bd0da989c9ea9be87104b9f10b3b8941366dbb0b
[mesa.git] / src / compiler / nir / nir_opt_algebraic.py
1 #
2 # Copyright (C) 2014 Intel Corporation
3 #
4 # Permission is hereby granted, free of charge, to any person obtaining a
5 # copy of this software and associated documentation files (the "Software"),
6 # to deal in the Software without restriction, including without limitation
7 # the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 # and/or sell copies of the Software, and to permit persons to whom the
9 # Software is furnished to do so, subject to the following conditions:
10 #
11 # The above copyright notice and this permission notice (including the next
12 # paragraph) shall be included in all copies or substantial portions of the
13 # Software.
14 #
15 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 # IN THE SOFTWARE.
22 #
23 # Authors:
24 # Jason Ekstrand (jason@jlekstrand.net)
25
26 from __future__ import print_function
27
28 from collections import OrderedDict
29 import nir_algebraic
30 from nir_opcodes import type_sizes
31 import itertools
32 import struct
33 from math import pi
34
35 # Convenience variables
36 a = 'a'
37 b = 'b'
38 c = 'c'
39 d = 'd'
40 e = 'e'
41
42 # Written in the form (<search>, <replace>) where <search> is an expression
43 # and <replace> is either an expression or a value. An expression is
44 # defined as a tuple of the form ([~]<op>, <src0>, <src1>, <src2>, <src3>)
45 # where each source is either an expression or a value. A value can be
46 # either a numeric constant or a string representing a variable name.
47 #
48 # If the opcode in a search expression is prefixed by a '~' character, this
49 # indicates that the operation is inexact. Such operations will only get
50 # applied to SSA values that do not have the exact bit set. This should be
51 # used by by any optimizations that are not bit-for-bit exact. It should not,
52 # however, be used for backend-requested lowering operations as those need to
53 # happen regardless of precision.
54 #
55 # Variable names are specified as "[#]name[@type][(cond)][.swiz]" where:
56 # "#" indicates that the given variable will only match constants,
57 # type indicates that the given variable will only match values from ALU
58 # instructions with the given output type,
59 # (cond) specifies an additional condition function (see nir_search_helpers.h),
60 # swiz is a swizzle applied to the variable (only in the <replace> expression)
61 #
62 # For constants, you have to be careful to make sure that it is the right
63 # type because python is unaware of the source and destination types of the
64 # opcodes.
65 #
66 # All expression types can have a bit-size specified. For opcodes, this
67 # looks like "op@32", for variables it is "a@32" or "a@uint32" to specify a
68 # type and size. In the search half of the expression this indicates that it
69 # should only match that particular bit-size. In the replace half of the
70 # expression this indicates that the constructed value should have that
71 # bit-size.
72 #
73 # If the opcode in a replacement expression is prefixed by a '!' character,
74 # this indicated that the new expression will be marked exact.
75 #
76 # A special condition "many-comm-expr" can be used with expressions to note
77 # that the expression and its subexpressions have more commutative expressions
78 # than nir_replace_instr can handle. If this special condition is needed with
79 # another condition, the two can be separated by a comma (e.g.,
80 # "(many-comm-expr,is_used_once)").
81
82 # based on https://web.archive.org/web/20180105155939/http://forum.devmaster.net/t/fast-and-accurate-sine-cosine/9648
83 def lowered_sincos(c):
84 x = ('fsub', ('fmul', 2.0, ('ffract', ('fadd', ('fmul', 0.5 / pi, a), c))), 1.0)
85 x = ('fmul', ('fsub', x, ('fmul', x, ('fabs', x))), 4.0)
86 return ('ffma', ('ffma', x, ('fabs', x), ('fneg', x)), 0.225, x)
87
88 def intBitsToFloat(i):
89 return struct.unpack('!f', struct.pack('!I', i))[0]
90
91 optimizations = [
92
93 (('imul', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
94 (('imul', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
95 (('ishl', a, '#b@32'), ('imul', a, ('ishl', 1, b)), 'options->lower_bitops'),
96
97 (('unpack_64_2x32_split_x', ('imul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
98 (('unpack_64_2x32_split_x', ('umul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
99 (('imul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('imul_high', a, b)), 'options->lower_mul_2x32_64'),
100 (('umul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('umul_high', a, b)), 'options->lower_mul_2x32_64'),
101 (('udiv', a, 1), a),
102 (('idiv', a, 1), a),
103 (('umod', a, 1), 0),
104 (('imod', a, 1), 0),
105 (('udiv', a, '#b@32(is_pos_power_of_two)'), ('ushr', a, ('find_lsb', b)), '!options->lower_bitops'),
106 (('idiv', a, '#b@32(is_pos_power_of_two)'), ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', b))), 'options->lower_idiv'),
107 (('idiv', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', ('iabs', b))))), 'options->lower_idiv'),
108 (('umod', a, '#b(is_pos_power_of_two)'), ('iand', a, ('isub', b, 1))),
109
110 (('~fneg', ('fneg', a)), a),
111 (('ineg', ('ineg', a)), a),
112 (('fabs', ('fneg', a)), ('fabs', a)),
113 (('fabs', ('u2f', a)), ('u2f', a)),
114 (('iabs', ('iabs', a)), ('iabs', a)),
115 (('iabs', ('ineg', a)), ('iabs', a)),
116 (('f2b', ('fneg', a)), ('f2b', a)),
117 (('i2b', ('ineg', a)), ('i2b', a)),
118 (('~fadd', a, 0.0), a),
119 (('iadd', a, 0), a),
120 (('usadd_4x8', a, 0), a),
121 (('usadd_4x8', a, ~0), ~0),
122 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
123 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
124 (('~fadd', ('fneg', a), a), 0.0),
125 (('iadd', ('ineg', a), a), 0),
126 (('iadd', ('ineg', a), ('iadd', a, b)), b),
127 (('iadd', a, ('iadd', ('ineg', a), b)), b),
128 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
129 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
130 (('fadd', ('fsat', a), ('fsat', ('fneg', a))), ('fsat', ('fabs', a))),
131 (('~fmul', a, 0.0), 0.0),
132 (('imul', a, 0), 0),
133 (('umul_unorm_4x8', a, 0), 0),
134 (('umul_unorm_4x8', a, ~0), a),
135 (('~fmul', a, 1.0), a),
136 (('imul', a, 1), a),
137 (('fmul', a, -1.0), ('fneg', a)),
138 (('imul', a, -1), ('ineg', a)),
139 # If a < 0: fsign(a)*a*a => -1*a*a => -a*a => abs(a)*a
140 # If a > 0: fsign(a)*a*a => 1*a*a => a*a => abs(a)*a
141 # If a == 0: fsign(a)*a*a => 0*0*0 => abs(0)*0
142 (('fmul', ('fsign', a), ('fmul', a, a)), ('fmul', ('fabs', a), a)),
143 (('fmul', ('fmul', ('fsign', a), a), a), ('fmul', ('fabs', a), a)),
144 (('~ffma', 0.0, a, b), b),
145 (('~ffma', a, b, 0.0), ('fmul', a, b)),
146 (('ffma', 1.0, a, b), ('fadd', a, b)),
147 (('ffma', -1.0, a, b), ('fadd', ('fneg', a), b)),
148 (('~flrp', a, b, 0.0), a),
149 (('~flrp', a, b, 1.0), b),
150 (('~flrp', a, a, b), a),
151 (('~flrp', 0.0, a, b), ('fmul', a, b)),
152
153 # flrp(a, a + b, c) => a + flrp(0, b, c) => a + (b * c)
154 (('~flrp', a, ('fadd(is_used_once)', a, b), c), ('fadd', ('fmul', b, c), a)),
155 (('~flrp@32', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp32'),
156 (('~flrp@64', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp64'),
157
158 (('~flrp@32', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp32'),
159 (('~flrp@64', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp64'),
160
161 (('~flrp@32', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp32'),
162 (('~flrp@64', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp64'),
163
164 (('~flrp', ('fmul(is_used_once)', a, b), ('fmul(is_used_once)', a, c), d), ('fmul', ('flrp', b, c, d), a)),
165
166 (('~flrp', a, b, ('b2f', 'c@1')), ('bcsel', c, b, a), 'options->lower_flrp32'),
167 (('~flrp', a, 0.0, c), ('fadd', ('fmul', ('fneg', a), c), a)),
168 (('ftrunc', a), ('bcsel', ('flt', a, 0.0), ('fneg', ('ffloor', ('fabs', a))), ('ffloor', ('fabs', a))), 'options->lower_ftrunc'),
169 (('ffloor', a), ('fsub', a, ('ffract', a)), 'options->lower_ffloor'),
170 (('fadd', a, ('fneg', ('ffract', a))), ('ffloor', a), '!options->lower_ffloor'),
171 (('ffract', a), ('fsub', a, ('ffloor', a)), 'options->lower_ffract'),
172 (('fceil', a), ('fneg', ('ffloor', ('fneg', a))), 'options->lower_fceil'),
173 (('~fadd', ('fmul', a, ('fadd', 1.0, ('fneg', ('b2f', 'c@1')))), ('fmul', b, ('b2f', c))), ('bcsel', c, b, a), 'options->lower_flrp32'),
174 (('~fadd@32', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp32'),
175 (('~fadd@64', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp64'),
176 # These are the same as the previous three rules, but it depends on
177 # 1-fsat(x) <=> fsat(1-x). See below.
