meson: inline `inc_common`
[mesa.git] / src / compiler / nir / nir_opt_algebraic.py
1 #
2 # Copyright (C) 2014 Intel Corporation
3 #
4 # Permission is hereby granted, free of charge, to any person obtaining a
5 # copy of this software and associated documentation files (the "Software"),
6 # to deal in the Software without restriction, including without limitation
7 # the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 # and/or sell copies of the Software, and to permit persons to whom the
9 # Software is furnished to do so, subject to the following conditions:
10 #
11 # The above copyright notice and this permission notice (including the next
12 # paragraph) shall be included in all copies or substantial portions of the
13 # Software.
14 #
15 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 # IN THE SOFTWARE.
22 #
23 # Authors:
24 # Jason Ekstrand (jason@jlekstrand.net)
25
26 from __future__ import print_function
27
28 from collections import OrderedDict
29 import nir_algebraic
30 from nir_opcodes import type_sizes
31 import itertools
32 import struct
33 from math import pi
34
35 # Convenience variables
36 a = 'a'
37 b = 'b'
38 c = 'c'
39 d = 'd'
40 e = 'e'
41
42 # Written in the form (<search>, <replace>) where <search> is an expression
43 # and <replace> is either an expression or a value. An expression is
44 # defined as a tuple of the form ([~]<op>, <src0>, <src1>, <src2>, <src3>)
45 # where each source is either an expression or a value. A value can be
46 # either a numeric constant or a string representing a variable name.
47 #
48 # If the opcode in a search expression is prefixed by a '~' character, this
49 # indicates that the operation is inexact. Such operations will only get
50 # applied to SSA values that do not have the exact bit set. This should be
51 # used by by any optimizations that are not bit-for-bit exact. It should not,
52 # however, be used for backend-requested lowering operations as those need to
53 # happen regardless of precision.
54 #
55 # Variable names are specified as "[#]name[@type][(cond)][.swiz]" where:
56 # "#" indicates that the given variable will only match constants,
57 # type indicates that the given variable will only match values from ALU
58 # instructions with the given output type,
59 # (cond) specifies an additional condition function (see nir_search_helpers.h),
60 # swiz is a swizzle applied to the variable (only in the <replace> expression)
61 #
62 # For constants, you have to be careful to make sure that it is the right
63 # type because python is unaware of the source and destination types of the
64 # opcodes.
65 #
66 # All expression types can have a bit-size specified. For opcodes, this
67 # looks like "op@32", for variables it is "a@32" or "a@uint32" to specify a
68 # type and size. In the search half of the expression this indicates that it
69 # should only match that particular bit-size. In the replace half of the
70 # expression this indicates that the constructed value should have that
71 # bit-size.
72 #
73 # If the opcode in a replacement expression is prefixed by a '!' character,
74 # this indicated that the new expression will be marked exact.
75 #
76 # A special condition "many-comm-expr" can be used with expressions to note
77 # that the expression and its subexpressions have more commutative expressions
78 # than nir_replace_instr can handle. If this special condition is needed with
79 # another condition, the two can be separated by a comma (e.g.,
80 # "(many-comm-expr,is_used_once)").
81
82 # based on https://web.archive.org/web/20180105155939/http://forum.devmaster.net/t/fast-and-accurate-sine-cosine/9648
83 def lowered_sincos(c):
84 x = ('fsub', ('fmul', 2.0, ('ffract', ('fadd', ('fmul', 0.5 / pi, a), c))), 1.0)
85 x = ('fmul', ('fsub', x, ('fmul', x, ('fabs', x))), 4.0)
86 return ('ffma', ('ffma', x, ('fabs', x), ('fneg', x)), 0.225, x)
87
88 def intBitsToFloat(i):
89 return struct.unpack('!f', struct.pack('!I', i))[0]
90
91 optimizations = [
92
93 (('imul', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
94 (('imul', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
95 (('ishl', a, '#b@32'), ('imul', a, ('ishl', 1, b)), 'options->lower_bitops'),
96
97 (('unpack_64_2x32_split_x', ('imul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
98 (('unpack_64_2x32_split_x', ('umul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
99 (('imul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('imul_high', a, b)), 'options->lower_mul_2x32_64'),
100 (('umul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('umul_high', a, b)), 'options->lower_mul_2x32_64'),
101 (('udiv', a, 1), a),
102 (('idiv', a, 1), a),
103 (('umod', a, 1), 0),
104 (('imod', a, 1), 0),
105 (('udiv', a, '#b@32(is_pos_power_of_two)'), ('ushr', a, ('find_lsb', b)), '!options->lower_bitops'),
106 (('idiv', a, '#b@32(is_pos_power_of_two)'), ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', b))), 'options->lower_idiv'),
107 (('idiv', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', ('iabs', b))))), 'options->lower_idiv'),
108 (('umod', a, '#b(is_pos_power_of_two)'), ('iand', a, ('isub', b, 1))),
109
110 (('~fneg', ('fneg', a)), a),
111 (('ineg', ('ineg', a)), a),
112 (('fabs', ('fabs', a)), ('fabs', a)),
113 (('fabs', ('fneg', a)), ('fabs', a)),
114 (('fabs', ('u2f', a)), ('u2f', a)),
115 (('iabs', ('iabs', a)), ('iabs', a)),
116 (('iabs', ('ineg', a)), ('iabs', a)),
117 (('f2b', ('fneg', a)), ('f2b', a)),
118 (('i2b', ('ineg', a)), ('i2b', a)),
119 (('~fadd', a, 0.0), a),
120 (('iadd', a, 0), a),
121 (('usadd_4x8', a, 0), a),
122 (('usadd_4x8', a, ~0), ~0),
123 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
124 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
125 (('~fadd', ('fneg', a), a), 0.0),
126 (('iadd', ('ineg', a), a), 0),
127 (('iadd', ('ineg', a), ('iadd', a, b)), b),
128 (('iadd', a, ('iadd', ('ineg', a), b)), b),
129 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
130 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
131 (('fadd', ('fsat', a), ('fsat', ('fneg', a))), ('fsat', ('fabs', a))),
132 (('~fmul', a, 0.0), 0.0),
133 (('imul', a, 0), 0),
134 (('umul_unorm_4x8', a, 0), 0),
135 (('umul_unorm_4x8', a, ~0), a),
136 (('~fmul', a, 1.0), a),
137 (('imul', a, 1), a),
138 (('fmul', a, -1.0), ('fneg', a)),
139 (('imul', a, -1), ('ineg', a)),
140 # If a < 0: fsign(a)*a*a => -1*a*a => -a*a => abs(a)*a
141 # If a > 0: fsign(a)*a*a => 1*a*a => a*a => abs(a)*a
142 # If a == 0: fsign(a)*a*a => 0*0*0 => abs(0)*0
143 (('fmul', ('fsign', a), ('fmul', a, a)), ('fmul', ('fabs', a), a)),
144 (('fmul', ('fmul', ('fsign', a), a), a), ('fmul', ('fabs', a), a)),
145 (('~ffma', 0.0, a, b), b),
146 (('~ffma', a, b, 0.0), ('fmul', a, b)),
147 (('ffma', 1.0, a, b), ('fadd', a, b)),
148 (('ffma', -1.0, a, b), ('fadd', ('fneg', a), b)),
149 (('~flrp', a, b, 0.0), a),
150 (('~flrp', a, b, 1.0), b),
151 (('~flrp', a, a, b), a),
152 (('~flrp', 0.0, a, b), ('fmul', a, b)),
153
154 # flrp(a, a + b, c) => a + flrp(0, b, c) => a + (b * c)
155 (('~flrp', a, ('fadd(is_used_once)', a, b), c), ('fadd', ('fmul', b, c), a)),
156 (('~flrp@32', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp32'),
157 (('~flrp@64', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp64'),
158
159 (('~flrp@32', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp32'),
160 (('~flrp@64', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp64'),
161
162 (('~flrp@32', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp32'),
163 (('~flrp@64', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp64'),
164
165 (('~flrp', ('fmul(is_used_once)', a, b), ('fmul(is_used_once)', a, c), d), ('fmul', ('flrp', b, c, d), a)),
166
167 (('~flrp', a, b, ('b2f', 'c@1')), ('bcsel', c, b, a), 'options->lower_flrp32'),
168 (('~flrp', a, 0.0, c), ('fadd', ('fmul', ('fneg', a), c), a)),
169 (('ftrunc', a), ('bcsel', ('flt', a, 0.0), ('fneg', ('ffloor', ('fabs', a))), ('ffloor', ('fabs', a))), 'options->lower_ftrunc'),
170 (('ffloor', a), ('fsub', a, ('ffract', a)), 'options->lower_ffloor'),
171 (('fadd', a, ('fneg', ('ffract', a))), ('ffloor', a), '!options->lower_ffloor'),
172 (('ffract', a), ('fsub', a, ('ffloor', a)), 'options->lower_ffract'),
173 (('fceil', a), ('fneg', ('ffloor', ('fneg', a))), 'options->lower_fceil'),
174 (('~fadd', ('fmul', a, ('fadd', 1.0, ('fneg', ('b2f', 'c@1')))), ('fmul', b, ('b2f', c))), ('bcsel', c, b, a), 'options->lower_flrp32'),
175 (('~fadd@32', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp32'),
176 (('~fadd@64', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp64'),
177 # These are the same as the previous three rules, but it depends on
178 # 1-fsat(x) <=> fsat(1-x). See below.
179 (('~fadd@32', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp32'),
180 (('~fadd@64', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp64'),
181
182 (('~fadd', a, ('fmul', ('b2f', 'c@1'), ('fadd', b, ('fneg', a)))), ('bcsel', c, b, a), 'options->lower_flrp32'),
183 (('~fadd@32', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp32'),
184 (('~fadd@64', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp64'),
185 (('ffma', a, b, c), ('fadd', ('fmul', a, b), c), 'options->lower_ffma'),
186 (('~fadd', ('fmul', a, b), c), ('ffma', a, b, c), 'options->fuse_ffma'),
187
188 (('~fmul', ('fadd', ('iand', ('ineg', ('b2i32', 'a@bool')), ('fmul', b, c)), '#d'), '#e'),
189 ('bcsel', a, ('fmul', ('fadd', ('fmul', b, c), d), e), ('fmul', d, e))),
190
191 (('fdph', a, b), ('fdot4', ('vec4', 'a.x', 'a.y', 'a.z', 1.0), b), 'options->lower_fdph'),
192
193 (('fdot4', ('vec4', a, b, c, 1.0), d), ('fdph', ('vec3', a, b, c), d), '!options->lower_fdph'),
194 (('fdot4', ('vec4', a, 0.0, 0.0, 0.0), b), ('fmul', a, b)),
195 (('fdot4', ('vec4', a, b, 0.0, 0.0), c), ('fdot2', ('vec2', a, b), c)),
196 (('fdot4', ('vec4', a, b, c, 0.0), d), ('fdot3', ('vec3', a, b, c), d)),
197
198 (('fdot3', ('vec3', a, 0.0, 0.0), b), ('fmul', a, b)),
199 (('fdot3', ('vec3', a, b, 0.0), c), ('fdot2', ('vec2', a, b), c)),
200
201 (('fdot2', ('vec2', a, 0.0), b), ('fmul', a, b)),
202 (('fdot2', a, 1.0), ('fadd', 'a.x', 'a.y')),
203
204 # Lower fdot to fsum when it is available
205 (('fdot2', a, b), ('fsum2', ('fmul', a, b)), 'options->lower_fdot'),
206 (('fdot3', a, b), ('fsum3', ('fmul', a, b)), 'options->lower_fdot'),
207 (('fdot4', a, b), ('fsum4', ('fmul', a, b)), 'options->lower_fdot'),
208 (('fsum2', a), ('fadd', 'a.x', 'a.y'), 'options->lower_fdot'),
209
210 # If x >= 0 and x <= 1: fsat(1 - x) == 1 - fsat(x) trivially
211 # If x < 0: 1 - fsat(x) => 1 - 0 => 1 and fsat(1 - x) => fsat(> 1) => 1
212 # If x > 1: 1 - fsat(x) => 1 - 1 => 0 and fsat(1 - x) => fsat(< 0) => 0
213 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
214
215 # 1 - ((1 - a) * (1 - b))
216 # 1 - (1 - a - b + a*b)
217 # 1 - 1 + a + b - a*b
218 # a + b - a*b
219 # a + b*(1 - a)
220 # b*(1 - a) + 1*a
221 # flrp(b, 1, a)
222 (('~fadd@32', 1.0, ('fneg', ('fmul', ('fadd', 1.0, ('fneg', a)), ('fadd', 1.0, ('fneg', b))))),
223 ('flrp', b, 1.0, a), '!options->lower_flrp32'),
224
225 # (a * #b + #c) << #d
226 # ((a * #b) << #d) + (#c << #d)
227 # (a * (#b << #d)) + (#c << #d)
228 (('ishl', ('iadd', ('imul', a, '#b'), '#c'), '#d'),
229 ('iadd', ('imul', a, ('ishl', b, d)), ('ishl', c, d))),
230
231 # (a * #b) << #c
232 # a * (#b << #c)
233 (('ishl', ('imul', a, '#b'), '#c'), ('imul', a, ('ishl', b, c))),
234 ]
235
236 # Care must be taken here. Shifts in NIR uses only the lower log2(bitsize)
237 # bits of the second source. These replacements must correctly handle the
238 # case where (b % bitsize) + (c % bitsize) >= bitsize.
