nir_opcodes.py: Saturate to expression that doesn't overflow
[mesa.git] / src / compiler / nir / nir_opcodes.py
1 #
2 # Copyright (C) 2014 Connor Abbott
3 #
4 # Permission is hereby granted, free of charge, to any person obtaining a
5 # copy of this software and associated documentation files (the "Software"),
6 # to deal in the Software without restriction, including without limitation
7 # the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 # and/or sell copies of the Software, and to permit persons to whom the
9 # Software is furnished to do so, subject to the following conditions:
10 #
11 # The above copyright notice and this permission notice (including the next
12 # paragraph) shall be included in all copies or substantial portions of the
13 # Software.
14 #
15 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 # IN THE SOFTWARE.
22 #
23 # Authors:
24 # Connor Abbott (cwabbott0@gmail.com)
25
26 import re
27
28 # Class that represents all the information we have about the opcode
29 # NOTE: this must be kept in sync with nir_op_info
30
31 class Opcode(object):
32 """Class that represents all the information we have about the opcode
33 NOTE: this must be kept in sync with nir_op_info
34 """
35 def __init__(self, name, output_size, output_type, input_sizes,
36 input_types, is_conversion, algebraic_properties, const_expr):
37 """Parameters:
38
39 - name is the name of the opcode (prepend nir_op_ for the enum name)
40 - all types are strings that get nir_type_ prepended to them
41 - input_types is a list of types
42 - is_conversion is true if this opcode represents a type conversion
43 - algebraic_properties is a space-seperated string, where nir_op_is_ is
44 prepended before each entry
45 - const_expr is an expression or series of statements that computes the
46 constant value of the opcode given the constant values of its inputs.
47
48 Constant expressions are formed from the variables src0, src1, ...,
49 src(N-1), where N is the number of arguments. The output of the
50 expression should be stored in the dst variable. Per-component input
51 and output variables will be scalars and non-per-component input and
52 output variables will be a struct with fields named x, y, z, and w
53 all of the correct type. Input and output variables can be assumed
54 to already be of the correct type and need no conversion. In
55 particular, the conversion from the C bool type to/from NIR_TRUE and
56 NIR_FALSE happens automatically.
57
58 For per-component instructions, the entire expression will be
59 executed once for each component. For non-per-component
60 instructions, the expression is expected to store the correct values
61 in dst.x, dst.y, etc. If "dst" does not exist anywhere in the
62 constant expression, an assignment to dst will happen automatically
63 and the result will be equivalent to "dst = <expression>" for
64 per-component instructions and "dst.x = dst.y = ... = <expression>"
65 for non-per-component instructions.
66 """
67 assert isinstance(name, str)
68 assert isinstance(output_size, int)
69 assert isinstance(output_type, str)
70 assert isinstance(input_sizes, list)
71 assert isinstance(input_sizes[0], int)
72 assert isinstance(input_types, list)
73 assert isinstance(input_types[0], str)
74 assert isinstance(is_conversion, bool)
75 assert isinstance(algebraic_properties, str)
76 assert isinstance(const_expr, str)
77 assert len(input_sizes) == len(input_types)
78 assert 0 <= output_size <= 4
79 for size in input_sizes:
80 assert 0 <= size <= 4
81 if output_size != 0:
82 assert size != 0
83 self.name = name
84 self.num_inputs = len(input_sizes)
85 self.output_size = output_size
86 self.output_type = output_type
87 self.input_sizes = input_sizes
88 self.input_types = input_types
89 self.is_conversion = is_conversion
90 self.algebraic_properties = algebraic_properties
91 self.const_expr = const_expr
92
93 # helper variables for strings
94 tfloat = "float"
95 tint = "int"
96 tbool = "bool"
97 tbool1 = "bool1"
98 tbool32 = "bool32"
99 tuint = "uint"
100 tuint16 = "uint16"
101 tfloat32 = "float32"
102 tint32 = "int32"
103 tuint32 = "uint32"
104 tint64 = "int64"
105 tuint64 = "uint64"
106 tfloat64 = "float64"
107
108 _TYPE_SPLIT_RE = re.compile(r'(?P<type>int|uint|float|bool)(?P<bits>\d+)?')
109
110 def type_has_size(type_):
111 m = _TYPE_SPLIT_RE.match(type_)
112 assert m is not None, 'Invalid NIR type string: "{}"'.format(type_)
113 return m.group('bits') is not None
114
115 def type_size(type_):
116 m = _TYPE_SPLIT_RE.match(type_)
117 assert m is not None, 'Invalid NIR type string: "{}"'.format(type_)
118 assert m.group('bits') is not None, \
119 'NIR type string has no bit size: "{}"'.format(type_)
120 return int(m.group('bits'))
121
122 def type_sizes(type_):
123 if type_has_size(type_):
124 return [type_size(type_)]
125 elif type_ == 'bool':
126 return [1, 32]
127 elif type_ == 'float':
128 return [16, 32, 64]
129 else:
130 return [1, 8, 16, 32, 64]
131
132 def type_base_type(type_):
133 m = _TYPE_SPLIT_RE.match(type_)
134 assert m is not None, 'Invalid NIR type string: "{}"'.format(type_)
135 return m.group('type')
136
137 commutative = "commutative "
138 associative = "associative "
139
140 # global dictionary of opcodes
141 opcodes = {}
142
143 def opcode(name, output_size, output_type, input_sizes, input_types,
144 is_conversion, algebraic_properties, const_expr):
145 assert name not in opcodes
146 opcodes[name] = Opcode(name, output_size, output_type, input_sizes,
147 input_types, is_conversion, algebraic_properties,
148 const_expr)
149
150 def unop_convert(name, out_type, in_type, const_expr):
151 opcode(name, 0, out_type, [0], [in_type], False, "", const_expr)
152
153 def unop(name, ty, const_expr):
154 opcode(name, 0, ty, [0], [ty], False, "", const_expr)
155
156 def unop_horiz(name, output_size, output_type, input_size, input_type,
157 const_expr):
158 opcode(name, output_size, output_type, [input_size], [input_type],
159 False, "", const_expr)
160
161 def unop_reduce(name, output_size, output_type, input_type, prereduce_expr,
162 reduce_expr, final_expr):
163 def prereduce(src):
164 return "(" + prereduce_expr.format(src=src) + ")"
165 def final(src):
166 return final_expr.format(src="(" + src + ")")
167 def reduce_(src0, src1):
168 return reduce_expr.format(src0=src0, src1=src1)
169 src0 = prereduce("src0.x")
170 src1 = prereduce("src0.y")
171 src2 = prereduce("src0.z")
172 src3 = prereduce("src0.w")
173 unop_horiz(name + "2", output_size, output_type, 2, input_type,
174 final(reduce_(src0, src1)))
175 unop_horiz(name + "3", output_size, output_type, 3, input_type,
176 final(reduce_(reduce_(src0, src1), src2)))
177 unop_horiz(name + "4", output_size, output_type, 4, input_type,
178 final(reduce_(reduce_(src0, src1), reduce_(src2, src3))))
179
180 def unop_numeric_convert(name, out_type, in_type, const_expr):
181 opcode(name, 0, out_type, [0], [in_type], True, "", const_expr)
182
183 # These two move instructions differ in what modifiers they support and what
184 # the negate modifier means. Otherwise, they are identical.
