nir: Undo possible damage caused by rearranging or-compounded float compares
[mesa.git] / src / compiler / nir / nir_opt_algebraic.py
1 #
2 # Copyright (C) 2014 Intel Corporation
3 #
4 # Permission is hereby granted, free of charge, to any person obtaining a
5 # copy of this software and associated documentation files (the "Software"),
6 # to deal in the Software without restriction, including without limitation
7 # the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 # and/or sell copies of the Software, and to permit persons to whom the
9 # Software is furnished to do so, subject to the following conditions:
10 #
11 # The above copyright notice and this permission notice (including the next
12 # paragraph) shall be included in all copies or substantial portions of the
13 # Software.
14 #
15 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 # IN THE SOFTWARE.
22 #
23 # Authors:
24 # Jason Ekstrand (jason@jlekstrand.net)
25
26 import nir_algebraic
27
28 # Convenience variables
29 a = 'a'
30 b = 'b'
31 c = 'c'
32 d = 'd'
33
34 # Written in the form (<search>, <replace>) where <search> is an expression
35 # and <replace> is either an expression or a value. An expression is
36 # defined as a tuple of the form ([~]<op>, <src0>, <src1>, <src2>, <src3>)
37 # where each source is either an expression or a value. A value can be
38 # either a numeric constant or a string representing a variable name.
39 #
40 # If the opcode in a search expression is prefixed by a '~' character, this
41 # indicates that the operation is inexact. Such operations will only get
42 # applied to SSA values that do not have the exact bit set. This should be
43 # used by by any optimizations that are not bit-for-bit exact. It should not,
44 # however, be used for backend-requested lowering operations as those need to
45 # happen regardless of precision.
46 #
47 # Variable names are specified as "[#]name[@type][(cond)]" where "#" inicates
48 # that the given variable will only match constants and the type indicates that
49 # the given variable will only match values from ALU instructions with the
50 # given output type, and (cond) specifies an additional condition function
51 # (see nir_search_helpers.h).
52 #
53 # For constants, you have to be careful to make sure that it is the right
54 # type because python is unaware of the source and destination types of the
55 # opcodes.
56 #
57 # All expression types can have a bit-size specified. For opcodes, this
58 # looks like "op@32", for variables it is "a@32" or "a@uint32" to specify a
59 # type and size, and for literals, you can write "2.0@32". In the search half
60 # of the expression this indicates that it should only match that particular
61 # bit-size. In the replace half of the expression this indicates that the
62 # constructed value should have that bit-size.
63
64 optimizations = [
65
66 (('imul', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b))),
67 (('imul', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b))))),
68 (('udiv', a, 1), a),
69 (('idiv', a, 1), a),
70 (('umod', a, 1), 0),
71 (('imod', a, 1), 0),
72 (('udiv', a, '#b@32(is_pos_power_of_two)'), ('ushr', a, ('find_lsb', b))),
73 (('idiv', a, '#b@32(is_pos_power_of_two)'), ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', b))), 'options->lower_idiv'),
74 (('idiv', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', ('iabs', b))))), 'options->lower_idiv'),
75 (('umod', a, '#b(is_pos_power_of_two)'), ('iand', a, ('isub', b, 1))),
76
77 (('fneg', ('fneg', a)), a),
78 (('ineg', ('ineg', a)), a),
79 (('fabs', ('fabs', a)), ('fabs', a)),
80 (('fabs', ('fneg', a)), ('fabs', a)),
