_imm(b, 4, 32, m[2]));
263
264 nir_ssa_def *result = nir_vec4(b, red, green, blue, nir_imm_float(b, 1.0f));
265
266 nir_ssa_def_rewrite_uses(&tex->dest.ssa, nir_src_for_ssa(result));
267 }
268
269 static void
270 lower_y_uv_external(nir_builder *b, nir_tex_instr *tex)
271 {
272 b->cursor = nir_after_instr(&tex->instr);
273
274 nir_ssa_def *y = sample_plane(b, tex, 0);
275 nir_ssa_def *uv = sample_plane(b, tex, 1);
276
277 convert_yuv_to_rgb(b, tex,
278 nir_channel(b, y, 0),
279 nir_channel(b, uv, 0),
280 nir_channel(b, uv, 1));
281 }
282
283 static void
284 lower_y_u_v_external(nir_builder *b, nir_tex_instr *tex)
285 {
286 b->cursor = nir_after_instr(&tex->instr);
287
288 nir_ssa_def *y = sample_plane(b, tex, 0);
289 nir_ssa_def *u = sample_plane(b, tex, 1);
290 nir_ssa_def *v = sample_plane(b, tex, 2);
291
292 convert_yuv_to_rgb(b, tex,
293 nir_channel(b, y, 0),
294 nir_channel(b, u, 0),
295 nir_channel(b, v, 0));
296 }
297
298 static void
299 lower_yx_xuxv_external(nir_builder *b, nir_tex_instr *tex)
300 {
301 b->cursor = nir_after_instr(&tex->instr);
302
303 nir_ssa_def *y = sample_plane(b, tex, 0);
304 nir_ssa_def *xuxv = sample_plane(b, tex, 1);
305
306 convert_yuv_to_rgb(b, tex,
307 nir_channel(b, y, 0),
308 nir_channel(b, xuxv, 1),
309 nir_channel(b, xuxv, 3));
310 }
311
312 static void
313 lower_xy_uxvx_external(nir_builder *b, nir_tex_instr *tex)
314 {
315 b->cursor = nir_after_instr(&tex->instr);
316
317 nir_ssa_def *y = sample_plane(b, tex, 0);
318 nir_ssa_def *uxvx = sample_plane(b, tex, 1);
319
320 convert_yuv_to_rgb(b, tex,
321 nir_channel(b, y, 1),
322 nir_channel(b, uxvx, 0),
323 nir_channel(b, uxvx, 2));
324 }
325
326 /*
327 * Emits a textureLod operation used to replace an existing
328 * textureGrad instruction.
329 */
330 static void
331 replace_gradient_with_lod(nir_builder *b, nir_ssa_def *lod, nir_tex_instr *tex)
332 {
333 /* We are going to emit a textureLod() with the same parameters except that
334 * we replace ddx/ddy with lod.
335 */
336 int num_srcs = tex->num_srcs - 1;
337 nir_tex_instr *txl = nir_tex_instr_create(b->shader, num_srcs);
338
339 txl->op = nir_texop_txl;
340 txl->sampler_dim = tex->sampler_dim;
341 txl->texture_index = tex->texture_index;
342 txl->dest_type = tex->dest_type;
343 txl->is_array = tex->is_array;
344 txl->is_shadow = tex->is_shadow;
345 txl->is_new_style_shadow = tex->is_new_style_shadow;
346 txl->sampler_index = tex->sampler_index;
347 txl->texture = nir_deref_var_clone(tex->texture, txl);
348 txl->sampler = nir_deref_var_clone(tex->sampler, txl);
349 txl->coord_components = tex->coord_components;
350
351 nir_ssa_dest_init(&txl->instr, &txl->dest, 4, 32, NULL);
352
353 int src_num = 0;
354 for (int i = 0; i < tex->num_srcs; i++) {
355 if (tex->src[i].src_type == nir_tex_src_ddx ||
356 tex->src[i].src_type == nir_tex_src_ddy)
357 continue;
358 nir_src_copy(&txl->src[src_num].src, &tex->src[i].src, txl);
359 txl->src[src_num].src_type = tex->src[i].src_type;
360 src_num++;
361 }
362
363 txl->src[src_num].src = nir_src_for_ssa(lod);
364 txl->src[src_num].src_type = nir_tex_src_lod;
365 src_num++;
366
367 assert(src_num == num_srcs);
368
369 nir_ssa_dest_init(&txl->instr, &txl->dest,