185 unop("fmov", tfloat, "src0")
186 unop("imov", tint, "src0")
187
188 unop("ineg", tint, "-src0")
189 unop("fneg", tfloat, "-src0")
190 unop("inot", tint, "~src0") # invert every bit of the integer
191 unop("fnot", tfloat, ("bit_size == 64 ? ((src0 == 0.0) ? 1.0 : 0.0f) : " +
192 "((src0 == 0.0f) ? 1.0f : 0.0f)"))
193 unop("fsign", tfloat, ("bit_size == 64 ? " +
194 "((src0 == 0.0) ? 0.0 : ((src0 > 0.0) ? 1.0 : -1.0)) : " +
195 "((src0 == 0.0f) ? 0.0f : ((src0 > 0.0f) ? 1.0f : -1.0f))"))
196 unop("isign", tint, "(src0 == 0) ? 0 : ((src0 > 0) ? 1 : -1)")
197 unop("iabs", tint, "(src0 < 0) ? -src0 : src0")
198 unop("fabs", tfloat, "fabs(src0)")
199 unop("fsat", tfloat, ("bit_size == 64 ? " +
200 "((src0 > 1.0) ? 1.0 : ((src0 <= 0.0) ? 0.0 : src0)) : " +
201 "((src0 > 1.0f) ? 1.0f : ((src0 <= 0.0f) ? 0.0f : src0))"))
202 unop("frcp", tfloat, "bit_size == 64 ? 1.0 / src0 : 1.0f / src0")
203 unop("frsq", tfloat, "bit_size == 64 ? 1.0 / sqrt(src0) : 1.0f / sqrtf(src0)")
204 unop("fsqrt", tfloat, "bit_size == 64 ? sqrt(src0) : sqrtf(src0)")
205 unop("fexp2", tfloat, "exp2f(src0)")
206 unop("flog2", tfloat, "log2f(src0)")
207
208 # Generate all of the numeric conversion opcodes
209 for src_t in [tint, tuint, tfloat, tbool]:
210 if src_t == tbool:
211 dst_types = [tfloat, tint]
212 elif src_t == tint:
213 dst_types = [tfloat, tint, tbool]
214 elif src_t == tuint:
215 dst_types = [tfloat, tuint]
216 elif src_t == tfloat:
217 dst_types = [tint, tuint, tfloat, tbool]
218
219 for dst_t in dst_types:
220 for bit_size in type_sizes(dst_t):
221 if bit_size == 16 and dst_t == tfloat and src_t == tfloat:
222 rnd_modes = ['_rtne', '_rtz', '']
223 for rnd_mode in rnd_modes:
224 unop_numeric_convert("{0}2{1}{2}{3}".format(src_t[0], dst_t[0],
225 bit_size, rnd_mode),
226 dst_t + str(bit_size), src_t, "src0")
227 else:
228 conv_expr = "src0 != 0" if dst_t == tbool else "src0"
229 unop_numeric_convert("{0}2{1}{2}".format(src_t[0], dst_t[0], bit_size),
230 dst_t + str(bit_size), src_t, conv_expr)
231
232
233 # Unary floating-point rounding operations.
234
235
236 unop("ftrunc", tfloat, "bit_size == 64 ? trunc(src0) : truncf(src0)")
237 unop("fceil", tfloat, "bit_size == 64 ? ceil(src0) : ceilf(src0)")
238 unop("ffloor", tfloat, "bit_size == 64 ? floor(src0) : floorf(src0)")
239 unop("ffract", tfloat, "src0 - (bit_size == 64 ? floor(src0) : floorf(src0))")
240 unop("fround_even", tfloat, "bit_size == 64 ? _mesa_roundeven(src0) : _mesa_roundevenf(src0)")
241
242 unop("fquantize2f16", tfloat, "(fabs(src0) < ldexpf(1.0, -14)) ? copysignf(0.0f, src0) : _mesa_half_to_float(_mesa_float_to_half(src0))")
243
244 # Trigonometric operations.
245
246
247 unop("fsin", tfloat, "bit_size == 64 ? sin(src0) : sinf(src0)")
248 unop("fcos", tfloat, "bit_size == 64 ? cos(src0) : cosf(src0)")
249
250 # dfrexp
251 unop_convert("frexp_exp", tint32, tfloat, "frexp(src0, &dst);")
252 unop_convert("frexp_sig", tfloat, tfloat, "int n; dst = frexp(src0, &n);")
253
254 # Partial derivatives.