239 for s in [8, 16, 32, 64]:
240 mask = (1 << s) - 1
241
242 ishl = "ishl@{}".format(s)
243 ishr = "ishr@{}".format(s)
244 ushr = "ushr@{}".format(s)
245
246 in_bounds = ('ult', ('iadd', ('iand', b, mask), ('iand', c, mask)), s)
247
248 optimizations.extend([
249 ((ishl, (ishl, a, '#b'), '#c'), ('bcsel', in_bounds, (ishl, a, ('iadd', b, c)), 0)),
250 ((ushr, (ushr, a, '#b'), '#c'), ('bcsel', in_bounds, (ushr, a, ('iadd', b, c)), 0)),
251
252 # To get get -1 for large shifts of negative values, ishr must instead
253 # clamp the shift count to the maximum value.
254 ((ishr, (ishr, a, '#b'), '#c'),
255 (ishr, a, ('imin', ('iadd', ('iand', b, mask), ('iand', c, mask)), s - 1))),
256 ])
257
258 # Optimize a pattern of address calculation created by DXVK where the offset is
259 # divided by 4 and then multipled by 4. This can be turned into an iand and the
260 # additions before can be reassociated to CSE the iand instruction.
261 for log2 in range(1, 7): # powers of two from 2 to 64
262 v = 1 << log2
263 mask = 0xffffffff & ~(v - 1)
264 b_is_multiple = '#b(is_unsigned_multiple_of_{})'.format(v)
265
266 optimizations.extend([
267 # 'a >> #b << #b' -> 'a & ~((1 << #b) - 1)'
268 (('ishl@32', ('ushr@32', a, log2), log2), ('iand', a, mask)),
269
270 # Reassociate for improved CSE
271 (('iand@32', ('iadd@32', a, b_is_multiple), mask), ('iadd', ('iand', a, mask), b)),
272 ])
273
274 # To save space in the state tables, reduce to the set that is known to help.
275 # Previously, this was range(1, 32). In addition, a couple rules inside the
276 # loop are commented out. Revisit someday, probably after mesa/#2635 has some
277 # resolution.
278 for i in [1, 2, 16, 24]:
279 lo_mask = 0xffffffff >> i
280 hi_mask = (0xffffffff << i) & 0xffffffff
281
282 optimizations.extend([
283 # This pattern seems to only help in the soft-fp64 code.
284 (('ishl@32', ('iand', 'a@32', lo_mask), i), ('ishl', a, i)),
285 # (('ushr@32', ('iand', 'a@32', hi_mask), i), ('ushr', a, i)),
286 # (('ishr@32', ('iand', 'a@32', hi_mask), i), ('ishr', a, i)),
287
288 (('iand', ('ishl', 'a@32', i), hi_mask), ('ishl', a, i)),
289 (('iand', ('ushr', 'a@32', i), lo_mask), ('ushr', a, i)),
290 # (('iand', ('ishr', 'a@32', i), lo_mask), ('ushr', a, i)), # Yes, ushr is correct
291 ])
292
293 optimizations.extend([
294 # This is common for address calculations. Reassociating may enable the
295 # 'a<<c' to be CSE'd. It also helps architectures that have an ISHLADD
296 # instruction or a constant offset field for in load / store instructions.
297 (('ishl', ('iadd', a, '#b'), '#c'), ('iadd', ('ishl', a, c), ('ishl', b, c))),
298
299 # Comparison simplifications
300 (('~inot', ('flt', a, b)), ('fge', a, b)),
301 (('~inot', ('fge', a, b)), ('flt', a, b)),
302 (('inot', ('feq', a, b)), ('fne', a, b)),
303 (('inot', ('fne', a, b)), ('feq', a, b)),
304 (('inot', ('ilt', a, b)), ('ige', a, b)),
305 (('inot', ('ult', a, b)), ('uge', a, b)),
306 (('inot', ('ige', a, b)), ('ilt', a, b)),
307 (('inot', ('uge', a, b)), ('ult', a, b)),
308 (('inot', ('ieq', a, b)), ('ine', a, b)),
309 (('inot', ('ine', a, b)), ('ieq', a, b)),
310
311 (('iand', ('feq', a, b), ('fne', a, b)), False),
312 (('iand', ('flt', a, b), ('flt', b, a)), False),
313 (('iand', ('ieq', a, b), ('ine', a, b)), False),
314 (('iand', ('ilt', a, b), ('ilt', b, a)), False),
315 (('iand', ('ult', a, b), ('ult', b, a)), False),
316
317 # This helps some shaders because, after some optimizations, they end up
318 # with patterns like (-a < -b) || (b < a). In an ideal world, this sort of
319 # matching would be handled by CSE.
320 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
321 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
322 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
323 (('fne', ('fneg', a), ('fneg', b)), ('fne', b, a)),
324 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
325 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
326 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
327 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
328 (('fne', ('fneg', a), -1.0), ('fne', 1.0, a)),
329 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
330
331 (('flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
332 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
333 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
334 (('fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
335 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
336 (('fne', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fne', a, b)),
337
338 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
339 (('flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
340 (('fge', 0.0, ('fsat(is_used_once)', a)), ('fge', 0.0, a)),
341 (('flt', 0.0, ('fsat(is_used_once)', a)), ('flt', 0.0, a)),
342
343 # 0.0 >= b2f(a)
344 # b2f(a) <= 0.0
345 # b2f(a) == 0.0 because b2f(a) can only be 0 or 1
346 # inot(a)
347 (('fge', 0.0, ('b2f', 'a@1')), ('inot', a)),
348
349 (('fge', ('fneg', ('b2f', 'a@1')), 0.0), ('inot', a)),
350
351 (('fne', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
352 (('fne', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
353 (('fne', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('ior', a, b)),
354 (('fne', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('ior', a, b)),
355 (('fne', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
356 (('fne', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
357 (('fne', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('iand', a, b)),
358 (('fne', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ixor', a, b)),
359 (('fne', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ixor', a, b)),
360 (('fne', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ixor', a, b)),
361 (('feq', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
362 (('feq', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
363 (('feq', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('inot', ('ior', a, b))),
364 (('feq', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
365 (('feq', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
366 (('feq', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
367 (('feq', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('inot', ('iand', a, b))),
368 (('feq', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ieq', a, b)),
369 (('feq', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ieq', a, b)),
370 (('feq', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ieq', a, b)),
371
372 # -(b2f(a) + b2f(b)) < 0
373 # 0 < b2f(a) + b2f(b)
374 # 0 != b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
375 # a || b
376 (('flt', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('ior', a, b)),
377 (('flt', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('ior', a, b)),
378
379 # -(b2f(a) + b2f(b)) >= 0
380 # 0 >= b2f(a) + b2f(b)
381 # 0 == b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
382 # !(a || b)
383 (('fge', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('inot', ('ior', a, b))),
384 (('fge', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
385
386 (('flt', a, ('fneg', a)), ('flt', a, 0.0)),
387 (('fge', a, ('fneg', a)), ('fge', a, 0.0)),
388
389 # Some optimizations (below) convert things like (a < b || c < b) into
390 # (min(a, c) < b). However, this interfers with the previous optimizations
391 # that try to remove comparisons with negated sums of b2f. This just
392 # breaks that apart.
393 (('flt', ('fmin', c, ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')))), 0.0),
394 ('ior', ('flt', c, 0.0), ('ior', a, b))),
395
396 (('~flt', ('fadd', a, b), a), ('flt', b, 0.0)),
397 (('~fge', ('fadd', a, b), a), ('fge', b, 0.0)),
398 (('~feq', ('fadd', a, b), a), ('feq', b, 0.0)),
399 (('~fne', ('fadd', a, b), a), ('fne', b, 0.0)),
400 (('~flt', ('fadd(is_used_once)', a, '#b'), '#c'), ('flt', a, ('fadd', c, ('fneg', b)))),
401 (('~flt', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('flt', ('fneg', ('fadd', c, b)), a)),
402 (('~fge', ('fadd(is_used_once)', a, '#b'), '#c'), ('fge', a, ('fadd', c, ('fneg', b)))),
403 (('~fge', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fge', ('fneg', ('fadd', c, b)), a)),
404 (('~feq', ('fadd(is_used_once)', a, '#b'), '#c'), ('feq', a, ('fadd', c, ('fneg', b)))),
405 (('~feq', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('feq', ('fneg', ('fadd', c, b)), a)),
406 (('~fne', ('fadd(is_used_once)', a, '#b'), '#c'), ('fne', a, ('fadd', c, ('fneg', b)))),
407 (('~fne', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fne', ('fneg', ('fadd', c, b)), a)),
408
409 # Cannot remove the addition from ilt or ige due to overflow.
410 (('ieq', ('iadd', a, b), a), ('ieq', b, 0)),
411 (('ine', ('iadd', a, b), a), ('ine', b, 0)),
412
413 # fmin(-b2f(a), b) >= 0.0
414 # -b2f(a) >= 0.0 && b >= 0.0
415 # -b2f(a) == 0.0 && b >= 0.0 -b2f can only be 0 or -1, never >0
416 # b2f(a) == 0.0 && b >= 0.0
417 # a == False && b >= 0.0
418 # !a && b >= 0.0
419 #
420 # The fge in the second replacement is not a typo. I leave the proof that
421 # "fmin(-b2f(a), b) >= 0 <=> fmin(-b2f(a), b) == 0" as an exercise for the
422 # reader.
423 (('fge', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
424 (('feq', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
425
426 (('feq', ('b2f', 'a@1'), 0.0), ('inot', a)),
427 (('~fne', ('b2f', 'a@1'), 0.0), a),
428 (('ieq', ('b2i', 'a@1'), 0), ('inot', a)),
429 (('ine', ('b2i', 'a@1'), 0), a),
430
431 (('fne', ('u2f', a), 0.0), ('ine', a, 0)),
432 (('feq', ('u2f', a), 0.0), ('ieq', a, 0)),
433 (('fge', ('u2f', a), 0.0), True),
434 (('fge', 0.0, ('u2f', a)), ('uge', 0, a)), # ieq instead?
435 (('flt', ('u2f', a), 0.0), False),
436 (('flt', 0.0, ('u2f', a)), ('ult', 0, a)), # ine instead?
437 (('fne', ('i2f', a), 0.0), ('ine', a, 0)),
438 (('feq', ('i2f', a), 0.0), ('ieq', a, 0)),
439 (('fge', ('i2f', a), 0.0), ('ige', a, 0)),
440 (('fge', 0.0, ('i2f', a)), ('ige', 0, a)),
441 (('flt', ('i2f', a), 0.0), ('ilt', a, 0)),
442 (('flt', 0.0, ('i2f', a)), ('ilt', 0, a)),
443
444 # 0.0 < fabs(a)
445 # fabs(a) > 0.0
446 # fabs(a) != 0.0 because fabs(a) must be >= 0
447 # a != 0.0
448 (('~flt', 0.0, ('fabs', a)), ('fne', a, 0.0)),
449
450 # -fabs(a) < 0.0
451 # fabs(a) > 0.0
452 (('~flt', ('fneg', ('fabs', a)), 0.0), ('fne', a, 0.0)),
453
454 # 0.0 >= fabs(a)
455 # 0.0 == fabs(a) because fabs(a) must be >= 0
456 # 0.0 == a
457 (('fge', 0.0, ('fabs', a)), ('feq', a, 0.0)),
458
459 # -fabs(a) >= 0.0
460 # 0.0 >= fabs(a)
461 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
462
463 # (a >= 0.0) && (a <= 1.0) -> fsat(a) == a
464 (('iand', ('fge', a, 0.0), ('fge', 1.0, a)), ('feq', a, ('fsat', a)), '!options->lower_fsat'),
465
466 # (a < 0.0) || (a > 1.0)
467 # !(!(a < 0.0) && !(a > 1.0))
468 # !((a >= 0.0) && (a <= 1.0))
469 # !(a == fsat(a))
470 # a != fsat(a)
471 (('ior', ('flt', a, 0.0), ('flt', 1.0, a)), ('fne', a, ('fsat', a)), '!options->lower_fsat'),
472
473 (('fmax', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('ior', a, b))),
474 (('fmax', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('ior', a, b)))),
475 (('fmin', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
476 (('fmin', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('iand', a, b)))),
477
478 # fmin(b2f(a), b)
479 # bcsel(a, fmin(b2f(a), b), fmin(b2f(a), b))
480 # bcsel(a, fmin(b2f(True), b), fmin(b2f(False), b))
481 # bcsel(a, fmin(1.0, b), fmin(0.0, b))
482 #
483 # Since b is a constant, constant folding will eliminate the fmin and the
484 # fmax. If b is > 1.0, the bcsel will be replaced with a b2f.
