nir/algebraic: add distributive rules for ior/iand
[mesa.git] / src / compiler / nir / nir_opt_algebraic.py
1 #
2 # Copyright (C) 2014 Intel Corporation
3 #
4 # Permission is hereby granted, free of charge, to any person obtaining a
5 # copy of this software and associated documentation files (the "Software"),
6 # to deal in the Software without restriction, including without limitation
7 # the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 # and/or sell copies of the Software, and to permit persons to whom the
9 # Software is furnished to do so, subject to the following conditions:
10 #
11 # The above copyright notice and this permission notice (including the next
12 # paragraph) shall be included in all copies or substantial portions of the
13 # Software.
14 #
15 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 # IN THE SOFTWARE.
22 #
23 # Authors:
24 # Jason Ekstrand (jason@jlekstrand.net)
25
26 from __future__ import print_function
27
28 from collections import OrderedDict
29 import nir_algebraic
30 from nir_opcodes import type_sizes
31 import itertools
32 import struct
33 from math import pi
34
35 # Convenience variables
36 a = 'a'
37 b = 'b'
38 c = 'c'
39 d = 'd'
40 e = 'e'
41
42 # Written in the form (<search>, <replace>) where <search> is an expression
43 # and <replace> is either an expression or a value. An expression is
44 # defined as a tuple of the form ([~]<op>, <src0>, <src1>, <src2>, <src3>)
45 # where each source is either an expression or a value. A value can be
46 # either a numeric constant or a string representing a variable name.
47 #
48 # If the opcode in a search expression is prefixed by a '~' character, this
49 # indicates that the operation is inexact. Such operations will only get
50 # applied to SSA values that do not have the exact bit set. This should be
51 # used by by any optimizations that are not bit-for-bit exact. It should not,
52 # however, be used for backend-requested lowering operations as those need to
53 # happen regardless of precision.
54 #
55 # Variable names are specified as "[#]name[@type][(cond)][.swiz]" where:
56 # "#" indicates that the given variable will only match constants,
57 # type indicates that the given variable will only match values from ALU
58 # instructions with the given output type,
59 # (cond) specifies an additional condition function (see nir_search_helpers.h),
60 # swiz is a swizzle applied to the variable (only in the <replace> expression)
61 #
62 # For constants, you have to be careful to make sure that it is the right
63 # type because python is unaware of the source and destination types of the
64 # opcodes.
65 #
66 # All expression types can have a bit-size specified. For opcodes, this
67 # looks like "op@32", for variables it is "a@32" or "a@uint32" to specify a
68 # type and size. In the search half of the expression this indicates that it
69 # should only match that particular bit-size. In the replace half of the
70 # expression this indicates that the constructed value should have that
71 # bit-size.
72 #
73 # If the opcode in a replacement expression is prefixed by a '!' character,
74 # this indicated that the new expression will be marked exact.
75 #
76 # A special condition "many-comm-expr" can be used with expressions to note
77 # that the expression and its subexpressions have more commutative expressions
78 # than nir_replace_instr can handle. If this special condition is needed with
79 # another condition, the two can be separated by a comma (e.g.,
80 # "(many-comm-expr,is_used_once)").
81
82 # based on https://web.archive.org/web/20180105155939/http://forum.devmaster.net/t/fast-and-accurate-sine-cosine/9648
83 def lowered_sincos(c):
84 x = ('fsub', ('fmul', 2.0, ('ffract', ('fadd', ('fmul', 0.5 / pi, a), c))), 1.0)
85 x = ('fmul', ('fsub', x, ('fmul', x, ('fabs', x))), 4.0)
86 return ('ffma', ('ffma', x, ('fabs', x), ('fneg', x)), 0.225, x)
87
88 def intBitsToFloat(i):
89 return struct.unpack('!f', struct.pack('!I', i))[0]
90
91 optimizations = [
92
93 (('imul', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
94 (('imul', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
95 (('ishl', a, '#b@32'), ('imul', a, ('ishl', 1, b)), 'options->lower_bitops'),
96
97 (('unpack_64_2x32_split_x', ('imul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
98 (('unpack_64_2x32_split_x', ('umul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
99 (('imul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('imul_high', a, b)), 'options->lower_mul_2x32_64'),
100 (('umul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('umul_high', a, b)), 'options->lower_mul_2x32_64'),
101 (('udiv', a, 1), a),
102 (('idiv', a, 1), a),
103 (('umod', a, 1), 0),
104 (('imod', a, 1), 0),
105 (('udiv', a, '#b@32(is_pos_power_of_two)'), ('ushr', a, ('find_lsb', b)), '!options->lower_bitops'),
106 (('idiv', a, '#b@32(is_pos_power_of_two)'), ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', b))), 'options->lower_idiv'),
107 (('idiv', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', ('iabs', b))))), 'options->lower_idiv'),
108 (('umod', a, '#b(is_pos_power_of_two)'), ('iand', a, ('isub', b, 1))),
109
110 (('~fneg', ('fneg', a)), a),
111 (('ineg', ('ineg', a)), a),
112 (('fabs', ('fneg', a)), ('fabs', a)),
113 (('fabs', ('u2f', a)), ('u2f', a)),
114 (('iabs', ('iabs', a)), ('iabs', a)),
115 (('iabs', ('ineg', a)), ('iabs', a)),
116 (('f2b', ('fneg', a)), ('f2b', a)),
117 (('i2b', ('ineg', a)), ('i2b', a)),
118 (('~fadd', a, 0.0), a),
119 (('iadd', a, 0), a),
120 (('usadd_4x8', a, 0), a),
121 (('usadd_4x8', a, ~0), ~0),
122 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
123 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
124 (('iand', ('ior', a, b), ('ior', a, c)), ('ior', a, ('iand', b, c))),
125 (('ior', ('iand', a, b), ('iand', a, c)), ('iand', a, ('ior', b, c))),
126 (('~fadd', ('fneg', a), a), 0.0),
127 (('iadd', ('ineg', a), a), 0),
128 (('iadd', ('ineg', a), ('iadd', a, b)), b),
129 (('iadd', a, ('iadd', ('ineg', a), b)), b),
130 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
131 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
132 (('fadd', ('fsat', a), ('fsat', ('fneg', a))), ('fsat', ('fabs', a))),
133 (('~fmul', a, 0.0), 0.0),
134 (('imul', a, 0), 0),
135 (('umul_unorm_4x8', a, 0), 0),
136 (('umul_unorm_4x8', a, ~0), a),
137 (('~fmul', a, 1.0), a),
138 (('imul', a, 1), a),
139 (('fmul', a, -1.0), ('fneg', a)),
140 (('imul', a, -1), ('ineg', a)),
141 # If a < 0: fsign(a)*a*a => -1*a*a => -a*a => abs(a)*a
142 # If a > 0: fsign(a)*a*a => 1*a*a => a*a => abs(a)*a
143 # If a == 0: fsign(a)*a*a => 0*0*0 => abs(0)*0
144 (('fmul', ('fsign', a), ('fmul', a, a)), ('fmul', ('fabs', a), a)),
145 (('fmul', ('fmul', ('fsign', a), a), a), ('fmul', ('fabs', a), a)),
146 (('~ffma', 0.0, a, b), b),
147 (('~ffma', a, b, 0.0), ('fmul', a, b)),
148 (('ffma', 1.0, a, b), ('fadd', a, b)),
149 (('ffma', -1.0, a, b), ('fadd', ('fneg', a), b)),
150 (('~flrp', a, b, 0.0), a),
151 (('~flrp', a, b, 1.0), b),
152 (('~flrp', a, a, b), a),
153 (('~flrp', 0.0, a, b), ('fmul', a, b)),
154
155 # flrp(a, a + b, c) => a + flrp(0, b, c) => a + (b * c)
156 (('~flrp', a, ('fadd(is_used_once)', a, b), c), ('fadd', ('fmul', b, c), a)),
157 (('~flrp@32', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp32'),
158 (('~flrp@64', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp64'),
159
160 (('~flrp@32', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp32'),
161 (('~flrp@64', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp64'),
162
163 (('~flrp@32', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp32'),
164 (('~flrp@64', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp64'),
165
166 (('~flrp', ('fmul(is_used_once)', a, b), ('fmul(is_used_once)', a, c), d), ('fmul', ('flrp', b, c, d), a)),
167
168 (('~flrp', a, b, ('b2f', 'c@1')), ('bcsel', c, b, a), 'options->lower_flrp32'),
169 (('~flrp', a, 0.0, c), ('fadd', ('fmul', ('fneg', a), c), a)),
170 (('ftrunc', a), ('bcsel', ('flt', a, 0.0), ('fneg', ('ffloor', ('fabs', a))), ('ffloor', ('fabs', a))), 'options->lower_ftrunc'),
171 (('ffloor', a), ('fsub', a, ('ffract', a)), 'options->lower_ffloor'),
172 (('fadd', a, ('fneg', ('ffract', a))), ('ffloor', a), '!options->lower_ffloor'),
173 (('ffract', a), ('fsub', a, ('ffloor', a)), 'options->lower_ffract'),
174 (('fceil', a), ('fneg', ('ffloor', ('fneg', a))), 'options->lower_fceil'),
175 (('~fadd', ('fmul', a, ('fadd', 1.0, ('fneg', ('b2f', 'c@1')))), ('fmul', b, ('b2f', c))), ('bcsel', c, b, a), 'options->lower_flrp32'),
176 (('~fadd@32', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp32'),
177 (('~fadd@64', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp64'),
178 # These are the same as the previous three rules, but it depends on
179 # 1-fsat(x) <=> fsat(1-x). See below.
180 (('~fadd@32', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp32'),
181 (('~fadd@64', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp64'),
182
183 (('~fadd', a, ('fmul', ('b2f', 'c@1'), ('fadd', b, ('fneg', a)))), ('bcsel', c, b, a), 'options->lower_flrp32'),
184 (('~fadd@32', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp32'),
185 (('~fadd@64', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp64'),
186 (('ffma', a, b, c), ('fadd', ('fmul', a, b), c), 'options->lower_ffma'),
187 (('~fadd', ('fmul', a, b), c), ('ffma', a, b, c), 'options->fuse_ffma'),
188
189 (('~fmul', ('fadd', ('iand', ('ineg', ('b2i32', 'a@bool')), ('fmul', b, c)), '#d'), '#e'),
190 ('bcsel', a, ('fmul', ('fadd', ('fmul', b, c), d), e), ('fmul', d, e))),
191
192 (('fdph', a, b), ('fdot4', ('vec4', 'a.x', 'a.y', 'a.z', 1.0), b), 'options->lower_fdph'),
193
194 (('fdot4', ('vec4', a, b, c, 1.0), d), ('fdph', ('vec3', a, b, c), d), '!options->lower_fdph'),
195 (('fdot4', ('vec4', a, 0.0, 0.0, 0.0), b), ('fmul', a, b)),
196 (('fdot4', ('vec4', a, b, 0.0, 0.0), c), ('fdot2', ('vec2', a, b), c)),
197 (('fdot4', ('vec4', a, b, c, 0.0), d), ('fdot3', ('vec3', a, b, c), d)),
198
199 (('fdot3', ('vec3', a, 0.0, 0.0), b), ('fmul', a, b)),
200 (('fdot3', ('vec3', a, b, 0.0), c), ('fdot2', ('vec2', a, b), c)),
201
202 (('fdot2', ('vec2', a, 0.0), b), ('fmul', a, b)),
203 (('fdot2', a, 1.0), ('fadd', 'a.x', 'a.y')),
204
205 # Lower fdot to fsum when it is available
206 (('fdot2', a, b), ('fsum2', ('fmul', a, b)), 'options->lower_fdot'),
207 (('fdot3', a, b), ('fsum3', ('fmul', a, b)), 'options->lower_fdot'),
208 (('fdot4', a, b), ('fsum4', ('fmul', a, b)), 'options->lower_fdot'),
209 (('fsum2', a), ('fadd', 'a.x', 'a.y'), 'options->lower_fdot'),
210
211 # If x >= 0 and x <= 1: fsat(1 - x) == 1 - fsat(x) trivially
212 # If x < 0: 1 - fsat(x) => 1 - 0 => 1 and fsat(1 - x) => fsat(> 1) => 1
213 # If x > 1: 1 - fsat(x) => 1 - 1 => 0 and fsat(1 - x) => fsat(< 0) => 0
214 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
215
216 # 1 - ((1 - a) * (1 - b))
217 # 1 - (1 - a - b + a*b)
218 # 1 - 1 + a + b - a*b
219 # a + b - a*b
220 # a + b*(1 - a)
221 # b*(1 - a) + 1*a
222 # flrp(b, 1, a)
223 (('~fadd@32', 1.0, ('fneg', ('fmul', ('fadd', 1.0, ('fneg', a)), ('fadd', 1.0, ('fneg', b))))),
224 ('flrp', b, 1.0, a), '!options->lower_flrp32'),
225
226 # (a * #b + #c) << #d
227 # ((a * #b) << #d) + (#c << #d)
228 # (a * (#b << #d)) + (#c << #d)
229 (('ishl', ('iadd', ('imul', a, '#b'), '#c'), '#d'),
230 ('iadd', ('imul', a, ('ishl', b, d)), ('ishl', c, d))),
231
232 # (a * #b) << #c
233 # a * (#b << #c)
234 (('ishl', ('imul', a, '#b'), '#c'), ('imul', a, ('ishl', b, c))),
235 ]
236
237 # Care must be taken here. Shifts in NIR uses only the lower log2(bitsize)
238 # bits of the second source. These replacements must correctly handle the
239 # case where (b % bitsize) + (c % bitsize) >= bitsize.
240 for s in [8, 16, 32, 64]:
241 mask = (1 << s) - 1
242
243 ishl = "ishl@{}".format(s)
244 ishr = "ishr@{}".format(s)
245 ushr = "ushr@{}".format(s)
246
247 in_bounds = ('ult', ('iadd', ('iand', b, mask), ('iand', c, mask)), s)
248
249 optimizations.extend([
250 ((ishl, (ishl, a, '#b'), '#c'), ('bcsel', in_bounds, (ishl, a, ('iadd', b, c)), 0)),
251 ((ushr, (ushr, a, '#b'), '#c'), ('bcsel', in_bounds, (ushr, a, ('iadd', b, c)), 0)),
252
253 # To get get -1 for large shifts of negative values, ishr must instead
254 # clamp the shift count to the maximum value.
255 ((ishr, (ishr, a, '#b'), '#c'),
256 (ishr, a, ('imin', ('iadd', ('iand', b, mask), ('iand', c, mask)), s - 1))),
257 ])
258
259 # Optimize a pattern of address calculation created by DXVK where the offset is
260 # divided by 4 and then multipled by 4. This can be turned into an iand and the
261 # additions before can be reassociated to CSE the iand instruction.
262 for log2 in range(1, 7): # powers of two from 2 to 64
263 v = 1 << log2
264 mask = 0xffffffff & ~(v - 1)
265 b_is_multiple = '#b(is_unsigned_multiple_of_{})'.format(v)
266
267 optimizations.extend([
268 # 'a >> #b << #b' -> 'a & ~((1 << #b) - 1)'
269 (('ishl@32', ('ushr@32', a, log2), log2), ('iand', a, mask)),
270
271 # Reassociate for improved CSE
272 (('iand@32', ('iadd@32', a, b_is_multiple), mask), ('iadd', ('iand', a, mask), b)),
273 ])
274
275 # To save space in the state tables, reduce to the set that is known to help.