81 (('fabs', ('u2f32', a)), ('u2f32', a)),
82 (('iabs', ('iabs', a)), ('iabs', a)),
83 (('iabs', ('ineg', a)), ('iabs', a)),
84 (('~fadd', a, 0.0), a),
85 (('iadd', a, 0), a),
86 (('usadd_4x8', a, 0), a),
87 (('usadd_4x8', a, ~0), ~0),
88 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
89 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
90 (('~fadd', ('fneg', a), a), 0.0),
91 (('iadd', ('ineg', a), a), 0),
92 (('iadd', ('ineg', a), ('iadd', a, b)), b),
93 (('iadd', a, ('iadd', ('ineg', a), b)), b),
94 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
95 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
96 (('~fmul', a, 0.0), 0.0),
97 (('imul', a, 0), 0),
98 (('umul_unorm_4x8', a, 0), 0),
99 (('umul_unorm_4x8', a, ~0), a),
100 (('fmul', a, 1.0), a),
101 (('imul', a, 1), a),
102 (('fmul', a, -1.0), ('fneg', a)),
103 (('imul', a, -1), ('ineg', a)),
104 (('~ffma', 0.0, a, b), b),
105 (('~ffma', a, 0.0, b), b),
106 (('~ffma', a, b, 0.0), ('fmul', a, b)),
107 (('ffma', a, 1.0, b), ('fadd', a, b)),
108 (('ffma', 1.0, a, b), ('fadd', a, b)),
109 (('~flrp', a, b, 0.0), a),
110 (('~flrp', a, b, 1.0), b),
111 (('~flrp', a, a, b), a),
112 (('~flrp', 0.0, a, b), ('fmul', a, b)),
113 (('~flrp', a, b, ('b2f', c)), ('bcsel', c, b, a), 'options->lower_flrp32'),
114 (('~flrp', a, 0.0, c), ('fadd', ('fmul', ('fneg', a), c), a)),
115 (('flrp@32', a, b, c), ('fadd', ('fmul', c, ('fsub', b, a)), a), 'options->lower_flrp32'),
116 (('flrp@64', a, b, c), ('fadd', ('fmul', c, ('fsub', b, a)), a), 'options->lower_flrp64'),
117 (('ffract', a), ('fsub', a, ('ffloor', a)), 'options->lower_ffract'),
118 (('~fadd', ('fmul', a, ('fadd', 1.0, ('fneg', ('b2f', c)))), ('fmul', b, ('b2f', c))), ('bcsel', c, b, a), 'options->lower_flrp32'),
119 (('~fadd@32', ('fmul', a, ('fadd', 1.0, ('fneg', c ))), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp32'),
120 (('~fadd@64', ('fmul', a, ('fadd', 1.0, ('fneg', c ))), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp64'),
121 (('~fadd', a, ('fmul', ('b2f', c), ('fadd', b, ('fneg', a)))), ('bcsel', c, b, a), 'options->lower_flrp32'),
122 (('~fadd@32', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp32'),
123 (('~fadd@64', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp64'),
124 (('ffma', a, b, c), ('fadd', ('fmul', a, b), c), 'options->lower_ffma'),
125 (('~fadd', ('fmul', a, b), c), ('ffma', a, b, c), 'options->fuse_ffma'),
126
127 # (a * #b + #c) << #d
128 # ((a * #b) << #d) + (#c << #d)
129 # (a * (#b << #d)) + (#c << #d)
130 (('ishl', ('iadd', ('imul', a, '#b'), '#c'), '#d'),
131 ('iadd', ('imul', a, ('ishl', b, d)), ('ishl', c, d))),
132
133 # (a * #b) << #c
134 # a * (#b << #c)
135 (('ishl', ('imul', a, '#b'), '#c'), ('imul', a, ('ishl', b, c))),
136
137 # Comparison simplifications
138 (('~inot', ('flt', a, b)), ('fge', a, b)),
139 (('~inot', ('fge', a, b)), ('flt', a, b)),
140 (('~inot', ('feq', a, b)), ('fne', a, b)),
141 (('~inot', ('fne', a, b)), ('feq', a, b)),
142 (('inot', ('ilt', a, b)), ('ige', a, b)),
143 (('inot', ('ige', a, b)), ('ilt', a, b)),
144 (('inot', ('ieq', a, b)), ('ine', a, b)),
145 (('inot', ('ine', a, b)), ('ieq', a, b)),
146
147 # 0.0 >= b2f(a)
148 # b2f(a) <= 0.0
149 # b2f(a) == 0.0 because b2f(a) can only be 0 or 1
150 # inot(a)
151 (('fge', 0.0, ('b2f', a)), ('inot', a)),
152
153 (('fge', ('fneg', ('b2f', a)), 0.0), ('inot', a)),
154
155 # 0.0 < fabs(a)
156 # fabs(a) > 0.0
157 # fabs(a) != 0.0 because fabs(a) must be >= 0
158 # a != 0.0
159 (('flt', 0.0, ('fabs', a)), ('fne', a, 0.0)),
160
161 # ignore this opt when the result is used by a bcsel or if so we can make
162 # use of conditional modifiers on supported hardware.