485 (('fmin', ('b2f', 'a@1'), '#b'), ('bcsel', a, ('fmin', b, 1.0), ('fmin', b, 0.0))),
486
487 (('flt', ('fadd(is_used_once)', a, ('fneg', b)), 0.0), ('flt', a, b)),
488
489 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
490 (('~bcsel', ('flt', b, a), b, a), ('fmin', a, b)),
491 (('~bcsel', ('flt', a, b), b, a), ('fmax', a, b)),
492 (('~bcsel', ('fge', a, b), b, a), ('fmin', a, b)),
493 (('~bcsel', ('fge', b, a), b, a), ('fmax', a, b)),
494 (('bcsel', ('i2b', a), b, c), ('bcsel', ('ine', a, 0), b, c)),
495 (('bcsel', ('inot', a), b, c), ('bcsel', a, c, b)),
496 (('bcsel', a, ('bcsel', a, b, c), d), ('bcsel', a, b, d)),
497 (('bcsel', a, b, ('bcsel', a, c, d)), ('bcsel', a, b, d)),
498 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
499 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
500 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
501 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
502 (('bcsel', a, True, b), ('ior', a, b)),
503 (('bcsel', a, a, b), ('ior', a, b)),
504 (('bcsel', a, b, False), ('iand', a, b)),
505 (('bcsel', a, b, a), ('iand', a, b)),
506 (('~fmin', a, a), a),
507 (('~fmax', a, a), a),
508 (('imin', a, a), a),
509 (('imax', a, a), a),
510 (('umin', a, a), a),
511 (('umax', a, a), a),
512 (('fmax', ('fmax', a, b), b), ('fmax', a, b)),
513 (('umax', ('umax', a, b), b), ('umax', a, b)),
514 (('imax', ('imax', a, b), b), ('imax', a, b)),
515 (('fmin', ('fmin', a, b), b), ('fmin', a, b)),
516 (('umin', ('umin', a, b), b), ('umin', a, b)),
517 (('imin', ('imin', a, b), b), ('imin', a, b)),
518 (('iand@32', a, ('inot', ('ishr', a, 31))), ('imax', a, 0)),
519
520 # Simplify logic to detect sign of an integer.
521 (('ieq', ('iand', a, 0x80000000), 0x00000000), ('ige', a, 0)),
522 (('ine', ('iand', a, 0x80000000), 0x80000000), ('ige', a, 0)),
523 (('ine', ('iand', a, 0x80000000), 0x00000000), ('ilt', a, 0)),
524 (('ieq', ('iand', a, 0x80000000), 0x80000000), ('ilt', a, 0)),
525 (('ine', ('ushr', 'a@32', 31), 0), ('ilt', a, 0)),
526 (('ieq', ('ushr', 'a@32', 31), 0), ('ige', a, 0)),
527 (('ieq', ('ushr', 'a@32', 31), 1), ('ilt', a, 0)),
528 (('ine', ('ushr', 'a@32', 31), 1), ('ige', a, 0)),
529 (('ine', ('ishr', 'a@32', 31), 0), ('ilt', a, 0)),
530 (('ieq', ('ishr', 'a@32', 31), 0), ('ige', a, 0)),
531 (('ieq', ('ishr', 'a@32', 31), -1), ('ilt', a, 0)),
532 (('ine', ('ishr', 'a@32', 31), -1), ('ige', a, 0)),
533
534 (('fmin', a, ('fneg', a)), ('fneg', ('fabs', a))),
535 (('imin', a, ('ineg', a)), ('ineg', ('iabs', a))),
536 (('fmin', a, ('fneg', ('fabs', a))), ('fneg', ('fabs', a))),
537 (('imin', a, ('ineg', ('iabs', a))), ('ineg', ('iabs', a))),
538 (('~fmin', a, ('fabs', a)), a),
539 (('imin', a, ('iabs', a)), a),
540 (('~fmax', a, ('fneg', ('fabs', a))), a),
541 (('imax', a, ('ineg', ('iabs', a))), a),
542 (('fmax', a, ('fabs', a)), ('fabs', a)),
543 (('imax', a, ('iabs', a)), ('iabs', a)),
544 (('fmax', a, ('fneg', a)), ('fabs', a)),
545 (('imax', a, ('ineg', a)), ('iabs', a)),
546 (('~fmax', ('fabs', a), 0.0), ('fabs', a)),
547 (('~fmin', ('fmax', a, 0.0), 1.0), ('fsat', a), '!options->lower_fsat'),
548 (('~fmax', ('fmin', a, 1.0), 0.0), ('fsat', a), '!options->lower_fsat'),
549 (('~fmin', ('fmax', a, -1.0), 0.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
550 (('~fmax', ('fmin', a, 0.0), -1.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
551 (('fsat', ('fsign', a)), ('b2f', ('flt', 0.0, a))),
552 (('fsat', ('b2f', a)), ('b2f', a)),
553 (('fsat', a), ('fmin', ('fmax', a, 0.0), 1.0), 'options->lower_fsat'),
554 (('fsat', ('fsat', a)), ('fsat', a)),
555 (('fsat', ('fneg(is_used_once)', ('fadd(is_used_once)', a, b))), ('fsat', ('fadd', ('fneg', a), ('fneg', b))), '!options->lower_fsat'),
556 (('fsat', ('fneg(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fneg', a), b)), '!options->lower_fsat'),
557 (('fsat', ('fabs(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fabs', a), ('fabs', b))), '!options->lower_fsat'),
558 (('fmin', ('fmax', ('fmin', ('fmax', a, b), c), b), c), ('fmin', ('fmax', a, b), c)),
559 (('imin', ('imax', ('imin', ('imax', a, b), c), b), c), ('imin', ('imax', a, b), c)),
560 (('umin', ('umax', ('umin', ('umax', a, b), c), b), c), ('umin', ('umax', a, b), c)),
561 (('fmax', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmax', a, b))),
562 (('fmin', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmin', a, b))),
563 (('extract_u8', ('imin', ('imax', a, 0), 0xff), 0), ('imin', ('imax', a, 0), 0xff)),
564 (('~ior', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmax', b, c))),
565 (('~ior', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmin', a, b), c)),
566 (('~ior', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmin', b, c))),
567 (('~ior', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmax', a, b), c)),
568 (('~ior', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmax', b, c))),
569 (('~ior', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmin', a, b), c)),
570 (('~ior', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmin', b, c))),
571 (('~ior', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmax', a, b), c)),
572 (('~iand', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmin', b, c))),
573 (('~iand', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmax', a, b), c)),
574 (('~iand', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmax', b, c))),
575 (('~iand', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmin', a, b), c)),
576 (('~iand', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmin', b, c))),
577 (('~iand', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmax', a, b), c)),
578 (('~iand', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmax', b, c))),
579 (('~iand', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmin', a, b), c)),
580
581 (('ior', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imax', b, c))),
582 (('ior', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imin', a, b), c)),
583 (('ior', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imin', b, c))),
584 (('ior', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imax', a, b), c)),
585 (('ior', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umax', b, c))),
586 (('ior', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umin', a, b), c)),
587 (('ior', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umin', b, c))),
588 (('ior', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umax', a, b), c)),
589 (('iand', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imin', b, c))),
590 (('iand', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imax', a, b), c)),
591 (('iand', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imax', b, c))),
592 (('iand', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imin', a, b), c)),
593 (('iand', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umin', b, c))),
594 (('iand', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umax', a, b), c)),
595 (('iand', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umax', b, c))),
596 (('iand', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umin', a, b), c)),
597
598 # These derive from the previous patterns with the application of b < 0 <=>
599 # 0 < -b. The transformation should be applied if either comparison is
600 # used once as this ensures that the number of comparisons will not
601 # increase. The sources to the ior and iand are not symmetric, so the
602 # rules have to be duplicated to get this behavior.
603 (('~ior', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
604 (('~ior', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
605 (('~ior', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
606 (('~ior', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
607 (('~iand', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
608 (('~iand', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
609 (('~iand', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
610 (('~iand', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
611
612 # Common pattern like 'if (i == 0 || i == 1 || ...)'
613 (('ior', ('ieq', a, 0), ('ieq', a, 1)), ('uge', 1, a)),
614 (('ior', ('uge', 1, a), ('ieq', a, 2)), ('uge', 2, a)),
615 (('ior', ('uge', 2, a), ('ieq', a, 3)), ('uge', 3, a)),
616
617 # The (i2f32, ...) part is an open-coded fsign. When that is combined with
618 # the bcsel, it's basically copysign(1.0, a). There is no copysign in NIR,
619 # so emit an open-coded version of that.
620 (('bcsel@32', ('feq', a, 0.0), 1.0, ('i2f32', ('iadd', ('b2i32', ('flt', 0.0, 'a@32')), ('ineg', ('b2i32', ('flt', 'a@32', 0.0)))))),
621 ('ior', 0x3f800000, ('iand', a, 0x80000000))),
622
623 (('ior', a, ('ieq', a, False)), True),
624 (('ior', a, ('inot', a)), -1),
625
626 (('ine', ('ineg', ('b2i32', 'a@1')), ('ineg', ('b2i32', 'b@1'))), ('ine', a, b)),
627 (('b2i32', ('ine', 'a@1', 'b@1')), ('b2i32', ('ixor', a, b))),
628
629 (('iand', ('ieq', 'a@32', 0), ('ieq', 'b@32', 0)), ('ieq', ('ior', a, b), 0), '!options->lower_bitops'),
630 (('ior', ('ine', 'a@32', 0), ('ine', 'b@32', 0)), ('ine', ('ior', a, b), 0), '!options->lower_bitops'),
631
632 # This pattern occurs coutresy of __flt64_nonnan in the soft-fp64 code.
633 # The first part of the iand comes from the !__feq64_nonnan.
634 #
635 # The second pattern is a reformulation of the first based on the relation
636 # (a == 0 || y == 0) <=> umin(a, y) == 0, where b in the first equation
637 # happens to be y == 0.
638 (('iand', ('inot', ('iand', ('ior', ('ieq', a, 0), b), c)), ('ilt', a, 0)),
639 ('iand', ('inot', ('iand', b , c)), ('ilt', a, 0))),
640 (('iand', ('inot', ('iand', ('ieq', ('umin', a, b), 0), c)), ('ilt', a, 0)),
641 ('iand', ('inot', ('iand', ('ieq', b , 0), c)), ('ilt', a, 0))),
642
643 # These patterns can result when (a < b || a < c) => (a < min(b, c))
644 # transformations occur before constant propagation and loop-unrolling.
645 (('~flt', a, ('fmax', b, a)), ('flt', a, b)),
646 (('~flt', ('fmin', a, b), a), ('flt', b, a)),
647 (('~fge', a, ('fmin', b, a)), True),
648 (('~fge', ('fmax', a, b), a), True),
649 (('~flt', a, ('fmin', b, a)), False),
650 (('~flt', ('fmax', a, b), a), False),
651 (('~fge', a, ('fmax', b, a)), ('fge', a, b)),
652 (('~fge', ('fmin', a, b), a), ('fge', b, a)),
653
654 (('ilt', a, ('imax', b, a)), ('ilt', a, b)),
655 (('ilt', ('imin', a, b), a), ('ilt', b, a)),
656 (('ige', a, ('imin', b, a)), True),
657 (('ige', ('imax', a, b), a), True),
658 (('ult', a, ('umax', b, a)), ('ult', a, b)),
659 (('ult', ('umin', a, b), a), ('ult', b, a)),
660 (('uge', a, ('umin', b, a)), True),
661 (('uge', ('umax', a, b), a), True),
662 (('ilt', a, ('imin', b, a)), False),
663 (('ilt', ('imax', a, b), a), False),
664 (('ige', a, ('imax', b, a)), ('ige', a, b)),
665 (('ige', ('imin', a, b), a), ('ige', b, a)),
666 (('ult', a, ('umin', b, a)), False),
667 (('ult', ('umax', a, b), a), False),
668 (('uge', a, ('umax', b, a)), ('uge', a, b)),
669 (('uge', ('umin', a, b), a), ('uge', b, a)),
670 (('ult', a, ('iand', b, a)), False),
671 (('ult', ('ior', a, b), a), False),
672 (('uge', a, ('iand', b, a)), True),
673 (('uge', ('ior', a, b), a), True),
674
675 (('ilt', '#a', ('imax', '#b', c)), ('ior', ('ilt', a, b), ('ilt', a, c))),
676 (('ilt', ('imin', '#a', b), '#c'), ('ior', ('ilt', a, c), ('ilt', b, c))),
677 (('ige', '#a', ('imin', '#b', c)), ('ior', ('ige', a, b), ('ige', a, c))),
678 (('ige', ('imax', '#a', b), '#c'), ('ior', ('ige', a, c), ('ige', b, c))),
679 (('ult', '#a', ('umax', '#b', c)), ('ior', ('ult', a, b), ('ult', a, c))),
680 (('ult', ('umin', '#a', b), '#c'), ('ior', ('ult', a, c), ('ult', b, c))),
681 (('uge', '#a', ('umin', '#b', c)), ('ior', ('uge', a, b), ('uge', a, c))),
682 (('uge', ('umax', '#a', b), '#c'), ('ior', ('uge', a, c), ('uge', b, c))),
683 (('ilt', '#a', ('imin', '#b', c)), ('iand', ('ilt', a, b), ('ilt', a, c))),
684 (('ilt', ('imax', '#a', b), '#c'), ('iand', ('ilt', a, c), ('ilt', b, c))),
685 (('ige', '#a', ('imax', '#b', c)), ('iand', ('ige', a, b), ('ige', a, c))),
686 (('ige', ('imin', '#a', b), '#c'), ('iand', ('ige', a, c), ('ige', b, c))),
687 (('ult', '#a', ('umin', '#b', c)), ('iand', ('ult', a, b), ('ult', a, c))),
688 (('ult', ('umax', '#a', b), '#c'), ('iand', ('ult', a, c), ('ult', b, c))),
689 (('uge', '#a', ('umax', '#b', c)), ('iand', ('uge', a, b), ('uge', a, c))),
690 (('uge', ('umin', '#a', b), '#c'), ('iand', ('uge', a, c), ('uge', b, c))),
691
692 # Thanks to sign extension, the ishr(a, b) is negative if and only if a is
693 # negative.