276 # Previously, this was range(1, 32). In addition, a couple rules inside the
277 # loop are commented out. Revisit someday, probably after mesa/#2635 has some
278 # resolution.
279 for i in [1, 2, 16, 24]:
280 lo_mask = 0xffffffff >> i
281 hi_mask = (0xffffffff << i) & 0xffffffff
282
283 optimizations.extend([
284 # This pattern seems to only help in the soft-fp64 code.
285 (('ishl@32', ('iand', 'a@32', lo_mask), i), ('ishl', a, i)),
286 # (('ushr@32', ('iand', 'a@32', hi_mask), i), ('ushr', a, i)),
287 # (('ishr@32', ('iand', 'a@32', hi_mask), i), ('ishr', a, i)),
288
289 (('iand', ('ishl', 'a@32', i), hi_mask), ('ishl', a, i)),
290 (('iand', ('ushr', 'a@32', i), lo_mask), ('ushr', a, i)),
291 # (('iand', ('ishr', 'a@32', i), lo_mask), ('ushr', a, i)), # Yes, ushr is correct
292 ])
293
294 optimizations.extend([
295 # This is common for address calculations. Reassociating may enable the
296 # 'a<<c' to be CSE'd. It also helps architectures that have an ISHLADD
297 # instruction or a constant offset field for in load / store instructions.
298 (('ishl', ('iadd', a, '#b'), '#c'), ('iadd', ('ishl', a, c), ('ishl', b, c))),
299
300 # Comparison simplifications
301 (('~inot', ('flt', a, b)), ('fge', a, b)),
302 (('~inot', ('fge', a, b)), ('flt', a, b)),
303 (('inot', ('feq', a, b)), ('fne', a, b)),
304 (('inot', ('fne', a, b)), ('feq', a, b)),
305 (('inot', ('ilt', a, b)), ('ige', a, b)),
306 (('inot', ('ult', a, b)), ('uge', a, b)),
307 (('inot', ('ige', a, b)), ('ilt', a, b)),
308 (('inot', ('uge', a, b)), ('ult', a, b)),
309 (('inot', ('ieq', a, b)), ('ine', a, b)),
310 (('inot', ('ine', a, b)), ('ieq', a, b)),
311
312 (('iand', ('feq', a, b), ('fne', a, b)), False),
313 (('iand', ('flt', a, b), ('flt', b, a)), False),
314 (('iand', ('ieq', a, b), ('ine', a, b)), False),
315 (('iand', ('ilt', a, b), ('ilt', b, a)), False),
316 (('iand', ('ult', a, b), ('ult', b, a)), False),
317
318 # This helps some shaders because, after some optimizations, they end up
319 # with patterns like (-a < -b) || (b < a). In an ideal world, this sort of
320 # matching would be handled by CSE.
321 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
322 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
323 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
324 (('fne', ('fneg', a), ('fneg', b)), ('fne', b, a)),
325 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
326 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
327 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
328 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
329 (('fne', ('fneg', a), -1.0), ('fne', 1.0, a)),
330 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
331
332 (('flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
333 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
334 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
335 (('fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
336 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
337 (('fne', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fne', a, b)),
338
339 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
340 (('flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
341 (('fge', 0.0, ('fsat(is_used_once)', a)), ('fge', 0.0, a)),
342 (('flt', 0.0, ('fsat(is_used_once)', a)), ('flt', 0.0, a)),
343
344 # 0.0 >= b2f(a)
345 # b2f(a) <= 0.0
346 # b2f(a) == 0.0 because b2f(a) can only be 0 or 1
347 # inot(a)
348 (('fge', 0.0, ('b2f', 'a@1')), ('inot', a)),
349
350 (('fge', ('fneg', ('b2f', 'a@1')), 0.0), ('inot', a)),
351
352 (('fne', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
353 (('fne', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
354 (('fne', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('ior', a, b)),
355 (('fne', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('ior', a, b)),
356 (('fne', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
357 (('fne', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
358 (('fne', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('iand', a, b)),
359 (('fne', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ixor', a, b)),
360 (('fne', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ixor', a, b)),
361 (('fne', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ixor', a, b)),
362 (('feq', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
363 (('feq', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
364 (('feq', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('inot', ('ior', a, b))),
365 (('feq', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
366 (('feq', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
367 (('feq', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
368 (('feq', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('inot', ('iand', a, b))),
369 (('feq', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ieq', a, b)),
370 (('feq', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ieq', a, b)),
371 (('feq', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ieq', a, b)),
372
373 # -(b2f(a) + b2f(b)) < 0
374 # 0 < b2f(a) + b2f(b)
375 # 0 != b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
376 # a || b
377 (('flt', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('ior', a, b)),
378 (('flt', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('ior', a, b)),
379
380 # -(b2f(a) + b2f(b)) >= 0
381 # 0 >= b2f(a) + b2f(b)
382 # 0 == b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
383 # !(a || b)
384 (('fge', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('inot', ('ior', a, b))),
385 (('fge', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
386
387 (('flt', a, ('fneg', a)), ('flt', a, 0.0)),
388 (('fge', a, ('fneg', a)), ('fge', a, 0.0)),
389
390 # Some optimizations (below) convert things like (a < b || c < b) into
391 # (min(a, c) < b). However, this interfers with the previous optimizations
392 # that try to remove comparisons with negated sums of b2f. This just
393 # breaks that apart.
394 (('flt', ('fmin', c, ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')))), 0.0),
395 ('ior', ('flt', c, 0.0), ('ior', a, b))),
396
397 (('~flt', ('fadd', a, b), a), ('flt', b, 0.0)),
398 (('~fge', ('fadd', a, b), a), ('fge', b, 0.0)),
399 (('~feq', ('fadd', a, b), a), ('feq', b, 0.0)),
400 (('~fne', ('fadd', a, b), a), ('fne', b, 0.0)),
401 (('~flt', ('fadd(is_used_once)', a, '#b'), '#c'), ('flt', a, ('fadd', c, ('fneg', b)))),
402 (('~flt', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('flt', ('fneg', ('fadd', c, b)), a)),
403 (('~fge', ('fadd(is_used_once)', a, '#b'), '#c'), ('fge', a, ('fadd', c, ('fneg', b)))),
404 (('~fge', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fge', ('fneg', ('fadd', c, b)), a)),
405 (('~feq', ('fadd(is_used_once)', a, '#b'), '#c'), ('feq', a, ('fadd', c, ('fneg', b)))),
406 (('~feq', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('feq', ('fneg', ('fadd', c, b)), a)),
407 (('~fne', ('fadd(is_used_once)', a, '#b'), '#c'), ('fne', a, ('fadd', c, ('fneg', b)))),
408 (('~fne', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fne', ('fneg', ('fadd', c, b)), a)),
409
410 # Cannot remove the addition from ilt or ige due to overflow.
411 (('ieq', ('iadd', a, b), a), ('ieq', b, 0)),
412 (('ine', ('iadd', a, b), a), ('ine', b, 0)),
413
414 # fmin(-b2f(a), b) >= 0.0
415 # -b2f(a) >= 0.0 && b >= 0.0
416 # -b2f(a) == 0.0 && b >= 0.0 -b2f can only be 0 or -1, never >0
417 # b2f(a) == 0.0 && b >= 0.0
418 # a == False && b >= 0.0
419 # !a && b >= 0.0
420 #
421 # The fge in the second replacement is not a typo. I leave the proof that
422 # "fmin(-b2f(a), b) >= 0 <=> fmin(-b2f(a), b) == 0" as an exercise for the
423 # reader.
424 (('fge', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
425 (('feq', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
426
427 (('feq', ('b2f', 'a@1'), 0.0), ('inot', a)),
428 (('~fne', ('b2f', 'a@1'), 0.0), a),
429 (('ieq', ('b2i', 'a@1'), 0), ('inot', a)),
430 (('ine', ('b2i', 'a@1'), 0), a),
431
432 (('fne', ('u2f', a), 0.0), ('ine', a, 0)),
433 (('feq', ('u2f', a), 0.0), ('ieq', a, 0)),
434 (('fge', ('u2f', a), 0.0), True),
435 (('fge', 0.0, ('u2f', a)), ('uge', 0, a)), # ieq instead?
436 (('flt', ('u2f', a), 0.0), False),
437 (('flt', 0.0, ('u2f', a)), ('ult', 0, a)), # ine instead?
438 (('fne', ('i2f', a), 0.0), ('ine', a, 0)),
439 (('feq', ('i2f', a), 0.0), ('ieq', a, 0)),
440 (('fge', ('i2f', a), 0.0), ('ige', a, 0)),
441 (('fge', 0.0, ('i2f', a)), ('ige', 0, a)),
442 (('flt', ('i2f', a), 0.0), ('ilt', a, 0)),
443 (('flt', 0.0, ('i2f', a)), ('ilt', 0, a)),
444
445 # 0.0 < fabs(a)
446 # fabs(a) > 0.0
447 # fabs(a) != 0.0 because fabs(a) must be >= 0
448 # a != 0.0
449 (('~flt', 0.0, ('fabs', a)), ('fne', a, 0.0)),
450
451 # -fabs(a) < 0.0
452 # fabs(a) > 0.0
453 (('~flt', ('fneg', ('fabs', a)), 0.0), ('fne', a, 0.0)),
454
455 # 0.0 >= fabs(a)
456 # 0.0 == fabs(a) because fabs(a) must be >= 0
457 # 0.0 == a
458 (('fge', 0.0, ('fabs', a)), ('feq', a, 0.0)),
459
460 # -fabs(a) >= 0.0
461 # 0.0 >= fabs(a)
462 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
463
464 # (a >= 0.0) && (a <= 1.0) -> fsat(a) == a
465 (('iand', ('fge', a, 0.0), ('fge', 1.0, a)), ('feq', a, ('fsat', a)), '!options->lower_fsat'),
466
467 # (a < 0.0) || (a > 1.0)
468 # !(!(a < 0.0) && !(a > 1.0))
469 # !((a >= 0.0) && (a <= 1.0))
470 # !(a == fsat(a))
471 # a != fsat(a)
472 (('ior', ('flt', a, 0.0), ('flt', 1.0, a)), ('fne', a, ('fsat', a)), '!options->lower_fsat'),
473
474 (('fmax', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('ior', a, b))),
475 (('fmax', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('ior', a, b)))),
476 (('fmin', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
477 (('fmin', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('iand', a, b)))),
478
479 # fmin(b2f(a), b)
480 # bcsel(a, fmin(b2f(a), b), fmin(b2f(a), b))
481 # bcsel(a, fmin(b2f(True), b), fmin(b2f(False), b))
482 # bcsel(a, fmin(1.0, b), fmin(0.0, b))
483 #
484 # Since b is a constant, constant folding will eliminate the fmin and the
485 # fmax. If b is > 1.0, the bcsel will be replaced with a b2f.
486 (('fmin', ('b2f', 'a@1'), '#b'), ('bcsel', a, ('fmin', b, 1.0), ('fmin', b, 0.0))),
487
488 (('flt', ('fadd(is_used_once)', a, ('fneg', b)), 0.0), ('flt', a, b)),
489
490 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
491 (('~bcsel', ('flt', b, a), b, a), ('fmin', a, b)),
492 (('~bcsel', ('flt', a, b), b, a), ('fmax', a, b)),
493 (('~bcsel', ('fge', a, b), b, a), ('fmin', a, b)),
494 (('~bcsel', ('fge', b, a), b, a), ('fmax', a, b)),
495 (('bcsel', ('i2b', a), b, c), ('bcsel', ('ine', a, 0), b, c)),
496 (('bcsel', ('inot', a), b, c), ('bcsel', a, c, b)),
497 (('bcsel', a, ('bcsel', a, b, c), d), ('bcsel', a, b, d)),
498 (('bcsel', a, b, ('bcsel', a, c, d)), ('bcsel', a, b, d)),
499 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
500 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
501 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
502 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
503 (('bcsel', a, True, b), ('ior', a, b)),
504 (('bcsel', a, a, b), ('ior', a, b)),
505 (('bcsel', a, b, False), ('iand', a, b)),
506 (('bcsel', a, b, a), ('iand', a, b)),
507 (('~fmin', a, a), a),
508 (('~fmax', a, a), a),
509 (('imin', a, a), a),
510 (('imax', a, a), a),
511 (('umin', a, a), a),
512 (('umax', a, a), a),
513 (('fmax', ('fmax', a, b), b), ('fmax', a, b)),
514 (('umax', ('umax', a, b), b), ('umax', a, b)),
515 (('imax', ('imax', a, b), b), ('imax', a, b)),
516 (('fmin', ('fmin', a, b), b), ('fmin', a, b)),
517 (('umin', ('umin', a, b), b), ('umin', a, b)),
518 (('imin', ('imin', a, b), b), ('imin', a, b)),
519 (('iand@32', a, ('inot', ('ishr', a, 31))), ('imax', a, 0)),
520
521 # Simplify logic to detect sign of an integer.
522 (('ieq', ('iand', 'a@32', 0x80000000), 0x00000000), ('ige', a, 0)),
523 (('ine', ('iand', 'a@32', 0x80000000), 0x80000000), ('ige', a, 0)),
524 (('ine', ('iand', 'a@32', 0x80000000), 0x00000000), ('ilt', a, 0)),
525 (('ieq', ('iand', 'a@32', 0x80000000), 0x80000000), ('ilt', a, 0)),
526 (('ine', ('ushr', 'a@32', 31), 0), ('ilt', a, 0)),
527 (('ieq', ('ushr', 'a@32', 31), 0), ('ige', a, 0)),
528 (('ieq', ('ushr', 'a@32', 31), 1), ('ilt', a, 0)),
529 (('ine', ('ushr', 'a@32', 31), 1), ('ige', a, 0)),
530 (('ine', ('ishr', 'a@32', 31), 0), ('ilt', a, 0)),
531 (('ieq', ('ishr', 'a@32', 31), 0), ('ige', a, 0)),
532 (('ieq', ('ishr', 'a@32', 31), -1), ('ilt', a, 0)),
533 (('ine', ('ishr', 'a@32', 31), -1), ('ige', a, 0)),
534
535 (('fmin', a, ('fneg', a)), ('fneg', ('fabs', a))),
536 (('imin', a, ('ineg', a)), ('ineg', ('iabs', a))),
537 (('fmin', a, ('fneg', ('fabs', a))), ('fneg', ('fabs', a))),
538 (('imin', a, ('ineg', ('iabs', a))), ('ineg', ('iabs', a))),
539 (('~fmin', a, ('fabs', a)), a),
540 (('imin', a, ('iabs', a)), a),
541 (('~fmax', a, ('fneg', ('fabs', a))), a),
542 (('imax', a, ('ineg', ('iabs', a))), a),
543 (('fmax', a, ('fabs', a)), ('fabs', a)),
544 (('imax', a, ('iabs', a)), ('iabs', a)),
545 (('fmax', a, ('fneg', a)), ('fabs', a)),
546 (('imax', a, ('ineg', a)), ('iabs', a)),
547 (('~fmax', ('fabs', a), 0.0), ('fabs', a)),
548 (('fmin', ('fmax', a, 0.0), 1.0), ('fsat', a), '!options->lower_fsat'),
549 # fmax(fmin(a, 1.0), 0.0) is inexact because it returns 1.0 on NaN, while
550 # fsat(a) returns 0.0.