178 (('~fadd@32', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp32'),
179 (('~fadd@64', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp64'),
180
181 (('~fadd', a, ('fmul', ('b2f', 'c@1'), ('fadd', b, ('fneg', a)))), ('bcsel', c, b, a), 'options->lower_flrp32'),
182 (('~fadd@32', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp32'),
183 (('~fadd@64', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp64'),
184 (('ffma', a, b, c), ('fadd', ('fmul', a, b), c), 'options->lower_ffma'),
185 (('~fadd', ('fmul', a, b), c), ('ffma', a, b, c), 'options->fuse_ffma'),
186
187 (('~fmul', ('fadd', ('iand', ('ineg', ('b2i32', 'a@bool')), ('fmul', b, c)), '#d'), '#e'),
188 ('bcsel', a, ('fmul', ('fadd', ('fmul', b, c), d), e), ('fmul', d, e))),
189
190 (('fdph', a, b), ('fdot4', ('vec4', 'a.x', 'a.y', 'a.z', 1.0), b), 'options->lower_fdph'),
191
192 (('fdot4', ('vec4', a, b, c, 1.0), d), ('fdph', ('vec3', a, b, c), d), '!options->lower_fdph'),
193 (('fdot4', ('vec4', a, 0.0, 0.0, 0.0), b), ('fmul', a, b)),
194 (('fdot4', ('vec4', a, b, 0.0, 0.0), c), ('fdot2', ('vec2', a, b), c)),
195 (('fdot4', ('vec4', a, b, c, 0.0), d), ('fdot3', ('vec3', a, b, c), d)),
196
197 (('fdot3', ('vec3', a, 0.0, 0.0), b), ('fmul', a, b)),
198 (('fdot3', ('vec3', a, b, 0.0), c), ('fdot2', ('vec2', a, b), c)),
199
200 (('fdot2', ('vec2', a, 0.0), b), ('fmul', a, b)),
201 (('fdot2', a, 1.0), ('fadd', 'a.x', 'a.y')),
202
203 # Lower fdot to fsum when it is available
204 (('fdot2', a, b), ('fsum2', ('fmul', a, b)), 'options->lower_fdot'),
205 (('fdot3', a, b), ('fsum3', ('fmul', a, b)), 'options->lower_fdot'),
206 (('fdot4', a, b), ('fsum4', ('fmul', a, b)), 'options->lower_fdot'),
207 (('fsum2', a), ('fadd', 'a.x', 'a.y'), 'options->lower_fdot'),
208
209 # If x >= 0 and x <= 1: fsat(1 - x) == 1 - fsat(x) trivially
210 # If x < 0: 1 - fsat(x) => 1 - 0 => 1 and fsat(1 - x) => fsat(> 1) => 1
211 # If x > 1: 1 - fsat(x) => 1 - 1 => 0 and fsat(1 - x) => fsat(< 0) => 0
212 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
213
214 # 1 - ((1 - a) * (1 - b))
215 # 1 - (1 - a - b + a*b)
216 # 1 - 1 + a + b - a*b
217 # a + b - a*b
218 # a + b*(1 - a)
219 # b*(1 - a) + 1*a
220 # flrp(b, 1, a)
221 (('~fadd@32', 1.0, ('fneg', ('fmul', ('fadd', 1.0, ('fneg', a)), ('fadd', 1.0, ('fneg', b))))),
222 ('flrp', b, 1.0, a), '!options->lower_flrp32'),
223
224 # (a * #b + #c) << #d
225 # ((a * #b) << #d) + (#c << #d)
226 # (a * (#b << #d)) + (#c << #d)
227 (('ishl', ('iadd', ('imul', a, '#b'), '#c'), '#d'),
228 ('iadd', ('imul', a, ('ishl', b, d)), ('ishl', c, d))),
229
230 # (a * #b) << #c
231 # a * (#b << #c)
232 (('ishl', ('imul', a, '#b'), '#c'), ('imul', a, ('ishl', b, c))),
233 ]
234
235 # Care must be taken here. Shifts in NIR uses only the lower log2(bitsize)
236 # bits of the second source. These replacements must correctly handle the
237 # case where (b % bitsize) + (c % bitsize) >= bitsize.
238 for s in [8, 16, 32, 64]:
239 mask = (1 << s) - 1
240
241 ishl = "ishl@{}".format(s)
242 ishr = "ishr@{}".format(s)
243 ushr = "ushr@{}".format(s)
244
245 in_bounds = ('ult', ('iadd', ('iand', b, mask), ('iand', c, mask)), s)
246
247 optimizations.extend([
248 ((ishl, (ishl, a, '#b'), '#c'), ('bcsel', in_bounds, (ishl, a, ('iadd', b, c)), 0)),
249 ((ushr, (ushr, a, '#b'), '#c'), ('bcsel', in_bounds, (ushr, a, ('iadd', b, c)), 0)),
250
251 # To get get -1 for large shifts of negative values, ishr must instead
252 # clamp the shift count to the maximum value.
253 ((ishr, (ishr, a, '#b'), '#c'),
254 (ishr, a, ('imin', ('iadd', ('iand', b, mask), ('iand', c, mask)), s - 1))),
255 ])
256
257 # Optimize a pattern of address calculation created by DXVK where the offset is
258 # divided by 4 and then multipled by 4. This can be turned into an iand and the
259 # additions before can be reassociated to CSE the iand instruction.
260 for log2 in range(1, 7): # powers of two from 2 to 64
261 v = 1 << log2
262 mask = 0xffffffff & ~(v - 1)
263 b_is_multiple = '#b(is_unsigned_multiple_of_{})'.format(v)
264
265 optimizations.extend([
266 # 'a >> #b << #b' -> 'a & ~((1 << #b) - 1)'
267 (('ishl@32', ('ushr@32', a, log2), log2), ('iand', a, mask)),
268
269 # Reassociate for improved CSE
270 (('iand@32', ('iadd@32', a, b_is_multiple), mask), ('iadd', ('iand', a, mask), b)),
271 ])
272
273 # To save space in the state tables, reduce to the set that is known to help.
274 # Previously, this was range(1, 32). In addition, a couple rules inside the
275 # loop are commented out. Revisit someday, probably after mesa/#2635 has some
276 # resolution.
277 for i in [1, 2, 16, 24]:
278 lo_mask = 0xffffffff >> i
279 hi_mask = (0xffffffff << i) & 0xffffffff
280
281 optimizations.extend([
282 # This pattern seems to only help in the soft-fp64 code.
283 (('ishl@32', ('iand', 'a@32', lo_mask), i), ('ishl', a, i)),
284 # (('ushr@32', ('iand', 'a@32', hi_mask), i), ('ushr', a, i)),
285 # (('ishr@32', ('iand', 'a@32', hi_mask), i), ('ishr', a, i)),
286
287 (('iand', ('ishl', 'a@32', i), hi_mask), ('ishl', a, i)),
288 (('iand', ('ushr', 'a@32', i), lo_mask), ('ushr', a, i)),
289 # (('iand', ('ishr', 'a@32', i), lo_mask), ('ushr', a, i)), # Yes, ushr is correct
290 ])
291
292 optimizations.extend([
293 # This is common for address calculations. Reassociating may enable the
294 # 'a<<c' to be CSE'd. It also helps architectures that have an ISHLADD
295 # instruction or a constant offset field for in load / store instructions.
296 (('ishl', ('iadd', a, '#b'), '#c'), ('iadd', ('ishl', a, c), ('ishl', b, c))),
297
298 # Comparison simplifications
299 (('~inot', ('flt', a, b)), ('fge', a, b)),
300 (('~inot', ('fge', a, b)), ('flt', a, b)),
301 (('inot', ('feq', a, b)), ('fne', a, b)),
302 (('inot', ('fne', a, b)), ('feq', a, b)),
303 (('inot', ('ilt', a, b)), ('ige', a, b)),
304 (('inot', ('ult', a, b)), ('uge', a, b)),
305 (('inot', ('ige', a, b)), ('ilt', a, b)),
306 (('inot', ('uge', a, b)), ('ult', a, b)),
307 (('inot', ('ieq', a, b)), ('ine', a, b)),
308 (('inot', ('ine', a, b)), ('ieq', a, b)),
309
310 (('iand', ('feq', a, b), ('fne', a, b)), False),
311 (('iand', ('flt', a, b), ('flt', b, a)), False),
312 (('iand', ('ieq', a, b), ('ine', a, b)), False),
313 (('iand', ('ilt', a, b), ('ilt', b, a)), False),
314 (('iand', ('ult', a, b), ('ult', b, a)), False),
315
316 # This helps some shaders because, after some optimizations, they end up
317 # with patterns like (-a < -b) || (b < a). In an ideal world, this sort of
318 # matching would be handled by CSE.
319 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
320 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
321 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
322 (('fne', ('fneg', a), ('fneg', b)), ('fne', b, a)),
323 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
324 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
325 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
326 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
327 (('fne', ('fneg', a), -1.0), ('fne', 1.0, a)),
328 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
329
330 (('flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
331 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
332 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
333 (('fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
334 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
335 (('fne', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fne', a, b)),
336
337 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
338 (('flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
339 (('fge', 0.0, ('fsat(is_used_once)', a)), ('fge', 0.0, a)),
340 (('flt', 0.0, ('fsat(is_used_once)', a)), ('flt', 0.0, a)),
341
342 # 0.0 >= b2f(a)
343 # b2f(a) <= 0.0
344 # b2f(a) == 0.0 because b2f(a) can only be 0 or 1
345 # inot(a)
346 (('fge', 0.0, ('b2f', 'a@1')), ('inot', a)),
347
348 (('fge', ('fneg', ('b2f', 'a@1')), 0.0), ('inot', a)),
349
350 (('fne', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
351 (('fne', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
352 (('fne', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('ior', a, b)),
353 (('fne', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('ior', a, b)),
354 (('fne', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
355 (('fne', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
356 (('fne', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('iand', a, b)),
357 (('fne', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ixor', a, b)),
358 (('fne', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ixor', a, b)),
359 (('fne', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ixor', a, b)),
360 (('feq', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
361 (('feq', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
362 (('feq', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('inot', ('ior', a, b))),
363 (('feq', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
364 (('feq', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
365 (('feq', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
366 (('feq', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('inot', ('iand', a, b))),
367 (('feq', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ieq', a, b)),
368 (('feq', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ieq', a, b)),
369 (('feq', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ieq', a, b)),
370
371 # -(b2f(a) + b2f(b)) < 0
372 # 0 < b2f(a) + b2f(b)
373 # 0 != b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
374 # a || b
375 (('flt', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('ior', a, b)),
376 (('flt', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('ior', a, b)),
377
378 # -(b2f(a) + b2f(b)) >= 0
379 # 0 >= b2f(a) + b2f(b)
380 # 0 == b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
381 # !(a || b)
382 (('fge', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('inot', ('ior', a, b))),
383 (('fge', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
384
385 (('flt', a, ('fneg', a)), ('flt', a, 0.0)),
386 (('fge', a, ('fneg', a)), ('fge', a, 0.0)),
387
388 # Some optimizations (below) convert things like (a < b || c < b) into
389 # (min(a, c) < b). However, this interfers with the previous optimizations
390 # that try to remove comparisons with negated sums of b2f. This just
391 # breaks that apart.
392 (('flt', ('fmin', c, ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')))), 0.0),
393 ('ior', ('flt', c, 0.0), ('ior', a, b))),
394
395 (('~flt', ('fadd', a, b), a), ('flt', b, 0.0)),
396 (('~fge', ('fadd', a, b), a), ('fge', b, 0.0)),
397 (('~feq', ('fadd', a, b), a), ('feq', b, 0.0)),
398 (('~fne', ('fadd', a, b), a), ('fne', b, 0.0)),
399 (('~flt', ('fadd(is_used_once)', a, '#b'), '#c'), ('flt', a, ('fadd', c, ('fneg', b)))),
400 (('~flt', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('flt', ('fneg', ('fadd', c, b)), a)),
401 (('~fge', ('fadd(is_used_once)', a, '#b'), '#c'), ('fge', a, ('fadd', c, ('fneg', b)))),
402 (('~fge', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fge', ('fneg', ('fadd', c, b)), a)),
403 (('~feq', ('fadd(is_used_once)', a, '#b'), '#c'), ('feq', a, ('fadd', c, ('fneg', b)))),
404 (('~feq', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('feq', ('fneg', ('fadd', c, b)), a)),
405 (('~fne', ('fadd(is_used_once)', a, '#b'), '#c'), ('fne', a, ('fadd', c, ('fneg', b)))),
406 (('~fne', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fne', ('fneg', ('fadd', c, b)), a)),
407
408 # Cannot remove the addition from ilt or ige due to overflow.