694 (('bcsel', ('ilt', a, 0), ('ineg', ('ishr', a, b)), ('ishr', a, b)),
695 ('iabs', ('ishr', a, b))),
696 (('iabs', ('ishr', ('iabs', a), b)), ('ishr', ('iabs', a), b)),
697
698 (('fabs', ('slt', a, b)), ('slt', a, b)),
699 (('fabs', ('sge', a, b)), ('sge', a, b)),
700 (('fabs', ('seq', a, b)), ('seq', a, b)),
701 (('fabs', ('sne', a, b)), ('sne', a, b)),
702 (('slt', a, b), ('b2f', ('flt', a, b)), 'options->lower_scmp'),
703 (('sge', a, b), ('b2f', ('fge', a, b)), 'options->lower_scmp'),
704 (('seq', a, b), ('b2f', ('feq', a, b)), 'options->lower_scmp'),
705 (('sne', a, b), ('b2f', ('fne', a, b)), 'options->lower_scmp'),
706 (('seq', ('seq', a, b), 1.0), ('seq', a, b)),
707 (('seq', ('sne', a, b), 1.0), ('sne', a, b)),
708 (('seq', ('slt', a, b), 1.0), ('slt', a, b)),
709 (('seq', ('sge', a, b), 1.0), ('sge', a, b)),
710 (('sne', ('seq', a, b), 0.0), ('seq', a, b)),
711 (('sne', ('sne', a, b), 0.0), ('sne', a, b)),
712 (('sne', ('slt', a, b), 0.0), ('slt', a, b)),
713 (('sne', ('sge', a, b), 0.0), ('sge', a, b)),
714 (('seq', ('seq', a, b), 0.0), ('sne', a, b)),
715 (('seq', ('sne', a, b), 0.0), ('seq', a, b)),
716 (('seq', ('slt', a, b), 0.0), ('sge', a, b)),
717 (('seq', ('sge', a, b), 0.0), ('slt', a, b)),
718 (('sne', ('seq', a, b), 1.0), ('sne', a, b)),
719 (('sne', ('sne', a, b), 1.0), ('seq', a, b)),
720 (('sne', ('slt', a, b), 1.0), ('sge', a, b)),
721 (('sne', ('sge', a, b), 1.0), ('slt', a, b)),
722 (('fall_equal2', a, b), ('fmin', ('seq', 'a.x', 'b.x'), ('seq', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
723 (('fall_equal3', a, b), ('seq', ('fany_nequal3', a, b), 0.0), 'options->lower_vector_cmp'),
724 (('fall_equal4', a, b), ('seq', ('fany_nequal4', a, b), 0.0), 'options->lower_vector_cmp'),
725 (('fany_nequal2', a, b), ('fmax', ('sne', 'a.x', 'b.x'), ('sne', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
726 (('fany_nequal3', a, b), ('fsat', ('fdot3', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
727 (('fany_nequal4', a, b), ('fsat', ('fdot4', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
728 (('fne', ('fneg', a), a), ('fne', a, 0.0)),
729 (('feq', ('fneg', a), a), ('feq', a, 0.0)),
730 # Emulating booleans
731 (('imul', ('b2i', 'a@1'), ('b2i', 'b@1')), ('b2i', ('iand', a, b))),
732 (('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
733 (('fsat', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('b2f', ('ior', a, b))),
734 (('iand', 'a@bool32', 1.0), ('b2f', a)),
735 # True/False are ~0 and 0 in NIR. b2i of True is 1, and -1 is ~0 (True).
736 (('ineg', ('b2i32', 'a@32')), a),
737 (('flt', ('fneg', ('b2f', 'a@1')), 0), a), # Generated by TGSI KILL_IF.
738 # Comparison with the same args. Note that these are not done for
739 # the float versions because NaN always returns false on float
740 # inequalities.
741 (('ilt', a, a), False),
742 (('ige', a, a), True),
743 (('ieq', a, a), True),
744 (('ine', a, a), False),
745 (('ult', a, a), False),
746 (('uge', a, a), True),
747 # Logical and bit operations
748 (('iand', a, a), a),
749 (('iand', a, ~0), a),
750 (('iand', a, 0), 0),
751 (('ior', a, a), a),
752 (('ior', a, 0), a),
753 (('ior', a, True), True),
754 (('ixor', a, a), 0),
755 (('ixor', a, 0), a),
756 (('inot', ('inot', a)), a),
757 (('ior', ('iand', a, b), b), b),
758 (('ior', ('ior', a, b), b), ('ior', a, b)),
759 (('iand', ('ior', a, b), b), b),
760 (('iand', ('iand', a, b), b), ('iand', a, b)),
761 # DeMorgan's Laws
762 (('iand', ('inot', a), ('inot', b)), ('inot', ('ior', a, b))),
763 (('ior', ('inot', a), ('inot', b)), ('inot', ('iand', a, b))),
764 # Shift optimizations
765 (('ishl', 0, a), 0),
766 (('ishl', a, 0), a),
767 (('ishr', 0, a), 0),
768 (('ishr', a, 0), a),
769 (('ushr', 0, a), 0),
770 (('ushr', a, 0), a),
771 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('iadd', 16, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
772 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('isub', 16, b))), ('urol', a, b), '!options->lower_rotate'),
773 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('iadd', 32, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
774 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('isub', 32, b))), ('urol', a, b), '!options->lower_rotate'),
775 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('iadd', 16, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
776 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('isub', 16, b))), ('uror', a, b), '!options->lower_rotate'),
777 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('iadd', 32, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
778 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('isub', 32, b))), ('uror', a, b), '!options->lower_rotate'),
779 (('urol@16', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 16, b))), 'options->lower_rotate'),
780 (('urol@32', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 32, b))), 'options->lower_rotate'),
781 (('uror@16', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 16, b))), 'options->lower_rotate'),
782 (('uror@32', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 32, b))), 'options->lower_rotate'),
783 # Exponential/logarithmic identities
784 (('~fexp2', ('flog2', a)), a), # 2^lg2(a) = a
785 (('~flog2', ('fexp2', a)), a), # lg2(2^a) = a
786 (('fpow', a, b), ('fexp2', ('fmul', ('flog2', a), b)), 'options->lower_fpow'), # a^b = 2^(lg2(a)*b)
787 (('~fexp2', ('fmul', ('flog2', a), b)), ('fpow', a, b), '!options->lower_fpow'), # 2^(lg2(a)*b) = a^b
788 (('~fexp2', ('fadd', ('fmul', ('flog2', a), b), ('fmul', ('flog2', c), d))),
789 ('~fmul', ('fpow', a, b), ('fpow', c, d)), '!options->lower_fpow'), # 2^(lg2(a) * b + lg2(c) + d) = a^b * c^d
790 (('~fexp2', ('fmul', ('flog2', a), 2.0)), ('fmul', a, a)),
791 (('~fexp2', ('fmul', ('flog2', a), 4.0)), ('fmul', ('fmul', a, a), ('fmul', a, a))),
792 (('~fpow', a, 1.0), a),
793 (('~fpow', a, 2.0), ('fmul', a, a)),
794 (('~fpow', a, 4.0), ('fmul', ('fmul', a, a), ('fmul', a, a))),
795 (('~fpow', 2.0, a), ('fexp2', a)),
796 (('~fpow', ('fpow', a, 2.2), 0.454545), a),
797 (('~fpow', ('fabs', ('fpow', a, 2.2)), 0.454545), ('fabs', a)),
798 (('~fsqrt', ('fexp2', a)), ('fexp2', ('fmul', 0.5, a))),
799 (('~frcp', ('fexp2', a)), ('fexp2', ('fneg', a))),
800 (('~frsq', ('fexp2', a)), ('fexp2', ('fmul', -0.5, a))),
801 (('~flog2', ('fsqrt', a)), ('fmul', 0.5, ('flog2', a))),
802 (('~flog2', ('frcp', a)), ('fneg', ('flog2', a))),
803 (('~flog2', ('frsq', a)), ('fmul', -0.5, ('flog2', a))),
804 (('~flog2', ('fpow', a, b)), ('fmul', b, ('flog2', a))),
805 (('~fmul', ('fexp2(is_used_once)', a), ('fexp2(is_used_once)', b)), ('fexp2', ('fadd', a, b))),
806 (('bcsel', ('flt', a, 0.0), 0.0, ('fsqrt', a)), ('fsqrt', ('fmax', a, 0.0))),
807 (('~fmul', ('fsqrt', a), ('fsqrt', a)), ('fabs',a)),
808 # Division and reciprocal
809 (('~fdiv', 1.0, a), ('frcp', a)),
810 (('fdiv', a, b), ('fmul', a, ('frcp', b)), 'options->lower_fdiv'),
811 (('~frcp', ('frcp', a)), a),
812 (('~frcp', ('fsqrt', a)), ('frsq', a)),
813 (('fsqrt', a), ('frcp', ('frsq', a)), 'options->lower_fsqrt'),
814 (('~frcp', ('frsq', a)), ('fsqrt', a), '!options->lower_fsqrt'),
815 # Trig
816 (('fsin', a), lowered_sincos(0.5), 'options->lower_sincos'),
817 (('fcos', a), lowered_sincos(0.75), 'options->lower_sincos'),
818 # Boolean simplifications
819 (('i2b32(is_used_by_if)', a), ('ine32', a, 0)),
820 (('i2b1(is_used_by_if)', a), ('ine', a, 0)),
821 (('ieq', a, True), a),
822 (('ine(is_not_used_by_if)', a, True), ('inot', a)),
823 (('ine', a, False), a),
824 (('ieq(is_not_used_by_if)', a, False), ('inot', 'a')),
825 (('bcsel', a, True, False), a),
826 (('bcsel', a, False, True), ('inot', a)),
827 (('bcsel@32', a, 1.0, 0.0), ('b2f', a)),
828 (('bcsel@32', a, 0.0, 1.0), ('b2f', ('inot', a))),
829 (('bcsel@32', a, -1.0, -0.0), ('fneg', ('b2f', a))),
830 (('bcsel@32', a, -0.0, -1.0), ('fneg', ('b2f', ('inot', a)))),
831 (('bcsel', True, b, c), b),
832 (('bcsel', False, b, c), c),
833 (('bcsel', a, ('b2f(is_used_once)', 'b@32'), ('b2f', 'c@32')), ('b2f', ('bcsel', a, b, c))),
834
835 (('bcsel', a, b, b), b),
836 (('~fcsel', a, b, b), b),
837
838 # D3D Boolean emulation
839 (('bcsel', a, -1, 0), ('ineg', ('b2i', 'a@1'))),
840 (('bcsel', a, 0, -1), ('ineg', ('b2i', ('inot', a)))),
841 (('iand', ('ineg', ('b2i', 'a@1')), ('ineg', ('b2i', 'b@1'))),
842 ('ineg', ('b2i', ('iand', a, b)))),
843 (('ior', ('ineg', ('b2i','a@1')), ('ineg', ('b2i', 'b@1'))),
844 ('ineg', ('b2i', ('ior', a, b)))),
845 (('ieq', ('ineg', ('b2i', 'a@1')), 0), ('inot', a)),
846 (('ieq', ('ineg', ('b2i', 'a@1')), -1), a),
847 (('ine', ('ineg', ('b2i', 'a@1')), 0), a),
848 (('ine', ('ineg', ('b2i', 'a@1')), -1), ('inot', a)),
849 (('iand', ('ineg', ('b2i', a)), 1.0), ('b2f', a)),
850 (('iand', ('ineg', ('b2i', a)), 1), ('b2i', a)),
851
852 # SM5 32-bit shifts are defined to use the 5 least significant bits
853 (('ishl', 'a@32', ('iand', 31, b)), ('ishl', a, b)),
854 (('ishr', 'a@32', ('iand', 31, b)), ('ishr', a, b)),
855 (('ushr', 'a@32', ('iand', 31, b)), ('ushr', a, b)),
856
857 # Conversions
858 (('i2b32', ('b2i', 'a@32')), a),
859 (('f2i', ('ftrunc', a)), ('f2i', a)),
860 (('f2u', ('ftrunc', a)), ('f2u', a)),
861 (('i2b', ('ineg', a)), ('i2b', a)),
862 (('i2b', ('iabs', a)), ('i2b', a)),
863 (('inot', ('f2b1', a)), ('feq', a, 0.0)),
864
865 # The C spec says, "If the value of the integral part cannot be represented
866 # by the integer type, the behavior is undefined." "Undefined" can mean
867 # "the conversion doesn't happen at all."