551 (('~fmax', ('fmin', a, 1.0), 0.0), ('fsat', a), '!options->lower_fsat'),
552 # fmin(fmax(a, -1.0), 0.0) is inexact because it returns -1.0 on NaN, while
553 # fneg(fsat(fneg(a))) returns -0.0 on NaN.
554 (('~fmin', ('fmax', a, -1.0), 0.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
555 # fmax(fmin(a, 0.0), -1.0) is inexact because it returns 0.0 on NaN, while
556 # fneg(fsat(fneg(a))) returns -0.0 on NaN. This only matters if
557 # SignedZeroInfNanPreserve is set, but we don't currently have any way of
558 # representing this in the optimizations other than the usual ~.
559 (('~fmax', ('fmin', a, 0.0), -1.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
560 (('fsat', ('fsign', a)), ('b2f', ('flt', 0.0, a))),
561 (('fsat', ('b2f', a)), ('b2f', a)),
562 (('fsat', a), ('fmin', ('fmax', a, 0.0), 1.0), 'options->lower_fsat'),
563 (('fsat', ('fsat', a)), ('fsat', a)),
564 (('fsat', ('fneg(is_used_once)', ('fadd(is_used_once)', a, b))), ('fsat', ('fadd', ('fneg', a), ('fneg', b))), '!options->lower_fsat'),
565 (('fsat', ('fneg(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fneg', a), b)), '!options->lower_fsat'),
566 (('fsat', ('fabs(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fabs', a), ('fabs', b))), '!options->lower_fsat'),
567 (('fmin', ('fmax', ('fmin', ('fmax', a, b), c), b), c), ('fmin', ('fmax', a, b), c)),
568 (('imin', ('imax', ('imin', ('imax', a, b), c), b), c), ('imin', ('imax', a, b), c)),
569 (('umin', ('umax', ('umin', ('umax', a, b), c), b), c), ('umin', ('umax', a, b), c)),
570 # Both the left and right patterns are "b" when isnan(a), so this is exact.
571 (('fmax', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmax', a, b))),
572 # The left pattern is 0.0 when isnan(a) (because fmin(fsat(NaN), b) ->
573 # fmin(0.0, b)) while the right one is "b", so this optimization is inexact.
574 (('~fmin', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmin', a, b))),
575
576 # If a in [0,b] then b-a is also in [0,b]. Since b in [0,1], max(b-a, 0) =
577 # fsat(b-a).
578 #
579 # If a > b, then b-a < 0 and max(b-a, 0) = fsat(b-a) = 0
580 #
581 # This should be NaN safe since max(NaN, 0) = fsat(NaN) = 0.
582 (('fmax', ('fadd(is_used_once)', ('fneg', 'a(is_not_negative)'), '#b@32(is_zero_to_one)'), 0.0),
583 ('fsat', ('fadd', ('fneg', a), b)), '!options->lower_fsat'),
584
585 (('extract_u8', ('imin', ('imax', a, 0), 0xff), 0), ('imin', ('imax', a, 0), 0xff)),
586 (('~ior', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmax', b, c))),
587 (('~ior', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmin', a, b), c)),
588 (('~ior', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmin', b, c))),
589 (('~ior', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmax', a, b), c)),
590 (('~ior', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmax', b, c))),
591 (('~ior', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmin', a, b), c)),
592 (('~ior', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmin', b, c))),
593 (('~ior', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmax', a, b), c)),
594 (('~iand', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmin', b, c))),
595 (('~iand', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmax', a, b), c)),
596 (('~iand', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmax', b, c))),
597 (('~iand', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmin', a, b), c)),
598 (('~iand', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmin', b, c))),
599 (('~iand', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmax', a, b), c)),
600 (('~iand', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmax', b, c))),
601 (('~iand', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmin', a, b), c)),
602
603 (('ior', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imax', b, c))),
604 (('ior', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imin', a, b), c)),
605 (('ior', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imin', b, c))),
606 (('ior', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imax', a, b), c)),
607 (('ior', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umax', b, c))),
608 (('ior', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umin', a, b), c)),
609 (('ior', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umin', b, c))),
610 (('ior', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umax', a, b), c)),
611 (('iand', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imin', b, c))),
612 (('iand', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imax', a, b), c)),
613 (('iand', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imax', b, c))),
614 (('iand', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imin', a, b), c)),
615 (('iand', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umin', b, c))),
616 (('iand', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umax', a, b), c)),
617 (('iand', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umax', b, c))),
618 (('iand', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umin', a, b), c)),
619
620 # These derive from the previous patterns with the application of b < 0 <=>
621 # 0 < -b. The transformation should be applied if either comparison is
622 # used once as this ensures that the number of comparisons will not
623 # increase. The sources to the ior and iand are not symmetric, so the
624 # rules have to be duplicated to get this behavior.
625 (('~ior', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
626 (('~ior', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
627 (('~ior', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
628 (('~ior', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
629 (('~iand', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
630 (('~iand', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
631 (('~iand', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
632 (('~iand', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
633
634 # Common pattern like 'if (i == 0 || i == 1 || ...)'
635 (('ior', ('ieq', a, 0), ('ieq', a, 1)), ('uge', 1, a)),
636 (('ior', ('uge', 1, a), ('ieq', a, 2)), ('uge', 2, a)),
637 (('ior', ('uge', 2, a), ('ieq', a, 3)), ('uge', 3, a)),
638
639 # The (i2f32, ...) part is an open-coded fsign. When that is combined with
640 # the bcsel, it's basically copysign(1.0, a). There is no copysign in NIR,
641 # so emit an open-coded version of that.
642 (('bcsel@32', ('feq', a, 0.0), 1.0, ('i2f32', ('iadd', ('b2i32', ('flt', 0.0, 'a@32')), ('ineg', ('b2i32', ('flt', 'a@32', 0.0)))))),
643 ('ior', 0x3f800000, ('iand', a, 0x80000000))),
644
645 (('ior', a, ('ieq', a, False)), True),
646 (('ior', a, ('inot', a)), -1),
647
648 (('ine', ('ineg', ('b2i32', 'a@1')), ('ineg', ('b2i32', 'b@1'))), ('ine', a, b)),
649 (('b2i32', ('ine', 'a@1', 'b@1')), ('b2i32', ('ixor', a, b))),
650
651 (('iand', ('ieq', 'a@32', 0), ('ieq', 'b@32', 0)), ('ieq', ('umax', a, b), 0)),
652 (('ior', ('ieq', 'a@32', 0), ('ieq', 'b@32', 0)), ('ieq', ('umin', a, b), 0)),
653 (('iand', ('ine', 'a@32', 0), ('ine', 'b@32', 0)), ('ine', ('umin', a, b), 0)),
654 (('ior', ('ine', 'a@32', 0), ('ine', 'b@32', 0)), ('ine', ('umax', a, b), 0)),
655
656 # This pattern occurs coutresy of __flt64_nonnan in the soft-fp64 code.
657 # The first part of the iand comes from the !__feq64_nonnan.
658 #
659 # The second pattern is a reformulation of the first based on the relation
660 # (a == 0 || y == 0) <=> umin(a, y) == 0, where b in the first equation
661 # happens to be y == 0.
662 (('iand', ('inot', ('iand', ('ior', ('ieq', a, 0), b), c)), ('ilt', a, 0)),
663 ('iand', ('inot', ('iand', b , c)), ('ilt', a, 0))),
664 (('iand', ('inot', ('iand', ('ieq', ('umin', a, b), 0), c)), ('ilt', a, 0)),
665 ('iand', ('inot', ('iand', ('ieq', b , 0), c)), ('ilt', a, 0))),
666
667 # These patterns can result when (a < b || a < c) => (a < min(b, c))
668 # transformations occur before constant propagation and loop-unrolling.
669 (('~flt', a, ('fmax', b, a)), ('flt', a, b)),
670 (('~flt', ('fmin', a, b), a), ('flt', b, a)),
671 (('~fge', a, ('fmin', b, a)), True),
672 (('~fge', ('fmax', a, b), a), True),
673 (('~flt', a, ('fmin', b, a)), False),
674 (('~flt', ('fmax', a, b), a), False),
675 (('~fge', a, ('fmax', b, a)), ('fge', a, b)),
676 (('~fge', ('fmin', a, b), a), ('fge', b, a)),
677
678 (('ilt', a, ('imax', b, a)), ('ilt', a, b)),
679 (('ilt', ('imin', a, b), a), ('ilt', b, a)),
680 (('ige', a, ('imin', b, a)), True),
681 (('ige', ('imax', a, b), a), True),
682 (('ult', a, ('umax', b, a)), ('ult', a, b)),
683 (('ult', ('umin', a, b), a), ('ult', b, a)),
684 (('uge', a, ('umin', b, a)), True),
685 (('uge', ('umax', a, b), a), True),
686 (('ilt', a, ('imin', b, a)), False),
687 (('ilt', ('imax', a, b), a), False),
688 (('ige', a, ('imax', b, a)), ('ige', a, b)),
689 (('ige', ('imin', a, b), a), ('ige', b, a)),
690 (('ult', a, ('umin', b, a)), False),
691 (('ult', ('umax', a, b), a), False),
692 (('uge', a, ('umax', b, a)), ('uge', a, b)),
693 (('uge', ('umin', a, b), a), ('uge', b, a)),
694 (('ult', a, ('iand', b, a)), False),
695 (('ult', ('ior', a, b), a), False),
696 (('uge', a, ('iand', b, a)), True),
697 (('uge', ('ior', a, b), a), True),
698
699 (('ilt', '#a', ('imax', '#b', c)), ('ior', ('ilt', a, b), ('ilt', a, c))),
700 (('ilt', ('imin', '#a', b), '#c'), ('ior', ('ilt', a, c), ('ilt', b, c))),
701 (('ige', '#a', ('imin', '#b', c)), ('ior', ('ige', a, b), ('ige', a, c))),
702 (('ige', ('imax', '#a', b), '#c'), ('ior', ('ige', a, c), ('ige', b, c))),
703 (('ult', '#a', ('umax', '#b', c)), ('ior', ('ult', a, b), ('ult', a, c))),
704 (('ult', ('umin', '#a', b), '#c'), ('ior', ('ult', a, c), ('ult', b, c))),
705 (('uge', '#a', ('umin', '#b', c)), ('ior', ('uge', a, b), ('uge', a, c))),
706 (('uge', ('umax', '#a', b), '#c'), ('ior', ('uge', a, c), ('uge', b, c))),
707 (('ilt', '#a', ('imin', '#b', c)), ('iand', ('ilt', a, b), ('ilt', a, c))),
708 (('ilt', ('imax', '#a', b), '#c'), ('iand', ('ilt', a, c), ('ilt', b, c))),
709 (('ige', '#a', ('imax', '#b', c)), ('iand', ('ige', a, b), ('ige', a, c))),
710 (('ige', ('imin', '#a', b), '#c'), ('iand', ('ige', a, c), ('ige', b, c))),
711 (('ult', '#a', ('umin', '#b', c)), ('iand', ('ult', a, b), ('ult', a, c))),
712 (('ult', ('umax', '#a', b), '#c'), ('iand', ('ult', a, c), ('ult', b, c))),
713 (('uge', '#a', ('umax', '#b', c)), ('iand', ('uge', a, b), ('uge', a, c))),
714 (('uge', ('umin', '#a', b), '#c'), ('iand', ('uge', a, c), ('uge', b, c))),
715
716 # Thanks to sign extension, the ishr(a, b) is negative if and only if a is
717 # negative.
718 (('bcsel', ('ilt', a, 0), ('ineg', ('ishr', a, b)), ('ishr', a, b)),
719 ('iabs', ('ishr', a, b))),
720 (('iabs', ('ishr', ('iabs', a), b)), ('ishr', ('iabs', a), b)),
721
722 (('fabs', ('slt', a, b)), ('slt', a, b)),
723 (('fabs', ('sge', a, b)), ('sge', a, b)),
724 (('fabs', ('seq', a, b)), ('seq', a, b)),
725 (('fabs', ('sne', a, b)), ('sne', a, b)),
726 (('slt', a, b), ('b2f', ('flt', a, b)), 'options->lower_scmp'),
727 (('sge', a, b), ('b2f', ('fge', a, b)), 'options->lower_scmp'),
728 (('seq', a, b), ('b2f', ('feq', a, b)), 'options->lower_scmp'),
729 (('sne', a, b), ('b2f', ('fne', a, b)), 'options->lower_scmp'),
730 (('seq', ('seq', a, b), 1.0), ('seq', a, b)),
731 (('seq', ('sne', a, b), 1.0), ('sne', a, b)),
732 (('seq', ('slt', a, b), 1.0), ('slt', a, b)),
733 (('seq', ('sge', a, b), 1.0), ('sge', a, b)),
734 (('sne', ('seq', a, b), 0.0), ('seq', a, b)),
735 (('sne', ('sne', a, b), 0.0), ('sne', a, b)),
736 (('sne', ('slt', a, b), 0.0), ('slt', a, b)),
737 (('sne', ('sge', a, b), 0.0), ('sge', a, b)),
738 (('seq', ('seq', a, b), 0.0), ('sne', a, b)),
739 (('seq', ('sne', a, b), 0.0), ('seq', a, b)),
740 (('seq', ('slt', a, b), 0.0), ('sge', a, b)),
741 (('seq', ('sge', a, b), 0.0), ('slt', a, b)),
742 (('sne', ('seq', a, b), 1.0), ('sne', a, b)),
743 (('sne', ('sne', a, b), 1.0), ('seq', a, b)),
744 (('sne', ('slt', a, b), 1.0), ('sge', a, b)),
745 (('sne', ('sge', a, b), 1.0), ('slt', a, b)),
746 (('fall_equal2', a, b), ('fmin', ('seq', 'a.x', 'b.x'), ('seq', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
747 (('fall_equal3', a, b), ('seq', ('fany_nequal3', a, b), 0.0), 'options->lower_vector_cmp'),
748 (('fall_equal4', a, b), ('seq', ('fany_nequal4', a, b), 0.0), 'options->lower_vector_cmp'),
749 (('fany_nequal2', a, b), ('fmax', ('sne', 'a.x', 'b.x'), ('sne', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
750 (('fany_nequal3', a, b), ('fsat', ('fdot3', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
751 (('fany_nequal4', a, b), ('fsat', ('fdot4', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
752 (('fne', ('fneg', a), a), ('fne', a, 0.0)),
753 (('feq', ('fneg', a), a), ('feq', a, 0.0)),
754 # Emulating booleans
755 (('imul', ('b2i', 'a@1'), ('b2i', 'b@1')), ('b2i', ('iand', a, b))),
756 (('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
757 (('fsat', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('b2f', ('ior', a, b))),
758 (('iand', 'a@bool32', 1.0), ('b2f', a)),
759 # True/False are ~0 and 0 in NIR. b2i of True is 1, and -1 is ~0 (True).