409 (('ieq', ('iadd', a, b), a), ('ieq', b, 0)),
410 (('ine', ('iadd', a, b), a), ('ine', b, 0)),
411
412 # fmin(-b2f(a), b) >= 0.0
413 # -b2f(a) >= 0.0 && b >= 0.0
414 # -b2f(a) == 0.0 && b >= 0.0 -b2f can only be 0 or -1, never >0
415 # b2f(a) == 0.0 && b >= 0.0
416 # a == False && b >= 0.0
417 # !a && b >= 0.0
418 #
419 # The fge in the second replacement is not a typo. I leave the proof that
420 # "fmin(-b2f(a), b) >= 0 <=> fmin(-b2f(a), b) == 0" as an exercise for the
421 # reader.
422 (('fge', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
423 (('feq', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
424
425 (('feq', ('b2f', 'a@1'), 0.0), ('inot', a)),
426 (('~fne', ('b2f', 'a@1'), 0.0), a),
427 (('ieq', ('b2i', 'a@1'), 0), ('inot', a)),
428 (('ine', ('b2i', 'a@1'), 0), a),
429
430 (('fne', ('u2f', a), 0.0), ('ine', a, 0)),
431 (('feq', ('u2f', a), 0.0), ('ieq', a, 0)),
432 (('fge', ('u2f', a), 0.0), True),
433 (('fge', 0.0, ('u2f', a)), ('uge', 0, a)), # ieq instead?
434 (('flt', ('u2f', a), 0.0), False),
435 (('flt', 0.0, ('u2f', a)), ('ult', 0, a)), # ine instead?
436 (('fne', ('i2f', a), 0.0), ('ine', a, 0)),
437 (('feq', ('i2f', a), 0.0), ('ieq', a, 0)),
438 (('fge', ('i2f', a), 0.0), ('ige', a, 0)),
439 (('fge', 0.0, ('i2f', a)), ('ige', 0, a)),
440 (('flt', ('i2f', a), 0.0), ('ilt', a, 0)),
441 (('flt', 0.0, ('i2f', a)), ('ilt', 0, a)),
442
443 # 0.0 < fabs(a)
444 # fabs(a) > 0.0
445 # fabs(a) != 0.0 because fabs(a) must be >= 0
446 # a != 0.0
447 (('~flt', 0.0, ('fabs', a)), ('fne', a, 0.0)),
448
449 # -fabs(a) < 0.0
450 # fabs(a) > 0.0
451 (('~flt', ('fneg', ('fabs', a)), 0.0), ('fne', a, 0.0)),
452
453 # 0.0 >= fabs(a)
454 # 0.0 == fabs(a) because fabs(a) must be >= 0
455 # 0.0 == a
456 (('fge', 0.0, ('fabs', a)), ('feq', a, 0.0)),
457
458 # -fabs(a) >= 0.0
459 # 0.0 >= fabs(a)
460 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
461
462 # (a >= 0.0) && (a <= 1.0) -> fsat(a) == a
463 (('iand', ('fge', a, 0.0), ('fge', 1.0, a)), ('feq', a, ('fsat', a)), '!options->lower_fsat'),
464
465 # (a < 0.0) || (a > 1.0)
466 # !(!(a < 0.0) && !(a > 1.0))
467 # !((a >= 0.0) && (a <= 1.0))
468 # !(a == fsat(a))
469 # a != fsat(a)
470 (('ior', ('flt', a, 0.0), ('flt', 1.0, a)), ('fne', a, ('fsat', a)), '!options->lower_fsat'),
471
472 (('fmax', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('ior', a, b))),
473 (('fmax', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('ior', a, b)))),
474 (('fmin', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
475 (('fmin', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('iand', a, b)))),
476
477 # fmin(b2f(a), b)
478 # bcsel(a, fmin(b2f(a), b), fmin(b2f(a), b))
479 # bcsel(a, fmin(b2f(True), b), fmin(b2f(False), b))
480 # bcsel(a, fmin(1.0, b), fmin(0.0, b))
481 #
482 # Since b is a constant, constant folding will eliminate the fmin and the
483 # fmax. If b is > 1.0, the bcsel will be replaced with a b2f.
484 (('fmin', ('b2f', 'a@1'), '#b'), ('bcsel', a, ('fmin', b, 1.0), ('fmin', b, 0.0))),
485
486 (('flt', ('fadd(is_used_once)', a, ('fneg', b)), 0.0), ('flt', a, b)),
487
488 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
489 (('~bcsel', ('flt', b, a), b, a), ('fmin', a, b)),
490 (('~bcsel', ('flt', a, b), b, a), ('fmax', a, b)),
491 (('~bcsel', ('fge', a, b), b, a), ('fmin', a, b)),
492 (('~bcsel', ('fge', b, a), b, a), ('fmax', a, b)),
493 (('bcsel', ('i2b', a), b, c), ('bcsel', ('ine', a, 0), b, c)),
494 (('bcsel', ('inot', a), b, c), ('bcsel', a, c, b)),
495 (('bcsel', a, ('bcsel', a, b, c), d), ('bcsel', a, b, d)),
496 (('bcsel', a, b, ('bcsel', a, c, d)), ('bcsel', a, b, d)),
497 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
498 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
499 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
500 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
501 (('bcsel', a, True, b), ('ior', a, b)),
502 (('bcsel', a, a, b), ('ior', a, b)),
503 (('bcsel', a, b, False), ('iand', a, b)),
504 (('bcsel', a, b, a), ('iand', a, b)),
505 (('~fmin', a, a), a),
506 (('~fmax', a, a), a),
507 (('imin', a, a), a),
508 (('imax', a, a), a),
509 (('umin', a, a), a),
510 (('umax', a, a), a),
511 (('fmax', ('fmax', a, b), b), ('fmax', a, b)),
512 (('umax', ('umax', a, b), b), ('umax', a, b)),
513 (('imax', ('imax', a, b), b), ('imax', a, b)),
514 (('fmin', ('fmin', a, b), b), ('fmin', a, b)),
515 (('umin', ('umin', a, b), b), ('umin', a, b)),
516 (('imin', ('imin', a, b), b), ('imin', a, b)),
517 (('iand@32', a, ('inot', ('ishr', a, 31))), ('imax', a, 0)),
518
519 # Simplify logic to detect sign of an integer.
520 (('ieq', ('iand', 'a@32', 0x80000000), 0x00000000), ('ige', a, 0)),
521 (('ine', ('iand', 'a@32', 0x80000000), 0x80000000), ('ige', a, 0)),
522 (('ine', ('iand', 'a@32', 0x80000000), 0x00000000), ('ilt', a, 0)),
523 (('ieq', ('iand', 'a@32', 0x80000000), 0x80000000), ('ilt', a, 0)),
524 (('ine', ('ushr', 'a@32', 31), 0), ('ilt', a, 0)),
525 (('ieq', ('ushr', 'a@32', 31), 0), ('ige', a, 0)),
526 (('ieq', ('ushr', 'a@32', 31), 1), ('ilt', a, 0)),
527 (('ine', ('ushr', 'a@32', 31), 1), ('ige', a, 0)),
528 (('ine', ('ishr', 'a@32', 31), 0), ('ilt', a, 0)),
529 (('ieq', ('ishr', 'a@32', 31), 0), ('ige', a, 0)),
530 (('ieq', ('ishr', 'a@32', 31), -1), ('ilt', a, 0)),
531 (('ine', ('ishr', 'a@32', 31), -1), ('ige', a, 0)),
532
533 (('fmin', a, ('fneg', a)), ('fneg', ('fabs', a))),
534 (('imin', a, ('ineg', a)), ('ineg', ('iabs', a))),
535 (('fmin', a, ('fneg', ('fabs', a))), ('fneg', ('fabs', a))),
536 (('imin', a, ('ineg', ('iabs', a))), ('ineg', ('iabs', a))),
537 (('~fmin', a, ('fabs', a)), a),
538 (('imin', a, ('iabs', a)), a),
539 (('~fmax', a, ('fneg', ('fabs', a))), a),
540 (('imax', a, ('ineg', ('iabs', a))), a),
541 (('fmax', a, ('fabs', a)), ('fabs', a)),
542 (('imax', a, ('iabs', a)), ('iabs', a)),
543 (('fmax', a, ('fneg', a)), ('fabs', a)),
544 (('imax', a, ('ineg', a)), ('iabs', a)),
545 (('~fmax', ('fabs', a), 0.0), ('fabs', a)),
546 (('fmin', ('fmax', a, 0.0), 1.0), ('fsat', a), '!options->lower_fsat'),
547 # fmax(fmin(a, 1.0), 0.0) is inexact because it returns 1.0 on NaN, while
548 # fsat(a) returns 0.0.
549 (('~fmax', ('fmin', a, 1.0), 0.0), ('fsat', a), '!options->lower_fsat'),
550 # fmin(fmax(a, -1.0), 0.0) is inexact because it returns -1.0 on NaN, while
551 # fneg(fsat(fneg(a))) returns -0.0 on NaN.
552 (('~fmin', ('fmax', a, -1.0), 0.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
553 # fmax(fmin(a, 0.0), -1.0) is inexact because it returns 0.0 on NaN, while
554 # fneg(fsat(fneg(a))) returns -0.0 on NaN. This only matters if
555 # SignedZeroInfNanPreserve is set, but we don't currently have any way of
556 # representing this in the optimizations other than the usual ~.
557 (('~fmax', ('fmin', a, 0.0), -1.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
558 (('fsat', ('fsign', a)), ('b2f', ('flt', 0.0, a))),
559 (('fsat', ('b2f', a)), ('b2f', a)),
560 (('fsat', a), ('fmin', ('fmax', a, 0.0), 1.0), 'options->lower_fsat'),
561 (('fsat', ('fsat', a)), ('fsat', a)),
562 (('fsat', ('fneg(is_used_once)', ('fadd(is_used_once)', a, b))), ('fsat', ('fadd', ('fneg', a), ('fneg', b))), '!options->lower_fsat'),
563 (('fsat', ('fneg(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fneg', a), b)), '!options->lower_fsat'),
564 (('fsat', ('fabs(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fabs', a), ('fabs', b))), '!options->lower_fsat'),
565 (('fmin', ('fmax', ('fmin', ('fmax', a, b), c), b), c), ('fmin', ('fmax', a, b), c)),
566 (('imin', ('imax', ('imin', ('imax', a, b), c), b), c), ('imin', ('imax', a, b), c)),
567 (('umin', ('umax', ('umin', ('umax', a, b), c), b), c), ('umin', ('umax', a, b), c)),
568 # Both the left and right patterns are "b" when isnan(a), so this is exact.
569 (('fmax', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmax', a, b))),
570 # The left pattern is 0.0 when isnan(a) (because fmin(fsat(NaN), b) ->
571 # fmin(0.0, b)) while the right one is "b", so this optimization is inexact.
572 (('~fmin', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmin', a, b))),
573
574 # If a in [0,b] then b-a is also in [0,b]. Since b in [0,1], max(b-a, 0) =
575 # fsat(b-a).
576 #
577 # If a > b, then b-a < 0 and max(b-a, 0) = fsat(b-a) = 0
578 #
579 # This should be NaN safe since max(NaN, 0) = fsat(NaN) = 0.