255
256
257 unop("fddx", tfloat, "0.0") # the derivative of a constant is 0.
258 unop("fddy", tfloat, "0.0")
259 unop("fddx_fine", tfloat, "0.0")
260 unop("fddy_fine", tfloat, "0.0")
261 unop("fddx_coarse", tfloat, "0.0")
262 unop("fddy_coarse", tfloat, "0.0")
263
264
265 # Floating point pack and unpack operations.
266
267 def pack_2x16(fmt):
268 unop_horiz("pack_" + fmt + "_2x16", 1, tuint32, 2, tfloat32, """
269 dst.x = (uint32_t) pack_fmt_1x16(src0.x);
270 dst.x |= ((uint32_t) pack_fmt_1x16(src0.y)) << 16;
271 """.replace("fmt", fmt))
272
273 def pack_4x8(fmt):
274 unop_horiz("pack_" + fmt + "_4x8", 1, tuint32, 4, tfloat32, """
275 dst.x = (uint32_t) pack_fmt_1x8(src0.x);
276 dst.x |= ((uint32_t) pack_fmt_1x8(src0.y)) << 8;
277 dst.x |= ((uint32_t) pack_fmt_1x8(src0.z)) << 16;
278 dst.x |= ((uint32_t) pack_fmt_1x8(src0.w)) << 24;
279 """.replace("fmt", fmt))
280
281 def unpack_2x16(fmt):
282 unop_horiz("unpack_" + fmt + "_2x16", 2, tfloat32, 1, tuint32, """
283 dst.x = unpack_fmt_1x16((uint16_t)(src0.x & 0xffff));
284 dst.y = unpack_fmt_1x16((uint16_t)(src0.x << 16));
285 """.replace("fmt", fmt))
286
287 def unpack_4x8(fmt):
288 unop_horiz("unpack_" + fmt + "_4x8", 4, tfloat32, 1, tuint32, """
289 dst.x = unpack_fmt_1x8((uint8_t)(src0.x & 0xff));
290 dst.y = unpack_fmt_1x8((uint8_t)((src0.x >> 8) & 0xff));
291 dst.z = unpack_fmt_1x8((uint8_t)((src0.x >> 16) & 0xff));
292 dst.w = unpack_fmt_1x8((uint8_t)(src0.x >> 24));
293 """.replace("fmt", fmt))
294
295
296 pack_2x16("snorm")
297 pack_4x8("snorm")
298 pack_2x16("unorm")
299 pack_4x8("unorm")
300 pack_2x16("half")
301 unpack_2x16("snorm")
302 unpack_4x8("snorm")
303 unpack_2x16("unorm")
304 unpack_4x8("unorm")
305 unpack_2x16("half")
306
307 unop_horiz("pack_uvec2_to_uint", 1, tuint32, 2, tuint32, """
308 dst.x = (src0.x & 0xffff) | (src0.y << 16);
309 """)
310
311 unop_horiz("pack_uvec4_to_uint", 1, tuint32, 4, tuint32, """
312 dst.x = (src0.x << 0) |
313 (src0.y << 8) |
314 (src0.z << 16) |
315 (src0.w << 24);
316 """)
317
318 unop_horiz("pack_32_2x16", 1, tuint32, 2, tuint16,
319 "dst.x = src0.x | ((uint32_t)src0.y << 16);")
320
321 unop_horiz("pack_64_2x32", 1, tuint64, 2, tuint32,
322 "dst.x = src0.x | ((uint64_t)src0.y << 32);")
323
324 unop_horiz("pack_64_4x16", 1, tuint64, 4, tuint16,
325 "dst.x = src0.x | ((uint64_t)src0.y << 16) | ((uint64_t)src0.z << 32) | ((uint64_t)src0.w << 48);")
326
327 unop_horiz("unpack_64_2x32", 2, tuint32, 1, tuint64,
328 "dst.x = src0.x; dst.y = src0.x >> 32;")
329
330 unop_horiz("unpack_64_4x16", 4, tuint16, 1, tuint64,
331 "dst.x = src0.x; dst.y = src0.x >> 16; dst.z = src0.x >> 32; dst.w = src0.w >> 48;")
332
333 unop_horiz("unpack_32_2x16", 2, tuint16, 1, tuint32,
334 "dst.x = src0.x; dst.y = src0.x >> 16;")
335
336 # Lowered floating point unpacking operations.
337
338
339 unop_convert("unpack_half_2x16_split_x", tfloat32, tuint32,
340 "unpack_half_1x16((uint16_t)(src0 & 0xffff))")
341 unop_convert("unpack_half_2x16_split_y", tfloat32, tuint32,
342 "unpack_half_1x16((uint16_t)(src0 >> 16))")
343
344 unop_convert("unpack_32_2x16_split_x", tuint16, tuint32, "src0")
345 unop_convert("unpack_32_2x16_split_y", tuint16, tuint32, "src0 >> 16")
346
347 unop_convert("unpack_64_2x32_split_x", tuint32, tuint64, "src0")
348 unop_convert("unpack_64_2x32_split_y", tuint32, tuint64, "src0 >> 32")
349
350 # Bit operations, part of ARB_gpu_shader5.
351
352
353 unop("bitfield_reverse", tuint32, """
354 /* we're not winning any awards for speed here, but that's ok */
355 dst = 0;
356 for (unsigned bit = 0; bit < 32; bit++)
357 dst |= ((src0 >> bit) & 1) << (31 - bit);
358 """)
359 unop_convert("bit_count", tuint32, tuint, """
360 dst = 0;
361 for (unsigned bit = 0; bit < bit_size; bit++) {
362 if ((src0 >> bit) & 1)
363 dst++;
364 }
365 """)
366
367 unop_convert("ufind_msb", tint32, tuint, """
368 dst = -1;
369 for (int bit = bit_size - 1; bit >= 0; bit--) {
370 if ((src0 >> bit) & 1) {
371 dst = bit;
372 break;
373 }
374 }
375 """)
376
377 unop("ifind_msb", tint32, """
378 dst = -1;
379 for (int bit = 31; bit >= 0; bit--) {
380 /* If src0 < 0, we're looking for the first 0 bit.