370 tex->dest.ssa.num_components, 32, NULL);
371 nir_builder_instr_insert(b, &txl->instr);
372
373 nir_ssa_def_rewrite_uses(&tex->dest.ssa, nir_src_for_ssa(&txl->dest.ssa));
374
375 nir_instr_remove(&tex->instr);
376 }
377
378 static void
379 lower_gradient_cube_map(nir_builder *b, nir_tex_instr *tex)
380 {
381 assert(tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE);
382 assert(tex->op == nir_texop_txd);
383 assert(tex->dest.is_ssa);
384
385 /* Use textureSize() to get the width and height of LOD 0 */
386 nir_ssa_def *size = get_texture_size(b, tex);
387
388 /* Cubemap texture lookups first generate a texture coordinate normalized
389 * to [-1, 1] on the appropiate face. The appropiate face is determined
390 * by which component has largest magnitude and its sign. The texture
391 * coordinate is the quotient of the remaining texture coordinates against
392 * that absolute value of the component of largest magnitude. This
393 * division requires that the computing of the derivative of the texel
394 * coordinate must use the quotient rule. The high level GLSL code is as
395 * follows:
396 *
397 * Step 1: selection
398 *
399 * vec3 abs_p, Q, dQdx, dQdy;
400 * abs_p = abs(ir->coordinate);
401 * if (abs_p.x >= max(abs_p.y, abs_p.z)) {
402 * Q = ir->coordinate.yzx;
403 * dQdx = ir->lod_info.grad.dPdx.yzx;
404 * dQdy = ir->lod_info.grad.dPdy.yzx;
405 * }
406 * if (abs_p.y >= max(abs_p.x, abs_p.z)) {
407 * Q = ir->coordinate.xzy;
408 * dQdx = ir->lod_info.grad.dPdx.xzy;
409 * dQdy = ir->lod_info.grad.dPdy.xzy;
410 * }
411 * if (abs_p.z >= max(abs_p.x, abs_p.y)) {
412 * Q = ir->coordinate;
413 * dQdx = ir->lod_info.grad.dPdx;
414 * dQdy = ir->lod_info.grad.dPdy;
415 * }
416 *
417 * Step 2: use quotient rule to compute derivative. The normalized to
418 * [-1, 1] texel coordinate is given by Q.xy / (sign(Q.z) * Q.z). We are
419 * only concerned with the magnitudes of the derivatives whose values are
420 * not affected by the sign. We drop the sign from the computation.
421 *
422 * vec2 dx, dy;
423 * float recip;
424 *
425 * recip = 1.0 / Q.z;
426 * dx = recip * ( dQdx.xy - Q.xy * (dQdx.z * recip) );
427 * dy = recip * ( dQdy.xy - Q.xy * (dQdy.z * recip) );
428 *
429 * Step 3: compute LOD. At this point we have the derivatives of the
430 * texture coordinates normalized to [-1,1]. We take the LOD to be
431 * result = log2(max(sqrt(dot(dx, dx)), sqrt(dy, dy)) * 0.5 * L)
432 * = -1.0 + log2(max(sqrt(dot(dx, dx)), sqrt(dy, dy)) * L)
433 * = -1.0 + log2(sqrt(max(dot(dx, dx), dot(dy,dy))) * L)
434 * = -1.0 + log2(sqrt(L * L * max(dot(dx, dx), dot(dy,dy))))
435 * = -1.0 + 0.5 * log2(L * L * max(dot(dx, dx), dot(dy,dy)))
436 * where L is the dimension of the cubemap. The code is:
437 *
438 * float M, result;
439 * M = max(dot(dx, dx), dot(dy, dy));
440 * L = textureSize(sampler, 0).x;
441 * result = -1.0 + 0.5 * log2(L * L * M);
442 */
443
444 /* coordinate */
445 nir_ssa_def *p =
446 tex->src[nir_tex_instr_src_index(tex, nir_tex_src_coord)].src.ssa;
447
448 /* unmodified dPdx, dPdy values */
449 nir_ssa_def *dPdx =
450 tex->src[nir_tex_instr_src_index(tex, nir_tex_src_ddx)].src.ssa;
451 nir_ssa_def *dPdy =
452 tex->src[nir_tex_instr_src_index(tex, nir_tex_src_ddy)].src.ssa;