580 (('fmax', ('fadd(is_used_once)', ('fneg', 'a(is_not_negative)'), '#b@32(is_zero_to_one)'), 0.0),
581 ('fsat', ('fadd', ('fneg', a), b)), '!options->lower_fsat'),
582
583 (('extract_u8', ('imin', ('imax', a, 0), 0xff), 0), ('imin', ('imax', a, 0), 0xff)),
584 (('~ior', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmax', b, c))),
585 (('~ior', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmin', a, b), c)),
586 (('~ior', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmin', b, c))),
587 (('~ior', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmax', a, b), c)),
588 (('~ior', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmax', b, c))),
589 (('~ior', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmin', a, b), c)),
590 (('~ior', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmin', b, c))),
591 (('~ior', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmax', a, b), c)),
592 (('~iand', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmin', b, c))),
593 (('~iand', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmax', a, b), c)),
594 (('~iand', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmax', b, c))),
595 (('~iand', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmin', a, b), c)),
596 (('~iand', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmin', b, c))),
597 (('~iand', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmax', a, b), c)),
598 (('~iand', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmax', b, c))),
599 (('~iand', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmin', a, b), c)),
600
601 (('ior', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imax', b, c))),
602 (('ior', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imin', a, b), c)),
603 (('ior', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imin', b, c))),
604 (('ior', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imax', a, b), c)),
605 (('ior', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umax', b, c))),
606 (('ior', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umin', a, b), c)),
607 (('ior', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umin', b, c))),
608 (('ior', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umax', a, b), c)),
609 (('iand', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imin', b, c))),
610 (('iand', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imax', a, b), c)),
611 (('iand', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imax', b, c))),
612 (('iand', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imin', a, b), c)),
613 (('iand', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umin', b, c))),
614 (('iand', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umax', a, b), c)),
615 (('iand', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umax', b, c))),
616 (('iand', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umin', a, b), c)),
617
618 # These derive from the previous patterns with the application of b < 0 <=>
619 # 0 < -b. The transformation should be applied if either comparison is
620 # used once as this ensures that the number of comparisons will not
621 # increase. The sources to the ior and iand are not symmetric, so the
622 # rules have to be duplicated to get this behavior.
623 (('~ior', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
624 (('~ior', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
625 (('~ior', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
626 (('~ior', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
627 (('~iand', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
628 (('~iand', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
629 (('~iand', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
630 (('~iand', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
631
632 # Common pattern like 'if (i == 0 || i == 1 || ...)'
633 (('ior', ('ieq', a, 0), ('ieq', a, 1)), ('uge', 1, a)),
634 (('ior', ('uge', 1, a), ('ieq', a, 2)), ('uge', 2, a)),
635 (('ior', ('uge', 2, a), ('ieq', a, 3)), ('uge', 3, a)),
636
637 # The (i2f32, ...) part is an open-coded fsign. When that is combined with
638 # the bcsel, it's basically copysign(1.0, a). There is no copysign in NIR,
639 # so emit an open-coded version of that.
640 (('bcsel@32', ('feq', a, 0.0), 1.0, ('i2f32', ('iadd', ('b2i32', ('flt', 0.0, 'a@32')), ('ineg', ('b2i32', ('flt', 'a@32', 0.0)))))),
641 ('ior', 0x3f800000, ('iand', a, 0x80000000))),
642
643 (('ior', a, ('ieq', a, False)), True),
644 (('ior', a, ('inot', a)), -1),
645
646 (('ine', ('ineg', ('b2i32', 'a@1')), ('ineg', ('b2i32', 'b@1'))), ('ine', a, b)),
647 (('b2i32', ('ine', 'a@1', 'b@1')), ('b2i32', ('ixor', a, b))),
648
649 (('iand', ('ieq', 'a@32', 0), ('ieq', 'b@32', 0)), ('ieq', ('umax', a, b), 0)),
650 (('ior', ('ieq', 'a@32', 0), ('ieq', 'b@32', 0)), ('ieq', ('umin', a, b), 0)),
651 (('iand', ('ine', 'a@32', 0), ('ine', 'b@32', 0)), ('ine', ('umin', a, b), 0)),
652 (('ior', ('ine', 'a@32', 0), ('ine', 'b@32', 0)), ('ine', ('umax', a, b), 0)),
653
654 # This pattern occurs coutresy of __flt64_nonnan in the soft-fp64 code.
655 # The first part of the iand comes from the !__feq64_nonnan.
656 #
657 # The second pattern is a reformulation of the first based on the relation
658 # (a == 0 || y == 0) <=> umin(a, y) == 0, where b in the first equation
659 # happens to be y == 0.
660 (('iand', ('inot', ('iand', ('ior', ('ieq', a, 0), b), c)), ('ilt', a, 0)),
661 ('iand', ('inot', ('iand', b , c)), ('ilt', a, 0))),
662 (('iand', ('inot', ('iand', ('ieq', ('umin', a, b), 0), c)), ('ilt', a, 0)),
663 ('iand', ('inot', ('iand', ('ieq', b , 0), c)), ('ilt', a, 0))),
664
665 # These patterns can result when (a < b || a < c) => (a < min(b, c))
666 # transformations occur before constant propagation and loop-unrolling.
667 (('~flt', a, ('fmax', b, a)), ('flt', a, b)),
668 (('~flt', ('fmin', a, b), a), ('flt', b, a)),
669 (('~fge', a, ('fmin', b, a)), True),
670 (('~fge', ('fmax', a, b), a), True),
671 (('~flt', a, ('fmin', b, a)), False),
672 (('~flt', ('fmax', a, b), a), False),
673 (('~fge', a, ('fmax', b, a)), ('fge', a, b)),
674 (('~fge', ('fmin', a, b), a), ('fge', b, a)),
675
676 (('ilt', a, ('imax', b, a)), ('ilt', a, b)),
677 (('ilt', ('imin', a, b), a), ('ilt', b, a)),
678 (('ige', a, ('imin', b, a)), True),
679 (('ige', ('imax', a, b), a), True),
680 (('ult', a, ('umax', b, a)), ('ult', a, b)),
681 (('ult', ('umin', a, b), a), ('ult', b, a)),
682 (('uge', a, ('umin', b, a)), True),
683 (('uge', ('umax', a, b), a), True),
684 (('ilt', a, ('imin', b, a)), False),
685 (('ilt', ('imax', a, b), a), False),
686 (('ige', a, ('imax', b, a)), ('ige', a, b)),
687 (('ige', ('imin', a, b), a), ('ige', b, a)),
688 (('ult', a, ('umin', b, a)), False),
689 (('ult', ('umax', a, b), a), False),
690 (('uge', a, ('umax', b, a)), ('uge', a, b)),
691 (('uge', ('umin', a, b), a), ('uge', b, a)),
692 (('ult', a, ('iand', b, a)), False),
693 (('ult', ('ior', a, b), a), False),
694 (('uge', a, ('iand', b, a)), True),
695 (('uge', ('ior', a, b), a), True),
696
697 (('ilt', '#a', ('imax', '#b', c)), ('ior', ('ilt', a, b), ('ilt', a, c))),
698 (('ilt', ('imin', '#a', b), '#c'), ('ior', ('ilt', a, c), ('ilt', b, c))),
699 (('ige', '#a', ('imin', '#b', c)), ('ior', ('ige', a, b), ('ige', a, c))),
700 (('ige', ('imax', '#a', b), '#c'), ('ior', ('ige', a, c), ('ige', b, c))),
701 (('ult', '#a', ('umax', '#b', c)), ('ior', ('ult', a, b), ('ult', a, c))),
702 (('ult', ('umin', '#a', b), '#c'), ('ior', ('ult', a, c), ('ult', b, c))),
703 (('uge', '#a', ('umin', '#b', c)), ('ior', ('uge', a, b), ('uge', a, c))),
704 (('uge', ('umax', '#a', b), '#c'), ('ior', ('uge', a, c), ('uge', b, c))),
705 (('ilt', '#a', ('imin', '#b', c)), ('iand', ('ilt', a, b), ('ilt', a, c))),
706 (('ilt', ('imax', '#a', b), '#c'), ('iand', ('ilt', a, c), ('ilt', b, c))),
707 (('ige', '#a', ('imax', '#b', c)), ('iand', ('ige', a, b), ('ige', a, c))),
708 (('ige', ('imin', '#a', b), '#c'), ('iand', ('ige', a, c), ('ige', b, c))),
709 (('ult', '#a', ('umin', '#b', c)), ('iand', ('ult', a, b), ('ult', a, c))),
710 (('ult', ('umax', '#a', b), '#c'), ('iand', ('ult', a, c), ('ult', b, c))),
711 (('uge', '#a', ('umax', '#b', c)), ('iand', ('uge', a, b), ('uge', a, c))),
712 (('uge', ('umin', '#a', b), '#c'), ('iand', ('uge', a, c), ('uge', b, c))),
713
714 # Thanks to sign extension, the ishr(a, b) is negative if and only if a is
715 # negative.
716 (('bcsel', ('ilt', a, 0), ('ineg', ('ishr', a, b)), ('ishr', a, b)),
717 ('iabs', ('ishr', a, b))),
718 (('iabs', ('ishr', ('iabs', a), b)), ('ishr', ('iabs', a), b)),
719
720 (('fabs', ('slt', a, b)), ('slt', a, b)),
721 (('fabs', ('sge', a, b)), ('sge', a, b)),
722 (('fabs', ('seq', a, b)), ('seq', a, b)),
723 (('fabs', ('sne', a, b)), ('sne', a, b)),
724 (('slt', a, b), ('b2f', ('flt', a, b)), 'options->lower_scmp'),
725 (('sge', a, b), ('b2f', ('fge', a, b)), 'options->lower_scmp'),
726 (('seq', a, b), ('b2f', ('feq', a, b)), 'options->lower_scmp'),
727 (('sne', a, b), ('b2f', ('fne', a, b)), 'options->lower_scmp'),
728 (('seq', ('seq', a, b), 1.0), ('seq', a, b)),
729 (('seq', ('sne', a, b), 1.0), ('sne', a, b)),
730 (('seq', ('slt', a, b), 1.0), ('slt', a, b)),
731 (('seq', ('sge', a, b), 1.0), ('sge', a, b)),
732 (('sne', ('seq', a, b), 0.0), ('seq', a, b)),
733 (('sne', ('sne', a, b), 0.0), ('sne', a, b)),
734 (('sne', ('slt', a, b), 0.0), ('slt', a, b)),
735 (('sne', ('sge', a, b), 0.0), ('sge', a, b)),
736 (('seq', ('seq', a, b), 0.0), ('sne', a, b)),
737 (('seq', ('sne', a, b), 0.0), ('seq', a, b)),
738 (('seq', ('slt', a, b), 0.0), ('sge', a, b)),
739 (('seq', ('sge', a, b), 0.0), ('slt', a, b)),
740 (('sne', ('seq', a, b), 1.0), ('sne', a, b)),
741 (('sne', ('sne', a, b), 1.0), ('seq', a, b)),
742 (('sne', ('slt', a, b), 1.0), ('sge', a, b)),
743 (('sne', ('sge', a, b), 1.0), ('slt', a, b)),
744 (('fall_equal2', a, b), ('fmin', ('seq', 'a.x', 'b.x'), ('seq', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
745 (('fall_equal3', a, b), ('seq', ('fany_nequal3', a, b), 0.0), 'options->lower_vector_cmp'),
746 (('fall_equal4', a, b), ('seq', ('fany_nequal4', a, b), 0.0), 'options->lower_vector_cmp'),
747 (('fany_nequal2', a, b), ('fmax', ('sne', 'a.x', 'b.x'), ('sne', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
748 (('fany_nequal3', a, b), ('fsat', ('fdot3', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
749 (('fany_nequal4', a, b), ('fsat', ('fdot4', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
750 (('fne', ('fneg', a), a), ('fne', a, 0.0)),
751 (('feq', ('fneg', a), a), ('feq', a, 0.0)),
752 # Emulating booleans
753 (('imul', ('b2i', 'a@1'), ('b2i', 'b@1')), ('b2i', ('iand', a, b))),
754 (('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
755 (('fsat', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('b2f', ('ior', a, b))),
756 (('iand', 'a@bool32', 1.0), ('b2f', a)),
757 # True/False are ~0 and 0 in NIR. b2i of True is 1, and -1 is ~0 (True).