381 * if src0 >= 0, we're looking for the first 1 bit.
382 */
383 if ((((src0 >> bit) & 1) && (src0 >= 0)) ||
384 (!((src0 >> bit) & 1) && (src0 < 0))) {
385 dst = bit;
386 break;
387 }
388 }
389 """)
390
391 unop_convert("find_lsb", tint32, tint, """
392 dst = -1;
393 for (unsigned bit = 0; bit < bit_size; bit++) {
394 if ((src0 >> bit) & 1) {
395 dst = bit;
396 break;
397 }
398 }
399 """)
400
401
402 for i in range(1, 5):
403 for j in range(1, 5):
404 unop_horiz("fnoise{0}_{1}".format(i, j), i, tfloat, j, tfloat, "0.0f")
405
406
407 # AMD_gcn_shader extended instructions
408 unop_horiz("cube_face_coord", 2, tfloat32, 3, tfloat32, """
409 dst.x = dst.y = 0.0;
410 float absX = fabs(src0.x);
411 float absY = fabs(src0.y);
412 float absZ = fabs(src0.z);
413
414 float ma = 0.0;
415 if (absX >= absY && absX >= absZ) { ma = 2 * src0.x; }
416 if (absY >= absX && absY >= absZ) { ma = 2 * src0.y; }
417 if (absZ >= absX && absZ >= absY) { ma = 2 * src0.z; }
418
419 if (src0.x >= 0 && absX >= absY && absX >= absZ) { dst.x = -src0.z; dst.y = -src0.y; }
420 if (src0.x < 0 && absX >= absY && absX >= absZ) { dst.x = src0.z; dst.y = -src0.y; }
421 if (src0.y >= 0 && absY >= absX && absY >= absZ) { dst.x = src0.x; dst.y = src0.z; }
422 if (src0.y < 0 && absY >= absX && absY >= absZ) { dst.x = src0.x; dst.y = -src0.z; }
423 if (src0.z >= 0 && absZ >= absX && absZ >= absY) { dst.x = src0.x; dst.y = -src0.y; }
424 if (src0.z < 0 && absZ >= absX && absZ >= absY) { dst.x = -src0.x; dst.y = -src0.y; }
425
426 dst.x = dst.x / ma + 0.5;
427 dst.y = dst.y / ma + 0.5;
428 """)
429
430 unop_horiz("cube_face_index", 1, tfloat32, 3, tfloat32, """
431 float absX = fabs(src0.x);
432 float absY = fabs(src0.y);
433 float absZ = fabs(src0.z);
434 if (src0.x >= 0 && absX >= absY && absX >= absZ) dst.x = 0;
435 if (src0.x < 0 && absX >= absY && absX >= absZ) dst.x = 1;
436 if (src0.y >= 0 && absY >= absX && absY >= absZ) dst.x = 2;
437 if (src0.y < 0 && absY >= absX && absY >= absZ) dst.x = 3;
438 if (src0.z >= 0 && absZ >= absX && absZ >= absY) dst.x = 4;
439 if (src0.z < 0 && absZ >= absX && absZ >= absY) dst.x = 5;
440 """)
441
442
443 def binop_convert(name, out_type, in_type, alg_props, const_expr):
444 opcode(name, 0, out_type, [0, 0], [in_type, in_type],
445 False, alg_props, const_expr)
446
447 def binop(name, ty, alg_props, const_expr):
448 binop_convert(name, ty, ty, alg_props, const_expr)
449
450 def binop_compare(name, ty, alg_props, const_expr):
451 binop_convert(name, tbool1, ty, alg_props, const_expr)
452
453 def binop_compare32(name, ty, alg_props, const_expr):
454 binop_convert(name, tbool32, ty, alg_props, const_expr)
455
456 def binop_horiz(name, out_size, out_type, src1_size, src1_type, src2_size,
457 src2_type, const_expr):
458 opcode(name, out_size, out_type, [src1_size, src2_size], [src1_type, src2_type],
459 False, "", const_expr)
460
461 def binop_reduce(name, output_size, output_type, src_type, prereduce_expr,
462 reduce_expr, final_expr):
463 def final(src):
464 return final_expr.format(src= "(" + src + ")")
465 def reduce_(src0, src1):
466 return reduce_expr.format(src0=src0, src1=src1)
467 def prereduce(src0, src1):
468 return "(" + prereduce_expr.format(src0=src0, src1=src1) + ")"
469 src0 = prereduce("src0.x", "src1.x")
470 src1 = prereduce("src0.y", "src1.y")
471 src2 = prereduce("src0.z", "src1.z")
472 src3 = prereduce("src0.w", "src1.w")
473 opcode(name + "2", output_size, output_type,
474 [2, 2], [src_type, src_type], False, commutative,
475 final(reduce_(src0, src1)))
476 opcode(name + "3", output_size, output_type,
477 [3, 3], [src_type, src_type], False, commutative,
478 final(reduce_(reduce_(src0, src1), src2)))
479 opcode(name + "4", output_size, output_type,
480 [4, 4], [src_type, src_type], False, commutative,
481 final(reduce_(reduce_(src0, src1), reduce_(src2, src3))))
482
483 binop("fadd", tfloat, commutative + associative, "src0 + src1")
484 binop("iadd", tint, commutative + associative, "src0 + src1")
485 binop("iadd_sat", tint, commutative + associative, """
486 src1 > 0 ?