760 (('ineg', ('b2i32', 'a@32')), a),
761 (('flt', ('fneg', ('b2f', 'a@1')), 0), a), # Generated by TGSI KILL_IF.
762 # Comparison with the same args. Note that these are not done for
763 # the float versions because NaN always returns false on float
764 # inequalities.
765 (('ilt', a, a), False),
766 (('ige', a, a), True),
767 (('ieq', a, a), True),
768 (('ine', a, a), False),
769 (('ult', a, a), False),
770 (('uge', a, a), True),
771 # Logical and bit operations
772 (('iand', a, a), a),
773 (('iand', a, ~0), a),
774 (('iand', a, 0), 0),
775 (('ior', a, a), a),
776 (('ior', a, 0), a),
777 (('ior', a, True), True),
778 (('ixor', a, a), 0),
779 (('ixor', a, 0), a),
780 (('inot', ('inot', a)), a),
781 (('ior', ('iand', a, b), b), b),
782 (('ior', ('ior', a, b), b), ('ior', a, b)),
783 (('iand', ('ior', a, b), b), b),
784 (('iand', ('iand', a, b), b), ('iand', a, b)),
785 # DeMorgan's Laws
786 (('iand', ('inot', a), ('inot', b)), ('inot', ('ior', a, b))),
787 (('ior', ('inot', a), ('inot', b)), ('inot', ('iand', a, b))),
788 # Shift optimizations
789 (('ishl', 0, a), 0),
790 (('ishl', a, 0), a),
791 (('ishr', 0, a), 0),
792 (('ishr', a, 0), a),
793 (('ushr', 0, a), 0),
794 (('ushr', a, 0), a),
795 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('iadd', 16, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
796 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('isub', 16, b))), ('urol', a, b), '!options->lower_rotate'),
797 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('iadd', 32, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
798 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('isub', 32, b))), ('urol', a, b), '!options->lower_rotate'),
799 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('iadd', 16, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
800 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('isub', 16, b))), ('uror', a, b), '!options->lower_rotate'),
801 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('iadd', 32, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
802 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('isub', 32, b))), ('uror', a, b), '!options->lower_rotate'),
803 (('urol@16', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 16, b))), 'options->lower_rotate'),
804 (('urol@32', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 32, b))), 'options->lower_rotate'),
805 (('uror@16', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 16, b))), 'options->lower_rotate'),
806 (('uror@32', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 32, b))), 'options->lower_rotate'),
807 # Exponential/logarithmic identities
808 (('~fexp2', ('flog2', a)), a), # 2^lg2(a) = a
809 (('~flog2', ('fexp2', a)), a), # lg2(2^a) = a
810 (('fpow', a, b), ('fexp2', ('fmul', ('flog2', a), b)), 'options->lower_fpow'), # a^b = 2^(lg2(a)*b)
811 (('~fexp2', ('fmul', ('flog2', a), b)), ('fpow', a, b), '!options->lower_fpow'), # 2^(lg2(a)*b) = a^b
812 (('~fexp2', ('fadd', ('fmul', ('flog2', a), b), ('fmul', ('flog2', c), d))),
813 ('~fmul', ('fpow', a, b), ('fpow', c, d)), '!options->lower_fpow'), # 2^(lg2(a) * b + lg2(c) + d) = a^b * c^d
814 (('~fexp2', ('fmul', ('flog2', a), 0.5)), ('fsqrt', a)),
815 (('~fexp2', ('fmul', ('flog2', a), 2.0)), ('fmul', a, a)),
816 (('~fexp2', ('fmul', ('flog2', a), 4.0)), ('fmul', ('fmul', a, a), ('fmul', a, a))),
817 (('~fpow', a, 1.0), a),
818 (('~fpow', a, 2.0), ('fmul', a, a)),
819 (('~fpow', a, 4.0), ('fmul', ('fmul', a, a), ('fmul', a, a))),
820 (('~fpow', 2.0, a), ('fexp2', a)),
821 (('~fpow', ('fpow', a, 2.2), 0.454545), a),
822 (('~fpow', ('fabs', ('fpow', a, 2.2)), 0.454545), ('fabs', a)),
823 (('~fsqrt', ('fexp2', a)), ('fexp2', ('fmul', 0.5, a))),
824 (('~frcp', ('fexp2', a)), ('fexp2', ('fneg', a))),
825 (('~frsq', ('fexp2', a)), ('fexp2', ('fmul', -0.5, a))),
826 (('~flog2', ('fsqrt', a)), ('fmul', 0.5, ('flog2', a))),
827 (('~flog2', ('frcp', a)), ('fneg', ('flog2', a))),
828 (('~flog2', ('frsq', a)), ('fmul', -0.5, ('flog2', a))),
829 (('~flog2', ('fpow', a, b)), ('fmul', b, ('flog2', a))),
830 (('~fmul', ('fexp2(is_used_once)', a), ('fexp2(is_used_once)', b)), ('fexp2', ('fadd', a, b))),
831 (('bcsel', ('flt', a, 0.0), 0.0, ('fsqrt', a)), ('fsqrt', ('fmax', a, 0.0))),
832 (('~fmul', ('fsqrt', a), ('fsqrt', a)), ('fabs',a)),
833 # Division and reciprocal
834 (('~fdiv', 1.0, a), ('frcp', a)),
835 (('fdiv', a, b), ('fmul', a, ('frcp', b)), 'options->lower_fdiv'),
836 (('~frcp', ('frcp', a)), a),
837 (('~frcp', ('fsqrt', a)), ('frsq', a)),
838 (('fsqrt', a), ('frcp', ('frsq', a)), 'options->lower_fsqrt'),
839 (('~frcp', ('frsq', a)), ('fsqrt', a), '!options->lower_fsqrt'),
840 # Trig
841 (('fsin', a), lowered_sincos(0.5), 'options->lower_sincos'),
842 (('fcos', a), lowered_sincos(0.75), 'options->lower_sincos'),
843 # Boolean simplifications
844 (('i2b32(is_used_by_if)', a), ('ine32', a, 0)),
845 (('i2b1(is_used_by_if)', a), ('ine', a, 0)),
846 (('ieq', a, True), a),
847 (('ine(is_not_used_by_if)', a, True), ('inot', a)),
848 (('ine', a, False), a),
849 (('ieq(is_not_used_by_if)', a, False), ('inot', 'a')),
850 (('bcsel', a, True, False), a),
851 (('bcsel', a, False, True), ('inot', a)),
852 (('bcsel@32', a, 1.0, 0.0), ('b2f', a)),
853 (('bcsel@32', a, 0.0, 1.0), ('b2f', ('inot', a))),
854 (('bcsel@32', a, -1.0, -0.0), ('fneg', ('b2f', a))),
855 (('bcsel@32', a, -0.0, -1.0), ('fneg', ('b2f', ('inot', a)))),
856 (('bcsel', True, b, c), b),
857 (('bcsel', False, b, c), c),
858 (('bcsel', a, ('b2f(is_used_once)', 'b@32'), ('b2f', 'c@32')), ('b2f', ('bcsel', a, b, c))),
859
860 (('bcsel', a, b, b), b),
861 (('~fcsel', a, b, b), b),
862
863 # D3D Boolean emulation
864 (('bcsel', a, -1, 0), ('ineg', ('b2i', 'a@1'))),
865 (('bcsel', a, 0, -1), ('ineg', ('b2i', ('inot', a)))),
866 (('bcsel', a, 1, 0), ('b2i', 'a@1')),
867 (('bcsel', a, 0, 1), ('b2i', ('inot', a))),
868 (('iand', ('ineg', ('b2i', 'a@1')), ('ineg', ('b2i', 'b@1'))),
869 ('ineg', ('b2i', ('iand', a, b)))),
870 (('ior', ('ineg', ('b2i','a@1')), ('ineg', ('b2i', 'b@1'))),
871 ('ineg', ('b2i', ('ior', a, b)))),
872 (('ieq', ('ineg', ('b2i', 'a@1')), 0), ('inot', a)),
873 (('ieq', ('ineg', ('b2i', 'a@1')), -1), a),
874 (('ine', ('ineg', ('b2i', 'a@1')), 0), a),
875 (('ine', ('ineg', ('b2i', 'a@1')), -1), ('inot', a)),
876 (('iand', ('ineg', ('b2i', a)), 1.0), ('b2f', a)),
877 (('iand', ('ineg', ('b2i', a)), 1), ('b2i', a)),
878
879 # SM5 32-bit shifts are defined to use the 5 least significant bits
880 (('ishl', 'a@32', ('iand', 31, b)), ('ishl', a, b)),
881 (('ishr', 'a@32', ('iand', 31, b)), ('ishr', a, b)),
882 (('ushr', 'a@32', ('iand', 31, b)), ('ushr', a, b)),
883
884 # Conversions
885 (('i2b32', ('b2i', 'a@32')), a),
886 (('f2i', ('ftrunc', a)), ('f2i', a)),
887 (('f2u', ('ftrunc', a)), ('f2u', a)),
888 (('i2b', ('ineg', a)), ('i2b', a)),
889 (('i2b', ('iabs', a)), ('i2b', a)),
890 (('inot', ('f2b1', a)), ('feq', a, 0.0)),
891
892 # The C spec says, "If the value of the integral part cannot be represented
893 # by the integer type, the behavior is undefined." "Undefined" can mean
894 # "the conversion doesn't happen at all."
895 (('~i2f32', ('f2i32', 'a@32')), ('ftrunc', a)),
896
897 # Ironically, mark these as imprecise because removing the conversions may
898 # preserve more precision than doing the conversions (e.g.,
899 # uint(float(0x81818181u)) == 0x81818200).
900 (('~f2i32', ('i2f', 'a@32')), a),
901 (('~f2i32', ('u2f', 'a@32')), a),
902 (('~f2u32', ('i2f', 'a@32')), a),
903 (('~f2u32', ('u2f', 'a@32')), a),
904
905 # Conversions from 16 bits to 32 bits and back can always be removed
906 (('f2f16', ('f2f32', 'a@16')), a),
907 (('f2fmp', ('f2f32', 'a@16')), a),
908 (('i2i16', ('i2i32', 'a@16')), a),
909 (('i2imp', ('i2i32', 'a@16')), a),
910 (('u2u16', ('u2u32', 'a@16')), a),
911 (('u2ump', ('u2u32', 'a@16')), a),
912 (('f2f16', ('b2f32', 'a@1')), ('b2f16', a)),
913 (('f2fmp', ('b2f32', 'a@1')), ('b2f16', a)),
914 (('i2i16', ('b2i32', 'a@1')), ('b2i16', a)),
915 (('i2imp', ('b2i32', 'a@1')), ('b2i16', a)),
916 (('u2u16', ('b2i32', 'a@1')), ('b2i16', a)),
917 (('u2ump', ('b2i32', 'a@1')), ('b2i16', a)),
918 # Conversions to 16 bits would be lossy so they should only be removed if
919 # the instruction was generated by the precision lowering pass.
920 (('f2f32', ('f2fmp', 'a@32')), a),
921 (('i2i32', ('i2imp', 'a@32')), a),
922 (('u2u32', ('u2ump', 'a@32')), a),
923
924 (('ffloor', 'a(is_integral)'), a),
925 (('fceil', 'a(is_integral)'), a),
926 (('ftrunc', 'a(is_integral)'), a),
927 # fract(x) = x - floor(x), so fract(NaN) = NaN
928 (('~ffract', 'a(is_integral)'), 0.0),
929 (('fabs', 'a(is_not_negative)'), a),
930 (('iabs', 'a(is_not_negative)'), a),
931 (('fsat', 'a(is_not_positive)'), 0.0),
932
933 # Section 5.4.1 (Conversion and Scalar Constructors) of the GLSL 4.60 spec
934 # says:
935 #
936 # It is undefined to convert a negative floating-point value to an
937 # uint.
938 #
939 # Assuming that (uint)some_float behaves like (uint)(int)some_float allows
940 # some optimizations in the i965 backend to proceed.
941 (('ige', ('f2u', a), b), ('ige', ('f2i', a), b)),
942 (('ige', b, ('f2u', a)), ('ige', b, ('f2i', a))),
943 (('ilt', ('f2u', a), b), ('ilt', ('f2i', a), b)),
944 (('ilt', b, ('f2u', a)), ('ilt', b, ('f2i', a))),
945
946 (('~fmin', 'a(is_not_negative)', 1.0), ('fsat', a), '!options->lower_fsat'),
947
948 # The result of the multiply must be in [-1, 0], so the result of the ffma
949 # must be in [0, 1].
950 (('flt', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), False),
951 (('flt', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), False),
952 (('fmax', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0)),
953 (('fmax', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0)),
954
955 (('fne', 'a(is_not_zero)', 0.0), True),
956 (('feq', 'a(is_not_zero)', 0.0), False),
957
958 # In this chart, + means value > 0 and - means value < 0.
959 #
960 # + >= + -> unknown 0 >= + -> false - >= + -> false
961 # + >= 0 -> true 0 >= 0 -> true - >= 0 -> false
962 # + >= - -> true 0 >= - -> true - >= - -> unknown
963 #
964 # Using grouping conceptually similar to a Karnaugh map...
965 #
966 # (+ >= 0, + >= -, 0 >= 0, 0 >= -) == (is_not_negative >= is_not_positive) -> true
967 # (0 >= +, - >= +) == (is_not_positive >= gt_zero) -> false
968 # (- >= +, - >= 0) == (lt_zero >= is_not_negative) -> false
969 #
970 # The flt / ilt cases just invert the expected result.
971 #
972 # The results expecting true, must be marked imprecise. The results
973 # expecting false are fine because NaN compared >= or < anything is false.
974
975 (('~fge', 'a(is_not_negative)', 'b(is_not_positive)'), True),
976 (('fge', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
977 (('fge', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
978
979 (('flt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
980 (('~flt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
981 (('~flt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
982
983 (('ine', 'a(is_not_zero)', 0), True),
984 (('ieq', 'a(is_not_zero)', 0), False),
985
986 (('ige', 'a(is_not_negative)', 'b(is_not_positive)'), True),
987 (('ige', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
988 (('ige', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
989
990 (('ilt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
991 (('ilt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
992 (('ilt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
993
994 (('ult', 0, 'a(is_gt_zero)'), True),
995 (('ult', a, 0), False),
996
997 # Packing and then unpacking does nothing
998 (('unpack_64_2x32_split_x', ('pack_64_2x32_split', a, b)), a),
999 (('unpack_64_2x32_split_y', ('pack_64_2x32_split', a, b)), b),
1000 (('unpack_64_2x32', ('pack_64_2x32_split', a, b)), ('vec2', a, b)),
1001 (('unpack_64_2x32', ('pack_64_2x32', a)), a),
1002 (('pack_64_2x32_split', ('unpack_64_2x32_split_x', a),
1003 ('unpack_64_2x32_split_y', a)), a),
1004 (('pack_64_2x32', ('vec2', ('unpack_64_2x32_split_x', a),
1005 ('unpack_64_2x32_split_y', a))), a),
1006 (('pack_64_2x32', ('unpack_64_2x32', a)), a),
1007
1008 # Comparing two halves of an unpack separately. While this optimization
1009 # should be correct for non-constant values, it's less obvious that it's
1010 # useful in that case. For constant values, the pack will fold and we're
1011 # guaranteed to reduce the whole tree to one instruction.