758 (('ineg', ('b2i32', 'a@32')), a),
759 (('flt', ('fneg', ('b2f', 'a@1')), 0), a), # Generated by TGSI KILL_IF.
760 # Comparison with the same args. Note that these are not done for
761 # the float versions because NaN always returns false on float
762 # inequalities.
763 (('ilt', a, a), False),
764 (('ige', a, a), True),
765 (('ieq', a, a), True),
766 (('ine', a, a), False),
767 (('ult', a, a), False),
768 (('uge', a, a), True),
769 # Logical and bit operations
770 (('iand', a, a), a),
771 (('iand', a, ~0), a),
772 (('iand', a, 0), 0),
773 (('ior', a, a), a),
774 (('ior', a, 0), a),
775 (('ior', a, True), True),
776 (('ixor', a, a), 0),
777 (('ixor', a, 0), a),
778 (('inot', ('inot', a)), a),
779 (('ior', ('iand', a, b), b), b),
780 (('ior', ('ior', a, b), b), ('ior', a, b)),
781 (('iand', ('ior', a, b), b), b),
782 (('iand', ('iand', a, b), b), ('iand', a, b)),
783 # DeMorgan's Laws
784 (('iand', ('inot', a), ('inot', b)), ('inot', ('ior', a, b))),
785 (('ior', ('inot', a), ('inot', b)), ('inot', ('iand', a, b))),
786 # Shift optimizations
787 (('ishl', 0, a), 0),
788 (('ishl', a, 0), a),
789 (('ishr', 0, a), 0),
790 (('ishr', a, 0), a),
791 (('ushr', 0, a), 0),
792 (('ushr', a, 0), a),
793 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('iadd', 16, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
794 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('isub', 16, b))), ('urol', a, b), '!options->lower_rotate'),
795 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('iadd', 32, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
796 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('isub', 32, b))), ('urol', a, b), '!options->lower_rotate'),
797 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('iadd', 16, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
798 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('isub', 16, b))), ('uror', a, b), '!options->lower_rotate'),
799 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('iadd', 32, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
800 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('isub', 32, b))), ('uror', a, b), '!options->lower_rotate'),
801 (('urol@16', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 16, b))), 'options->lower_rotate'),
802 (('urol@32', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 32, b))), 'options->lower_rotate'),
803 (('uror@16', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 16, b))), 'options->lower_rotate'),
804 (('uror@32', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 32, b))), 'options->lower_rotate'),
805 # Exponential/logarithmic identities
806 (('~fexp2', ('flog2', a)), a), # 2^lg2(a) = a
807 (('~flog2', ('fexp2', a)), a), # lg2(2^a) = a
808 (('fpow', a, b), ('fexp2', ('fmul', ('flog2', a), b)), 'options->lower_fpow'), # a^b = 2^(lg2(a)*b)
809 (('~fexp2', ('fmul', ('flog2', a), b)), ('fpow', a, b), '!options->lower_fpow'), # 2^(lg2(a)*b) = a^b
810 (('~fexp2', ('fadd', ('fmul', ('flog2', a), b), ('fmul', ('flog2', c), d))),
811 ('~fmul', ('fpow', a, b), ('fpow', c, d)), '!options->lower_fpow'), # 2^(lg2(a) * b + lg2(c) + d) = a^b * c^d
812 (('~fexp2', ('fmul', ('flog2', a), 0.5)), ('fsqrt', a)),
813 (('~fexp2', ('fmul', ('flog2', a), 2.0)), ('fmul', a, a)),
814 (('~fexp2', ('fmul', ('flog2', a), 4.0)), ('fmul', ('fmul', a, a), ('fmul', a, a))),
815 (('~fpow', a, 1.0), a),
816 (('~fpow', a, 2.0), ('fmul', a, a)),
817 (('~fpow', a, 4.0), ('fmul', ('fmul', a, a), ('fmul', a, a))),
818 (('~fpow', 2.0, a), ('fexp2', a)),
819 (('~fpow', ('fpow', a, 2.2), 0.454545), a),
820 (('~fpow', ('fabs', ('fpow', a, 2.2)), 0.454545), ('fabs', a)),
821 (('~fsqrt', ('fexp2', a)), ('fexp2', ('fmul', 0.5, a))),
822 (('~frcp', ('fexp2', a)), ('fexp2', ('fneg', a))),
823 (('~frsq', ('fexp2', a)), ('fexp2', ('fmul', -0.5, a))),
824 (('~flog2', ('fsqrt', a)), ('fmul', 0.5, ('flog2', a))),
825 (('~flog2', ('frcp', a)), ('fneg', ('flog2', a))),
826 (('~flog2', ('frsq', a)), ('fmul', -0.5, ('flog2', a))),
827 (('~flog2', ('fpow', a, b)), ('fmul', b, ('flog2', a))),
828 (('~fmul', ('fexp2(is_used_once)', a), ('fexp2(is_used_once)', b)), ('fexp2', ('fadd', a, b))),
829 (('bcsel', ('flt', a, 0.0), 0.0, ('fsqrt', a)), ('fsqrt', ('fmax', a, 0.0))),
830 (('~fmul', ('fsqrt', a), ('fsqrt', a)), ('fabs',a)),
831 # Division and reciprocal
832 (('~fdiv', 1.0, a), ('frcp', a)),
833 (('fdiv', a, b), ('fmul', a, ('frcp', b)), 'options->lower_fdiv'),
834 (('~frcp', ('frcp', a)), a),
835 (('~frcp', ('fsqrt', a)), ('frsq', a)),
836 (('fsqrt', a), ('frcp', ('frsq', a)), 'options->lower_fsqrt'),
837 (('~frcp', ('frsq', a)), ('fsqrt', a), '!options->lower_fsqrt'),
838 # Trig
839 (('fsin', a), lowered_sincos(0.5), 'options->lower_sincos'),
840 (('fcos', a), lowered_sincos(0.75), 'options->lower_sincos'),
841 # Boolean simplifications
842 (('i2b32(is_used_by_if)', a), ('ine32', a, 0)),
843 (('i2b1(is_used_by_if)', a), ('ine', a, 0)),
844 (('ieq', a, True), a),
845 (('ine(is_not_used_by_if)', a, True), ('inot', a)),
846 (('ine', a, False), a),
847 (('ieq(is_not_used_by_if)', a, False), ('inot', 'a')),
848 (('bcsel', a, True, False), a),
849 (('bcsel', a, False, True), ('inot', a)),
850 (('bcsel@32', a, 1.0, 0.0), ('b2f', a)),
851 (('bcsel@32', a, 0.0, 1.0), ('b2f', ('inot', a))),
852 (('bcsel@32', a, -1.0, -0.0), ('fneg', ('b2f', a))),
853 (('bcsel@32', a, -0.0, -1.0), ('fneg', ('b2f', ('inot', a)))),
854 (('bcsel', True, b, c), b),
855 (('bcsel', False, b, c), c),
856 (('bcsel', a, ('b2f(is_used_once)', 'b@32'), ('b2f', 'c@32')), ('b2f', ('bcsel', a, b, c))),
857
858 (('bcsel', a, b, b), b),
859 (('~fcsel', a, b, b), b),
860
861 # D3D Boolean emulation
862 (('bcsel', a, -1, 0), ('ineg', ('b2i', 'a@1'))),
863 (('bcsel', a, 0, -1), ('ineg', ('b2i', ('inot', a)))),
864 (('bcsel', a, 1, 0), ('b2i', 'a@1')),
865 (('bcsel', a, 0, 1), ('b2i', ('inot', a))),
866 (('iand', ('ineg', ('b2i', 'a@1')), ('ineg', ('b2i', 'b@1'))),
867 ('ineg', ('b2i', ('iand', a, b)))),
868 (('ior', ('ineg', ('b2i','a@1')), ('ineg', ('b2i', 'b@1'))),
869 ('ineg', ('b2i', ('ior', a, b)))),
870 (('ieq', ('ineg', ('b2i', 'a@1')), 0), ('inot', a)),
871 (('ieq', ('ineg', ('b2i', 'a@1')), -1), a),
872 (('ine', ('ineg', ('b2i', 'a@1')), 0), a),
873 (('ine', ('ineg', ('b2i', 'a@1')), -1), ('inot', a)),
874 (('iand', ('ineg', ('b2i', a)), 1.0), ('b2f', a)),
875 (('iand', ('ineg', ('b2i', a)), 1), ('b2i', a)),
876
877 # SM5 32-bit shifts are defined to use the 5 least significant bits
878 (('ishl', 'a@32', ('iand', 31, b)), ('ishl', a, b)),
879 (('ishr', 'a@32', ('iand', 31, b)), ('ishr', a, b)),
880 (('ushr', 'a@32', ('iand', 31, b)), ('ushr', a, b)),
881
882 # Conversions
883 (('i2b32', ('b2i', 'a@32')), a),
884 (('f2i', ('ftrunc', a)), ('f2i', a)),
885 (('f2u', ('ftrunc', a)), ('f2u', a)),
886 (('i2b', ('ineg', a)), ('i2b', a)),
887 (('i2b', ('iabs', a)), ('i2b', a)),
888 (('inot', ('f2b1', a)), ('feq', a, 0.0)),
889
890 # The C spec says, "If the value of the integral part cannot be represented
891 # by the integer type, the behavior is undefined." "Undefined" can mean
892 # "the conversion doesn't happen at all."
893 (('~i2f32', ('f2i32', 'a@32')), ('ftrunc', a)),
894
895 # Ironically, mark these as imprecise because removing the conversions may
896 # preserve more precision than doing the conversions (e.g.,
897 # uint(float(0x81818181u)) == 0x81818200).