163 (('flt(is_not_used_by_conditional)', ('fadd(is_used_once)', a, ('fneg', b)), 0.0), ('flt', a, b)),
164
165 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
166 (('bcsel', ('flt', b, a), b, a), ('fmin', a, b)),
167 (('bcsel', ('flt', a, b), b, a), ('fmax', a, b)),
168 (('bcsel', ('inot', a), b, c), ('bcsel', a, c, b)),
169 (('bcsel', a, ('bcsel', a, b, c), d), ('bcsel', a, b, d)),
170 (('bcsel', a, True, 'b@bool'), ('ior', a, b)),
171 (('fmin', a, a), a),
172 (('fmax', a, a), a),
173 (('imin', a, a), a),
174 (('imax', a, a), a),
175 (('umin', a, a), a),
176 (('umax', a, a), a),
177 (('fmin', a, ('fneg', a)), ('fneg', ('fabs', a))),
178 (('imin', a, ('ineg', a)), ('ineg', ('iabs', a))),
179 (('fmin', a, ('fneg', ('fabs', a))), ('fneg', ('fabs', a))),
180 (('imin', a, ('ineg', ('iabs', a))), ('ineg', ('iabs', a))),
181 (('fmin', a, ('fabs', a)), a),
182 (('imin', a, ('iabs', a)), a),
183 (('fmax', a, ('fneg', ('fabs', a))), a),
184 (('imax', a, ('ineg', ('iabs', a))), a),
185 (('fmax', a, ('fabs', a)), ('fabs', a)),
186 (('imax', a, ('iabs', a)), ('iabs', a)),
187 (('fmax', a, ('fneg', a)), ('fabs', a)),
188 (('imax', a, ('ineg', a)), ('iabs', a)),
189 (('~fmin', ('fmax', a, 0.0), 1.0), ('fsat', a), '!options->lower_fsat'),
190 (('~fmax', ('fmin', a, 1.0), 0.0), ('fsat', a), '!options->lower_fsat'),
191 (('fsat', a), ('fmin', ('fmax', a, 0.0), 1.0), 'options->lower_fsat'),
192 (('fsat', ('fsat', a)), ('fsat', a)),
193 (('fmin', ('fmax', ('fmin', ('fmax', a, b), c), b), c), ('fmin', ('fmax', a, b), c)),
194 (('imin', ('imax', ('imin', ('imax', a, b), c), b), c), ('imin', ('imax', a, b), c)),
195 (('umin', ('umax', ('umin', ('umax', a, b), c), b), c), ('umin', ('umax', a, b), c)),
196 (('fmax', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmax', a, b))),
197 (('fmin', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmin', a, b))),
198 (('extract_u8', ('imin', ('imax', a, 0), 0xff), 0), ('imin', ('imax', a, 0), 0xff)),
199 (('~ior', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmax', b, c))),
200 (('~ior', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmin', a, b), c)),
201 (('~ior', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmin', b, c))),
202 (('~ior', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmax', a, b), c)),
203 (('~ior', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmax', b, c))),
204 (('~ior', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmin', a, b), c)),
205 (('~ior', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmin', b, c))),
206 (('~ior', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmax', a, b), c)),
207
208 # These patterns can result when (a < b || a < c) => (a < min(b, c))
209 # transformations occur before constant propagation and loop-unrolling.
210 (('~flt', a, ('fmax', b, a)), ('flt', a, b)),
211 (('~flt', ('fmin', a, b), a), ('flt', b, a)),
212 (('~fge', a, ('fmin', b, a)), True),
213 (('~fge', ('fmax', a, b), a), True),
214 (('~flt', a, ('fmin', b, a)), False),
215 (('~flt', ('fmax', a, b), a), False),
216
217 (('fabs', ('slt', a, b)), ('slt', a, b)),
218 (('fabs', ('sge', a, b)), ('sge', a, b)),
219 (('fabs', ('seq', a, b)), ('seq', a, b)),
220 (('fabs', ('sne', a, b)), ('sne', a, b)),
221 (('slt', a, b), ('b2f', ('flt', a, b)), 'options->lower_scmp'),
222 (('sge', a, b), ('b2f', ('fge', a, b)), 'options->lower_scmp'),
223 (('seq', a, b), ('b2f', ('feq', a, b)), 'options->lower_scmp'),
224 (('sne', a, b), ('b2f', ('fne', a, b)), 'options->lower_scmp'),
225 (('fne', ('fneg', a), a), ('fne', a, 0.0)),
226 (('feq', ('fneg', a), a), ('feq', a, 0.0)),
227 # Emulating booleans
228 (('imul', ('b2i', a), ('b2i', b)), ('b2i', ('iand', a, b))),
229 (('fmul', ('b2f', a), ('b2f', b)), ('b2f', ('iand', a, b))),
230 (('fsat', ('fadd', ('b2f', a), ('b2f', b))), ('b2f', ('ior', a, b))),
231 (('iand', 'a@bool', 1.0), ('b2f', a)),
232 # True/False are ~0 and 0 in NIR. b2i of True is 1, and -1 is ~0 (True).