453
454 nir_ssa_def *abs_p = nir_fabs(b, p);
455 nir_ssa_def *abs_p_x = nir_channel(b, abs_p, 0);
456 nir_ssa_def *abs_p_y = nir_channel(b, abs_p, 1);
457 nir_ssa_def *abs_p_z = nir_channel(b, abs_p, 2);
458
459 /* 1. compute selector */
460 nir_ssa_def *Q, *dQdx, *dQdy;
461
462 nir_ssa_def *cond_z = nir_fge(b, abs_p_z, nir_fmax(b, abs_p_x, abs_p_y));
463 nir_ssa_def *cond_y = nir_fge(b, abs_p_y, nir_fmax(b, abs_p_x, abs_p_z));
464
465 unsigned yzx[4] = { 1, 2, 0, 0 };
466 unsigned xzy[4] = { 0, 2, 1, 0 };
467
468 Q = nir_bcsel(b, cond_z,
469 p,
470 nir_bcsel(b, cond_y,
471 nir_swizzle(b, p, xzy, 3, false),
472 nir_swizzle(b, p, yzx, 3, false)));
473
474 dQdx = nir_bcsel(b, cond_z,
475 dPdx,
476 nir_bcsel(b, cond_y,
477 nir_swizzle(b, dPdx, xzy, 3, false),
478 nir_swizzle(b, dPdx, yzx, 3, false)));
479
480 dQdy = nir_bcsel(b, cond_z,
481 dPdy,
482 nir_bcsel(b, cond_y,
483 nir_swizzle(b, dPdy, xzy, 3, false),
484 nir_swizzle(b, dPdy, yzx, 3, false)));
485
486 /* 2. quotient rule */
487
488 /* tmp = Q.xy * recip;
489 * dx = recip * ( dQdx.xy - (tmp * dQdx.z) );
490 * dy = recip * ( dQdy.xy - (tmp * dQdy.z) );
491 */
492 nir_ssa_def *rcp_Q_z = nir_frcp(b, nir_channel(b, Q, 2));
493
494 unsigned xy[4] = { 0, 1, 0, 0 };
495 nir_ssa_def *Q_xy = nir_swizzle(b, Q, xy, 2, false);
496 nir_ssa_def *tmp = nir_fmul(b, Q_xy, rcp_Q_z);
497
498 nir_ssa_def *dQdx_xy = nir_swizzle(b, dQdx, xy, 2, false);
499 nir_ssa_def *dQdx_z = nir_channel(b, dQdx, 2);
500 nir_ssa_def *dx =
501 nir_fmul(b, rcp_Q_z, nir_fsub(b, dQdx_xy, nir_fmul(b, tmp, dQdx_z)));
502
503 nir_ssa_def *dQdy_xy = nir_swizzle(b, dQdy, xy, 2, false);
504 nir_ssa_def *dQdy_z = nir_channel(b, dQdy, 2);
505 nir_ssa_def *dy =
506 nir_fmul(b, rcp_Q_z, nir_fsub(b, dQdy_xy, nir_fmul(b, tmp, dQdy_z)));
507
508 /* M = max(dot(dx, dx), dot(dy, dy)); */
509 nir_ssa_def *M = nir_fmax(b, nir_fdot(b, dx, dx), nir_fdot(b, dy, dy));
510
511 /* size has textureSize() of LOD 0 */
512 nir_ssa_def *L = nir_channel(b, size, 0);
513
514 /* lod = -1.0 + 0.5 * log2(L * L * M); */
515 nir_ssa_def *lod =
516 nir_fadd(b,
517 nir_imm_float(b, -1.0f),
518 nir_fmul(b,
519 nir_imm_float(b, 0.5f),
520 nir_flog2(b, nir_fmul(b, L, nir_fmul(b, L, M)))));
521
522 /* 3. Replace the gradient instruction with an equivalent lod instruction */
523 replace_gradient_with_lod(b, lod, tex);
524 }
525
526 static void
527 lower_gradient_shadow(nir_builder *b, nir_tex_instr *tex)
528 {
529 assert(tex->sampler_dim != GLSL_SAMPLER_DIM_CUBE);
530 assert(tex->is_shadow);
531 assert(tex->op == nir_texop_txd);
532 assert(tex->dest.is_ssa);
533
534 /* Use textureSize() to get the width and height of LOD 0 */
535 unsigned component_mask;
536 switch (tex->sampler_dim) {
537 case GLSL_SAMPLER_DIM_3D:
538 component_mask = 7;
539 break;
540 case GLSL_SAMPLER_DIM_1D:
541 component_mask = 1;
542 break;
543 default:
544 component_mask = 3;
545 break;
546 }
547
548 nir_ssa_def *size =
549 nir_channels(b, get_texture_size(b, tex), component_mask);
550
551 /* Scale the gradients by width and height. Effectively, the incoming
552 * gradients are s'(x,y), t'(x,y), and r'(x,y) from equation 3.19 in the
553 * GL 3.0 spec; we want u'(x,y), which is w_t * s'(x,y).