898 (('~f2i32', ('i2f', 'a@32')), a),
899 (('~f2i32', ('u2f', 'a@32')), a),
900 (('~f2u32', ('i2f', 'a@32')), a),
901 (('~f2u32', ('u2f', 'a@32')), a),
902
903 # Conversions from 16 bits to 32 bits and back can always be removed
904 (('f2f16', ('f2f32', 'a@16')), a),
905 (('f2fmp', ('f2f32', 'a@16')), a),
906 (('i2i16', ('i2i32', 'a@16')), a),
907 (('i2imp', ('i2i32', 'a@16')), a),
908 (('u2u16', ('u2u32', 'a@16')), a),
909 (('u2ump', ('u2u32', 'a@16')), a),
910 (('f2f16', ('b2f32', 'a@1')), ('b2f16', a)),
911 (('f2fmp', ('b2f32', 'a@1')), ('b2f16', a)),
912 (('i2i16', ('b2i32', 'a@1')), ('b2i16', a)),
913 (('i2imp', ('b2i32', 'a@1')), ('b2i16', a)),
914 (('u2u16', ('b2i32', 'a@1')), ('b2i16', a)),
915 (('u2ump', ('b2i32', 'a@1')), ('b2i16', a)),
916 # Conversions to 16 bits would be lossy so they should only be removed if
917 # the instruction was generated by the precision lowering pass.
918 (('f2f32', ('f2fmp', 'a@32')), a),
919 (('i2i32', ('i2imp', 'a@32')), a),
920 (('u2u32', ('u2ump', 'a@32')), a),
921
922 (('ffloor', 'a(is_integral)'), a),
923 (('fceil', 'a(is_integral)'), a),
924 (('ftrunc', 'a(is_integral)'), a),
925 # fract(x) = x - floor(x), so fract(NaN) = NaN
926 (('~ffract', 'a(is_integral)'), 0.0),
927 (('fabs', 'a(is_not_negative)'), a),
928 (('iabs', 'a(is_not_negative)'), a),
929 (('fsat', 'a(is_not_positive)'), 0.0),
930
931 # Section 5.4.1 (Conversion and Scalar Constructors) of the GLSL 4.60 spec
932 # says:
933 #
934 # It is undefined to convert a negative floating-point value to an
935 # uint.
936 #
937 # Assuming that (uint)some_float behaves like (uint)(int)some_float allows
938 # some optimizations in the i965 backend to proceed.
939 (('ige', ('f2u', a), b), ('ige', ('f2i', a), b)),
940 (('ige', b, ('f2u', a)), ('ige', b, ('f2i', a))),
941 (('ilt', ('f2u', a), b), ('ilt', ('f2i', a), b)),
942 (('ilt', b, ('f2u', a)), ('ilt', b, ('f2i', a))),
943
944 (('~fmin', 'a(is_not_negative)', 1.0), ('fsat', a), '!options->lower_fsat'),
945
946 # The result of the multiply must be in [-1, 0], so the result of the ffma
947 # must be in [0, 1].
948 (('flt', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), False),
949 (('flt', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), False),
950 (('fmax', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0)),
951 (('fmax', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0)),
952
953 (('fne', 'a(is_not_zero)', 0.0), True),
954 (('feq', 'a(is_not_zero)', 0.0), False),
955
956 # In this chart, + means value > 0 and - means value < 0.
957 #
958 # + >= + -> unknown 0 >= + -> false - >= + -> false
959 # + >= 0 -> true 0 >= 0 -> true - >= 0 -> false
960 # + >= - -> true 0 >= - -> true - >= - -> unknown
961 #
962 # Using grouping conceptually similar to a Karnaugh map...
963 #
964 # (+ >= 0, + >= -, 0 >= 0, 0 >= -) == (is_not_negative >= is_not_positive) -> true
965 # (0 >= +, - >= +) == (is_not_positive >= gt_zero) -> false
966 # (- >= +, - >= 0) == (lt_zero >= is_not_negative) -> false
967 #
968 # The flt / ilt cases just invert the expected result.
969 #
970 # The results expecting true, must be marked imprecise. The results
971 # expecting false are fine because NaN compared >= or < anything is false.
972
973 (('~fge', 'a(is_not_negative)', 'b(is_not_positive)'), True),
974 (('fge', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
975 (('fge', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
976
977 (('flt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
978 (('~flt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
979 (('~flt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
980
981 (('ine', 'a(is_not_zero)', 0), True),
982 (('ieq', 'a(is_not_zero)', 0), False),
983
984 (('ige', 'a(is_not_negative)', 'b(is_not_positive)'), True),
985 (('ige', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
986 (('ige', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
987
988 (('ilt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
989 (('ilt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
990 (('ilt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
991
992 (('ult', 0, 'a(is_gt_zero)'), True),
993 (('ult', a, 0), False),
994
995 # Packing and then unpacking does nothing
996 (('unpack_64_2x32_split_x', ('pack_64_2x32_split', a, b)), a),
997 (('unpack_64_2x32_split_y', ('pack_64_2x32_split', a, b)), b),
998 (('unpack_64_2x32', ('pack_64_2x32_split', a, b)), ('vec2', a, b)),
999 (('unpack_64_2x32', ('pack_64_2x32', a)), a),
1000 (('pack_64_2x32_split', ('unpack_64_2x32_split_x', a),
1001 ('unpack_64_2x32_split_y', a)), a),
1002 (('pack_64_2x32', ('vec2', ('unpack_64_2x32_split_x', a),
1003 ('unpack_64_2x32_split_y', a))), a),
1004 (('pack_64_2x32', ('unpack_64_2x32', a)), a),
1005
1006 # Comparing two halves of an unpack separately. While this optimization
1007 # should be correct for non-constant values, it's less obvious that it's
1008 # useful in that case. For constant values, the pack will fold and we're
1009 # guaranteed to reduce the whole tree to one instruction.
1010 (('iand', ('ieq', ('unpack_32_2x16_split_x', a), '#b'),
1011 ('ieq', ('unpack_32_2x16_split_y', a), '#c')),
1012 ('ieq', a, ('pack_32_2x16_split', b, c))),
1013
1014 # Byte extraction
1015 (('ushr', 'a@16', 8), ('extract_u8', a, 1), '!options->lower_extract_byte'),
1016 (('ushr', 'a@32', 24), ('extract_u8', a, 3), '!options->lower_extract_byte'),
1017 (('ushr', 'a@64', 56), ('extract_u8', a, 7), '!options->lower_extract_byte'),
1018 (('ishr', 'a@16', 8), ('extract_i8', a, 1), '!options->lower_extract_byte'),
1019 (('ishr', 'a@32', 24), ('extract_i8', a, 3), '!options->lower_extract_byte'),
1020 (('ishr', 'a@64', 56), ('extract_i8', a, 7), '!options->lower_extract_byte'),
1021 (('iand', 0xff, a), ('extract_u8', a, 0), '!options->lower_extract_byte'),
1022
1023 (('ubfe', a, 0, 8), ('extract_u8', a, 0), '!options->lower_extract_byte'),
1024 (('ubfe', a, 8, 8), ('extract_u8', a, 1), '!options->lower_extract_byte'),
1025 (('ubfe', a, 16, 8), ('extract_u8', a, 2), '!options->lower_extract_byte'),
1026 (('ubfe', a, 24, 8), ('extract_u8', a, 3), '!options->lower_extract_byte'),
1027 (('ibfe', a, 0, 8), ('extract_i8', a, 0), '!options->lower_extract_byte'),
1028 (('ibfe', a, 8, 8), ('extract_i8', a, 1), '!options->lower_extract_byte'),
1029 (('ibfe', a, 16, 8), ('extract_i8', a, 2), '!options->lower_extract_byte'),
1030 (('ibfe', a, 24, 8), ('extract_i8', a, 3), '!options->lower_extract_byte'),
1031
1032 # Word extraction
1033 (('ushr', ('ishl', 'a@32', 16), 16), ('extract_u16', a, 0), '!options->lower_extract_word'),
1034 (('ushr', 'a@32', 16), ('extract_u16', a, 1), '!options->lower_extract_word'),
1035 (('ishr', ('ishl', 'a@32', 16), 16), ('extract_i16', a, 0), '!options->lower_extract_word'),
1036 (('ishr', 'a@32', 16), ('extract_i16', a, 1), '!options->lower_extract_word'),
1037 (('iand', 0xffff, a), ('extract_u16', a, 0), '!options->lower_extract_word'),
1038
1039 (('ubfe', a, 0, 16), ('extract_u16', a, 0), '!options->lower_extract_word'),
1040 (('ubfe', a, 16, 16), ('extract_u16', a, 1), '!options->lower_extract_word'),
1041 (('ibfe', a, 0, 16), ('extract_i16', a, 0), '!options->lower_extract_word'),
1042 (('ibfe', a, 16, 16), ('extract_i16', a, 1), '!options->lower_extract_word'),
1043
1044 # Useless masking before unpacking
1045 (('unpack_half_2x16_split_x', ('iand', a, 0xffff)), ('unpack_half_2x16_split_x', a)),
1046 (('unpack_32_2x16_split_x', ('iand', a, 0xffff)), ('unpack_32_2x16_split_x', a)),
1047 (('unpack_64_2x32_split_x', ('iand', a, 0xffffffff)), ('unpack_64_2x32_split_x', a)),
1048 (('unpack_half_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_half_2x16_split_y', a)),
1049 (('unpack_32_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_32_2x16_split_y', a)),
1050 (('unpack_64_2x32_split_y', ('iand', a, 0xffffffff00000000)), ('unpack_64_2x32_split_y', a)),
1051
1052 (('unpack_half_2x16_split_x', ('extract_u16', a, 0)), ('unpack_half_2x16_split_x', a)),
1053 (('unpack_half_2x16_split_x', ('extract_u16', a, 1)), ('unpack_half_2x16_split_y', a)),
1054 (('unpack_32_2x16_split_x', ('extract_u16', a, 0)), ('unpack_32_2x16_split_x', a)),
1055 (('unpack_32_2x16_split_x', ('extract_u16', a, 1)), ('unpack_32_2x16_split_y', a)),
1056
1057 # Optimize half packing
1058 (('ishl', ('pack_half_2x16', ('vec2', a, 0)), 16), ('pack_half_2x16', ('vec2', 0, a))),
1059 (('ushr', ('pack_half_2x16', ('vec2', 0, a)), 16), ('pack_half_2x16', ('vec2', a, 0))),
1060
1061 (('iadd', ('pack_half_2x16', ('vec2', a, 0)), ('pack_half_2x16', ('vec2', 0, b))),
1062 ('pack_half_2x16', ('vec2', a, b))),
1063 (('ior', ('pack_half_2x16', ('vec2', a, 0)), ('pack_half_2x16', ('vec2', 0, b))),
1064 ('pack_half_2x16', ('vec2', a, b))),
1065
1066 (('ishl', ('pack_half_2x16_split', a, 0), 16), ('pack_half_2x16_split', 0, a)),
1067 (('ushr', ('pack_half_2x16_split', 0, a), 16), ('pack_half_2x16_split', a, 0)),
1068 (('extract_u16', ('pack_half_2x16_split', 0, a), 1), ('pack_half_2x16_split', a, 0)),
1069
1070 (('iadd', ('pack_half_2x16_split', a, 0), ('pack_half_2x16_split', 0, b)), ('pack_half_2x16_split', a, b)),
1071 (('ior', ('pack_half_2x16_split', a, 0), ('pack_half_2x16_split', 0, b)), ('pack_half_2x16_split', a, b)),
1072 ])
1073
1074 # After the ('extract_u8', a, 0) pattern, above, triggers, there will be
1075 # patterns like those below.