868 (('~i2f32', ('f2i32', 'a@32')), ('ftrunc', a)),
869
870 # Ironically, mark these as imprecise because removing the conversions may
871 # preserve more precision than doing the conversions (e.g.,
872 # uint(float(0x81818181u)) == 0x81818200).
873 (('~f2i32', ('i2f', 'a@32')), a),
874 (('~f2i32', ('u2f', 'a@32')), a),
875 (('~f2u32', ('i2f', 'a@32')), a),
876 (('~f2u32', ('u2f', 'a@32')), a),
877
878 # Conversions from float16 to float32 and back can always be removed
879 (('f2f16', ('f2f32', 'a@16')), a),
880 (('f2fmp', ('f2f32', 'a@16')), a),
881 # Conversions to float16 would be lossy so they should only be removed if
882 # the instruction was generated by the precision lowering pass.
883 (('f2f32', ('f2fmp', 'a@32')), a),
884
885 (('ffloor', 'a(is_integral)'), a),
886 (('fceil', 'a(is_integral)'), a),
887 (('ftrunc', 'a(is_integral)'), a),
888 # fract(x) = x - floor(x), so fract(NaN) = NaN
889 (('~ffract', 'a(is_integral)'), 0.0),
890 (('fabs', 'a(is_not_negative)'), a),
891 (('iabs', 'a(is_not_negative)'), a),
892 (('fsat', 'a(is_not_positive)'), 0.0),
893
894 # Section 5.4.1 (Conversion and Scalar Constructors) of the GLSL 4.60 spec
895 # says:
896 #
897 # It is undefined to convert a negative floating-point value to an
898 # uint.
899 #
900 # Assuming that (uint)some_float behaves like (uint)(int)some_float allows
901 # some optimizations in the i965 backend to proceed.
902 (('ige', ('f2u', a), b), ('ige', ('f2i', a), b)),
903 (('ige', b, ('f2u', a)), ('ige', b, ('f2i', a))),
904 (('ilt', ('f2u', a), b), ('ilt', ('f2i', a), b)),
905 (('ilt', b, ('f2u', a)), ('ilt', b, ('f2i', a))),
906
907 (('~fmin', 'a(is_not_negative)', 1.0), ('fsat', a), '!options->lower_fsat'),
908
909 # The result of the multiply must be in [-1, 0], so the result of the ffma
910 # must be in [0, 1].
911 (('flt', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), False),
912 (('flt', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), False),
913 (('fmax', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0)),
914 (('fmax', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0)),
915
916 (('fne', 'a(is_not_zero)', 0.0), True),
917 (('feq', 'a(is_not_zero)', 0.0), False),
918
919 # In this chart, + means value > 0 and - means value < 0.
920 #
921 # + >= + -> unknown 0 >= + -> false - >= + -> false
922 # + >= 0 -> true 0 >= 0 -> true - >= 0 -> false
923 # + >= - -> true 0 >= - -> true - >= - -> unknown
924 #
925 # Using grouping conceptually similar to a Karnaugh map...
926 #
927 # (+ >= 0, + >= -, 0 >= 0, 0 >= -) == (is_not_negative >= is_not_positive) -> true
928 # (0 >= +, - >= +) == (is_not_positive >= gt_zero) -> false
929 # (- >= +, - >= 0) == (lt_zero >= is_not_negative) -> false
930 #
931 # The flt / ilt cases just invert the expected result.
932 #
933 # The results expecting true, must be marked imprecise. The results
934 # expecting false are fine because NaN compared >= or < anything is false.
935
936 (('~fge', 'a(is_not_negative)', 'b(is_not_positive)'), True),
937 (('fge', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
938 (('fge', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
939
940 (('flt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
941 (('~flt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
942 (('~flt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
943
944 (('ine', 'a(is_not_zero)', 0), True),
945 (('ieq', 'a(is_not_zero)', 0), False),
946
947 (('ige', 'a(is_not_negative)', 'b(is_not_positive)'), True),
948 (('ige', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
949 (('ige', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
950
951 (('ilt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
952 (('ilt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
953 (('ilt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
954
955 (('ult', 0, 'a(is_gt_zero)'), True),
956 (('ult', a, 0), False),
957
958 # Packing and then unpacking does nothing
959 (('unpack_64_2x32_split_x', ('pack_64_2x32_split', a, b)), a),
960 (('unpack_64_2x32_split_y', ('pack_64_2x32_split', a, b)), b),
961 (('pack_64_2x32_split', ('unpack_64_2x32_split_x', a),
962 ('unpack_64_2x32_split_y', a)), a),
963
964 # Comparing two halves of an unpack separately. While this optimization
965 # should be correct for non-constant values, it's less obvious that it's
966 # useful in that case. For constant values, the pack will fold and we're
967 # guaranteed to reduce the whole tree to one instruction.
968 (('iand', ('ieq', ('unpack_32_2x16_split_x', a), '#b'),
969 ('ieq', ('unpack_32_2x16_split_y', a), '#c')),
970 ('ieq', a, ('pack_32_2x16_split', b, c))),
971
972 # Byte extraction
973 (('ushr', 'a@16', 8), ('extract_u8', a, 1), '!options->lower_extract_byte'),
974 (('ushr', 'a@32', 24), ('extract_u8', a, 3), '!options->lower_extract_byte'),
975 (('ushr', 'a@64', 56), ('extract_u8', a, 7), '!options->lower_extract_byte'),
976 (('ishr', 'a@16', 8), ('extract_i8', a, 1), '!options->lower_extract_byte'),
977 (('ishr', 'a@32', 24), ('extract_i8', a, 3), '!options->lower_extract_byte'),
978 (('ishr', 'a@64', 56), ('extract_i8', a, 7), '!options->lower_extract_byte'),
979 (('iand', 0xff, a), ('extract_u8', a, 0), '!options->lower_extract_byte'),
980
981 # Useless masking before unpacking
982 (('unpack_half_2x16_split_x', ('iand', a, 0xffff)), ('unpack_half_2x16_split_x', a)),
983 (('unpack_32_2x16_split_x', ('iand', a, 0xffff)), ('unpack_32_2x16_split_x', a)),
984 (('unpack_64_2x32_split_x', ('iand', a, 0xffffffff)), ('unpack_64_2x32_split_x', a)),
985 (('unpack_half_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_half_2x16_split_y', a)),
986 (('unpack_32_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_32_2x16_split_y', a)),
987 (('unpack_64_2x32_split_y', ('iand', a, 0xffffffff00000000)), ('unpack_64_2x32_split_y', a)),
988
989 # Optimize half packing
990 (('ishl', ('pack_half_2x16', ('vec2', a, 0)), 16), ('pack_half_2x16', ('vec2', 0, a))),
991 (('ishr', ('pack_half_2x16', ('vec2', 0, a)), 16), ('pack_half_2x16', ('vec2', a, 0))),
992
993 (('iadd', ('pack_half_2x16', ('vec2', a, 0)), ('pack_half_2x16', ('vec2', 0, b))),
994 ('pack_half_2x16', ('vec2', a, b))),
995 (('ior', ('pack_half_2x16', ('vec2', a, 0)), ('pack_half_2x16', ('vec2', 0, b))),
996 ('pack_half_2x16', ('vec2', a, b))),
997 ])
998
999 # After the ('extract_u8', a, 0) pattern, above, triggers, there will be
1000 # patterns like those below.
1001 for op in ('ushr', 'ishr'):
1002 optimizations.extend([(('extract_u8', (op, 'a@16', 8), 0), ('extract_u8', a, 1))])
1003 optimizations.extend([(('extract_u8', (op, 'a@32', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 4)])
1004 optimizations.extend([(('extract_u8', (op, 'a@64', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 8)])
1005
1006 optimizations.extend([(('extract_u8', ('extract_u16', a, 1), 0), ('extract_u8', a, 2))])
1007
1008 # After the ('extract_[iu]8', a, 3) patterns, above, trigger, there will be
1009 # patterns like those below.
1010 for op in ('extract_u8', 'extract_i8'):
1011 optimizations.extend([((op, ('ishl', 'a@16', 8), 1), (op, a, 0))])
1012 optimizations.extend([((op, ('ishl', 'a@32', 24 - 8 * i), 3), (op, a, i)) for i in range(2, -1, -1)])
1013 optimizations.extend([((op, ('ishl', 'a@64', 56 - 8 * i), 7), (op, a, i)) for i in range(6, -1, -1)])
1014
1015 optimizations.extend([
1016 # Word extraction
1017 (('ushr', ('ishl', 'a@32', 16), 16), ('extract_u16', a, 0), '!options->lower_extract_word'),
1018 (('ushr', 'a@32', 16), ('extract_u16', a, 1), '!options->lower_extract_word'),
1019 (('ishr', ('ishl', 'a@32', 16), 16), ('extract_i16', a, 0), '!options->lower_extract_word'),
1020 (('ishr', 'a@32', 16), ('extract_i16', a, 1), '!options->lower_extract_word'),
1021 (('iand', 0xffff, a), ('extract_u16', a, 0), '!options->lower_extract_word'),
1022
1023 # Subtracts
1024 (('ussub_4x8', a, 0), a),
1025 (('ussub_4x8', a, ~0), 0),
1026 # Lower all Subtractions first - they can get recombined later
1027 (('fsub', a, b), ('fadd', a, ('fneg', b))),
1028 (('isub', a, b), ('iadd', a, ('ineg', b))),
1029 (('uabs_usub', a, b), ('bcsel', ('ult', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
1030 # This is correct. We don't need isub_sat because the result type is unsigned, so it cannot overflow.
1031 (('uabs_isub', a, b), ('bcsel', ('ilt', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
1032
1033 # Propagate negation up multiplication chains
1034 (('fmul(is_used_by_non_fsat)', ('fneg', a), b), ('fneg', ('fmul', a, b))),
1035 (('imul', ('ineg', a), b), ('ineg', ('imul', a, b))),
1036
1037 # Propagate constants up multiplication chains
1038 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fmul', ('fmul', a, c), b)),
1039 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('imul', ('imul', a, c), b)),
1040 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fadd', ('fadd', a, c), b)),
1041 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('iadd', ('iadd', a, c), b)),
1042
1043 # Reassociate constants in add/mul chains so they can be folded together.
1044 # For now, we mostly only handle cases where the constants are separated by
1045 # a single non-constant. We could do better eventually.
1046 (('~fmul', '#a', ('fmul', 'b(is_not_const)', '#c')), ('fmul', ('fmul', a, c), b)),
1047 (('imul', '#a', ('imul', 'b(is_not_const)', '#c')), ('imul', ('imul', a, c), b)),
1048 (('~fadd', '#a', ('fadd', 'b(is_not_const)', '#c')), ('fadd', ('fadd', a, c), b)),
1049 (('~fadd', '#a', ('fneg', ('fadd', 'b(is_not_const)', '#c'))), ('fadd', ('fadd', a, ('fneg', c)), ('fneg', b))),
1050 (('iadd', '#a', ('iadd', 'b(is_not_const)', '#c')), ('iadd', ('iadd', a, c), b)),
1051 (('iand', '#a', ('iand', 'b(is_not_const)', '#c')), ('iand', ('iand', a, c), b)),
1052 (('ior', '#a', ('ior', 'b(is_not_const)', '#c')), ('ior', ('ior', a, c), b)),
1053 (('ixor', '#a', ('ixor', 'b(is_not_const)', '#c')), ('ixor', ('ixor', a, c), b)),
1054
1055 # Drop mul-div by the same value when there's no wrapping.
1056 (('idiv', ('imul(no_signed_wrap)', a, b), b), a),
1057
1058 # By definition...
1059 (('bcsel', ('ige', ('find_lsb', a), 0), ('find_lsb', a), -1), ('find_lsb', a)),
1060 (('bcsel', ('ige', ('ifind_msb', a), 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
1061 (('bcsel', ('ige', ('ufind_msb', a), 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
1062
1063 (('bcsel', ('ine', a, 0), ('find_lsb', a), -1), ('find_lsb', a)),
1064 (('bcsel', ('ine', a, 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
1065 (('bcsel', ('ine', a, 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
1066
1067 (('bcsel', ('ine', a, -1), ('ifind_msb', a), -1), ('ifind_msb', a)),
1068
1069 # Misc. lowering
1070 (('fmod', a, b), ('fsub', a, ('fmul', b, ('ffloor', ('fdiv', a, b)))), 'options->lower_fmod'),
1071 (('frem', a, b), ('fsub', a, ('fmul', b, ('ftrunc', ('fdiv', a, b)))), 'options->lower_fmod'),
1072 (('uadd_carry@32', a, b), ('b2i', ('ult', ('iadd', a, b), a)), 'options->lower_uadd_carry'),
1073 (('usub_borrow@32', a, b), ('b2i', ('ult', a, b)), 'options->lower_usub_borrow'),
1074
1075 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1076 ('bcsel', ('ult', 31, 'bits'), 'insert',
1077 ('bfi', ('bfm', 'bits', 'offset'), 'insert', 'base')),
1078 'options->lower_bitfield_insert'),
1079 (('ihadd', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1080 (('uhadd', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1081 (('irhadd', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1082 (('urhadd', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1083 (('ihadd@64', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1084 (('uhadd@64', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1085 (('irhadd@64', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1086 (('urhadd@64', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1087
1088 (('uadd_sat@64', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_add_sat || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1089 (('uadd_sat', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_add_sat'),
1090 (('usub_sat', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_add_sat'),
1091 (('usub_sat@64', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_usub_sat64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1092
1093 # int64_t sum = a + b;
1094 #
1095 # if (a < 0 && b < 0 && a < sum)
1096 # sum = INT64_MIN;
1097 # } else if (a >= 0 && b >= 0 && sum < a)
1098 # sum = INT64_MAX;
1099 # }
1100 #
1101 # A couple optimizations are applied.