1012 (('iand', ('ieq', ('unpack_32_2x16_split_x', a), '#b'),
1013 ('ieq', ('unpack_32_2x16_split_y', a), '#c')),
1014 ('ieq', a, ('pack_32_2x16_split', b, c))),
1015
1016 # Byte extraction
1017 (('ushr', 'a@16', 8), ('extract_u8', a, 1), '!options->lower_extract_byte'),
1018 (('ushr', 'a@32', 24), ('extract_u8', a, 3), '!options->lower_extract_byte'),
1019 (('ushr', 'a@64', 56), ('extract_u8', a, 7), '!options->lower_extract_byte'),
1020 (('ishr', 'a@16', 8), ('extract_i8', a, 1), '!options->lower_extract_byte'),
1021 (('ishr', 'a@32', 24), ('extract_i8', a, 3), '!options->lower_extract_byte'),
1022 (('ishr', 'a@64', 56), ('extract_i8', a, 7), '!options->lower_extract_byte'),
1023 (('iand', 0xff, a), ('extract_u8', a, 0), '!options->lower_extract_byte'),
1024
1025 (('ubfe', a, 0, 8), ('extract_u8', a, 0), '!options->lower_extract_byte'),
1026 (('ubfe', a, 8, 8), ('extract_u8', a, 1), '!options->lower_extract_byte'),
1027 (('ubfe', a, 16, 8), ('extract_u8', a, 2), '!options->lower_extract_byte'),
1028 (('ubfe', a, 24, 8), ('extract_u8', a, 3), '!options->lower_extract_byte'),
1029 (('ibfe', a, 0, 8), ('extract_i8', a, 0), '!options->lower_extract_byte'),
1030 (('ibfe', a, 8, 8), ('extract_i8', a, 1), '!options->lower_extract_byte'),
1031 (('ibfe', a, 16, 8), ('extract_i8', a, 2), '!options->lower_extract_byte'),
1032 (('ibfe', a, 24, 8), ('extract_i8', a, 3), '!options->lower_extract_byte'),
1033
1034 # Word extraction
1035 (('ushr', ('ishl', 'a@32', 16), 16), ('extract_u16', a, 0), '!options->lower_extract_word'),
1036 (('ushr', 'a@32', 16), ('extract_u16', a, 1), '!options->lower_extract_word'),
1037 (('ishr', ('ishl', 'a@32', 16), 16), ('extract_i16', a, 0), '!options->lower_extract_word'),
1038 (('ishr', 'a@32', 16), ('extract_i16', a, 1), '!options->lower_extract_word'),
1039 (('iand', 0xffff, a), ('extract_u16', a, 0), '!options->lower_extract_word'),
1040
1041 (('ubfe', a, 0, 16), ('extract_u16', a, 0), '!options->lower_extract_word'),
1042 (('ubfe', a, 16, 16), ('extract_u16', a, 1), '!options->lower_extract_word'),
1043 (('ibfe', a, 0, 16), ('extract_i16', a, 0), '!options->lower_extract_word'),
1044 (('ibfe', a, 16, 16), ('extract_i16', a, 1), '!options->lower_extract_word'),
1045
1046 # Useless masking before unpacking
1047 (('unpack_half_2x16_split_x', ('iand', a, 0xffff)), ('unpack_half_2x16_split_x', a)),
1048 (('unpack_32_2x16_split_x', ('iand', a, 0xffff)), ('unpack_32_2x16_split_x', a)),
1049 (('unpack_64_2x32_split_x', ('iand', a, 0xffffffff)), ('unpack_64_2x32_split_x', a)),
1050 (('unpack_half_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_half_2x16_split_y', a)),
1051 (('unpack_32_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_32_2x16_split_y', a)),
1052 (('unpack_64_2x32_split_y', ('iand', a, 0xffffffff00000000)), ('unpack_64_2x32_split_y', a)),
1053
1054 (('unpack_half_2x16_split_x', ('extract_u16', a, 0)), ('unpack_half_2x16_split_x', a)),
1055 (('unpack_half_2x16_split_x', ('extract_u16', a, 1)), ('unpack_half_2x16_split_y', a)),
1056 (('unpack_32_2x16_split_x', ('extract_u16', a, 0)), ('unpack_32_2x16_split_x', a)),
1057 (('unpack_32_2x16_split_x', ('extract_u16', a, 1)), ('unpack_32_2x16_split_y', a)),
1058
1059 # Optimize half packing
1060 (('ishl', ('pack_half_2x16', ('vec2', a, 0)), 16), ('pack_half_2x16', ('vec2', 0, a))),
1061 (('ushr', ('pack_half_2x16', ('vec2', 0, a)), 16), ('pack_half_2x16', ('vec2', a, 0))),
1062
1063 (('iadd', ('pack_half_2x16', ('vec2', a, 0)), ('pack_half_2x16', ('vec2', 0, b))),
1064 ('pack_half_2x16', ('vec2', a, b))),
1065 (('ior', ('pack_half_2x16', ('vec2', a, 0)), ('pack_half_2x16', ('vec2', 0, b))),
1066 ('pack_half_2x16', ('vec2', a, b))),
1067
1068 (('ishl', ('pack_half_2x16_split', a, 0), 16), ('pack_half_2x16_split', 0, a)),
1069 (('ushr', ('pack_half_2x16_split', 0, a), 16), ('pack_half_2x16_split', a, 0)),
1070 (('extract_u16', ('pack_half_2x16_split', 0, a), 1), ('pack_half_2x16_split', a, 0)),
1071
1072 (('iadd', ('pack_half_2x16_split', a, 0), ('pack_half_2x16_split', 0, b)), ('pack_half_2x16_split', a, b)),
1073 (('ior', ('pack_half_2x16_split', a, 0), ('pack_half_2x16_split', 0, b)), ('pack_half_2x16_split', a, b)),
1074 ])
1075
1076 # After the ('extract_u8', a, 0) pattern, above, triggers, there will be
1077 # patterns like those below.
1078 for op in ('ushr', 'ishr'):
1079 optimizations.extend([(('extract_u8', (op, 'a@16', 8), 0), ('extract_u8', a, 1))])
1080 optimizations.extend([(('extract_u8', (op, 'a@32', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 4)])
1081 optimizations.extend([(('extract_u8', (op, 'a@64', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 8)])
1082
1083 optimizations.extend([(('extract_u8', ('extract_u16', a, 1), 0), ('extract_u8', a, 2))])
1084
1085 # After the ('extract_[iu]8', a, 3) patterns, above, trigger, there will be
1086 # patterns like those below.
1087 for op in ('extract_u8', 'extract_i8'):
1088 optimizations.extend([((op, ('ishl', 'a@16', 8), 1), (op, a, 0))])
1089 optimizations.extend([((op, ('ishl', 'a@32', 24 - 8 * i), 3), (op, a, i)) for i in range(2, -1, -1)])
1090 optimizations.extend([((op, ('ishl', 'a@64', 56 - 8 * i), 7), (op, a, i)) for i in range(6, -1, -1)])
1091
1092 optimizations.extend([
1093 # Subtracts
1094 (('ussub_4x8', a, 0), a),
1095 (('ussub_4x8', a, ~0), 0),
1096 # Lower all Subtractions first - they can get recombined later
1097 (('fsub', a, b), ('fadd', a, ('fneg', b))),
1098 (('isub', a, b), ('iadd', a, ('ineg', b))),
1099 (('uabs_usub', a, b), ('bcsel', ('ult', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
1100 # This is correct. We don't need isub_sat because the result type is unsigned, so it cannot overflow.
1101 (('uabs_isub', a, b), ('bcsel', ('ilt', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
1102
1103 # Propagate negation up multiplication chains
1104 (('fmul(is_used_by_non_fsat)', ('fneg', a), b), ('fneg', ('fmul', a, b))),
1105 (('imul', ('ineg', a), b), ('ineg', ('imul', a, b))),
1106
1107 # Propagate constants up multiplication chains
1108 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fmul', ('fmul', a, c), b)),
1109 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('imul', ('imul', a, c), b)),
1110 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fadd', ('fadd', a, c), b)),
1111 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('iadd', ('iadd', a, c), b)),
1112
1113 # Reassociate constants in add/mul chains so they can be folded together.
1114 # For now, we mostly only handle cases where the constants are separated by
1115 # a single non-constant. We could do better eventually.
1116 (('~fmul', '#a', ('fmul', 'b(is_not_const)', '#c')), ('fmul', ('fmul', a, c), b)),
1117 (('imul', '#a', ('imul', 'b(is_not_const)', '#c')), ('imul', ('imul', a, c), b)),
1118 (('~fadd', '#a', ('fadd', 'b(is_not_const)', '#c')), ('fadd', ('fadd', a, c), b)),
1119 (('~fadd', '#a', ('fneg', ('fadd', 'b(is_not_const)', '#c'))), ('fadd', ('fadd', a, ('fneg', c)), ('fneg', b))),
1120 (('iadd', '#a', ('iadd', 'b(is_not_const)', '#c')), ('iadd', ('iadd', a, c), b)),
1121 (('iand', '#a', ('iand', 'b(is_not_const)', '#c')), ('iand', ('iand', a, c), b)),
1122 (('ior', '#a', ('ior', 'b(is_not_const)', '#c')), ('ior', ('ior', a, c), b)),
1123 (('ixor', '#a', ('ixor', 'b(is_not_const)', '#c')), ('ixor', ('ixor', a, c), b)),
1124
1125 # Drop mul-div by the same value when there's no wrapping.
1126 (('idiv', ('imul(no_signed_wrap)', a, b), b), a),
1127
1128 # By definition...
1129 (('bcsel', ('ige', ('find_lsb', a), 0), ('find_lsb', a), -1), ('find_lsb', a)),
1130 (('bcsel', ('ige', ('ifind_msb', a), 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
1131 (('bcsel', ('ige', ('ufind_msb', a), 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
1132
1133 (('bcsel', ('ine', a, 0), ('find_lsb', a), -1), ('find_lsb', a)),
1134 (('bcsel', ('ine', a, 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
1135 (('bcsel', ('ine', a, 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
1136
1137 (('bcsel', ('ine', a, -1), ('ifind_msb', a), -1), ('ifind_msb', a)),
1138
1139 (('~fmul', ('bcsel(is_used_once)', c, -1.0, 1.0), b), ('bcsel', c, ('fneg', b), b)),
1140 (('~fmul', ('bcsel(is_used_once)', c, 1.0, -1.0), b), ('bcsel', c, b, ('fneg', b))),
1141 (('~bcsel', ('flt', a, 0.0), ('fneg', a), a), ('fabs', a)),
1142
1143 (('fmin3@64', a, b, c), ('fmin@64', a, ('fmin@64', b, c))),
1144 (('fmax3@64', a, b, c), ('fmax@64', a, ('fmax@64', b, c))),
1145 (('fmed3@64', a, b, c), ('fmax@64', ('fmin@64', ('fmax@64', a, b), c), ('fmin@64', a, b))),
1146
1147 # Misc. lowering
1148 (('fmod', a, b), ('fsub', a, ('fmul', b, ('ffloor', ('fdiv', a, b)))), 'options->lower_fmod'),
1149 (('frem', a, b), ('fsub', a, ('fmul', b, ('ftrunc', ('fdiv', a, b)))), 'options->lower_fmod'),
1150 (('uadd_carry@32', a, b), ('b2i', ('ult', ('iadd', a, b), a)), 'options->lower_uadd_carry'),
1151 (('usub_borrow@32', a, b), ('b2i', ('ult', a, b)), 'options->lower_usub_borrow'),
1152
1153 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1154 ('bcsel', ('ult', 31, 'bits'), 'insert',
1155 ('bfi', ('bfm', 'bits', 'offset'), 'insert', 'base')),
1156 'options->lower_bitfield_insert'),
1157 (('ihadd', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1158 (('uhadd', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1159 (('irhadd', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1160 (('urhadd', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1161 (('ihadd@64', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1162 (('uhadd@64', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1163 (('irhadd@64', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1164 (('urhadd@64', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1165
1166 (('uadd_sat@64', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_add_sat || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1167 (('uadd_sat', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_add_sat'),
1168 (('usub_sat', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_add_sat'),
1169 (('usub_sat@64', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_usub_sat64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1170
1171 # int64_t sum = a + b;
1172 #
1173 # if (a < 0 && b < 0 && a < sum)
1174 # sum = INT64_MIN;
1175 # } else if (a >= 0 && b >= 0 && sum < a)
1176 # sum = INT64_MAX;
1177 # }
1178 #
1179 # A couple optimizations are applied.
1180 #
1181 # 1. a < sum => sum >= 0. This replacement works because it is known that
1182 # a < 0 and b < 0, so sum should also be < 0 unless there was
1183 # underflow.
1184 #
1185 # 2. sum < a => sum < 0. This replacement works because it is known that
1186 # a >= 0 and b >= 0, so sum should also be >= 0 unless there was
1187 # overflow.
1188 #
1189 # 3. Invert the second if-condition and swap the order of parameters for
1190 # the bcsel. !(a >= 0 && b >= 0 && sum < 0) becomes !(a >= 0) || !(b >=
1191 # 0) || !(sum < 0), and that becomes (a < 0) || (b < 0) || (sum >= 0)
1192 #
1193 # On Intel Gen11, this saves ~11 instructions.
1194 (('iadd_sat@64', a, b), ('bcsel',
1195 ('iand', ('iand', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)),
1196 0x8000000000000000,
1197 ('bcsel',
1198 ('ior', ('ior', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)),
1199 ('iadd', a, b),
1200 0x7fffffffffffffff)),
1201 '(options->lower_int64_options & nir_lower_iadd64) != 0'),
1202
1203 # int64_t sum = a - b;
1204 #
1205 # if (a < 0 && b >= 0 && a < sum)
1206 # sum = INT64_MIN;
1207 # } else if (a >= 0 && b < 0 && a >= sum)
1208 # sum = INT64_MAX;
1209 # }
1210 #
1211 # Optimizations similar to the iadd_sat case are applied here.
1212 (('isub_sat@64', a, b), ('bcsel',
1213 ('iand', ('iand', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)),
1214 0x8000000000000000,
1215 ('bcsel',
1216 ('ior', ('ior', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)),
1217 ('isub', a, b),
1218 0x7fffffffffffffff)),
1219 '(options->lower_int64_options & nir_lower_iadd64) != 0'),
1220
1221 # These are done here instead of in the backend because the int64 lowering
1222 # pass will make a mess of the patterns. The first patterns are
1223 # conditioned on nir_lower_minmax64 because it was not clear that it was
1224 # always an improvement on platforms that have real int64 support. No
1225 # shaders in shader-db hit this, so it was hard to say one way or the
1226 # other.
1227 (('ilt', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1228 (('ilt', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1229 (('ige', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1230 (('ige', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1231 (('ilt', 'a@64', 0), ('ilt', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1232 (('ige', 'a@64', 0), ('ige', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1233
1234 (('ine', 'a@64', 0), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1235 (('ieq', 'a@64', 0), ('ieq', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1236 # 0u < uint(a) <=> uint(a) != 0u
1237 (('ult', 0, 'a@64'), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1238
1239 # Alternative lowering that doesn't rely on bfi.