554 */
555 nir_ssa_def *ddx =
556 tex->src[nir_tex_instr_src_index(tex, nir_tex_src_ddx)].src.ssa;
557 nir_ssa_def *ddy =
558 tex->src[nir_tex_instr_src_index(tex, nir_tex_src_ddy)].src.ssa;
559
560 nir_ssa_def *dPdx = nir_fmul(b, ddx, size);
561 nir_ssa_def *dPdy = nir_fmul(b, ddy, size);
562
563 nir_ssa_def *rho;
564 if (dPdx->num_components == 1) {
565 rho = nir_fmax(b, nir_fabs(b, dPdx), nir_fabs(b, dPdy));
566 } else {
567 rho = nir_fmax(b,
568 nir_fsqrt(b, nir_fdot(b, dPdx, dPdx)),
569 nir_fsqrt(b, nir_fdot(b, dPdy, dPdy)));
570 }
571
572 /* lod = log2(rho). We're ignoring GL state biases for now. */
573 nir_ssa_def *lod = nir_flog2(b, rho);
574
575 /* Replace the gradient instruction with an equivalent lod instruction */
576 replace_gradient_with_lod(b, lod, tex);
577 }
578
579 static void
580 saturate_src(nir_builder *b, nir_tex_instr *tex, unsigned sat_mask)
581 {
582 b->cursor = nir_before_instr(&tex->instr);
583
584 /* Walk through the sources saturating the requested arguments. */
585 for (unsigned i = 0; i < tex->num_srcs; i++) {
586 if (tex->src[i].src_type != nir_tex_src_coord)
587 continue;
588
589 nir_ssa_def *src =
590 nir_ssa_for_src(b, tex->src[i].src, tex->coord_components);
591
592 /* split src into components: */
593 nir_ssa_def *comp[4];
594
595 assume(tex->coord_components >= 1);
596
597 for (unsigned j = 0; j < tex->coord_components; j++)
598 comp[j] = nir_channel(b, src, j);
599
600 /* clamp requested components, array index does not get clamped: */
601 unsigned ncomp = tex->coord_components;
602 if (tex->is_array)
603 ncomp--;
604
605 for (unsigned j = 0; j < ncomp; j++) {
606 if ((1 << j) & sat_mask) {
607 if (tex->sampler_dim == GLSL_SAMPLER_DIM_RECT) {
608 /* non-normalized texture coords, so clamp to texture
609 * size rather than [0.0, 1.0]
610 */
611 nir_ssa_def *txs = get_texture_size(b, tex);
612 comp[j] = nir_fmax(b, comp[j], nir_imm_float(b, 0.0));
613 comp[j] = nir_fmin(b, comp[j], nir_channel(b, txs, j));
614 } else {
615 comp[j] = nir_fsat(b, comp[j]);
616 }
617 }
618 }
619
620 /* and move the result back into a single vecN: */
621 src = nir_vec(b, comp, tex->coord_components);
622
623 nir_instr_rewrite_src(&tex->instr,
624 &tex->src[i].src,
625 nir_src_for_ssa(src));
626 }
627 }
628
629 static nir_ssa_def *
630 get_zero_or_one(nir_builder *b, nir_alu_type type, uint8_t swizzle_val)
631 {
632 nir_const_value v;
633
634 memset(&v, 0, sizeof(v));
635
636 if (swizzle_val == 4) {
637 v.u32[0] = v.u32[1] = v.u32[2] = v.u32[3] = 0;
638 } else {
639 assert(swizzle_val == 5);
640 if (type == nir_type_float)
641 v.f32[0] = v.f32[1] = v.f32[2] = v.f32[3] = 1.0;
642 else
643 v.u32[0] = v.u32[1] = v.u32[2] = v.u32[3] = 1;
644 }
645
646 return nir_build_imm(b, 4, 32, v);
647 }
648
649 static void
650 swizzle_result(nir_builder *b, nir_tex_instr *tex, const uint8_t swizzle[4])
651 {
652 assert(tex->dest.is_ssa);
653
654 b->cursor = nir_after_instr(&tex->instr);
655
656 nir_ssa_def *swizzled;
657 if (tex->op == nir_texop_tg4) {
658 if (swizzle[tex->component] < 4) {
659 /* This one's easy */
660 tex->component = swizzle[tex->component];
661 return;
662 } else {