1102 #
1103 # 1. a < sum => sum >= 0. This replacement works because it is known that
1104 # a < 0 and b < 0, so sum should also be < 0 unless there was
1105 # underflow.
1106 #
1107 # 2. sum < a => sum < 0. This replacement works because it is known that
1108 # a >= 0 and b >= 0, so sum should also be >= 0 unless there was
1109 # overflow.
1110 #
1111 # 3. Invert the second if-condition and swap the order of parameters for
1112 # the bcsel. !(a >= 0 && b >= 0 && sum < 0) becomes !(a >= 0) || !(b >=
1113 # 0) || !(sum < 0), and that becomes (a < 0) || (b < 0) || (sum >= 0)
1114 #
1115 # On Intel Gen11, this saves ~11 instructions.
1116 (('iadd_sat@64', a, b), ('bcsel',
1117 ('iand', ('iand', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)),
1118 0x8000000000000000,
1119 ('bcsel',
1120 ('ior', ('ior', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)),
1121 ('iadd', a, b),
1122 0x7fffffffffffffff)),
1123 '(options->lower_int64_options & nir_lower_iadd64) != 0'),
1124
1125 # int64_t sum = a - b;
1126 #
1127 # if (a < 0 && b >= 0 && a < sum)
1128 # sum = INT64_MIN;
1129 # } else if (a >= 0 && b < 0 && a >= sum)
1130 # sum = INT64_MAX;
1131 # }
1132 #
1133 # Optimizations similar to the iadd_sat case are applied here.
1134 (('isub_sat@64', a, b), ('bcsel',
1135 ('iand', ('iand', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)),
1136 0x8000000000000000,
1137 ('bcsel',
1138 ('ior', ('ior', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)),
1139 ('isub', a, b),
1140 0x7fffffffffffffff)),
1141 '(options->lower_int64_options & nir_lower_iadd64) != 0'),
1142
1143 # These are done here instead of in the backend because the int64 lowering
1144 # pass will make a mess of the patterns. The first patterns are
1145 # conditioned on nir_lower_minmax64 because it was not clear that it was
1146 # always an improvement on platforms that have real int64 support. No
1147 # shaders in shader-db hit this, so it was hard to say one way or the
1148 # other.
1149 (('ilt', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1150 (('ilt', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1151 (('ige', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1152 (('ige', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1153 (('ilt', 'a@64', 0), ('ilt', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1154 (('ige', 'a@64', 0), ('ige', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1155
1156 (('ine', 'a@64', 0), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1157 (('ieq', 'a@64', 0), ('ieq', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1158 # 0u < uint(a) <=> uint(a) != 0u
1159 (('ult', 0, 'a@64'), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1160
1161 # Alternative lowering that doesn't rely on bfi.
1162 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1163 ('bcsel', ('ult', 31, 'bits'),
1164 'insert',
1165 (('ior',
1166 ('iand', 'base', ('inot', ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))),
1167 ('iand', ('ishl', 'insert', 'offset'), ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))))),
1168 'options->lower_bitfield_insert_to_shifts'),
1169
1170 # Alternative lowering that uses bitfield_select.
1171 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1172 ('bcsel', ('ult', 31, 'bits'), 'insert',
1173 ('bitfield_select', ('bfm', 'bits', 'offset'), ('ishl', 'insert', 'offset'), 'base')),
1174 'options->lower_bitfield_insert_to_bitfield_select'),
1175
1176 (('ibitfield_extract', 'value', 'offset', 'bits'),
1177 ('bcsel', ('ult', 31, 'bits'), 'value',
1178 ('ibfe', 'value', 'offset', 'bits')),
1179 'options->lower_bitfield_extract'),
1180
1181 (('ubitfield_extract', 'value', 'offset', 'bits'),
1182 ('bcsel', ('ult', 31, 'bits'), 'value',
1183 ('ubfe', 'value', 'offset', 'bits')),
1184 'options->lower_bitfield_extract'),
1185
1186 # Note that these opcodes are defined to only use the five least significant bits of 'offset' and 'bits'
1187 (('ubfe', 'value', 'offset', ('iand', 31, 'bits')), ('ubfe', 'value', 'offset', 'bits')),
1188 (('ubfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ubfe', 'value', 'offset', 'bits')),
1189 (('ibfe', 'value', 'offset', ('iand', 31, 'bits')), ('ibfe', 'value', 'offset', 'bits')),
1190 (('ibfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ibfe', 'value', 'offset', 'bits')),
1191 (('bfm', 'bits', ('iand', 31, 'offset')), ('bfm', 'bits', 'offset')),
1192 (('bfm', ('iand', 31, 'bits'), 'offset'), ('bfm', 'bits', 'offset')),
1193
1194 (('ibitfield_extract', 'value', 'offset', 'bits'),
1195 ('bcsel', ('ieq', 0, 'bits'),
1196 0,
1197 ('ishr',
1198 ('ishl', 'value', ('isub', ('isub', 32, 'bits'), 'offset')),
1199 ('isub', 32, 'bits'))),
1200 'options->lower_bitfield_extract_to_shifts'),
1201
1202 (('ubitfield_extract', 'value', 'offset', 'bits'),
1203 ('iand',
1204 ('ushr', 'value', 'offset'),
1205 ('bcsel', ('ieq', 'bits', 32),
1206 0xffffffff,
1207 ('isub', ('ishl', 1, 'bits'), 1))),
1208 'options->lower_bitfield_extract_to_shifts'),
1209
1210 (('ifind_msb', 'value'),
1211 ('ufind_msb', ('bcsel', ('ilt', 'value', 0), ('inot', 'value'), 'value')),
1212 'options->lower_ifind_msb'),
1213
1214 (('find_lsb', 'value'),
1215 ('ufind_msb', ('iand', 'value', ('ineg', 'value'))),
1216 'options->lower_find_lsb'),
1217
1218 (('extract_i8', a, 'b@32'),
1219 ('ishr', ('ishl', a, ('imul', ('isub', 3, b), 8)), 24),
1220 'options->lower_extract_byte'),
1221
1222 (('extract_u8', a, 'b@32'),
1223 ('iand', ('ushr', a, ('imul', b, 8)), 0xff),
1224 'options->lower_extract_byte'),
1225
1226 (('extract_i16', a, 'b@32'),
1227 ('ishr', ('ishl', a, ('imul', ('isub', 1, b), 16)), 16),
1228 'options->lower_extract_word'),
1229
1230 (('extract_u16', a, 'b@32'),
1231 ('iand', ('ushr', a, ('imul', b, 16)), 0xffff),
1232 'options->lower_extract_word'),
1233
1234 (('pack_unorm_2x16', 'v'),
1235 ('pack_uvec2_to_uint',
1236 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 65535.0)))),
1237 'options->lower_pack_unorm_2x16'),
1238
1239 (('pack_unorm_4x8', 'v'),
1240 ('pack_uvec4_to_uint',
1241 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 255.0)))),
1242 'options->lower_pack_unorm_4x8'),
1243
1244 (('pack_snorm_2x16', 'v'),
1245 ('pack_uvec2_to_uint',
1246 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 32767.0)))),
1247 'options->lower_pack_snorm_2x16'),
1248
1249 (('pack_snorm_4x8', 'v'),
1250 ('pack_uvec4_to_uint',
1251 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 127.0)))),
1252 'options->lower_pack_snorm_4x8'),
1253
1254 (('unpack_unorm_2x16', 'v'),
1255 ('fdiv', ('u2f32', ('vec2', ('extract_u16', 'v', 0),
1256 ('extract_u16', 'v', 1))),
1257 65535.0),
1258 'options->lower_unpack_unorm_2x16'),
1259
1260 (('unpack_unorm_4x8', 'v'),
1261 ('fdiv', ('u2f32', ('vec4', ('extract_u8', 'v', 0),
1262 ('extract_u8', 'v', 1),
1263 ('extract_u8', 'v', 2),
1264 ('extract_u8', 'v', 3))),
1265 255.0),
1266 'options->lower_unpack_unorm_4x8'),
1267
1268 (('unpack_snorm_2x16', 'v'),
1269 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec2', ('extract_i16', 'v', 0),
1270 ('extract_i16', 'v', 1))),
1271 32767.0))),
1272 'options->lower_unpack_snorm_2x16'),
1273
1274 (('unpack_snorm_4x8', 'v'),
1275 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec4', ('extract_i8', 'v', 0),
1276 ('extract_i8', 'v', 1),
1277 ('extract_i8', 'v', 2),
1278 ('extract_i8', 'v', 3))),
1279 127.0))),
1280 'options->lower_unpack_snorm_4x8'),
1281
1282 (('pack_half_2x16_split', 'a@32', 'b@32'),
1283 ('ior', ('ishl', ('u2u32', ('f2f16', b)), 16), ('u2u32', ('f2f16', a))),
1284 'options->lower_pack_half_2x16_split'),
1285
1286 (('unpack_half_2x16_split_x', 'a@32'),
1287 ('f2f32', ('u2u16', a)),
1288 'options->lower_unpack_half_2x16_split'),
1289
1290 (('unpack_half_2x16_split_y', 'a@32'),
1291 ('f2f32', ('u2u16', ('ushr', a, 16))),
1292 'options->lower_unpack_half_2x16_split'),
1293
1294 (('isign', a), ('imin', ('imax', a, -1), 1), 'options->lower_isign'),
1295 (('fsign', a), ('fsub', ('b2f', ('flt', 0.0, a)), ('b2f', ('flt', a, 0.0))), 'options->lower_fsign'),
1296
1297 # Address/offset calculations:
1298 # Drivers supporting imul24 should use the nir_lower_amul() pass, this
1299 # rule converts everyone else to imul:
1300 (('amul', a, b), ('imul', a, b), '!options->has_imul24'),
1301
1302 (('imad24_ir3', a, b, 0), ('imul24', a, b)),
1303 (('imad24_ir3', a, 0, c), (c)),
1304 (('imad24_ir3', a, 1, c), ('iadd', a, c)),
1305
1306 # if first two srcs are const, crack apart the imad so constant folding
1307 # can clean up the imul:
1308 # TODO ffma should probably get a similar rule:
1309 (('imad24_ir3', '#a', '#b', c), ('iadd', ('imul', a, b), c)),
1310
1311 # These will turn 24b address/offset calc back into 32b shifts, but
1312 # it should be safe to get back some of the bits of precision that we
1313 # already decided were no necessary:
1314 (('imul24', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
1315 (('imul24', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
1316 (('imul24', a, 0), (0)),
1317 ])
1318
1319 # bit_size dependent lowerings
1320 for bit_size in [8, 16, 32, 64]:
1321 # convenience constants
1322 intmax = (1 << (bit_size - 1)) - 1
1323 intmin = 1 << (bit_size - 1)
1324
1325 optimizations += [
1326 (('iadd_sat@' + str(bit_size), a, b),
1327 ('bcsel', ('ige', b, 1), ('bcsel', ('ilt', ('iadd', a, b), a), intmax, ('iadd', a, b)),
1328 ('bcsel', ('ilt', a, ('iadd', a, b)), intmin, ('iadd', a, b))), 'options->lower_add_sat'),
1329 (('isub_sat@' + str(bit_size), a, b),
1330 ('bcsel', ('ilt', b, 0), ('bcsel', ('ilt', ('isub', a, b), a), intmax, ('isub', a, b)),
1331 ('bcsel', ('ilt', a, ('isub', a, b)), intmin, ('isub', a, b))), 'options->lower_add_sat'),
1332 ]
1333
1334 invert = OrderedDict([('feq', 'fne'), ('fne', 'feq')])
1335
1336 for left, right in itertools.combinations_with_replacement(invert.keys(), 2):
1337 optimizations.append((('inot', ('ior(is_used_once)', (left, a, b), (right, c, d))),
1338 ('iand', (invert[left], a, b), (invert[right], c, d))))
1339 optimizations.append((('inot', ('iand(is_used_once)', (left, a, b), (right, c, d))),
1340 ('ior', (invert[left], a, b), (invert[right], c, d))))
1341
1342 # Optimize x2bN(b2x(x)) -> x
1343 for size in type_sizes('bool'):
1344 aN = 'a@' + str(size)
1345 f2bN = 'f2b' + str(size)
1346 i2bN = 'i2b' + str(size)
1347 optimizations.append(((f2bN, ('b2f', aN)), a))
1348 optimizations.append(((i2bN, ('b2i', aN)), a))
1349
1350 # Optimize x2yN(b2x(x)) -> b2y
1351 for x, y in itertools.product(['f', 'u', 'i'], ['f', 'u', 'i']):
1352 if x != 'f' and y != 'f' and x != y:
1353 continue
1354
1355 b2x = 'b2f' if x == 'f' else 'b2i'
1356 b2y = 'b2f' if y == 'f' else 'b2i'
1357 x2yN = '{}2{}'.format(x, y)
1358 optimizations.append(((x2yN, (b2x, a)), (b2y, a)))
1359
1360 # Optimize away x2xN(a@N)
1361 for t in ['int', 'uint', 'float']:
1362 for N in type_sizes(t):
1363 x2xN = '{0}2{0}{1}'.format(t[0], N)
1364 aN = 'a@{0}'.format(N)
1365 optimizations.append(((x2xN, aN), a))
1366
1367 # Optimize x2xN(y2yM(a@P)) -> y2yN(a) for integers
1368 # In particular, we can optimize away everything except upcast of downcast and
1369 # upcasts where the type differs from the other cast
1370 for N, M in itertools.product(type_sizes('uint'), type_sizes('uint')):
1371 if N < M:
1372 # The outer cast is a down-cast. It doesn't matter what the size of the
1373 # argument of the inner cast is because we'll never been in the upcast
1374 # of downcast case. Regardless of types, we'll always end up with y2yN
1375 # in the end.