1240 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1241 ('bcsel', ('ult', 31, 'bits'),
1242 'insert',
1243 (('ior',
1244 ('iand', 'base', ('inot', ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))),
1245 ('iand', ('ishl', 'insert', 'offset'), ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))))),
1246 'options->lower_bitfield_insert_to_shifts'),
1247
1248 # Alternative lowering that uses bitfield_select.
1249 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1250 ('bcsel', ('ult', 31, 'bits'), 'insert',
1251 ('bitfield_select', ('bfm', 'bits', 'offset'), ('ishl', 'insert', 'offset'), 'base')),
1252 'options->lower_bitfield_insert_to_bitfield_select'),
1253
1254 (('ibitfield_extract', 'value', 'offset', 'bits'),
1255 ('bcsel', ('ult', 31, 'bits'), 'value',
1256 ('ibfe', 'value', 'offset', 'bits')),
1257 'options->lower_bitfield_extract'),
1258
1259 (('ubitfield_extract', 'value', 'offset', 'bits'),
1260 ('bcsel', ('ult', 31, 'bits'), 'value',
1261 ('ubfe', 'value', 'offset', 'bits')),
1262 'options->lower_bitfield_extract'),
1263
1264 # Note that these opcodes are defined to only use the five least significant bits of 'offset' and 'bits'
1265 (('ubfe', 'value', 'offset', ('iand', 31, 'bits')), ('ubfe', 'value', 'offset', 'bits')),
1266 (('ubfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ubfe', 'value', 'offset', 'bits')),
1267 (('ibfe', 'value', 'offset', ('iand', 31, 'bits')), ('ibfe', 'value', 'offset', 'bits')),
1268 (('ibfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ibfe', 'value', 'offset', 'bits')),
1269 (('bfm', 'bits', ('iand', 31, 'offset')), ('bfm', 'bits', 'offset')),
1270 (('bfm', ('iand', 31, 'bits'), 'offset'), ('bfm', 'bits', 'offset')),
1271
1272 # Section 8.8 (Integer Functions) of the GLSL 4.60 spec says:
1273 #
1274 # If bits is zero, the result will be zero.
1275 #
1276 # These patterns prevent other patterns from generating invalid results
1277 # when count is zero.
1278 (('ubfe', a, b, 0), 0),
1279 (('ibfe', a, b, 0), 0),
1280
1281 (('ubfe', a, 0, '#b'), ('iand', a, ('ushr', 0xffffffff, ('ineg', b)))),
1282
1283 (('b2i32', ('i2b', ('ubfe', a, b, 1))), ('ubfe', a, b, 1)),
1284 (('b2i32', ('i2b', ('ibfe', a, b, 1))), ('ubfe', a, b, 1)), # ubfe in the replacement is correct
1285 (('ine', ('ibfe(is_used_once)', a, '#b', '#c'), 0), ('ine', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)),
1286 (('ieq', ('ibfe(is_used_once)', a, '#b', '#c'), 0), ('ieq', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)),
1287 (('ine', ('ubfe(is_used_once)', a, '#b', '#c'), 0), ('ine', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)),
1288 (('ieq', ('ubfe(is_used_once)', a, '#b', '#c'), 0), ('ieq', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)),
1289
1290 (('ibitfield_extract', 'value', 'offset', 'bits'),
1291 ('bcsel', ('ieq', 0, 'bits'),
1292 0,
1293 ('ishr',
1294 ('ishl', 'value', ('isub', ('isub', 32, 'bits'), 'offset')),
1295 ('isub', 32, 'bits'))),
1296 'options->lower_bitfield_extract_to_shifts'),
1297
1298 (('ubitfield_extract', 'value', 'offset', 'bits'),
1299 ('iand',
1300 ('ushr', 'value', 'offset'),
1301 ('bcsel', ('ieq', 'bits', 32),
1302 0xffffffff,
1303 ('isub', ('ishl', 1, 'bits'), 1))),
1304 'options->lower_bitfield_extract_to_shifts'),
1305
1306 (('ifind_msb', 'value'),
1307 ('ufind_msb', ('bcsel', ('ilt', 'value', 0), ('inot', 'value'), 'value')),
1308 'options->lower_ifind_msb'),
1309
1310 (('find_lsb', 'value'),
1311 ('ufind_msb', ('iand', 'value', ('ineg', 'value'))),
1312 'options->lower_find_lsb'),
1313
1314 (('extract_i8', a, 'b@32'),
1315 ('ishr', ('ishl', a, ('imul', ('isub', 3, b), 8)), 24),
1316 'options->lower_extract_byte'),
1317
1318 (('extract_u8', a, 'b@32'),
1319 ('iand', ('ushr', a, ('imul', b, 8)), 0xff),
1320 'options->lower_extract_byte'),
1321
1322 (('extract_i16', a, 'b@32'),
1323 ('ishr', ('ishl', a, ('imul', ('isub', 1, b), 16)), 16),
1324 'options->lower_extract_word'),
1325
1326 (('extract_u16', a, 'b@32'),
1327 ('iand', ('ushr', a, ('imul', b, 16)), 0xffff),
1328 'options->lower_extract_word'),
1329
1330 (('pack_unorm_2x16', 'v'),
1331 ('pack_uvec2_to_uint',
1332 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 65535.0)))),
1333 'options->lower_pack_unorm_2x16'),
1334
1335 (('pack_unorm_4x8', 'v'),
1336 ('pack_uvec4_to_uint',
1337 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 255.0)))),
1338 'options->lower_pack_unorm_4x8'),
1339
1340 (('pack_snorm_2x16', 'v'),
1341 ('pack_uvec2_to_uint',
1342 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 32767.0)))),
1343 'options->lower_pack_snorm_2x16'),
1344
1345 (('pack_snorm_4x8', 'v'),
1346 ('pack_uvec4_to_uint',
1347 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 127.0)))),
1348 'options->lower_pack_snorm_4x8'),
1349
1350 (('unpack_unorm_2x16', 'v'),
1351 ('fdiv', ('u2f32', ('vec2', ('extract_u16', 'v', 0),
1352 ('extract_u16', 'v', 1))),
1353 65535.0),
1354 'options->lower_unpack_unorm_2x16'),
1355
1356 (('unpack_unorm_4x8', 'v'),
1357 ('fdiv', ('u2f32', ('vec4', ('extract_u8', 'v', 0),
1358 ('extract_u8', 'v', 1),
1359 ('extract_u8', 'v', 2),
1360 ('extract_u8', 'v', 3))),
1361 255.0),
1362 'options->lower_unpack_unorm_4x8'),
1363
1364 (('unpack_snorm_2x16', 'v'),
1365 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec2', ('extract_i16', 'v', 0),
1366 ('extract_i16', 'v', 1))),
1367 32767.0))),
1368 'options->lower_unpack_snorm_2x16'),
1369
1370 (('unpack_snorm_4x8', 'v'),
1371 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec4', ('extract_i8', 'v', 0),
1372 ('extract_i8', 'v', 1),
1373 ('extract_i8', 'v', 2),
1374 ('extract_i8', 'v', 3))),
1375 127.0))),
1376 'options->lower_unpack_snorm_4x8'),
1377
1378 (('pack_half_2x16_split', 'a@32', 'b@32'),
1379 ('ior', ('ishl', ('u2u32', ('f2f16', b)), 16), ('u2u32', ('f2f16', a))),
1380 'options->lower_pack_split'),
1381
1382 (('unpack_half_2x16_split_x', 'a@32'),
1383 ('f2f32', ('u2u16', a)),
1384 'options->lower_pack_split'),
1385
1386 (('unpack_half_2x16_split_y', 'a@32'),
1387 ('f2f32', ('u2u16', ('ushr', a, 16))),
1388 'options->lower_pack_split'),
1389
1390 (('pack_32_2x16_split', 'a@16', 'b@16'),
1391 ('ior', ('ishl', ('u2u32', b), 16), ('u2u32', a)),
1392 'options->lower_pack_split'),
1393
1394 (('unpack_32_2x16_split_x', 'a@32'),
1395 ('u2u16', a),
1396 'options->lower_pack_split'),
1397
1398 (('unpack_32_2x16_split_y', 'a@32'),
1399 ('u2u16', ('ushr', 'a', 16)),
1400 'options->lower_pack_split'),
1401
1402 (('isign', a), ('imin', ('imax', a, -1), 1), 'options->lower_isign'),
1403 (('imin', ('imax', a, -1), 1), ('isign', a), '!options->lower_isign'),
1404 (('imax', ('imin', a, 1), -1), ('isign', a), '!options->lower_isign'),
1405 (('fsign', a), ('fsub', ('b2f', ('flt', 0.0, a)), ('b2f', ('flt', a, 0.0))), 'options->lower_fsign'),
1406 (('fadd', ('b2f32', ('flt', 0.0, 'a@32')), ('fneg', ('b2f32', ('flt', 'a@32', 0.0)))), ('fsign', a), '!options->lower_fsign'),
1407 (('iadd', ('b2i32', ('flt', 0, 'a@32')), ('ineg', ('b2i32', ('flt', 'a@32', 0)))), ('f2i32', ('fsign', a)), '!options->lower_fsign'),
1408
1409 # Address/offset calculations:
1410 # Drivers supporting imul24 should use the nir_lower_amul() pass, this
1411 # rule converts everyone else to imul:
1412 (('amul', a, b), ('imul', a, b), '!options->has_imul24'),
1413
1414 (('umul24', a, b),
1415 ('imul', ('iand', a, 0xffffff), ('iand', b, 0xffffff)),
1416 '!options->has_umul24'),
1417 (('umad24', a, b, c),
1418 ('iadd', ('imul', ('iand', a, 0xffffff), ('iand', b, 0xffffff)), c),
1419 '!options->has_umad24'),
1420
1421 (('imad24_ir3', a, b, 0), ('imul24', a, b)),
1422 (('imad24_ir3', a, 0, c), (c)),
1423 (('imad24_ir3', a, 1, c), ('iadd', a, c)),
1424
1425 # if first two srcs are const, crack apart the imad so constant folding
1426 # can clean up the imul:
1427 # TODO ffma should probably get a similar rule:
1428 (('imad24_ir3', '#a', '#b', c), ('iadd', ('imul', a, b), c)),
1429
1430 # These will turn 24b address/offset calc back into 32b shifts, but
1431 # it should be safe to get back some of the bits of precision that we
1432 # already decided were no necessary:
1433 (('imul24', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
1434 (('imul24', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
1435 (('imul24', a, 0), (0)),
1436 ])
1437
1438 # bit_size dependent lowerings
1439 for bit_size in [8, 16, 32, 64]:
1440 # convenience constants
1441 intmax = (1 << (bit_size - 1)) - 1
1442 intmin = 1 << (bit_size - 1)
1443
1444 optimizations += [
1445 (('iadd_sat@' + str(bit_size), a, b),
1446 ('bcsel', ('ige', b, 1), ('bcsel', ('ilt', ('iadd', a, b), a), intmax, ('iadd', a, b)),
1447 ('bcsel', ('ilt', a, ('iadd', a, b)), intmin, ('iadd', a, b))), 'options->lower_add_sat'),
1448 (('isub_sat@' + str(bit_size), a, b),
1449 ('bcsel', ('ilt', b, 0), ('bcsel', ('ilt', ('isub', a, b), a), intmax, ('isub', a, b)),
1450 ('bcsel', ('ilt', a, ('isub', a, b)), intmin, ('isub', a, b))), 'options->lower_add_sat'),
1451 ]
1452
1453 invert = OrderedDict([('feq', 'fne'), ('fne', 'feq')])
1454
1455 for left, right in itertools.combinations_with_replacement(invert.keys(), 2):
1456 optimizations.append((('inot', ('ior(is_used_once)', (left, a, b), (right, c, d))),
1457 ('iand', (invert[left], a, b), (invert[right], c, d))))
1458 optimizations.append((('inot', ('iand(is_used_once)', (left, a, b), (right, c, d))),
1459 ('ior', (invert[left], a, b), (invert[right], c, d))))
1460
1461 # Optimize x2bN(b2x(x)) -> x
1462 for size in type_sizes('bool'):
1463 aN = 'a@' + str(size)
1464 f2bN = 'f2b' + str(size)
1465 i2bN = 'i2b' + str(size)
1466 optimizations.append(((f2bN, ('b2f', aN)), a))
1467 optimizations.append(((i2bN, ('b2i', aN)), a))
1468
1469 # Optimize x2yN(b2x(x)) -> b2y
1470 for x, y in itertools.product(['f', 'u', 'i'], ['f', 'u', 'i']):
1471 if x != 'f' and y != 'f' and x != y:
1472 continue
1473
1474 b2x = 'b2f' if x == 'f' else 'b2i'
1475 b2y = 'b2f' if y == 'f' else 'b2i'
1476 x2yN = '{}2{}'.format(x, y)
1477 optimizations.append(((x2yN, (b2x, a)), (b2y, a)))
1478
1479 # Optimize away x2xN(a@N)
1480 for t in ['int', 'uint', 'float', 'bool']:
1481 for N in type_sizes(t):
1482 x2xN = '{0}2{0}{1}'.format(t[0], N)
1483 aN = 'a@{0}'.format(N)
1484 optimizations.append(((x2xN, aN), a))
1485
1486 # Optimize x2xN(y2yM(a@P)) -> y2yN(a) for integers
1487 # In particular, we can optimize away everything except upcast of downcast and
1488 # upcasts where the type differs from the other cast
1489 for N, M in itertools.product(type_sizes('uint'), type_sizes('uint')):
1490 if N < M:
1491 # The outer cast is a down-cast. It doesn't matter what the size of the
1492 # argument of the inner cast is because we'll never been in the upcast
1493 # of downcast case. Regardless of types, we'll always end up with y2yN
1494 # in the end.
1495 for x, y in itertools.product(['i', 'u'], ['i', 'u']):
1496 x2xN = '{0}2{0}{1}'.format(x, N)
1497 y2yM = '{0}2{0}{1}'.format(y, M)
1498 y2yN = '{0}2{0}{1}'.format(y, N)
1499 optimizations.append(((x2xN, (y2yM, a)), (y2yN, a)))
1500 elif N > M:
1501 # If the outer cast is an up-cast, we have to be more careful about the
1502 # size of the argument of the inner cast and with types. In this case,
1503 # the type is always the type of type up-cast which is given by the
1504 # outer cast.
1505 for P in type_sizes('uint'):
1506 # We can't optimize away up-cast of down-cast.