487 (src0 + src1 < src0 ? (1ull << (bit_size - 1)) - 1 : src0 + src1) :
488 (src0 < src0 + src1 ? (1ull << (bit_size - 1)) : src0 + src1)
489 """)
490 binop("uadd_sat", tuint, commutative,
491 "(src0 + src1) < src0 ? MAX_UINT_FOR_SIZE(sizeof(src0) * 8) : (src0 + src1)")
492 binop("isub_sat", tint, "", """
493 src1 < 0 ?
494 (src0 - src1 < src0 ? (1ull << (bit_size - 1)) - 1 : src0 - src1) :
495 (src0 < src0 - src1 ? (1ull << (bit_size - 1)) : src0 - src1)
496 """)
497 binop("usub_sat", tuint, "", "src0 < src1 ? 0 : src0 - src1")
498
499 binop("fsub", tfloat, "", "src0 - src1")
500 binop("isub", tint, "", "src0 - src1")
501
502 binop("fmul", tfloat, commutative + associative, "src0 * src1")
503 # low 32-bits of signed/unsigned integer multiply
504 binop("imul", tint, commutative + associative, "src0 * src1")
505
506 # Generate 64 bit result from 2 32 bits quantity
507 binop_convert("imul_2x32_64", tint64, tint32, commutative,
508 "(int64_t)src0 * (int64_t)src1")
509 binop_convert("umul_2x32_64", tuint64, tuint32, commutative,
510 "(uint64_t)src0 * (uint64_t)src1")
511
512 # high 32-bits of signed integer multiply
513 binop("imul_high", tint, commutative, """
514 if (bit_size == 64) {
515 /* We need to do a full 128-bit x 128-bit multiply in order for the sign
516 * extension to work properly. The casts are kind-of annoying but needed
517 * to prevent compiler warnings.
518 */
519 uint32_t src0_u32[4] = {
520 src0,
521 (int64_t)src0 >> 32,
522 (int64_t)src0 >> 63,
523 (int64_t)src0 >> 63,
524 };
525 uint32_t src1_u32[4] = {
526 src1,
527 (int64_t)src1 >> 32,
528 (int64_t)src1 >> 63,
529 (int64_t)src1 >> 63,
530 };
531 uint32_t prod_u32[4];
532 ubm_mul_u32arr(prod_u32, src0_u32, src1_u32);
533 dst = (uint64_t)prod_u32[2] | ((uint64_t)prod_u32[3] << 32);
534 } else {
535 dst = ((int64_t)src0 * (int64_t)src1) >> bit_size;
536 }
537 """)
538
539 # high 32-bits of unsigned integer multiply
540 binop("umul_high", tuint, commutative, """
541 if (bit_size == 64) {
542 /* The casts are kind-of annoying but needed to prevent compiler warnings. */
543 uint32_t src0_u32[2] = { src0, (uint64_t)src0 >> 32 };
544 uint32_t src1_u32[2] = { src1, (uint64_t)src1 >> 32 };
545 uint32_t prod_u32[4];
546 ubm_mul_u32arr(prod_u32, src0_u32, src1_u32);
547 dst = (uint64_t)prod_u32[2] | ((uint64_t)prod_u32[3] << 32);
548 } else {
549 dst = ((uint64_t)src0 * (uint64_t)src1) >> bit_size;
550 }
551 """)
552
553 binop("fdiv", tfloat, "", "src0 / src1")
554 binop("idiv", tint, "", "src1 == 0 ? 0 : (src0 / src1)")
555 binop("udiv", tuint, "", "src1 == 0 ? 0 : (src0 / src1)")
556
557 # returns a boolean representing the carry resulting from the addition of
558 # the two unsigned arguments.
559
560 binop_convert("uadd_carry", tuint, tuint, commutative, "src0 + src1 < src0")
561
562 # returns a boolean representing the borrow resulting from the subtraction
563 # of the two unsigned arguments.
564
565 binop_convert("usub_borrow", tuint, tuint, "", "src0 < src1")
566
567 # hadd: (a + b) >> 1 (without overflow)
568 # x + y = x - (x & ~y) + (x & ~y) + y - (~x & y) + (~x & y)
569 # = (x & y) + (x & ~y) + (x & y) + (~x & y)
570 # = 2 * (x & y) + (x & ~y) + (~x & y)
571 # = ((x & y) << 1) + (x ^ y)
572 #
573 # Since we know that the bottom bit of (x & y) << 1 is zero,
574 #
575 # (x + y) >> 1 = (((x & y) << 1) + (x ^ y)) >> 1
576 # = (x & y) + ((x ^ y) >> 1)
577 binop("ihadd", tint, commutative, "(src0 & src1) + ((src0 ^ src1) >> 1)")
578 binop("uhadd", tuint, commutative, "(src0 & src1) + ((src0 ^ src1) >> 1)")
579
580 # rhadd: (a + b + 1) >> 1 (without overflow)
581 # x + y + 1 = x + (~x & y) - (~x & y) + y + (x & ~y) - (x & ~y) + 1
582 # = (x | y) - (~x & y) + (x | y) - (x & ~y) + 1
583 # = 2 * (x | y) - ((~x & y) + (x & ~y)) + 1
584 # = ((x | y) << 1) - (x ^ y) + 1
585 #
586 # Since we know that the bottom bit of (x & y) << 1 is zero,
587 #
588 # (x + y + 1) >> 1 = (x | y) + (-(x ^ y) + 1) >> 1)
589 # = (x | y) - ((x ^ y) >> 1)
590 binop("irhadd", tint, commutative, "(src0 | src1) + ((src0 ^ src1) >> 1)")
591 binop("urhadd", tuint, commutative, "(src0 | src1) + ((src0 ^ src1) >> 1)")
592
593 binop("umod", tuint, "", "src1 == 0 ? 0 : src0 % src1")
594
595 # For signed integers, there are several different possible definitions of
596 # "modulus" or "remainder". We follow the conventions used by LLVM and
597 # SPIR-V. The irem opcode implements the standard C/C++ signed "%"
598 # operation while the imod opcode implements the more mathematical
599 # "modulus" operation. For details on the difference, see
600 #
601 # http://mathforum.org/library/drmath/view/52343.html
602
603 binop("irem", tint, "", "src1 == 0 ? 0 : src0 % src1")
604 binop("imod", tint, "",
605 "src1 == 0 ? 0 : ((src0 % src1 == 0 || (src0 >= 0) == (src1 >= 0)) ?"