1076 for op in ('ushr', 'ishr'):
1077 optimizations.extend([(('extract_u8', (op, 'a@16', 8), 0), ('extract_u8', a, 1))])
1078 optimizations.extend([(('extract_u8', (op, 'a@32', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 4)])
1079 optimizations.extend([(('extract_u8', (op, 'a@64', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 8)])
1080
1081 optimizations.extend([(('extract_u8', ('extract_u16', a, 1), 0), ('extract_u8', a, 2))])
1082
1083 # After the ('extract_[iu]8', a, 3) patterns, above, trigger, there will be
1084 # patterns like those below.
1085 for op in ('extract_u8', 'extract_i8'):
1086 optimizations.extend([((op, ('ishl', 'a@16', 8), 1), (op, a, 0))])
1087 optimizations.extend([((op, ('ishl', 'a@32', 24 - 8 * i), 3), (op, a, i)) for i in range(2, -1, -1)])
1088 optimizations.extend([((op, ('ishl', 'a@64', 56 - 8 * i), 7), (op, a, i)) for i in range(6, -1, -1)])
1089
1090 optimizations.extend([
1091 # Subtracts
1092 (('ussub_4x8', a, 0), a),
1093 (('ussub_4x8', a, ~0), 0),
1094 # Lower all Subtractions first - they can get recombined later
1095 (('fsub', a, b), ('fadd', a, ('fneg', b))),
1096 (('isub', a, b), ('iadd', a, ('ineg', b))),
1097 (('uabs_usub', a, b), ('bcsel', ('ult', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
1098 # This is correct. We don't need isub_sat because the result type is unsigned, so it cannot overflow.
1099 (('uabs_isub', a, b), ('bcsel', ('ilt', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
1100
1101 # Propagate negation up multiplication chains
1102 (('fmul(is_used_by_non_fsat)', ('fneg', a), b), ('fneg', ('fmul', a, b))),
1103 (('imul', ('ineg', a), b), ('ineg', ('imul', a, b))),
1104
1105 # Propagate constants up multiplication chains
1106 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fmul', ('fmul', a, c), b)),
1107 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('imul', ('imul', a, c), b)),
1108 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fadd', ('fadd', a, c), b)),
1109 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('iadd', ('iadd', a, c), b)),
1110
1111 # Reassociate constants in add/mul chains so they can be folded together.
1112 # For now, we mostly only handle cases where the constants are separated by
1113 # a single non-constant. We could do better eventually.
1114 (('~fmul', '#a', ('fmul', 'b(is_not_const)', '#c')), ('fmul', ('fmul', a, c), b)),
1115 (('imul', '#a', ('imul', 'b(is_not_const)', '#c')), ('imul', ('imul', a, c), b)),
1116 (('~fadd', '#a', ('fadd', 'b(is_not_const)', '#c')), ('fadd', ('fadd', a, c), b)),
1117 (('~fadd', '#a', ('fneg', ('fadd', 'b(is_not_const)', '#c'))), ('fadd', ('fadd', a, ('fneg', c)), ('fneg', b))),
1118 (('iadd', '#a', ('iadd', 'b(is_not_const)', '#c')), ('iadd', ('iadd', a, c), b)),
1119 (('iand', '#a', ('iand', 'b(is_not_const)', '#c')), ('iand', ('iand', a, c), b)),
1120 (('ior', '#a', ('ior', 'b(is_not_const)', '#c')), ('ior', ('ior', a, c), b)),
1121 (('ixor', '#a', ('ixor', 'b(is_not_const)', '#c')), ('ixor', ('ixor', a, c), b)),
1122
1123 # Drop mul-div by the same value when there's no wrapping.
1124 (('idiv', ('imul(no_signed_wrap)', a, b), b), a),
1125
1126 # By definition...
1127 (('bcsel', ('ige', ('find_lsb', a), 0), ('find_lsb', a), -1), ('find_lsb', a)),
1128 (('bcsel', ('ige', ('ifind_msb', a), 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
1129 (('bcsel', ('ige', ('ufind_msb', a), 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
1130
1131 (('bcsel', ('ine', a, 0), ('find_lsb', a), -1), ('find_lsb', a)),
1132 (('bcsel', ('ine', a, 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
1133 (('bcsel', ('ine', a, 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
1134
1135 (('bcsel', ('ine', a, -1), ('ifind_msb', a), -1), ('ifind_msb', a)),
1136
1137 (('~fmul', ('bcsel(is_used_once)', c, -1.0, 1.0), b), ('bcsel', c, ('fneg', b), b)),
1138 (('~fmul', ('bcsel(is_used_once)', c, 1.0, -1.0), b), ('bcsel', c, b, ('fneg', b))),
1139 (('~bcsel', ('flt', a, 0.0), ('fneg', a), a), ('fabs', a)),
1140
1141 (('fmin3@64', a, b, c), ('fmin@64', a, ('fmin@64', b, c))),
1142 (('fmax3@64', a, b, c), ('fmax@64', a, ('fmax@64', b, c))),
1143 (('fmed3@64', a, b, c), ('fmax@64', ('fmin@64', ('fmax@64', a, b), c), ('fmin@64', a, b))),
1144
1145 # Misc. lowering
1146 (('fmod', a, b), ('fsub', a, ('fmul', b, ('ffloor', ('fdiv', a, b)))), 'options->lower_fmod'),
1147 (('frem', a, b), ('fsub', a, ('fmul', b, ('ftrunc', ('fdiv', a, b)))), 'options->lower_fmod'),
1148 (('uadd_carry@32', a, b), ('b2i', ('ult', ('iadd', a, b), a)), 'options->lower_uadd_carry'),
1149 (('usub_borrow@32', a, b), ('b2i', ('ult', a, b)), 'options->lower_usub_borrow'),
1150
1151 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1152 ('bcsel', ('ult', 31, 'bits'), 'insert',
1153 ('bfi', ('bfm', 'bits', 'offset'), 'insert', 'base')),
1154 'options->lower_bitfield_insert'),
1155 (('ihadd', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1156 (('uhadd', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1157 (('irhadd', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1158 (('urhadd', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1159 (('ihadd@64', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1160 (('uhadd@64', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1161 (('irhadd@64', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1162 (('urhadd@64', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1163
1164 (('uadd_sat@64', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_add_sat || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1165 (('uadd_sat', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_add_sat'),
1166 (('usub_sat', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_add_sat'),
1167 (('usub_sat@64', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_usub_sat64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1168
1169 # int64_t sum = a + b;
1170 #
1171 # if (a < 0 && b < 0 && a < sum)
1172 # sum = INT64_MIN;
1173 # } else if (a >= 0 && b >= 0 && sum < a)
1174 # sum = INT64_MAX;
1175 # }
1176 #
1177 # A couple optimizations are applied.
1178 #
1179 # 1. a < sum => sum >= 0. This replacement works because it is known that
1180 # a < 0 and b < 0, so sum should also be < 0 unless there was
1181 # underflow.
1182 #
1183 # 2. sum < a => sum < 0. This replacement works because it is known that
1184 # a >= 0 and b >= 0, so sum should also be >= 0 unless there was
1185 # overflow.
1186 #
1187 # 3. Invert the second if-condition and swap the order of parameters for
1188 # the bcsel. !(a >= 0 && b >= 0 && sum < 0) becomes !(a >= 0) || !(b >=
1189 # 0) || !(sum < 0), and that becomes (a < 0) || (b < 0) || (sum >= 0)
1190 #
1191 # On Intel Gen11, this saves ~11 instructions.
1192 (('iadd_sat@64', a, b), ('bcsel',
1193 ('iand', ('iand', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)),
1194 0x8000000000000000,
1195 ('bcsel',
1196 ('ior', ('ior', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)),
1197 ('iadd', a, b),
1198 0x7fffffffffffffff)),
1199 '(options->lower_int64_options & nir_lower_iadd64) != 0'),
1200
1201 # int64_t sum = a - b;
1202 #
1203 # if (a < 0 && b >= 0 && a < sum)
1204 # sum = INT64_MIN;
1205 # } else if (a >= 0 && b < 0 && a >= sum)
1206 # sum = INT64_MAX;
1207 # }
1208 #
1209 # Optimizations similar to the iadd_sat case are applied here.
1210 (('isub_sat@64', a, b), ('bcsel',
1211 ('iand', ('iand', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)),
1212 0x8000000000000000,
1213 ('bcsel',
1214 ('ior', ('ior', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)),
1215 ('isub', a, b),
1216 0x7fffffffffffffff)),
1217 '(options->lower_int64_options & nir_lower_iadd64) != 0'),
1218
1219 # These are done here instead of in the backend because the int64 lowering
1220 # pass will make a mess of the patterns. The first patterns are
1221 # conditioned on nir_lower_minmax64 because it was not clear that it was
1222 # always an improvement on platforms that have real int64 support. No
1223 # shaders in shader-db hit this, so it was hard to say one way or the
1224 # other.
1225 (('ilt', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1226 (('ilt', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1227 (('ige', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1228 (('ige', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1229 (('ilt', 'a@64', 0), ('ilt', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1230 (('ige', 'a@64', 0), ('ige', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1231
1232 (('ine', 'a@64', 0), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1233 (('ieq', 'a@64', 0), ('ieq', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1234 # 0u < uint(a) <=> uint(a) != 0u
1235 (('ult', 0, 'a@64'), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1236
1237 # Alternative lowering that doesn't rely on bfi.
1238 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1239 ('bcsel', ('ult', 31, 'bits'),
1240 'insert',
1241 (('ior',
1242 ('iand', 'base', ('inot', ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))),
1243 ('iand', ('ishl', 'insert', 'offset'), ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))))),
1244 'options->lower_bitfield_insert_to_shifts'),
1245
1246 # Alternative lowering that uses bitfield_select.
1247 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1248 ('bcsel', ('ult', 31, 'bits'), 'insert',
1249 ('bitfield_select', ('bfm', 'bits', 'offset'), ('ishl', 'insert', 'offset'), 'base')),
1250 'options->lower_bitfield_insert_to_bitfield_select'),
1251
1252 (('ibitfield_extract', 'value', 'offset', 'bits'),
1253 ('bcsel', ('ult', 31, 'bits'), 'value',
1254 ('ibfe', 'value', 'offset', 'bits')),
1255 'options->lower_bitfield_extract'),
1256
1257 (('ubitfield_extract', 'value', 'offset', 'bits'),
1258 ('bcsel', ('ult', 31, 'bits'), 'value',
1259 ('ubfe', 'value', 'offset', 'bits')),
1260 'options->lower_bitfield_extract'),
1261
1262 # Note that these opcodes are defined to only use the five least significant bits of 'offset' and 'bits'
1263 (('ubfe', 'value', 'offset', ('iand', 31, 'bits')), ('ubfe', 'value', 'offset', 'bits')),
1264 (('ubfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ubfe', 'value', 'offset', 'bits')),
1265 (('ibfe', 'value', 'offset', ('iand', 31, 'bits')), ('ibfe', 'value', 'offset', 'bits')),
1266 (('ibfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ibfe', 'value', 'offset', 'bits')),
1267 (('bfm', 'bits', ('iand', 31, 'offset')), ('bfm', 'bits', 'offset')),
1268 (('bfm', ('iand', 31, 'bits'), 'offset'), ('bfm', 'bits', 'offset')),
1269
1270 # Section 8.8 (Integer Functions) of the GLSL 4.60 spec says:
1271 #
1272 # If bits is zero, the result will be zero.