1507 if M < P:
1508 continue
1509
1510 # Because we're doing down-cast of down-cast, the types always have
1511 # to match between the two casts
1512 for x in ['i', 'u']:
1513 x2xN = '{0}2{0}{1}'.format(x, N)
1514 x2xM = '{0}2{0}{1}'.format(x, M)
1515 aP = 'a@{0}'.format(P)
1516 optimizations.append(((x2xN, (x2xM, aP)), (x2xN, a)))
1517 else:
1518 # The N == M case is handled by other optimizations
1519 pass
1520
1521 # Downcast operations should be able to see through pack
1522 for t in ['i', 'u']:
1523 for N in [8, 16, 32]:
1524 x2xN = '{0}2{0}{1}'.format(t, N)
1525 optimizations += [
1526 ((x2xN, ('pack_64_2x32_split', a, b)), (x2xN, a)),
1527 ((x2xN, ('pack_64_2x32_split', a, b)), (x2xN, a)),
1528 ]
1529
1530 # Optimize comparisons with up-casts
1531 for t in ['int', 'uint', 'float']:
1532 for N, M in itertools.product(type_sizes(t), repeat=2):
1533 if N == 1 or N >= M:
1534 continue
1535
1536 cond = 'true'
1537 if N == 8:
1538 cond = 'options->support_8bit_alu'
1539 elif N == 16:
1540 cond = 'options->support_16bit_alu'
1541 x2xM = '{0}2{0}{1}'.format(t[0], M)
1542 x2xN = '{0}2{0}{1}'.format(t[0], N)
1543 aN = 'a@' + str(N)
1544 bN = 'b@' + str(N)
1545 xeq = 'feq' if t == 'float' else 'ieq'
1546 xne = 'fne' if t == 'float' else 'ine'
1547 xge = '{0}ge'.format(t[0])
1548 xlt = '{0}lt'.format(t[0])
1549
1550 # Up-casts are lossless so for correctly signed comparisons of
1551 # up-casted values we can do the comparison at the largest of the two
1552 # original sizes and drop one or both of the casts. (We have
1553 # optimizations to drop the no-op casts which this may generate.)
1554 for P in type_sizes(t):
1555 if P == 1 or P > N:
1556 continue
1557
1558 bP = 'b@' + str(P)
1559 optimizations += [
1560 ((xeq, (x2xM, aN), (x2xM, bP)), (xeq, a, (x2xN, b)), cond),
1561 ((xne, (x2xM, aN), (x2xM, bP)), (xne, a, (x2xN, b)), cond),
1562 ((xge, (x2xM, aN), (x2xM, bP)), (xge, a, (x2xN, b)), cond),
1563 ((xlt, (x2xM, aN), (x2xM, bP)), (xlt, a, (x2xN, b)), cond),
1564 ((xge, (x2xM, bP), (x2xM, aN)), (xge, (x2xN, b), a), cond),
1565 ((xlt, (x2xM, bP), (x2xM, aN)), (xlt, (x2xN, b), a), cond),
1566 ]
1567
1568 # The next bit doesn't work on floats because the range checks would
1569 # get way too complicated.
1570 if t in ['int', 'uint']:
1571 if t == 'int':
1572 xN_min = -(1 << (N - 1))
1573 xN_max = (1 << (N - 1)) - 1
1574 elif t == 'uint':
1575 xN_min = 0
1576 xN_max = (1 << N) - 1
1577 else:
1578 assert False
1579
1580 # If we're up-casting and comparing to a constant, we can unfold
1581 # the comparison into a comparison with the shrunk down constant
1582 # and a check that the constant fits in the smaller bit size.
1583 optimizations += [
1584 ((xeq, (x2xM, aN), '#b'),
1585 ('iand', (xeq, a, (x2xN, b)), (xeq, (x2xM, (x2xN, b)), b)), cond),
1586 ((xne, (x2xM, aN), '#b'),
1587 ('ior', (xne, a, (x2xN, b)), (xne, (x2xM, (x2xN, b)), b)), cond),
1588 ((xlt, (x2xM, aN), '#b'),
1589 ('iand', (xlt, xN_min, b),
1590 ('ior', (xlt, xN_max, b), (xlt, a, (x2xN, b)))), cond),
1591 ((xlt, '#a', (x2xM, bN)),
1592 ('iand', (xlt, a, xN_max),
1593 ('ior', (xlt, a, xN_min), (xlt, (x2xN, a), b))), cond),
1594 ((xge, (x2xM, aN), '#b'),
1595 ('iand', (xge, xN_max, b),
1596 ('ior', (xge, xN_min, b), (xge, a, (x2xN, b)))), cond),
1597 ((xge, '#a', (x2xM, bN)),
1598 ('iand', (xge, a, xN_min),
1599 ('ior', (xge, a, xN_max), (xge, (x2xN, a), b))), cond),
1600 ]
1601
1602 def fexp2i(exp, bits):
1603 # Generate an expression which constructs value 2.0^exp or 0.0.
1604 #
1605 # We assume that exp is already in a valid range:
1606 #
1607 # * [-15, 15] for 16-bit float
1608 # * [-127, 127] for 32-bit float
1609 # * [-1023, 1023] for 16-bit float
1610 #
1611 # If exp is the lowest value in the valid range, a value of 0.0 is
1612 # constructed. Otherwise, the value 2.0^exp is constructed.
1613 if bits == 16:
1614 return ('i2i16', ('ishl', ('iadd', exp, 15), 10))
1615 elif bits == 32:
1616 return ('ishl', ('iadd', exp, 127), 23)
1617 elif bits == 64:
1618 return ('pack_64_2x32_split', 0, ('ishl', ('iadd', exp, 1023), 20))
1619 else:
1620 assert False
1621
1622 def ldexp(f, exp, bits):
1623 # The maximum possible range for a normal exponent is [-126, 127] and,
1624 # throwing in denormals, you get a maximum range of [-149, 127]. This
1625 # means that we can potentially have a swing of +-276. If you start with
1626 # FLT_MAX, you actually have to do ldexp(FLT_MAX, -278) to get it to flush
1627 # all the way to zero. The GLSL spec only requires that we handle a subset
1628 # of this range. From version 4.60 of the spec:
1629 #
1630 # "If exp is greater than +128 (single-precision) or +1024
1631 # (double-precision), the value returned is undefined. If exp is less
1632 # than -126 (single-precision) or -1022 (double-precision), the value
1633 # returned may be flushed to zero. Additionally, splitting the value
1634 # into a significand and exponent using frexp() and then reconstructing
1635 # a floating-point value using ldexp() should yield the original input
1636 # for zero and all finite non-denormalized values."
1637 #
1638 # The SPIR-V spec has similar language.
1639 #
1640 # In order to handle the maximum value +128 using the fexp2i() helper
1641 # above, we have to split the exponent in half and do two multiply
1642 # operations.
1643 #
1644 # First, we clamp exp to a reasonable range. Specifically, we clamp to
1645 # twice the full range that is valid for the fexp2i() function above. If
1646 # exp/2 is the bottom value of that range, the fexp2i() expression will
1647 # yield 0.0f which, when multiplied by f, will flush it to zero which is
1648 # allowed by the GLSL and SPIR-V specs for low exponent values. If the
1649 # value is clamped from above, then it must have been above the supported
1650 # range of the GLSL built-in and therefore any return value is acceptable.
1651 if bits == 16:
1652 exp = ('imin', ('imax', exp, -30), 30)
1653 elif bits == 32:
1654 exp = ('imin', ('imax', exp, -254), 254)
1655 elif bits == 64:
1656 exp = ('imin', ('imax', exp, -2046), 2046)
1657 else:
1658 assert False
1659
1660 # Now we compute two powers of 2, one for exp/2 and one for exp-exp/2.
1661 # (We use ishr which isn't the same for -1, but the -1 case still works
1662 # since we use exp-exp/2 as the second exponent.) While the spec
1663 # technically defines ldexp as f * 2.0^exp, simply multiplying once doesn't
1664 # work with denormals and doesn't allow for the full swing in exponents
1665 # that you can get with normalized values. Instead, we create two powers
1666 # of two and multiply by them each in turn. That way the effective range
1667 # of our exponent is doubled.
1668 pow2_1 = fexp2i(('ishr', exp, 1), bits)
1669 pow2_2 = fexp2i(('isub', exp, ('ishr', exp, 1)), bits)
1670 return ('fmul', ('fmul', f, pow2_1), pow2_2)
1671
1672 optimizations += [
1673 (('ldexp@16', 'x', 'exp'), ldexp('x', 'exp', 16), 'options->lower_ldexp'),
1674 (('ldexp@32', 'x', 'exp'), ldexp('x', 'exp', 32), 'options->lower_ldexp'),
1675 (('ldexp@64', 'x', 'exp'), ldexp('x', 'exp', 64), 'options->lower_ldexp'),
1676 ]
1677
1678 # Unreal Engine 4 demo applications open-codes bitfieldReverse()
1679 def bitfield_reverse(u):
1680 step1 = ('ior', ('ishl', u, 16), ('ushr', u, 16))
1681 step2 = ('ior', ('ishl', ('iand', step1, 0x00ff00ff), 8), ('ushr', ('iand', step1, 0xff00ff00), 8))
1682 step3 = ('ior', ('ishl', ('iand', step2, 0x0f0f0f0f), 4), ('ushr', ('iand', step2, 0xf0f0f0f0), 4))
1683 step4 = ('ior', ('ishl', ('iand', step3, 0x33333333), 2), ('ushr', ('iand', step3, 0xcccccccc), 2))
1684 step5 = ('ior(many-comm-expr)', ('ishl', ('iand', step4, 0x55555555), 1), ('ushr', ('iand', step4, 0xaaaaaaaa), 1))
1685
1686 return step5
1687
1688 optimizations += [(bitfield_reverse('x@32'), ('bitfield_reverse', 'x'), '!options->lower_bitfield_reverse')]
1689
1690 # For any float comparison operation, "cmp", if you have "a == a && a cmp b"
1691 # then the "a == a" is redundant because it's equivalent to "a is not NaN"
1692 # and, if a is a NaN then the second comparison will fail anyway.
1693 for op in ['flt', 'fge', 'feq']:
1694 optimizations += [
1695 (('iand', ('feq', a, a), (op, a, b)), ('!' + op, a, b)),
1696 (('iand', ('feq', a, a), (op, b, a)), ('!' + op, b, a)),
1697 ]
1698
1699 # Add optimizations to handle the case where the result of a ternary is
1700 # compared to a constant. This way we can take things like
1701 #
1702 # (a ? 0 : 1) > 0
1703 #
1704 # and turn it into
1705 #
1706 # a ? (0 > 0) : (1 > 0)
1707 #
1708 # which constant folding will eat for lunch. The resulting ternary will
1709 # further get cleaned up by the boolean reductions above and we will be
1710 # left with just the original variable "a".
1711 for op in ['flt', 'fge', 'feq', 'fne',
1712 'ilt', 'ige', 'ieq', 'ine', 'ult', 'uge']:
1713 optimizations += [
1714 ((op, ('bcsel', 'a', '#b', '#c'), '#d'),
1715 ('bcsel', 'a', (op, 'b', 'd'), (op, 'c', 'd'))),
1716 ((op, '#d', ('bcsel', a, '#b', '#c')),
1717 ('bcsel', 'a', (op, 'd', 'b'), (op, 'd', 'c'))),
1718 ]
1719
1720
1721 # For example, this converts things like
1722 #
1723 # 1 + mix(0, a - 1, condition)
1724 #
1725 # into
1726 #
1727 # mix(1, (a-1)+1, condition)
1728 #
1729 # Other optimizations will rearrange the constants.
1730 for op in ['fadd', 'fmul', 'iadd', 'imul']:
1731 optimizations += [
1732 ((op, ('bcsel(is_used_once)', a, '#b', c), '#d'), ('bcsel', a, (op, b, d), (op, c, d)))
1733 ]
1734
1735 # For derivatives in compute shaders, GLSL_NV_compute_shader_derivatives
1736 # states:
1737 #
1738 # If neither layout qualifier is specified, derivatives in compute shaders
1739 # return zero, which is consistent with the handling of built-in texture
1740 # functions like texture() in GLSL 4.50 compute shaders.
1741 for op in ['fddx', 'fddx_fine', 'fddx_coarse',
1742 'fddy', 'fddy_fine', 'fddy_coarse']:
1743 optimizations += [
1744 ((op, 'a'), 0.0, 'info->stage == MESA_SHADER_COMPUTE && info->cs.derivative_group == DERIVATIVE_GROUP_NONE')
1745 ]
1746
1747 # Some optimizations for ir3-specific instructions.
1748 optimizations += [
1749 # 'al * bl': If either 'al' or 'bl' is zero, return zero.
1750 (('umul_low', '#a(is_lower_half_zero)', 'b'), (0)),
1751 # '(ah * bl) << 16 + c': If either 'ah' or 'bl' is zero, return 'c'.
1752 (('imadsh_mix16', '#a@32(is_lower_half_zero)', 'b@32', 'c@32'), ('c')),
1753 (('imadsh_mix16', 'a@32', '#b@32(is_upper_half_zero)', 'c@32'), ('c')),
1754 ]
1755
1756 # These kinds of sequences can occur after nir_opt_peephole_select.
1757 #
1758 # NOTE: fadd is not handled here because that gets in the way of ffma
1759 # generation in the i965 driver. Instead, fadd and ffma are handled in
1760 # late_optimizations.
1761
1762 for op in ['flrp']:
1763 optimizations += [
1764 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1765 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1766 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1767 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1768 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1769 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1770 ]
1771
1772 for op in ['fmul', 'iadd', 'imul', 'iand', 'ior', 'ixor', 'fmin', 'fmax', 'imin', 'imax', 'umin', 'umax']:
1773 optimizations += [
1774 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1775 (('bcsel', a, (op + '(is_used_once)', b, 'c(is_not_const)'), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1776 (('bcsel', a, (op, b, 'c(is_not_const)'), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1777 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1778 ]
1779
1780 for op in ['fpow']:
1781 optimizations += [
1782 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1783 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1784 (('bcsel', a, (op + '(is_used_once)', b, c), (op, d, c)), (op, ('bcsel', a, b, d), c)),
1785 (('bcsel', a, (op, b, c), (op + '(is_used_once)', d, c)), (op, ('bcsel', a, b, d), c)),
1786 ]
1787
1788 for op in ['frcp', 'frsq', 'fsqrt', 'fexp2', 'flog2', 'fsign', 'fsin', 'fcos', 'fneg', 'fabs', 'fsign']:
1789 optimizations += [
1790 (('bcsel', c, (op + '(is_used_once)', a), (op + '(is_used_once)', b)), (op, ('bcsel', c, a, b))),
1791 ]
1792
1793 for op in ['ineg', 'iabs', 'inot', 'isign']:
1794 optimizations += [
1795 ((op, ('bcsel', c, '#a', '#b')), ('bcsel', c, (op, a), (op, b))),
1796 ]
1797
1798 # This section contains optimizations to propagate downsizing conversions of
1799 # constructed vectors into vectors of downsized components. Whether this is
1800 # useful depends on the SIMD semantics of the backend. On a true SIMD machine,
1801 # this reduces the register pressure of the vector itself and often enables the
1802 # conversions to be eliminated via other algebraic rules or constant folding.
1803 # In the worst case on a SIMD architecture, the propagated conversions may be
1804 # revectorized via nir_opt_vectorize so instruction count is minimally
1805 # impacted.
1806 #
1807 # On a machine with SIMD-within-a-register only, this actually
1808 # counterintuitively hurts instruction count. These machines are the same that
1809 # require vectorize_vec2_16bit, so we predicate the optimizations on that flag
1810 # not being set.
1811 #
1812 # Finally for scalar architectures, there should be no difference in generated
1813 # code since it all ends up scalarized at the end, but it might minimally help
1814 # compile-times.