606 " src0 % src1 : src0 % src1 + src1)")
607 binop("fmod", tfloat, "", "src0 - src1 * floorf(src0 / src1)")
608 binop("frem", tfloat, "", "src0 - src1 * truncf(src0 / src1)")
609
610 #
611 # Comparisons
612 #
613
614
615 # these integer-aware comparisons return a boolean (0 or ~0)
616
617 binop_compare("flt", tfloat, "", "src0 < src1")
618 binop_compare("fge", tfloat, "", "src0 >= src1")
619 binop_compare("feq", tfloat, commutative, "src0 == src1")
620 binop_compare("fne", tfloat, commutative, "src0 != src1")
621 binop_compare("ilt", tint, "", "src0 < src1")
622 binop_compare("ige", tint, "", "src0 >= src1")
623 binop_compare("ieq", tint, commutative, "src0 == src1")
624 binop_compare("ine", tint, commutative, "src0 != src1")
625 binop_compare("ult", tuint, "", "src0 < src1")
626 binop_compare("uge", tuint, "", "src0 >= src1")
627 binop_compare32("flt32", tfloat, "", "src0 < src1")
628 binop_compare32("fge32", tfloat, "", "src0 >= src1")
629 binop_compare32("feq32", tfloat, commutative, "src0 == src1")
630 binop_compare32("fne32", tfloat, commutative, "src0 != src1")
631 binop_compare32("ilt32", tint, "", "src0 < src1")
632 binop_compare32("ige32", tint, "", "src0 >= src1")
633 binop_compare32("ieq32", tint, commutative, "src0 == src1")
634 binop_compare32("ine32", tint, commutative, "src0 != src1")
635 binop_compare32("ult32", tuint, "", "src0 < src1")
636 binop_compare32("uge32", tuint, "", "src0 >= src1")
637
638 # integer-aware GLSL-style comparisons that compare floats and ints
639
640 binop_reduce("ball_fequal", 1, tbool1, tfloat, "{src0} == {src1}",
641 "{src0} && {src1}", "{src}")
642 binop_reduce("bany_fnequal", 1, tbool1, tfloat, "{src0} != {src1}",
643 "{src0} || {src1}", "{src}")
644 binop_reduce("ball_iequal", 1, tbool1, tint, "{src0} == {src1}",
645 "{src0} && {src1}", "{src}")
646 binop_reduce("bany_inequal", 1, tbool1, tint, "{src0} != {src1}",
647 "{src0} || {src1}", "{src}")
648
649 binop_reduce("b32all_fequal", 1, tbool32, tfloat, "{src0} == {src1}",
650 "{src0} && {src1}", "{src}")
651 binop_reduce("b32any_fnequal", 1, tbool32, tfloat, "{src0} != {src1}",
652 "{src0} || {src1}", "{src}")
653 binop_reduce("b32all_iequal", 1, tbool32, tint, "{src0} == {src1}",
654 "{src0} && {src1}", "{src}")
655 binop_reduce("b32any_inequal", 1, tbool32, tint, "{src0} != {src1}",
656 "{src0} || {src1}", "{src}")
657
658 # non-integer-aware GLSL-style comparisons that return 0.0 or 1.0
659
660 binop_reduce("fall_equal", 1, tfloat32, tfloat32, "{src0} == {src1}",
661 "{src0} && {src1}", "{src} ? 1.0f : 0.0f")
662 binop_reduce("fany_nequal", 1, tfloat32, tfloat32, "{src0} != {src1}",
663 "{src0} || {src1}", "{src} ? 1.0f : 0.0f")
664
665 # These comparisons for integer-less hardware return 1.0 and 0.0 for true
666 # and false respectively
667
668 binop("slt", tfloat32, "", "(src0 < src1) ? 1.0f : 0.0f") # Set on Less Than
669 binop("sge", tfloat, "", "(src0 >= src1) ? 1.0f : 0.0f") # Set on Greater or Equal
670 binop("seq", tfloat32, commutative, "(src0 == src1) ? 1.0f : 0.0f") # Set on Equal
671 binop("sne", tfloat32, commutative, "(src0 != src1) ? 1.0f : 0.0f") # Set on Not Equal
672
673 # SPIRV shifts are undefined for shift-operands >= bitsize,
674 # but SM5 shifts are defined to use the least significant bits, only
675 # The NIR definition is according to the SM5 specification.
676 opcode("ishl", 0, tint, [0, 0], [tint, tuint32], False, "",
677 "src0 << (src1 & (sizeof(src0) * 8 - 1))")
678 opcode("ishr", 0, tint, [0, 0], [tint, tuint32], False, "",
679 "src0 >> (src1 & (sizeof(src0) * 8 - 1))")
680 opcode("ushr", 0, tuint, [0, 0], [tuint, tuint32], False, "",
681 "src0 >> (src1 & (sizeof(src0) * 8 - 1))")
682
683 # bitwise logic operators
684 #
685 # These are also used as boolean and, or, xor for hardware supporting
686 # integers.