1376 for x, y in itertools.product(['i', 'u'], ['i', 'u']):
1377 x2xN = '{0}2{0}{1}'.format(x, N)
1378 y2yM = '{0}2{0}{1}'.format(y, M)
1379 y2yN = '{0}2{0}{1}'.format(y, N)
1380 optimizations.append(((x2xN, (y2yM, a)), (y2yN, a)))
1381 elif N > M:
1382 # If the outer cast is an up-cast, we have to be more careful about the
1383 # size of the argument of the inner cast and with types. In this case,
1384 # the type is always the type of type up-cast which is given by the
1385 # outer cast.
1386 for P in type_sizes('uint'):
1387 # We can't optimize away up-cast of down-cast.
1388 if M < P:
1389 continue
1390
1391 # Because we're doing down-cast of down-cast, the types always have
1392 # to match between the two casts
1393 for x in ['i', 'u']:
1394 x2xN = '{0}2{0}{1}'.format(x, N)
1395 x2xM = '{0}2{0}{1}'.format(x, M)
1396 aP = 'a@{0}'.format(P)
1397 optimizations.append(((x2xN, (x2xM, aP)), (x2xN, a)))
1398 else:
1399 # The N == M case is handled by other optimizations
1400 pass
1401
1402 # Optimize comparisons with up-casts
1403 for t in ['int', 'uint', 'float']:
1404 for N, M in itertools.product(type_sizes(t), repeat=2):
1405 if N == 1 or N >= M:
1406 continue
1407
1408 x2xM = '{0}2{0}{1}'.format(t[0], M)
1409 x2xN = '{0}2{0}{1}'.format(t[0], N)
1410 aN = 'a@' + str(N)
1411 bN = 'b@' + str(N)
1412 xeq = 'feq' if t == 'float' else 'ieq'
1413 xne = 'fne' if t == 'float' else 'ine'
1414 xge = '{0}ge'.format(t[0])
1415 xlt = '{0}lt'.format(t[0])
1416
1417 # Up-casts are lossless so for correctly signed comparisons of
1418 # up-casted values we can do the comparison at the largest of the two
1419 # original sizes and drop one or both of the casts. (We have
1420 # optimizations to drop the no-op casts which this may generate.)
1421 for P in type_sizes(t):
1422 if P == 1 or P > N:
1423 continue
1424
1425 bP = 'b@' + str(P)
1426 optimizations += [
1427 ((xeq, (x2xM, aN), (x2xM, bP)), (xeq, a, (x2xN, b))),
1428 ((xne, (x2xM, aN), (x2xM, bP)), (xne, a, (x2xN, b))),
1429 ((xge, (x2xM, aN), (x2xM, bP)), (xge, a, (x2xN, b))),
1430 ((xlt, (x2xM, aN), (x2xM, bP)), (xlt, a, (x2xN, b))),
1431 ((xge, (x2xM, bP), (x2xM, aN)), (xge, (x2xN, b), a)),
1432 ((xlt, (x2xM, bP), (x2xM, aN)), (xlt, (x2xN, b), a)),
1433 ]
1434
1435 # The next bit doesn't work on floats because the range checks would
1436 # get way too complicated.
1437 if t in ['int', 'uint']:
1438 if t == 'int':
1439 xN_min = -(1 << (N - 1))
1440 xN_max = (1 << (N - 1)) - 1
1441 elif t == 'uint':
1442 xN_min = 0
1443 xN_max = (1 << N) - 1
1444 else:
1445 assert False
1446
1447 # If we're up-casting and comparing to a constant, we can unfold
1448 # the comparison into a comparison with the shrunk down constant
1449 # and a check that the constant fits in the smaller bit size.
1450 optimizations += [
1451 ((xeq, (x2xM, aN), '#b'),
1452 ('iand', (xeq, a, (x2xN, b)), (xeq, (x2xM, (x2xN, b)), b))),
1453 ((xne, (x2xM, aN), '#b'),
1454 ('ior', (xne, a, (x2xN, b)), (xne, (x2xM, (x2xN, b)), b))),
1455 ((xlt, (x2xM, aN), '#b'),
1456 ('iand', (xlt, xN_min, b),
1457 ('ior', (xlt, xN_max, b), (xlt, a, (x2xN, b))))),
1458 ((xlt, '#a', (x2xM, bN)),
1459 ('iand', (xlt, a, xN_max),
1460 ('ior', (xlt, a, xN_min), (xlt, (x2xN, a), b)))),
1461 ((xge, (x2xM, aN), '#b'),
1462 ('iand', (xge, xN_max, b),
1463 ('ior', (xge, xN_min, b), (xge, a, (x2xN, b))))),
1464 ((xge, '#a', (x2xM, bN)),
1465 ('iand', (xge, a, xN_min),
1466 ('ior', (xge, a, xN_max), (xge, (x2xN, a), b)))),
1467 ]
1468
1469 def fexp2i(exp, bits):
1470 # Generate an expression which constructs value 2.0^exp or 0.0.
1471 #
1472 # We assume that exp is already in a valid range:
1473 #
1474 # * [-15, 15] for 16-bit float
1475 # * [-127, 127] for 32-bit float
1476 # * [-1023, 1023] for 16-bit float
1477 #
1478 # If exp is the lowest value in the valid range, a value of 0.0 is
1479 # constructed. Otherwise, the value 2.0^exp is constructed.
1480 if bits == 16:
1481 return ('i2i16', ('ishl', ('iadd', exp, 15), 10))
1482 elif bits == 32:
1483 return ('ishl', ('iadd', exp, 127), 23)
1484 elif bits == 64:
1485 return ('pack_64_2x32_split', 0, ('ishl', ('iadd', exp, 1023), 20))
1486 else:
1487 assert False
1488
1489 def ldexp(f, exp, bits):
1490 # The maximum possible range for a normal exponent is [-126, 127] and,
1491 # throwing in denormals, you get a maximum range of [-149, 127]. This
1492 # means that we can potentially have a swing of +-276. If you start with
1493 # FLT_MAX, you actually have to do ldexp(FLT_MAX, -278) to get it to flush
1494 # all the way to zero. The GLSL spec only requires that we handle a subset
1495 # of this range. From version 4.60 of the spec:
1496 #
1497 # "If exp is greater than +128 (single-precision) or +1024
1498 # (double-precision), the value returned is undefined. If exp is less
1499 # than -126 (single-precision) or -1022 (double-precision), the value
1500 # returned may be flushed to zero. Additionally, splitting the value
1501 # into a significand and exponent using frexp() and then reconstructing
1502 # a floating-point value using ldexp() should yield the original input
1503 # for zero and all finite non-denormalized values."
1504 #
1505 # The SPIR-V spec has similar language.
1506 #
1507 # In order to handle the maximum value +128 using the fexp2i() helper
1508 # above, we have to split the exponent in half and do two multiply
1509 # operations.
1510 #
1511 # First, we clamp exp to a reasonable range. Specifically, we clamp to
1512 # twice the full range that is valid for the fexp2i() function above. If
1513 # exp/2 is the bottom value of that range, the fexp2i() expression will
1514 # yield 0.0f which, when multiplied by f, will flush it to zero which is
1515 # allowed by the GLSL and SPIR-V specs for low exponent values. If the
1516 # value is clamped from above, then it must have been above the supported
1517 # range of the GLSL built-in and therefore any return value is acceptable.
1518 if bits == 16:
1519 exp = ('imin', ('imax', exp, -30), 30)
1520 elif bits == 32:
1521 exp = ('imin', ('imax', exp, -254), 254)
1522 elif bits == 64:
1523 exp = ('imin', ('imax', exp, -2046), 2046)
1524 else:
1525 assert False
1526
1527 # Now we compute two powers of 2, one for exp/2 and one for exp-exp/2.
1528 # (We use ishr which isn't the same for -1, but the -1 case still works
1529 # since we use exp-exp/2 as the second exponent.) While the spec
1530 # technically defines ldexp as f * 2.0^exp, simply multiplying once doesn't
1531 # work with denormals and doesn't allow for the full swing in exponents
1532 # that you can get with normalized values. Instead, we create two powers
1533 # of two and multiply by them each in turn. That way the effective range
1534 # of our exponent is doubled.
1535 pow2_1 = fexp2i(('ishr', exp, 1), bits)
1536 pow2_2 = fexp2i(('isub', exp, ('ishr', exp, 1)), bits)
1537 return ('fmul', ('fmul', f, pow2_1), pow2_2)
1538
1539 optimizations += [
1540 (('ldexp@16', 'x', 'exp'), ldexp('x', 'exp', 16), 'options->lower_ldexp'),
1541 (('ldexp@32', 'x', 'exp'), ldexp('x', 'exp', 32), 'options->lower_ldexp'),
1542 (('ldexp@64', 'x', 'exp'), ldexp('x', 'exp', 64), 'options->lower_ldexp'),
1543 ]
1544
1545 # Unreal Engine 4 demo applications open-codes bitfieldReverse()
1546 def bitfield_reverse(u):
1547 step1 = ('ior', ('ishl', u, 16), ('ushr', u, 16))
1548 step2 = ('ior', ('ishl', ('iand', step1, 0x00ff00ff), 8), ('ushr', ('iand', step1, 0xff00ff00), 8))
1549 step3 = ('ior', ('ishl', ('iand', step2, 0x0f0f0f0f), 4), ('ushr', ('iand', step2, 0xf0f0f0f0), 4))
1550 step4 = ('ior', ('ishl', ('iand', step3, 0x33333333), 2), ('ushr', ('iand', step3, 0xcccccccc), 2))
1551 step5 = ('ior(many-comm-expr)', ('ishl', ('iand', step4, 0x55555555), 1), ('ushr', ('iand', step4, 0xaaaaaaaa), 1))
1552
1553 return step5
1554
1555 optimizations += [(bitfield_reverse('x@32'), ('bitfield_reverse', 'x'), '!options->lower_bitfield_reverse')]
1556
1557 # For any float comparison operation, "cmp", if you have "a == a && a cmp b"
1558 # then the "a == a" is redundant because it's equivalent to "a is not NaN"
1559 # and, if a is a NaN then the second comparison will fail anyway.
1560 for op in ['flt', 'fge', 'feq']:
1561 optimizations += [
1562 (('iand', ('feq', a, a), (op, a, b)), ('!' + op, a, b)),
1563 (('iand', ('feq', a, a), (op, b, a)), ('!' + op, b, a)),
1564 ]
1565
1566 # Add optimizations to handle the case where the result of a ternary is
1567 # compared to a constant. This way we can take things like
1568 #
1569 # (a ? 0 : 1) > 0
1570 #
1571 # and turn it into
1572 #
1573 # a ? (0 > 0) : (1 > 0)
1574 #
1575 # which constant folding will eat for lunch. The resulting ternary will
1576 # further get cleaned up by the boolean reductions above and we will be
1577 # left with just the original variable "a".
1578 for op in ['flt', 'fge', 'feq', 'fne',
1579 'ilt', 'ige', 'ieq', 'ine', 'ult', 'uge']:
1580 optimizations += [
1581 ((op, ('bcsel', 'a', '#b', '#c'), '#d'),
1582 ('bcsel', 'a', (op, 'b', 'd'), (op, 'c', 'd'))),
1583 ((op, '#d', ('bcsel', a, '#b', '#c')),
1584 ('bcsel', 'a', (op, 'd', 'b'), (op, 'd', 'c'))),
1585 ]
1586
1587
1588 # For example, this converts things like
1589 #
1590 # 1 + mix(0, a - 1, condition)
1591 #
1592 # into
1593 #
1594 # mix(1, (a-1)+1, condition)
1595 #
1596 # Other optimizations will rearrange the constants.