663 swizzled = get_zero_or_one(b, tex->dest_type, swizzle[tex->component]);
664 }
665 } else {
666 assert(nir_tex_instr_dest_size(tex) == 4);
667 if (swizzle[0] < 4 && swizzle[1] < 4 &&
668 swizzle[2] < 4 && swizzle[3] < 4) {
669 unsigned swiz[4] = { swizzle[0], swizzle[1], swizzle[2], swizzle[3] };
670 /* We have no 0s or 1s, just emit a swizzling MOV */
671 swizzled = nir_swizzle(b, &tex->dest.ssa, swiz, 4, false);
672 } else {
673 nir_ssa_def *srcs[4];
674 for (unsigned i = 0; i < 4; i++) {
675 if (swizzle[i] < 4) {
676 srcs[i] = nir_channel(b, &tex->dest.ssa, swizzle[i]);
677 } else {
678 srcs[i] = get_zero_or_one(b, tex->dest_type, swizzle[i]);
679 }
680 }
681 swizzled = nir_vec(b, srcs, 4);
682 }
683 }
684
685 nir_ssa_def_rewrite_uses_after(&tex->dest.ssa, nir_src_for_ssa(swizzled),
686 swizzled->parent_instr);
687 }
688
689 static void
690 linearize_srgb_result(nir_builder *b, nir_tex_instr *tex)
691 {
692 assert(tex->dest.is_ssa);
693 assert(nir_tex_instr_dest_size(tex) == 4);
694 assert(nir_alu_type_get_base_type(tex->dest_type) == nir_type_float);
695
696 b->cursor = nir_after_instr(&tex->instr);
697
698 static const unsigned swiz[4] = {0, 1, 2, 0};
699 nir_ssa_def *comp = nir_swizzle(b, &tex->dest.ssa, swiz, 3, true);
700
701 /* Formula is:
702 * (comp <= 0.04045) ?
703 * (comp / 12.92) :
704 * pow((comp + 0.055) / 1.055, 2.4)
705 */
706 nir_ssa_def *low = nir_fmul(b, comp, nir_imm_float(b, 1.0 / 12.92));
707 nir_ssa_def *high = nir_fpow(b,
708 nir_fmul(b,
709 nir_fadd(b,
710 comp,
711 nir_imm_float(b, 0.055)),
712 nir_imm_float(b, 1.0 / 1.055)),
713 nir_imm_float(b, 2.4));
714 nir_ssa_def *cond = nir_fge(b, nir_imm_float(b, 0.04045), comp);
715 nir_ssa_def *rgb = nir_bcsel(b, cond, low, high);
716
717 /* alpha is untouched: */
718 nir_ssa_def *result = nir_vec4(b,
719 nir_channel(b, rgb, 0),
720 nir_channel(b, rgb, 1),
721 nir_channel(b, rgb, 2),
722 nir_channel(b, &tex->dest.ssa, 3));
723
724 nir_ssa_def_rewrite_uses_after(&tex->dest.ssa, nir_src_for_ssa(result),
725 result->parent_instr);
726 }
727
728 static bool
729 nir_lower_tex_block(nir_block *block, nir_builder *b,
730 const nir_lower_tex_options *options)
731 {
732 bool progress = false;
733
734 nir_foreach_instr_safe(instr, block) {
735 if (instr->type != nir_instr_type_tex)
736 continue;
737
738 nir_tex_instr *tex = nir_instr_as_tex(instr);
739 bool lower_txp = !!(options->lower_txp & (1 << tex->sampler_dim));
740
741 /* mask of src coords to saturate (clamp): */
742 unsigned sat_mask = 0;
743
744 if ((1 << tex->sampler_index) & options->saturate_r)
745 sat_mask |= (1 << 2); /* .z */
746 if ((1 << tex->sampler_index) & options->saturate_t)
747 sat_mask |= (1 << 1); /* .y */
748 if ((1 << tex->sampler_index) & options->saturate_s)
749 sat_mask |= (1 << 0); /* .x */
750
751 /* If we are clamping any coords, we must lower projector first
752 * as clamping happens *after* projection:
753 */
754 if (lower_txp || sat_mask) {
755 project_src(b, tex);
756 progress = true;
757 }
758
759 if ((tex->op == nir_texop_txf && options->lower_txf_offset) ||
760 (sat_mask && nir_tex_instr_src_index(tex, nir_tex_src_coord) >= 0) ||
761 (tex->sampler_dim == GLSL_SAMPLER_DIM_RECT &&
762 options->lower_rect_offset)) {