687
688
689 binop("iand", tuint, commutative + associative, "src0 & src1")
690 binop("ior", tuint, commutative + associative, "src0 | src1")
691 binop("ixor", tuint, commutative + associative, "src0 ^ src1")
692
693
694 # floating point logic operators
695 #
696 # These use (src != 0.0) for testing the truth of the input, and output 1.0
697 # for true and 0.0 for false
698
699 binop("fand", tfloat32, commutative,
700 "((src0 != 0.0f) && (src1 != 0.0f)) ? 1.0f : 0.0f")
701 binop("for", tfloat32, commutative,
702 "((src0 != 0.0f) || (src1 != 0.0f)) ? 1.0f : 0.0f")
703 binop("fxor", tfloat32, commutative,
704 "(src0 != 0.0f && src1 == 0.0f) || (src0 == 0.0f && src1 != 0.0f) ? 1.0f : 0.0f")
705
706 binop_reduce("fdot", 1, tfloat, tfloat, "{src0} * {src1}", "{src0} + {src1}",
707 "{src}")
708
709 binop_reduce("fdot_replicated", 4, tfloat, tfloat,
710 "{src0} * {src1}", "{src0} + {src1}", "{src}")
711
712 opcode("fdph", 1, tfloat, [3, 4], [tfloat, tfloat], False, "",
713 "src0.x * src1.x + src0.y * src1.y + src0.z * src1.z + src1.w")
714 opcode("fdph_replicated", 4, tfloat, [3, 4], [tfloat, tfloat], False, "",
715 "src0.x * src1.x + src0.y * src1.y + src0.z * src1.z + src1.w")
716
717 binop("fmin", tfloat, "", "fminf(src0, src1)")
718 binop("imin", tint, commutative + associative, "src1 > src0 ? src0 : src1")
719 binop("umin", tuint, commutative + associative, "src1 > src0 ? src0 : src1")
720 binop("fmax", tfloat, "", "fmaxf(src0, src1)")
721 binop("imax", tint, commutative + associative, "src1 > src0 ? src1 : src0")
722 binop("umax", tuint, commutative + associative, "src1 > src0 ? src1 : src0")
723
724 # Saturated vector add for 4 8bit ints.
725 binop("usadd_4x8", tint32, commutative + associative, """
726 dst = 0;
727 for (int i = 0; i < 32; i += 8) {
728 dst |= MIN2(((src0 >> i) & 0xff) + ((src1 >> i) & 0xff), 0xff) << i;
729 }
730 """)
731
732 # Saturated vector subtract for 4 8bit ints.
733 binop("ussub_4x8", tint32, "", """
734 dst = 0;
735 for (int i = 0; i < 32; i += 8) {
736 int src0_chan = (src0 >> i) & 0xff;
737 int src1_chan = (src1 >> i) & 0xff;
738 if (src0_chan > src1_chan)
739 dst |= (src0_chan - src1_chan) << i;
740 }
741 """)
742
743 # vector min for 4 8bit ints.
744 binop("umin_4x8", tint32, commutative + associative, """
745 dst = 0;
746 for (int i = 0; i < 32; i += 8) {
747 dst |= MIN2((src0 >> i) & 0xff, (src1 >> i) & 0xff) << i;
748 }
749 """)
750
751 # vector max for 4 8bit ints.
752 binop("umax_4x8", tint32, commutative + associative, """
753 dst = 0;
754 for (int i = 0; i < 32; i += 8) {
755 dst |= MAX2((src0 >> i) & 0xff, (src1 >> i) & 0xff) << i;
756 }
757 """)
758
759 # unorm multiply: (a * b) / 255.
760 binop("umul_unorm_4x8", tint32, commutative + associative, """
761 dst = 0;
762 for (int i = 0; i < 32; i += 8) {
763 int src0_chan = (src0 >> i) & 0xff;
764 int src1_chan = (src1 >> i) & 0xff;
765 dst |= ((src0_chan * src1_chan) / 255) << i;
766 }
767 """)
768
769 binop("fpow", tfloat, "", "bit_size == 64 ? powf(src0, src1) : pow(src0, src1)")
770
771 binop_horiz("pack_half_2x16_split", 1, tuint32, 1, tfloat32, 1, tfloat32,
772 "pack_half_1x16(src0.x) | (pack_half_1x16(src1.x) << 16)")
773
774 binop_convert("pack_64_2x32_split", tuint64, tuint32, "",
775 "src0 | ((uint64_t)src1 << 32)")
776
777 binop_convert("pack_32_2x16_split", tuint32, tuint16, "",
778 "src0 | ((uint32_t)src1 << 16)")
779
780 # bfm implements the behavior of the first operation of the SM5 "bfi" assembly
781 # and that of the "bfi1" i965 instruction. That is, it has undefined behavior
782 # if either of its arguments are 32.
783 binop_convert("bfm", tuint32, tint32, "", """
784 int bits = src0, offset = src1;
785 if (offset < 0 || bits < 0 || offset > 31 || bits > 31 || offset + bits > 32)
786 dst = 0; /* undefined */
787 else
788 dst = ((1u << bits) - 1) << offset;
789 """)
790
791 opcode("ldexp", 0, tfloat, [0, 0], [tfloat, tint32], False, "", """
792 dst = (bit_size == 64) ? ldexp(src0, src1) : ldexpf(src0, src1);
793 /* flush denormals to zero. */
794 if (!isnormal(dst))
795 dst = copysignf(0.0f, src0);
796 """)
797
798 # Combines the first component of each input to make a 2-component vector.
799
800 binop_horiz("vec2", 2, tuint, 1, tuint, 1, tuint, """
801 dst.x = src0.x;
802 dst.y = src1.x;
803 """)
804
805 # Byte extraction
806 binop("extract_u8", tuint, "", "(uint8_t)(src0 >> (src1 * 8))")
807 binop("extract_i8", tint, "", "(int8_t)(src0 >> (src1 * 8))")
808
809 # Word extraction
810 binop("extract_u16", tuint, "", "(uint16_t)(src0 >> (src1 * 16))")
811 binop("extract_i16", tint, "", "(int16_t)(src0 >> (src1 * 16))")
812
813
814 def triop(name, ty, const_expr):
815 opcode(name, 0, ty, [0, 0, 0], [ty, ty, ty], False, "", const_expr)
816 def triop_horiz(name, output_size, src1_size, src2_size, src3_size, const_expr):
817 opcode(name, output_size, tuint,
818 [src1_size, src2_size, src3_size],
819 [tuint, tuint, tuint], False, "", const_expr)
820
821 triop("ffma", tfloat, "src0 * src1 + src2")
822
823 triop("flrp", tfloat, "src0 * (1 - src2) + src1 * src2")
824
825 # Conditional Select
826 #
827 # A vector conditional select instruction (like ?:, but operating per-
828 # component on vectors). There are two versions, one for floating point
829 # bools (0.0 vs 1.0) and one for integer bools (0 vs ~0).