1597 for op in ['fadd', 'fmul', 'iadd', 'imul']:
1598 optimizations += [
1599 ((op, ('bcsel(is_used_once)', a, '#b', c), '#d'), ('bcsel', a, (op, b, d), (op, c, d)))
1600 ]
1601
1602 # For derivatives in compute shaders, GLSL_NV_compute_shader_derivatives
1603 # states:
1604 #
1605 # If neither layout qualifier is specified, derivatives in compute shaders
1606 # return zero, which is consistent with the handling of built-in texture
1607 # functions like texture() in GLSL 4.50 compute shaders.
1608 for op in ['fddx', 'fddx_fine', 'fddx_coarse',
1609 'fddy', 'fddy_fine', 'fddy_coarse']:
1610 optimizations += [
1611 ((op, 'a'), 0.0, 'info->stage == MESA_SHADER_COMPUTE && info->cs.derivative_group == DERIVATIVE_GROUP_NONE')
1612 ]
1613
1614 # Some optimizations for ir3-specific instructions.
1615 optimizations += [
1616 # 'al * bl': If either 'al' or 'bl' is zero, return zero.
1617 (('umul_low', '#a(is_lower_half_zero)', 'b'), (0)),
1618 # '(ah * bl) << 16 + c': If either 'ah' or 'bl' is zero, return 'c'.
1619 (('imadsh_mix16', '#a@32(is_lower_half_zero)', 'b@32', 'c@32'), ('c')),
1620 (('imadsh_mix16', 'a@32', '#b@32(is_upper_half_zero)', 'c@32'), ('c')),
1621 ]
1622
1623 # These kinds of sequences can occur after nir_opt_peephole_select.
1624 #
1625 # NOTE: fadd is not handled here because that gets in the way of ffma
1626 # generation in the i965 driver. Instead, fadd and ffma are handled in
1627 # late_optimizations.
1628
1629 for op in ['flrp']:
1630 optimizations += [
1631 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1632 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1633 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1634 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1635 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1636 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1637 ]
1638
1639 for op in ['fmul', 'iadd', 'imul', 'iand', 'ior', 'ixor', 'fmin', 'fmax', 'imin', 'imax', 'umin', 'umax']:
1640 optimizations += [
1641 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1642 (('bcsel', a, (op + '(is_used_once)', b, 'c(is_not_const)'), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1643 (('bcsel', a, (op, b, 'c(is_not_const)'), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1644 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1645 ]
1646
1647 for op in ['fpow']:
1648 optimizations += [
1649 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1650 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1651 (('bcsel', a, (op + '(is_used_once)', b, c), (op, d, c)), (op, ('bcsel', a, b, d), c)),
1652 (('bcsel', a, (op, b, c), (op + '(is_used_once)', d, c)), (op, ('bcsel', a, b, d), c)),
1653 ]
1654
1655 for op in ['frcp', 'frsq', 'fsqrt', 'fexp2', 'flog2', 'fsign', 'fsin', 'fcos']:
1656 optimizations += [
1657 (('bcsel', a, (op + '(is_used_once)', b), (op, c)), (op, ('bcsel', a, b, c))),
1658 (('bcsel', a, (op, b), (op + '(is_used_once)', c)), (op, ('bcsel', a, b, c))),
1659 ]
1660
1661 # This section contains "late" optimizations that should be run before
1662 # creating ffmas and calling regular optimizations for the final time.
1663 # Optimizations should go here if they help code generation and conflict
1664 # with the regular optimizations.
1665 before_ffma_optimizations = [
1666 # Propagate constants down multiplication chains
1667 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fmul', ('fmul', a, c), b)),
1668 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('imul', ('imul', a, c), b)),
1669 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fadd', ('fadd', a, c), b)),
1670 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('iadd', ('iadd', a, c), b)),
1671
1672 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
1673 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
1674 (('~fadd', ('fneg', a), a), 0.0),
1675 (('iadd', ('ineg', a), a), 0),
1676 (('iadd', ('ineg', a), ('iadd', a, b)), b),
1677 (('iadd', a, ('iadd', ('ineg', a), b)), b),
1678 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
1679 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
1680
1681 (('~flrp@32', ('fadd(is_used_once)', a, -1.0), ('fadd(is_used_once)', a, 1.0), d), ('fadd', ('flrp', -1.0, 1.0, d), a)),
1682 (('~flrp@32', ('fadd(is_used_once)', a, 1.0), ('fadd(is_used_once)', a, -1.0), d), ('fadd', ('flrp', 1.0, -1.0, d), a)),
1683 (('~flrp@32', ('fadd(is_used_once)', a, '#b'), ('fadd(is_used_once)', a, '#c'), d), ('fadd', ('fmul', d, ('fadd', c, ('fneg', b))), ('fadd', a, b))),
1684 ]
1685
1686 # This section contains "late" optimizations that should be run after the
1687 # regular optimizations have finished. Optimizations should go here if
1688 # they help code generation but do not necessarily produce code that is
1689 # more easily optimizable.
1690 late_optimizations = [
1691 # Most of these optimizations aren't quite safe when you get infinity or
1692 # Nan involved but the first one should be fine.
1693 (('flt', ('fadd', a, b), 0.0), ('flt', a, ('fneg', b))),
1694 (('flt', ('fneg', ('fadd', a, b)), 0.0), ('flt', ('fneg', a), b)),
1695 (('~fge', ('fadd', a, b), 0.0), ('fge', a, ('fneg', b))),
1696 (('~fge', ('fneg', ('fadd', a, b)), 0.0), ('fge', ('fneg', a), b)),
1697 (('~feq', ('fadd', a, b), 0.0), ('feq', a, ('fneg', b))),
1698 (('~fne', ('fadd', a, b), 0.0), ('fne', a, ('fneg', b))),
1699
1700 # nir_lower_to_source_mods will collapse this, but its existence during the
1701 # optimization loop can prevent other optimizations.
1702 (('fneg', ('fneg', a)), a),
1703
1704 # Subtractions get lowered during optimization, so we need to recombine them
1705 (('fadd', 'a', ('fneg', 'b')), ('fsub', 'a', 'b'), '!options->lower_sub'),
1706 (('iadd', 'a', ('ineg', 'b')), ('isub', 'a', 'b'), '!options->lower_sub'),
1707 (('fneg', a), ('fsub', 0.0, a), 'options->lower_negate'),
1708 (('ineg', a), ('isub', 0, a), 'options->lower_negate'),
1709
1710 # These are duplicated from the main optimizations table. The late
1711 # patterns that rearrange expressions like x - .5 < 0 to x < .5 can create
1712 # new patterns like these. The patterns that compare with zero are removed
1713 # because they are unlikely to be created in by anything in
1714 # late_optimizations.
1715 (('flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
1716 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
1717 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
1718 (('fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
1719 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
1720 (('fne', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fne', a, b)),
1721
1722 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
1723 (('flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
1724
1725 (('~fge', ('fmin(is_used_once)', ('fadd(is_used_once)', a, b), ('fadd', c, d)), 0.0), ('iand', ('fge', a, ('fneg', b)), ('fge', c, ('fneg', d)))),
1726
1727 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
1728 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
1729 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
1730 (('fne', ('fneg', a), ('fneg', b)), ('fne', b, a)),
1731 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
1732 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
1733 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
1734 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
1735 (('fne', ('fneg', a), -1.0), ('fne', 1.0, a)),
1736 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
1737
1738 (('ior', a, a), a),
1739 (('iand', a, a), a),
1740
1741 (('iand', ('ine(is_used_once)', 'a@32', 0), ('ine', 'b@32', 0)), ('ine', ('umin', a, b), 0)),
1742 (('ior', ('ieq(is_used_once)', 'a@32', 0), ('ieq', 'b@32', 0)), ('ieq', ('umin', a, b), 0)),
1743
1744 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
1745
1746 (('fdot2', a, b), ('fdot_replicated2', a, b), 'options->fdot_replicates'),
1747 (('fdot3', a, b), ('fdot_replicated3', a, b), 'options->fdot_replicates'),
1748 (('fdot4', a, b), ('fdot_replicated4', a, b), 'options->fdot_replicates'),
1749 (('fdph', a, b), ('fdph_replicated', a, b), 'options->fdot_replicates'),
1750
1751 (('~flrp@32', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
1752 (('~flrp@64', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
1753
1754 (('~fadd@32', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp32'),
1755 (('~fadd@64', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp64'),
1756
1757 # A similar operation could apply to any ffma(#a, b, #(-a/2)), but this
1758 # particular operation is common for expanding values stored in a texture
1759 # from [0,1] to [-1,1].
1760 (('~ffma@32', a, 2.0, -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1761 (('~ffma@32', a, -2.0, -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1762 (('~ffma@32', a, -2.0, 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1763 (('~ffma@32', a, 2.0, 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1764 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1765 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1766 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1767 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1768
1769 # flrp(a, b, a)
1770 # a*(1-a) + b*a
1771 # a + -a*a + a*b (1)
1772 # a + a*(b - a)
1773 # Option 1: ffma(a, (b-a), a)
1774 #
1775 # Alternately, after (1):
1776 # a*(1+b) + -a*a
1777 # a*((1+b) + -a)
1778 #
1779 # Let b=1
1780 #
1781 # Option 2: ffma(a, 2, -(a*a))
1782 # Option 3: ffma(a, 2, (-a)*a)
1783 # Option 4: ffma(a, -a, (2*a)
1784 # Option 5: a * (2 - a)
1785 #
1786 # There are a lot of other possible combinations.
1787 (('~ffma@32', ('fadd', b, ('fneg', a)), a, a), ('flrp', a, b, a), '!options->lower_flrp32'),
1788 (('~ffma@32', a, 2.0, ('fneg', ('fmul', a, a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1789 (('~ffma@32', a, 2.0, ('fmul', ('fneg', a), a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1790 (('~ffma@32', a, ('fneg', a), ('fmul', 2.0, a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1791 (('~fmul@32', a, ('fadd', 2.0, ('fneg', a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1792
1793 # we do these late so that we don't get in the way of creating ffmas
1794 (('fmin', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmin', a, b))),
1795 (('fmax', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmax', a, b))),
1796
1797 (('bcsel', a, 0, ('b2f32', ('inot', 'b@bool'))), ('b2f32', ('inot', ('ior', a, b)))),
1798
1799 # Putting this in 'optimizations' interferes with the bcsel(a, op(b, c),
1800 # op(b, d)) => op(b, bcsel(a, c, d)) transformations. I do not know why.
1801 (('bcsel', ('feq', ('fsqrt', 'a(is_not_negative)'), 0.0), intBitsToFloat(0x7f7fffff), ('frsq', a)),
1802 ('fmin', ('frsq', a), intBitsToFloat(0x7f7fffff))),
1803
1804 # Things that look like DPH in the source shader may get expanded to
1805 # something that looks like dot(v1.xyz, v2.xyz) + v1.w by the time it gets
1806 # to NIR. After FFMA is generated, this can look like:
1807 #
1808 # fadd(ffma(v1.z, v2.z, ffma(v1.y, v2.y, fmul(v1.x, v2.x))), v1.w)
1809 #
1810 # Reassociate the last addition into the first multiplication.
1811 #
1812 # Some shaders do not use 'invariant' in vertex and (possibly) geometry
1813 # shader stages on some outputs that are intended to be invariant. For
1814 # various reasons, this optimization may not be fully applied in all
1815 # shaders used for different rendering passes of the same geometry. This
1816 # can result in Z-fighting artifacts (at best). For now, disable this
1817 # optimization in these stages. See bugzilla #111490. In tessellation
1818 # stages applications seem to use 'precise' when necessary, so allow the
1819 # optimization in those stages.
1820 (('~fadd', ('ffma(is_used_once)', a, b, ('ffma', c, d, ('fmul', 'e(is_not_const_and_not_fsign)', 'f(is_not_const_and_not_fsign)'))), 'g(is_not_const)'),
1821 ('ffma', a, b, ('ffma', c, d, ('ffma', e, 'f', 'g'))), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
1822 (('~fadd', ('ffma(is_used_once)', a, b, ('fmul', 'c(is_not_const_and_not_fsign)', 'd(is_not_const_and_not_fsign)') ), 'e(is_not_const)'),
1823 ('ffma', a, b, ('ffma', c, d, e)), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
1824
1825 # Convert f2fmp instructions to concrete f2f16 instructions. At this point
1826 # any conversions that could have been removed will have been removed in
1827 # nir_opt_algebraic so any remaining ones are required.
1828 (('f2fmp', a), ('f2f16', a)),
1829 ]
1830
1831 for op in ['fadd']:
1832 late_optimizations += [
1833 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1834 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1835 ]
1836
1837 for op in ['ffma']:
1838 late_optimizations += [
1839 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1840 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1841
1842 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1843 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1844 ]
1845
1846 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic", optimizations).render())
1847 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_before_ffma",
1848 before_ffma_optimizations).render())
1849 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_late",
1850 late_optimizations).render())