763 progress = lower_offset(b, tex) || progress;
764 }
765
766 if ((tex->sampler_dim == GLSL_SAMPLER_DIM_RECT) && options->lower_rect) {
767 lower_rect(b, tex);
768 progress = true;
769 }
770
771 if ((1 << tex->texture_index) & options->lower_y_uv_external) {
772 lower_y_uv_external(b, tex);
773 progress = true;
774 }
775
776 if ((1 << tex->texture_index) & options->lower_y_u_v_external) {
777 lower_y_u_v_external(b, tex);
778 progress = true;
779 }
780
781 if ((1 << tex->texture_index) & options->lower_yx_xuxv_external) {
782 lower_yx_xuxv_external(b, tex);
783 progress = true;
784 }
785
786 if ((1 << tex->texture_index) & options->lower_xy_uxvx_external) {
787 lower_xy_uxvx_external(b, tex);
788 progress = true;
789 }
790
791 if (sat_mask) {
792 saturate_src(b, tex, sat_mask);
793 progress = true;
794 }
795
796 if (((1 << tex->texture_index) & options->swizzle_result) &&
797 !nir_tex_instr_is_query(tex) &&
798 !(tex->is_shadow && tex->is_new_style_shadow)) {
799 swizzle_result(b, tex, options->swizzles[tex->texture_index]);
800 progress = true;
801 }
802
803 /* should be after swizzle so we know which channels are rgb: */
804 if (((1 << tex->texture_index) & options->lower_srgb) &&
805 !nir_tex_instr_is_query(tex) && !tex->is_shadow) {
806 linearize_srgb_result(b, tex);
807 progress = true;
808 }
809
810 if (tex->op == nir_texop_txd &&
811 tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
812 (options->lower_txd_cube_map ||
813 (tex->is_shadow && options->lower_txd_shadow))) {
814 lower_gradient_cube_map(b, tex);
815 progress = true;
816 continue;
817 }
818
819 if (tex->op == nir_texop_txd && options->lower_txd_shadow &&
820 tex->is_shadow && tex->sampler_dim != GLSL_SAMPLER_DIM_CUBE) {
821 lower_gradient_shadow(b, tex);
822 progress = true;
823 continue;
824 }
825
826 /* TXF, TXS and TXL require a LOD but not everything we implement using those
827 * three opcodes provides one. Provide a default LOD of 0.
828 */
829 if ((nir_tex_instr_src_index(tex, nir_tex_src_lod) == -1) &&
830 (tex->op == nir_texop_txf || tex->op == nir_texop_txs ||
831 tex->op == nir_texop_txl || tex->op == nir_texop_query_levels ||
832 (tex->op == nir_texop_tex &&
833 b->shader->info.stage != MESA_SHADER_FRAGMENT))) {
834 b->cursor = nir_before_instr(&tex->instr);
835 nir_tex_instr_add_src(tex, nir_tex_src_lod, nir_src_for_ssa(nir_imm_int(b, 0)));
836 progress = true;
837 continue;
838 }
839 }
840
841 return progress;
842 }
843
844 static bool
845 nir_lower_tex_impl(nir_function_impl *impl,
846 const nir_lower_tex_options *options)
847 {
848 bool progress = false;
849 nir_builder builder;
850 nir_builder_init(&builder, impl);
851
852 nir_foreach_block(block, impl) {
853 progress |= nir_lower_tex_block(block, &builder, options);
854 }
855
856 nir_metadata_preserve(impl, nir_metadata_block_index |
857 nir_metadata_dominance);
858 return progress;
859 }
860
861 bool
862 nir_lower_tex(nir_shader *shader, const nir_lower_tex_options *options)
863 {
864 bool progress = false;
865
866 nir_foreach_function(function, shader) {
867 if (function->impl)
868 progress |= nir_lower_tex_impl(function->impl, options);
869 }
870
871 return progress;
872 }