830
831
832 triop("fcsel", tfloat32, "(src0 != 0.0f) ? src1 : src2")
833
834 # 3 way min/max/med
835 triop("fmin3", tfloat, "fminf(src0, fminf(src1, src2))")
836 triop("imin3", tint, "MIN2(src0, MIN2(src1, src2))")
837 triop("umin3", tuint, "MIN2(src0, MIN2(src1, src2))")
838
839 triop("fmax3", tfloat, "fmaxf(src0, fmaxf(src1, src2))")
840 triop("imax3", tint, "MAX2(src0, MAX2(src1, src2))")
841 triop("umax3", tuint, "MAX2(src0, MAX2(src1, src2))")
842
843 triop("fmed3", tfloat, "fmaxf(fminf(fmaxf(src0, src1), src2), fminf(src0, src1))")
844 triop("imed3", tint, "MAX2(MIN2(MAX2(src0, src1), src2), MIN2(src0, src1))")
845 triop("umed3", tuint, "MAX2(MIN2(MAX2(src0, src1), src2), MIN2(src0, src1))")
846
847 opcode("bcsel", 0, tuint, [0, 0, 0],
848 [tbool1, tuint, tuint], False, "", "src0 ? src1 : src2")
849 opcode("b32csel", 0, tuint, [0, 0, 0],
850 [tbool32, tuint, tuint], False, "", "src0 ? src1 : src2")
851
852 # SM5 bfi assembly
853 triop("bfi", tuint32, """
854 unsigned mask = src0, insert = src1, base = src2;
855 if (mask == 0) {
856 dst = base;
857 } else {
858 unsigned tmp = mask;
859 while (!(tmp & 1)) {
860 tmp >>= 1;
861 insert <<= 1;
862 }
863 dst = (base & ~mask) | (insert & mask);
864 }
865 """)
866
867 # SM5 ubfe/ibfe assembly
868 opcode("ubfe", 0, tuint32,
869 [0, 0, 0], [tuint32, tint32, tint32], False, "", """
870 unsigned base = src0;
871 int offset = src1, bits = src2;
872 if (bits == 0) {
873 dst = 0;
874 } else if (bits < 0 || offset < 0) {
875 dst = 0; /* undefined */
876 } else if (offset + bits < 32) {
877 dst = (base << (32 - bits - offset)) >> (32 - bits);
878 } else {
879 dst = base >> offset;
880 }
881 """)
882 opcode("ibfe", 0, tint32,
883 [0, 0, 0], [tint32, tint32, tint32], False, "", """
884 int base = src0;
885 int offset = src1, bits = src2;
886 if (bits == 0) {
887 dst = 0;
888 } else if (bits < 0 || offset < 0) {
889 dst = 0; /* undefined */
890 } else if (offset + bits < 32) {
891 dst = (base << (32 - bits - offset)) >> (32 - bits);
892 } else {
893 dst = base >> offset;
894 }
895 """)
896
897 # GLSL bitfieldExtract()
898 opcode("ubitfield_extract", 0, tuint32,
899 [0, 0, 0], [tuint32, tint32, tint32], False, "", """
900 unsigned base = src0;
901 int offset = src1, bits = src2;
902 if (bits == 0) {
903 dst = 0;
904 } else if (bits < 0 || offset < 0 || offset + bits > 32) {
905 dst = 0; /* undefined per the spec */
906 } else {
907 dst = (base >> offset) & ((1ull << bits) - 1);
908 }
909 """)
910 opcode("ibitfield_extract", 0, tint32,
911 [0, 0, 0], [tint32, tint32, tint32], False, "", """
912 int base = src0;
913 int offset = src1, bits = src2;
914 if (bits == 0) {
915 dst = 0;
916 } else if (offset < 0 || bits < 0 || offset + bits > 32) {
917 dst = 0;
918 } else {
919 dst = (base << (32 - offset - bits)) >> offset; /* use sign-extending shift */
920 }
921 """)
922
923 # Combines the first component of each input to make a 3-component vector.
924
925 triop_horiz("vec3", 3, 1, 1, 1, """
926 dst.x = src0.x;
927 dst.y = src1.x;
928 dst.z = src2.x;
929 """)
930
931 def quadop_horiz(name, output_size, src1_size, src2_size, src3_size,
932 src4_size, const_expr):
933 opcode(name, output_size, tuint,
934 [src1_size, src2_size, src3_size, src4_size],
935 [tuint, tuint, tuint, tuint],
936 False, "", const_expr)
937
938 opcode("bitfield_insert", 0, tuint32, [0, 0, 0, 0],
939 [tuint32, tuint32, tint32, tint32], False, "", """
940 unsigned base = src0, insert = src1;
941 int offset = src2, bits = src3;
942 if (bits == 0) {
943 dst = base;
944 } else if (offset < 0 || bits < 0 || bits + offset > 32) {
945 dst = 0;
946 } else {
947 unsigned mask = ((1ull << bits) - 1) << offset;
948 dst = (base & ~mask) | ((insert << offset) & mask);
949 }
950 """)
951
952 quadop_horiz("vec4", 4, 1, 1, 1, 1, """
953 dst.x = src0.x;
954 dst.y = src1.x;
955 dst.z = src2.x;
956 dst.w = src3.x;
957 """)
958
959