233 (('ineg', ('b2i@32', a)), a),
234 (('flt', ('fneg', ('b2f', a)), 0), a), # Generated by TGSI KILL_IF.
235 (('flt', ('fsub', 0.0, ('b2f', a)), 0), a), # Generated by TGSI KILL_IF.
236 # Comparison with the same args. Note that these are not done for
237 # the float versions because NaN always returns false on float
238 # inequalities.
239 (('ilt', a, a), False),
240 (('ige', a, a), True),
241 (('ieq', a, a), True),
242 (('ine', a, a), False),
243 (('ult', a, a), False),
244 (('uge', a, a), True),
245 # Logical and bit operations
246 (('fand', a, 0.0), 0.0),
247 (('iand', a, a), a),
248 (('iand', a, ~0), a),
249 (('iand', a, 0), 0),
250 (('ior', a, a), a),
251 (('ior', a, 0), a),
252 (('ior', a, True), True),
253 (('fxor', a, a), 0.0),
254 (('ixor', a, a), 0),
255 (('ixor', a, 0), a),
256 (('inot', ('inot', a)), a),
257 # DeMorgan's Laws
258 (('iand', ('inot', a), ('inot', b)), ('inot', ('ior', a, b))),
259 (('ior', ('inot', a), ('inot', b)), ('inot', ('iand', a, b))),
260 # Shift optimizations
261 (('ishl', 0, a), 0),
262 (('ishl', a, 0), a),
263 (('ishr', 0, a), 0),
264 (('ishr', a, 0), a),
265 (('ushr', 0, a), 0),
266 (('ushr', a, 0), a),
267 (('iand', 0xff, ('ushr@32', a, 24)), ('ushr', a, 24)),
268 (('iand', 0xffff, ('ushr@32', a, 16)), ('ushr', a, 16)),
269 # Exponential/logarithmic identities
270 (('~fexp2', ('flog2', a)), a), # 2^lg2(a) = a
271 (('~flog2', ('fexp2', a)), a), # lg2(2^a) = a
272 (('fpow', a, b), ('fexp2', ('fmul', ('flog2', a), b)), 'options->lower_fpow'), # a^b = 2^(lg2(a)*b)
273 (('~fexp2', ('fmul', ('flog2', a), b)), ('fpow', a, b), '!options->lower_fpow'), # 2^(lg2(a)*b) = a^b
274 (('~fexp2', ('fadd', ('fmul', ('flog2', a), b), ('fmul', ('flog2', c), d))),
275 ('~fmul', ('fpow', a, b), ('fpow', c, d)), '!options->lower_fpow'), # 2^(lg2(a) * b + lg2(c) + d) = a^b * c^d
276 (('~fpow', a, 1.0), a),
277 (('~fpow', a, 2.0), ('fmul', a, a)),
278 (('~fpow', a, 4.0), ('fmul', ('fmul', a, a), ('fmul', a, a))),
279 (('~fpow', 2.0, a), ('fexp2', a)),
280 (('~fpow', ('fpow', a, 2.2), 0.454545), a),
281 (('~fpow', ('fabs', ('fpow', a, 2.2)), 0.454545), ('fabs', a)),
282 (('~fsqrt', ('fexp2', a)), ('fexp2', ('fmul', 0.5, a))),
283 (('~frcp', ('fexp2', a)), ('fexp2', ('fneg', a))),
284 (('~frsq', ('fexp2', a)), ('fexp2', ('fmul', -0.5, a))),
285 (('~flog2', ('fsqrt', a)), ('fmul', 0.5, ('flog2', a))),
286 (('~flog2', ('frcp', a)), ('fneg', ('flog2', a))),
287 (('~flog2', ('frsq', a)), ('fmul', -0.5, ('flog2', a))),
288 (('~flog2', ('fpow', a, b)), ('fmul', b, ('flog2', a))),
289 (('~fmul', ('fexp2', a), ('fexp2', b)), ('fexp2', ('fadd', a, b))),
290 # Division and reciprocal
291 (('~fdiv', 1.0, a), ('frcp', a)),
292 (('fdiv', a, b), ('fmul', a, ('frcp', b)), 'options->lower_fdiv'),
293 (('~frcp', ('frcp', a)), a),
294 (('~frcp', ('fsqrt', a)), ('frsq', a)),
295 (('fsqrt', a), ('frcp', ('frsq', a)), 'options->lower_fsqrt'),
296 (('~frcp', ('frsq', a)), ('fsqrt', a), '!options->lower_fsqrt'),
297 # Boolean simplifications
298 (('ieq', 'a@bool', True), a),
299 (('ine(is_not_used_by_if)', 'a@bool', True), ('inot', a)),
300 (('ine', 'a@bool', False), a),
301 (('ieq(is_not_used_by_if)', 'a@bool', False), ('inot', 'a')),
302 (('bcsel', a, True, False), a),
303 (('bcsel', a, False, True), ('inot', a)),
304 (('bcsel@32', a, 1.0, 0.0), ('b2f', a)),
305 (('bcsel@32', a, 0.0, 1.0), ('b2f', ('inot', a))),
306 (('bcsel@32', a, -1.0, -0.0), ('fneg', ('b2f', a))),
307 (('bcsel@32', a, -0.0, -1.0), ('fneg', ('b2f', ('inot', a)))),
308 (('bcsel', True, b, c), b),
309 (('bcsel', False, b, c), c),
310 # The result of this should be hit by constant propagation and, in the
311 # next round of opt_algebraic, get picked up by one of the above two.