1815
1816 for i in range(2, 4 + 1):
1817 for T in ('f', 'u', 'i'):
1818 vec_inst = ('vec' + str(i),)
1819
1820 indices = ['a', 'b', 'c', 'd']
1821 suffix_in = tuple((indices[j] + '@32') for j in range(i))
1822
1823 to_16 = '{}2{}16'.format(T, T)
1824 to_mp = '{}2{}mp'.format(T, T)
1825
1826 out_16 = tuple((to_16, indices[j]) for j in range(i))
1827 out_mp = tuple((to_mp, indices[j]) for j in range(i))
1828
1829 optimizations += [
1830 ((to_16, vec_inst + suffix_in), vec_inst + out_16, '!options->vectorize_vec2_16bit'),
1831 ((to_mp, vec_inst + suffix_in), vec_inst + out_mp, '!options->vectorize_vec2_16bit')
1832 ]
1833
1834 # This section contains "late" optimizations that should be run before
1835 # creating ffmas and calling regular optimizations for the final time.
1836 # Optimizations should go here if they help code generation and conflict
1837 # with the regular optimizations.
1838 before_ffma_optimizations = [
1839 # Propagate constants down multiplication chains
1840 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fmul', ('fmul', a, c), b)),
1841 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('imul', ('imul', a, c), b)),
1842 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fadd', ('fadd', a, c), b)),
1843 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('iadd', ('iadd', a, c), b)),
1844
1845 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
1846 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
1847 (('~fadd', ('fneg', a), a), 0.0),
1848 (('iadd', ('ineg', a), a), 0),
1849 (('iadd', ('ineg', a), ('iadd', a, b)), b),
1850 (('iadd', a, ('iadd', ('ineg', a), b)), b),
1851 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
1852 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
1853
1854 (('~flrp@32', ('fadd(is_used_once)', a, -1.0), ('fadd(is_used_once)', a, 1.0), d), ('fadd', ('flrp', -1.0, 1.0, d), a)),
1855 (('~flrp@32', ('fadd(is_used_once)', a, 1.0), ('fadd(is_used_once)', a, -1.0), d), ('fadd', ('flrp', 1.0, -1.0, d), a)),
1856 (('~flrp@32', ('fadd(is_used_once)', a, '#b'), ('fadd(is_used_once)', a, '#c'), d), ('fadd', ('fmul', d, ('fadd', c, ('fneg', b))), ('fadd', a, b))),
1857 ]
1858
1859 # This section contains "late" optimizations that should be run after the
1860 # regular optimizations have finished. Optimizations should go here if
1861 # they help code generation but do not necessarily produce code that is
1862 # more easily optimizable.
1863 late_optimizations = [
1864 # Most of these optimizations aren't quite safe when you get infinity or
1865 # Nan involved but the first one should be fine.
1866 (('flt', ('fadd', a, b), 0.0), ('flt', a, ('fneg', b))),
1867 (('flt', ('fneg', ('fadd', a, b)), 0.0), ('flt', ('fneg', a), b)),
1868 (('~fge', ('fadd', a, b), 0.0), ('fge', a, ('fneg', b))),
1869 (('~fge', ('fneg', ('fadd', a, b)), 0.0), ('fge', ('fneg', a), b)),
1870 (('~feq', ('fadd', a, b), 0.0), ('feq', a, ('fneg', b))),
1871 (('~fne', ('fadd', a, b), 0.0), ('fne', a, ('fneg', b))),
1872
1873 # nir_lower_to_source_mods will collapse this, but its existence during the
1874 # optimization loop can prevent other optimizations.
1875 (('fneg', ('fneg', a)), a),
1876
1877 # Subtractions get lowered during optimization, so we need to recombine them
1878 (('fadd', 'a', ('fneg', 'b')), ('fsub', 'a', 'b'), '!options->lower_sub'),
1879 (('iadd', 'a', ('ineg', 'b')), ('isub', 'a', 'b'), '!options->lower_sub'),
1880 (('fneg', a), ('fsub', 0.0, a), 'options->lower_negate'),
1881 (('ineg', a), ('isub', 0, a), 'options->lower_negate'),
1882
1883 # These are duplicated from the main optimizations table. The late
1884 # patterns that rearrange expressions like x - .5 < 0 to x < .5 can create
1885 # new patterns like these. The patterns that compare with zero are removed
1886 # because they are unlikely to be created in by anything in
1887 # late_optimizations.
1888 (('flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
1889 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
1890 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
1891 (('fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
1892 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
1893 (('fne', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fne', a, b)),
1894
1895 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
1896 (('flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
1897
1898 (('~fge', ('fmin(is_used_once)', ('fadd(is_used_once)', a, b), ('fadd', c, d)), 0.0), ('iand', ('fge', a, ('fneg', b)), ('fge', c, ('fneg', d)))),
1899
1900 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
1901 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
1902 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
1903 (('fne', ('fneg', a), ('fneg', b)), ('fne', b, a)),
1904 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
1905 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
1906 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
1907 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
1908 (('fne', ('fneg', a), -1.0), ('fne', 1.0, a)),
1909 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
1910
1911 (('ior', a, a), a),
1912 (('iand', a, a), a),
1913
1914 (('iand', ('ine(is_used_once)', 'a@32', 0), ('ine', 'b@32', 0)), ('ine', ('umin', a, b), 0)),
1915 (('ior', ('ieq(is_used_once)', 'a@32', 0), ('ieq', 'b@32', 0)), ('ieq', ('umin', a, b), 0)),
1916
1917 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
1918
1919 (('fdot2', a, b), ('fdot_replicated2', a, b), 'options->fdot_replicates'),
1920 (('fdot3', a, b), ('fdot_replicated3', a, b), 'options->fdot_replicates'),
1921 (('fdot4', a, b), ('fdot_replicated4', a, b), 'options->fdot_replicates'),
1922 (('fdph', a, b), ('fdph_replicated', a, b), 'options->fdot_replicates'),
1923
1924 (('~flrp@32', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
1925 (('~flrp@64', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
1926
1927 (('~fadd@32', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp32'),
1928 (('~fadd@64', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp64'),
1929
1930 # A similar operation could apply to any ffma(#a, b, #(-a/2)), but this
1931 # particular operation is common for expanding values stored in a texture
1932 # from [0,1] to [-1,1].
1933 (('~ffma@32', a, 2.0, -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1934 (('~ffma@32', a, -2.0, -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1935 (('~ffma@32', a, -2.0, 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1936 (('~ffma@32', a, 2.0, 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1937 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1938 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1939 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1940 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1941
1942 # flrp(a, b, a)
1943 # a*(1-a) + b*a
1944 # a + -a*a + a*b (1)
1945 # a + a*(b - a)
1946 # Option 1: ffma(a, (b-a), a)
1947 #
1948 # Alternately, after (1):
1949 # a*(1+b) + -a*a
1950 # a*((1+b) + -a)
1951 #
1952 # Let b=1
1953 #
1954 # Option 2: ffma(a, 2, -(a*a))
1955 # Option 3: ffma(a, 2, (-a)*a)
1956 # Option 4: ffma(a, -a, (2*a)
1957 # Option 5: a * (2 - a)
1958 #
1959 # There are a lot of other possible combinations.
1960 (('~ffma@32', ('fadd', b, ('fneg', a)), a, a), ('flrp', a, b, a), '!options->lower_flrp32'),
1961 (('~ffma@32', a, 2.0, ('fneg', ('fmul', a, a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1962 (('~ffma@32', a, 2.0, ('fmul', ('fneg', a), a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1963 (('~ffma@32', a, ('fneg', a), ('fmul', 2.0, a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1964 (('~fmul@32', a, ('fadd', 2.0, ('fneg', a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1965
1966 # we do these late so that we don't get in the way of creating ffmas
1967 (('fmin', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmin', a, b))),
1968 (('fmax', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmax', a, b))),
1969
1970 (('bcsel', a, 0, ('b2f32', ('inot', 'b@bool'))), ('b2f32', ('inot', ('ior', a, b)))),
1971
1972 # Putting this in 'optimizations' interferes with the bcsel(a, op(b, c),
1973 # op(b, d)) => op(b, bcsel(a, c, d)) transformations. I do not know why.
1974 (('bcsel', ('feq', ('fsqrt', 'a(is_not_negative)'), 0.0), intBitsToFloat(0x7f7fffff), ('frsq', a)),
1975 ('fmin', ('frsq', a), intBitsToFloat(0x7f7fffff))),
1976
1977 # Things that look like DPH in the source shader may get expanded to
1978 # something that looks like dot(v1.xyz, v2.xyz) + v1.w by the time it gets
1979 # to NIR. After FFMA is generated, this can look like:
1980 #
1981 # fadd(ffma(v1.z, v2.z, ffma(v1.y, v2.y, fmul(v1.x, v2.x))), v1.w)
1982 #
1983 # Reassociate the last addition into the first multiplication.
1984 #
1985 # Some shaders do not use 'invariant' in vertex and (possibly) geometry
1986 # shader stages on some outputs that are intended to be invariant. For
1987 # various reasons, this optimization may not be fully applied in all
1988 # shaders used for different rendering passes of the same geometry. This
1989 # can result in Z-fighting artifacts (at best). For now, disable this
1990 # optimization in these stages. See bugzilla #111490. In tessellation
1991 # stages applications seem to use 'precise' when necessary, so allow the
1992 # optimization in those stages.
1993 (('~fadd', ('ffma(is_used_once)', a, b, ('ffma', c, d, ('fmul', 'e(is_not_const_and_not_fsign)', 'f(is_not_const_and_not_fsign)'))), 'g(is_not_const)'),
1994 ('ffma', a, b, ('ffma', c, d, ('ffma', e, 'f', 'g'))), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
1995 (('~fadd', ('ffma(is_used_once)', a, b, ('fmul', 'c(is_not_const_and_not_fsign)', 'd(is_not_const_and_not_fsign)') ), 'e(is_not_const)'),
1996 ('ffma', a, b, ('ffma', c, d, e)), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
1997
1998 # Convert *2*mp instructions to concrete *2*16 instructions. At this point
1999 # any conversions that could have been removed will have been removed in
2000 # nir_opt_algebraic so any remaining ones are required.
2001 (('f2fmp', a), ('f2f16', a)),
2002 (('i2imp', a), ('i2i16', a)),
2003 (('u2ump', a), ('u2u16', a)),
2004
2005 # Section 8.8 (Integer Functions) of the GLSL 4.60 spec says:
2006 #
2007 # If bits is zero, the result will be zero.
2008 #
2009 # These prevent the next two lowerings generating incorrect results when
2010 # count is zero.
2011 (('ubfe', a, b, 0), 0),
2012 (('ibfe', a, b, 0), 0),
2013
2014 # On Intel GPUs, BFE is a 3-source instruction. Like all 3-source
2015 # instructions on Intel GPUs, it cannot have an immediate values as
2016 # sources. There are also limitations on source register strides. As a
2017 # result, it is very easy for 3-source instruction combined with either
2018 # loads of immediate values or copies from weird register strides to be
2019 # more expensive than the primitive instructions it represents.
2020 (('ubfe', a, '#b', '#c'), ('iand', ('ushr', 0xffffffff, ('ineg', c)), ('ushr', a, b)), 'options->lower_bfe_with_two_constants'),
2021
2022 # b is the lowest order bit to be extracted and c is the number of bits to
2023 # extract. The inner shift removes the bits above b + c by shifting left
2024 # 32 - (b + c). ishl only sees the low 5 bits of the shift count, which is
2025 # -(b + c). The outer shift moves the bit that was at b to bit zero.
2026 # After the first shift, that bit is now at b + (32 - (b + c)) or 32 - c.
2027 # This means that it must be shifted right by 32 - c or -c bits.
2028 (('ibfe', a, '#b', '#c'), ('ishr', ('ishl', a, ('ineg', ('iadd', b, c))), ('ineg', c)), 'options->lower_bfe_with_two_constants'),
2029
2030 # Clean up no-op shifts that may result from the bfe lowerings.
2031 (('ishl', a, 0), a),
2032 (('ishl', a, -32), a),
2033 (('ishr', a, 0), a),
2034 (('ishr', a, -32), a),
2035 (('ushr', a, 0), a),
2036 ]
2037
2038 for op in ['fadd']:
2039 late_optimizations += [
2040 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
2041 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
2042 ]
2043
2044 for op in ['ffma']:
2045 late_optimizations += [
2046 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
2047 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
2048
2049 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
2050 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
2051 ]
2052
2053 distribute_src_mods = [
2054 # Try to remove some spurious negations rather than pushing them down.
2055 (('fmul', ('fneg', a), ('fneg', b)), ('fmul', a, b)),
2056 (('ffma', ('fneg', a), ('fneg', b), c), ('ffma', a, b, c)),
2057 (('fdot_replicated2', ('fneg', a), ('fneg', b)), ('fdot_replicated2', a, b)),
2058 (('fdot_replicated3', ('fneg', a), ('fneg', b)), ('fdot_replicated3', a, b)),
2059 (('fdot_replicated4', ('fneg', a), ('fneg', b)), ('fdot_replicated4', a, b)),
2060 (('fneg', ('fneg', a)), a),
2061
2062 (('fneg', ('fmul(is_used_once)', a, b)), ('fmul', ('fneg', a), b)),
2063 (('fabs', ('fmul(is_used_once)', a, b)), ('fmul', ('fabs', a), ('fabs', b))),
2064
2065 (('fneg', ('ffma(is_used_once)', a, b, c)), ('ffma', ('fneg', a), b, ('fneg', c))),
2066 (('fneg', ('flrp(is_used_once)', a, b, c)), ('flrp', ('fneg', a), ('fneg', b), c)),
2067 (('fneg', ('fadd(is_used_once)', a, b)), ('fadd', ('fneg', a), ('fneg', b))),
2068
2069 # Note that fmin <-> fmax. I don't think there is a way to distribute
2070 # fabs() into fmin or fmax.
2071 (('fneg', ('fmin(is_used_once)', a, b)), ('fmax', ('fneg', a), ('fneg', b))),
2072 (('fneg', ('fmax(is_used_once)', a, b)), ('fmin', ('fneg', a), ('fneg', b))),
2073
2074 (('fneg', ('fdot_replicated2(is_used_once)', a, b)), ('fdot_replicated2', ('fneg', a), b)),
2075 (('fneg', ('fdot_replicated3(is_used_once)', a, b)), ('fdot_replicated3', ('fneg', a), b)),
2076 (('fneg', ('fdot_replicated4(is_used_once)', a, b)), ('fdot_replicated4', ('fneg', a), b)),
2077
2078 # fdph works mostly like fdot, but to get the correct result, the negation
2079 # must be applied to the second source.
2080 (('fneg', ('fdph_replicated(is_used_once)', a, b)), ('fdph_replicated', a, ('fneg', b))),
2081
2082 (('fneg', ('fsign(is_used_once)', a)), ('fsign', ('fneg', a))),
2083 (('fabs', ('fsign(is_used_once)', a)), ('fsign', ('fabs', a))),
2084 ]
2085
2086 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic", optimizations).render())
2087 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_before_ffma",
2088 before_ffma_optimizations).render())
2089 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_late",
2090 late_optimizations).render())
2091 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_distribute_src_mods",
2092 distribute_src_mods).render())