312 (('bcsel', '#a', b, c), ('bcsel', ('ine', 'a', 0), b, c)),
313
314 (('bcsel', a, b, b), b),
315 (('fcsel', a, b, b), b),
316
317 # Conversions
318 (('i2b', ('b2i', a)), a),
319 (('f2i32', ('ftrunc', a)), ('f2i32', a)),
320 (('f2u32', ('ftrunc', a)), ('f2u32', a)),
321 (('i2b', ('ineg', a)), ('i2b', a)),
322 (('i2b', ('iabs', a)), ('i2b', a)),
323 (('fabs', ('b2f', a)), ('b2f', a)),
324 (('iabs', ('b2i', a)), ('b2i', a)),
325
326 # Packing and then unpacking does nothing
327 (('unpack_64_2x32_split_x', ('pack_64_2x32_split', a, b)), a),
328 (('unpack_64_2x32_split_y', ('pack_64_2x32_split', a, b)), b),
329 (('pack_64_2x32_split', ('unpack_64_2x32_split_x', a),
330 ('unpack_64_2x32_split_y', a)), a),
331
332 # Byte extraction
333 (('ushr', a, 24), ('extract_u8', a, 3), '!options->lower_extract_byte'),
334 (('iand', 0xff, ('ushr', a, 16)), ('extract_u8', a, 2), '!options->lower_extract_byte'),
335 (('iand', 0xff, ('ushr', a, 8)), ('extract_u8', a, 1), '!options->lower_extract_byte'),
336 (('iand', 0xff, a), ('extract_u8', a, 0), '!options->lower_extract_byte'),
337
338 # Word extraction
339 (('ushr', a, 16), ('extract_u16', a, 1), '!options->lower_extract_word'),
340 (('iand', 0xffff, a), ('extract_u16', a, 0), '!options->lower_extract_word'),
341
342 # Subtracts
343 (('~fsub', a, ('fsub', 0.0, b)), ('fadd', a, b)),
344 (('isub', a, ('isub', 0, b)), ('iadd', a, b)),
345 (('ussub_4x8', a, 0), a),
346 (('ussub_4x8', a, ~0), 0),
347 (('fsub', a, b), ('fadd', a, ('fneg', b)), 'options->lower_sub'),
348 (('isub', a, b), ('iadd', a, ('ineg', b)), 'options->lower_sub'),
349 (('fneg', a), ('fsub', 0.0, a), 'options->lower_negate'),
350 (('ineg', a), ('isub', 0, a), 'options->lower_negate'),
351 (('~fadd', a, ('fsub', 0.0, b)), ('fsub', a, b)),
352 (('iadd', a, ('isub', 0, b)), ('isub', a, b)),
353 (('fabs', ('fsub', 0.0, a)), ('fabs', a)),
354 (('iabs', ('isub', 0, a)), ('iabs', a)),
355
356 # Propagate negation up multiplication chains
357 (('fmul', ('fneg', a), b), ('fneg', ('fmul', a, b))),
358 (('imul', ('ineg', a), b), ('ineg', ('imul', a, b))),
359
360 # Propagate constants up multiplication chains
361 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fmul', ('fmul', a, c), b)),
362 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('imul', ('imul', a, c), b)),
363 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fadd', ('fadd', a, c), b)),
364 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('iadd', ('iadd', a, c), b)),
365
366 # Reassociate constants in add/mul chains so they can be folded together.
367 # For now, we mostly only handle cases where the constants are separated by
368 # a single non-constant. We could do better eventually.
369 (('~fmul', '#a', ('fmul', b, '#c')), ('fmul', ('fmul', a, c), b)),
370 (('imul', '#a', ('imul', b, '#c')), ('imul', ('imul', a, c), b)),
371 (('~fadd', '#a', ('fadd', b, '#c')), ('fadd', ('fadd', a, c), b)),
372 (('~fadd', '#a', ('fneg', ('fadd', b, '#c'))), ('fadd', ('fadd', a, ('fneg', c)), ('fneg', b))),
373 (('iadd', '#a', ('iadd', b, '#c')), ('iadd', ('iadd', a, c), b)),
374
375 # By definition...
376 (('bcsel', ('ige', ('find_lsb', a), 0), ('find_lsb', a), -1), ('find_lsb', a)),
377 (('bcsel', ('ige', ('ifind_msb', a), 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
378 (('bcsel', ('ige', ('ufind_msb', a), 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
379
380 (('bcsel', ('ine', a, 0), ('find_lsb', a), -1), ('find_lsb', a)),
381 (('bcsel', ('ine', a, 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
382 (('bcsel', ('ine', a, 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
383
384 (('bcsel', ('ine', a, -1), ('ifind_msb', a), -1), ('ifind_msb', a)),
385
386 # Misc. lowering
387 (('fmod@32', a, b), ('fsub', a, ('fmul', b, ('ffloor', ('fdiv', a, b)))), 'options->lower_fmod32'),
388 (('fmod@64', a, b), ('fsub', a, ('fmul', b, ('ffloor', ('fdiv', a, b)))), 'options->lower_fmod64'),
389 (('frem', a, b), ('fsub', a, ('fmul', b, ('ftrunc', ('fdiv', a, b)))), 'options->lower_fmod32'),
390 (('uadd_carry@32', a, b), ('b2i', ('ult', ('iadd', a, b), a)), 'options->lower_uadd_carry'),
391 (('usub_borrow@32', a, b), ('b2i', ('ult', a, b)), 'options->lower_usub_borrow'),
392
393 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
394 ('bcsel', ('ilt', 31, 'bits'), 'insert',
395 ('bfi', ('bfm', 'bits', 'offset'), 'insert', 'base')),
396 'options->lower_bitfield_insert'),
397
398 (('ibitfield_extract', 'value', 'offset', 'bits'),
399 ('bcsel', ('ilt', 31, 'bits'), 'value',
400 ('ibfe', 'value', 'offset', 'bits')),
401 'options->lower_bitfield_extract'),
402
403 (('ubitfield_extract', 'value', 'offset', 'bits'),
404 ('bcsel', ('ult', 31, 'bits'), 'value',
405 ('ubfe', 'value', 'offset', 'bits')),
406 'options->lower_bitfield_extract'),
407
408 (('extract_i8', a, 'b@32'),
409 ('ishr', ('ishl', a, ('imul', ('isub', 3, b), 8)), 24),
410 'options->lower_extract_byte'),
411
412 (('extract_u8', a, 'b@32'),
413 ('iand', ('ushr', a, ('imul', b, 8)), 0xff),
414 'options->lower_extract_byte'),
415
416 (('extract_i16', a, 'b@32'),
417 ('ishr', ('ishl', a, ('imul', ('isub', 1, b), 16)), 16),
418 'options->lower_extract_word'),
419
420 (('extract_u16', a, 'b@32'),
421 ('iand', ('ushr', a, ('imul', b, 16)), 0xffff),
422 'options->lower_extract_word'),
423
424 (('pack_unorm_2x16', 'v'),
425 ('pack_uvec2_to_uint',
426 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 65535.0)))),
427 'options->lower_pack_unorm_2x16'),
428
429 (('pack_unorm_4x8', 'v'),
430 ('pack_uvec4_to_uint',
431 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 255.0)))),
432 'options->lower_pack_unorm_4x8'),
433
434 (('pack_snorm_2x16', 'v'),
435 ('pack_uvec2_to_uint',
436 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 32767.0)))),
437 'options->lower_pack_snorm_2x16'),
438
439 (('pack_snorm_4x8', 'v'),
440 ('pack_uvec4_to_uint',
441 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 127.0)))),
442 'options->lower_pack_snorm_4x8'),
443
444 (('unpack_unorm_2x16', 'v'),
445 ('fdiv', ('u2f32', ('vec2', ('extract_u16', 'v', 0),
446 ('extract_u16', 'v', 1))),
447 65535.0),
448 'options->lower_unpack_unorm_2x16'),
449
450 (('unpack_unorm_4x8', 'v'),
451 ('fdiv', ('u2f32', ('vec4', ('extract_u8', 'v', 0),
452 ('extract_u8', 'v', 1),
453 ('extract_u8', 'v', 2),
454 ('extract_u8', 'v', 3))),
455 255.0),
456 'options->lower_unpack_unorm_4x8'),
457
458 (('unpack_snorm_2x16', 'v'),
459 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f32', ('vec2', ('extract_i16', 'v', 0),
460 ('extract_i16', 'v', 1))),
461 32767.0))),
462 'options->lower_unpack_snorm_2x16'),
463
464 (('unpack_snorm_4x8', 'v'),
465 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f32', ('vec4', ('extract_i8', 'v', 0),
466 ('extract_i8', 'v', 1),
467 ('extract_i8', 'v', 2),
468 ('extract_i8', 'v', 3))),
469 127.0))),
470 'options->lower_unpack_snorm_4x8'),
471 ]
472
473 def fexp2i(exp, bits):
474 # We assume that exp is already in the right range.
475 if bits == 32:
476 return ('ishl', ('iadd', exp, 127), 23)
477 elif bits == 64:
478 return ('pack_64_2x32_split', 0, ('ishl', ('iadd', exp, 1023), 20))
479 else:
480 assert False
481
482 def ldexp(f, exp, bits):
483 # First, we clamp exp to a reasonable range. The maximum possible range
484 # for a normal exponent is [-126, 127] and, throwing in denormals, you get
485 # a maximum range of [-149, 127]. This means that we can potentially have
486 # a swing of +-276. If you start with FLT_MAX, you actually have to do
487 # ldexp(FLT_MAX, -278) to get it to flush all the way to zero. The GLSL
488 # spec, on the other hand, only requires that we handle an exponent value
489 # in the range [-126, 128]. This implementation is *mostly* correct; it
490 # handles a range on exp of [-252, 254] which allows you to create any
491 # value (including denorms if the hardware supports it) and to adjust the
492 # exponent of any normal value to anything you want.
493 if bits == 32:
494 exp = ('imin', ('imax', exp, -252), 254)
495 elif bits == 64:
496 exp = ('imin', ('imax', exp, -2044), 2046)
497 else:
498 assert False
499
500 # Now we compute two powers of 2, one for exp/2 and one for exp-exp/2.
501 # (We use ishr which isn't the same for -1, but the -1 case still works
502 # since we use exp-exp/2 as the second exponent.) While the spec
503 # technically defines ldexp as f * 2.0^exp, simply multiplying once doesn't
504 # work with denormals and doesn't allow for the full swing in exponents
505 # that you can get with normalized values. Instead, we create two powers
506 # of two and multiply by them each in turn. That way the effective range
507 # of our exponent is doubled.
508 pow2_1 = fexp2i(('ishr', exp, 1), bits)
509 pow2_2 = fexp2i(('isub', exp, ('ishr', exp, 1)), bits)
510 return ('fmul', ('fmul', f, pow2_1), pow2_2)
511
512 optimizations += [
513 (('ldexp@32', 'x', 'exp'), ldexp('x', 'exp', 32)),
514 (('ldexp@64', 'x', 'exp'), ldexp('x', 'exp', 64)),
515 ]
516
517 # Unreal Engine 4 demo applications open-codes bitfieldReverse()
518 def bitfield_reverse(u):
519 step1 = ('ior', ('ishl', u, 16), ('ushr', u, 16))
520 step2 = ('ior', ('ishl', ('iand', step1, 0x00ff00ff), 8), ('ushr', ('iand', step1, 0xff00ff00), 8))
521 step3 = ('ior', ('ishl', ('iand', step2, 0x0f0f0f0f), 4), ('ushr', ('iand', step2, 0xf0f0f0f0), 4))
522 step4 = ('ior', ('ishl', ('iand', step3, 0x33333333), 2), ('ushr', ('iand', step3, 0xcccccccc), 2))
523 step5 = ('ior', ('ishl', ('iand', step4, 0x55555555), 1), ('ushr', ('iand', step4, 0xaaaaaaaa), 1))
524
525 return step5
526
527 optimizations += [(bitfield_reverse('x@32'), ('bitfield_reverse', 'x'))]
528
529 # For any float comparison operation, "cmp", if you have "a == a && a cmp b"
530 # then the "a == a" is redundant because it's equivalent to "a is not NaN"
531 # and, if a is a NaN then the second comparison will fail anyway.
532 for op in ['flt', 'fge', 'feq']:
533 optimizations += [
534 (('iand', ('feq', a, a), (op, a, b)), (op, a, b)),
535 (('iand', ('feq', a, a), (op, b, a)), (op, b, a)),
536 ]
537
538 # Add optimizations to handle the case where the result of a ternary is
539 # compared to a constant. This way we can take things like
540 #
541 # (a ? 0 : 1) > 0
542 #
543 # and turn it into
544 #
545 # a ? (0 > 0) : (1 > 0)
546 #
547 # which constant folding will eat for lunch. The resulting ternary will
548 # further get cleaned up by the boolean reductions above and we will be
549 # left with just the original variable "a".
550 for op in ['flt', 'fge', 'feq', 'fne',
551 'ilt', 'ige', 'ieq', 'ine', 'ult', 'uge']:
552 optimizations += [
553 ((op, ('bcsel', 'a', '#b', '#c'), '#d'),
554 ('bcsel', 'a', (op, 'b', 'd'), (op, 'c', 'd'))),
555 ((op, '#d', ('bcsel', a, '#b', '#c')),
556 ('bcsel', 'a', (op, 'd', 'b'), (op, 'd', 'c'))),
557 ]
558
559 # This section contains "late" optimizations that should be run before
560 # creating ffmas and calling regular optimizations for the final time.
561 # Optimizations should go here if they help code generation and conflict
562 # with the regular optimizations.
563 before_ffma_optimizations = [
564 # Propagate constants down multiplication chains
565 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fmul', ('fmul', a, c), b)),
566 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('imul', ('imul', a, c), b)),
567 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fadd', ('fadd', a, c), b)),
568 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('iadd', ('iadd', a, c), b)),
569
570 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
571 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
572 (('~fadd', ('fneg', a), a), 0.0),
573 (('iadd', ('ineg', a), a), 0),
574 (('iadd', ('ineg', a), ('iadd', a, b)), b),
575 (('iadd', a, ('iadd', ('ineg', a), b)), b),
576 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
577 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
578 ]
579
580 # This section contains "late" optimizations that should be run after the
581 # regular optimizations have finished. Optimizations should go here if
582 # they help code generation but do not necessarily produce code that is
583 # more easily optimizable.
584 late_optimizations = [
585 # Most of these optimizations aren't quite safe when you get infinity or
586 # Nan involved but the first one should be fine.
587 (('flt', ('fadd', a, b), 0.0), ('flt', a, ('fneg', b))),
588 (('flt', ('fneg', ('fadd', a, b)), 0.0), ('flt', ('fneg', a), b)),
589 (('~fge', ('fadd', a, b), 0.0), ('fge', a, ('fneg', b))),
590 (('~fge', ('fneg', ('fadd', a, b)), 0.0), ('fge', ('fneg', a), b)),
591 (('~feq', ('fadd', a, b), 0.0), ('feq', a, ('fneg', b))),
592 (('~fne', ('fadd', a, b), 0.0), ('fne', a, ('fneg', b))),
593
594 (('fdot2', a, b), ('fdot_replicated2', a, b), 'options->fdot_replicates'),
595 (('fdot3', a, b), ('fdot_replicated3', a, b), 'options->fdot_replicates'),
596 (('fdot4', a, b), ('fdot_replicated4', a, b), 'options->fdot_replicates'),
597 (('fdph', a, b), ('fdph_replicated', a, b), 'options->fdot_replicates'),
598
599 (('b2f(is_used_more_than_once)', ('inot', a)), ('bcsel', a, 0.0, 1.0)),
600 (('fneg(is_used_more_than_once)', ('b2f', ('inot', a))), ('bcsel', a, -0.0, -1.0)),
601
602 # we do these late so that we don't get in the way of creating ffmas
603 (('fmin', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmin', a, b))),
604 (('fmax', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmax', a, b))),
605 ]
606
607 print nir_algebraic.AlgebraicPass("nir_opt_algebraic", optimizations).render()
608 print nir_algebraic.AlgebraicPass("nir_opt_algebraic_before_ffma",
609 before_ffma_optimizations).render()
610 print nir_algebraic.AlgebraicPass("nir_opt_algebraic_late",
611 late_optimizations).render()