1273 #
1274 # These patterns prevent other patterns from generating invalid results
1275 # when count is zero.
1276 (('ubfe', a, b, 0), 0),
1277 (('ibfe', a, b, 0), 0),
1278
1279 (('ubfe', a, 0, '#b'), ('iand', a, ('ushr', 0xffffffff, ('ineg', b)))),
1280
1281 (('b2i32', ('i2b', ('ubfe', a, b, 1))), ('ubfe', a, b, 1)),
1282 (('b2i32', ('i2b', ('ibfe', a, b, 1))), ('ubfe', a, b, 1)), # ubfe in the replacement is correct
1283 (('ine', ('ibfe(is_used_once)', a, '#b', '#c'), 0), ('ine', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)),
1284 (('ieq', ('ibfe(is_used_once)', a, '#b', '#c'), 0), ('ieq', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)),
1285 (('ine', ('ubfe(is_used_once)', a, '#b', '#c'), 0), ('ine', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)),
1286 (('ieq', ('ubfe(is_used_once)', a, '#b', '#c'), 0), ('ieq', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)),
1287
1288 (('ibitfield_extract', 'value', 'offset', 'bits'),
1289 ('bcsel', ('ieq', 0, 'bits'),
1290 0,
1291 ('ishr',
1292 ('ishl', 'value', ('isub', ('isub', 32, 'bits'), 'offset')),
1293 ('isub', 32, 'bits'))),
1294 'options->lower_bitfield_extract_to_shifts'),
1295
1296 (('ubitfield_extract', 'value', 'offset', 'bits'),
1297 ('iand',
1298 ('ushr', 'value', 'offset'),
1299 ('bcsel', ('ieq', 'bits', 32),
1300 0xffffffff,
1301 ('isub', ('ishl', 1, 'bits'), 1))),
1302 'options->lower_bitfield_extract_to_shifts'),
1303
1304 (('ifind_msb', 'value'),
1305 ('ufind_msb', ('bcsel', ('ilt', 'value', 0), ('inot', 'value'), 'value')),
1306 'options->lower_ifind_msb'),
1307
1308 (('find_lsb', 'value'),
1309 ('ufind_msb', ('iand', 'value', ('ineg', 'value'))),
1310 'options->lower_find_lsb'),
1311
1312 (('extract_i8', a, 'b@32'),
1313 ('ishr', ('ishl', a, ('imul', ('isub', 3, b), 8)), 24),
1314 'options->lower_extract_byte'),
1315
1316 (('extract_u8', a, 'b@32'),
1317 ('iand', ('ushr', a, ('imul', b, 8)), 0xff),
1318 'options->lower_extract_byte'),
1319
1320 (('extract_i16', a, 'b@32'),
1321 ('ishr', ('ishl', a, ('imul', ('isub', 1, b), 16)), 16),
1322 'options->lower_extract_word'),
1323
1324 (('extract_u16', a, 'b@32'),
1325 ('iand', ('ushr', a, ('imul', b, 16)), 0xffff),
1326 'options->lower_extract_word'),
1327
1328 (('pack_unorm_2x16', 'v'),
1329 ('pack_uvec2_to_uint',
1330 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 65535.0)))),
1331 'options->lower_pack_unorm_2x16'),
1332
1333 (('pack_unorm_4x8', 'v'),
1334 ('pack_uvec4_to_uint',
1335 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 255.0)))),
1336 'options->lower_pack_unorm_4x8'),
1337
1338 (('pack_snorm_2x16', 'v'),
1339 ('pack_uvec2_to_uint',
1340 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 32767.0)))),
1341 'options->lower_pack_snorm_2x16'),
1342
1343 (('pack_snorm_4x8', 'v'),
1344 ('pack_uvec4_to_uint',
1345 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 127.0)))),
1346 'options->lower_pack_snorm_4x8'),
1347
1348 (('unpack_unorm_2x16', 'v'),
1349 ('fdiv', ('u2f32', ('vec2', ('extract_u16', 'v', 0),
1350 ('extract_u16', 'v', 1))),
1351 65535.0),
1352 'options->lower_unpack_unorm_2x16'),
1353
1354 (('unpack_unorm_4x8', 'v'),
1355 ('fdiv', ('u2f32', ('vec4', ('extract_u8', 'v', 0),
1356 ('extract_u8', 'v', 1),
1357 ('extract_u8', 'v', 2),
1358 ('extract_u8', 'v', 3))),
1359 255.0),
1360 'options->lower_unpack_unorm_4x8'),
1361
1362 (('unpack_snorm_2x16', 'v'),
1363 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec2', ('extract_i16', 'v', 0),
1364 ('extract_i16', 'v', 1))),
1365 32767.0))),
1366 'options->lower_unpack_snorm_2x16'),
1367
1368 (('unpack_snorm_4x8', 'v'),
1369 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec4', ('extract_i8', 'v', 0),
1370 ('extract_i8', 'v', 1),
1371 ('extract_i8', 'v', 2),
1372 ('extract_i8', 'v', 3))),
1373 127.0))),
1374 'options->lower_unpack_snorm_4x8'),
1375
1376 (('pack_half_2x16_split', 'a@32', 'b@32'),
1377 ('ior', ('ishl', ('u2u32', ('f2f16', b)), 16), ('u2u32', ('f2f16', a))),
1378 'options->lower_pack_split'),
1379
1380 (('unpack_half_2x16_split_x', 'a@32'),
1381 ('f2f32', ('u2u16', a)),
1382 'options->lower_pack_split'),
1383
1384 (('unpack_half_2x16_split_y', 'a@32'),
1385 ('f2f32', ('u2u16', ('ushr', a, 16))),
1386 'options->lower_pack_split'),
1387
1388 (('pack_32_2x16_split', 'a@16', 'b@16'),
1389 ('ior', ('ishl', ('u2u32', b), 16), ('u2u32', a)),
1390 'options->lower_pack_split'),
1391
1392 (('unpack_32_2x16_split_x', 'a@32'),
1393 ('u2u16', a),
1394 'options->lower_pack_split'),
1395
1396 (('unpack_32_2x16_split_y', 'a@32'),
1397 ('u2u16', ('ushr', 'a', 16)),
1398 'options->lower_pack_split'),
1399
1400 (('isign', a), ('imin', ('imax', a, -1), 1), 'options->lower_isign'),
1401 (('imin', ('imax', a, -1), 1), ('isign', a), '!options->lower_isign'),
1402 (('imax', ('imin', a, 1), -1), ('isign', a), '!options->lower_isign'),
1403 (('fsign', a), ('fsub', ('b2f', ('flt', 0.0, a)), ('b2f', ('flt', a, 0.0))), 'options->lower_fsign'),
1404 (('fadd', ('b2f32', ('flt', 0.0, 'a@32')), ('fneg', ('b2f32', ('flt', 'a@32', 0.0)))), ('fsign', a), '!options->lower_fsign'),
1405 (('iadd', ('b2i32', ('flt', 0, 'a@32')), ('ineg', ('b2i32', ('flt', 'a@32', 0)))), ('f2i32', ('fsign', a)), '!options->lower_fsign'),
1406
1407 # Address/offset calculations:
1408 # Drivers supporting imul24 should use the nir_lower_amul() pass, this
1409 # rule converts everyone else to imul:
1410 (('amul', a, b), ('imul', a, b), '!options->has_imul24'),
1411
1412 (('umul24', a, b),
1413 ('imul', ('iand', a, 0xffffff), ('iand', b, 0xffffff)),
1414 '!options->has_umul24'),
1415 (('umad24', a, b, c),
1416 ('iadd', ('imul', ('iand', a, 0xffffff), ('iand', b, 0xffffff)), c),
1417 '!options->has_umad24'),
1418
1419 (('imad24_ir3', a, b, 0), ('imul24', a, b)),
1420 (('imad24_ir3', a, 0, c), (c)),
1421 (('imad24_ir3', a, 1, c), ('iadd', a, c)),
1422
1423 # if first two srcs are const, crack apart the imad so constant folding
1424 # can clean up the imul:
1425 # TODO ffma should probably get a similar rule:
1426 (('imad24_ir3', '#a', '#b', c), ('iadd', ('imul', a, b), c)),
1427
1428 # These will turn 24b address/offset calc back into 32b shifts, but
1429 # it should be safe to get back some of the bits of precision that we
1430 # already decided were no necessary:
1431 (('imul24', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
1432 (('imul24', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
1433 (('imul24', a, 0), (0)),
1434 ])
1435
1436 # bit_size dependent lowerings
1437 for bit_size in [8, 16, 32, 64]:
1438 # convenience constants
1439 intmax = (1 << (bit_size - 1)) - 1
1440 intmin = 1 << (bit_size - 1)
1441
1442 optimizations += [
1443 (('iadd_sat@' + str(bit_size), a, b),
1444 ('bcsel', ('ige', b, 1), ('bcsel', ('ilt', ('iadd', a, b), a), intmax, ('iadd', a, b)),
1445 ('bcsel', ('ilt', a, ('iadd', a, b)), intmin, ('iadd', a, b))), 'options->lower_add_sat'),
1446 (('isub_sat@' + str(bit_size), a, b),
1447 ('bcsel', ('ilt', b, 0), ('bcsel', ('ilt', ('isub', a, b), a), intmax, ('isub', a, b)),
1448 ('bcsel', ('ilt', a, ('isub', a, b)), intmin, ('isub', a, b))), 'options->lower_add_sat'),
1449 ]
1450
1451 invert = OrderedDict([('feq', 'fne'), ('fne', 'feq')])
1452
1453 for left, right in itertools.combinations_with_replacement(invert.keys(), 2):
1454 optimizations.append((('inot', ('ior(is_used_once)', (left, a, b), (right, c, d))),
1455 ('iand', (invert[left], a, b), (invert[right], c, d))))
1456 optimizations.append((('inot', ('iand(is_used_once)', (left, a, b), (right, c, d))),
1457 ('ior', (invert[left], a, b), (invert[right], c, d))))
1458
1459 # Optimize x2bN(b2x(x)) -> x
1460 for size in type_sizes('bool'):
1461 aN = 'a@' + str(size)
1462 f2bN = 'f2b' + str(size)
1463 i2bN = 'i2b' + str(size)
1464 optimizations.append(((f2bN, ('b2f', aN)), a))
1465 optimizations.append(((i2bN, ('b2i', aN)), a))
1466
1467 # Optimize x2yN(b2x(x)) -> b2y
1468 for x, y in itertools.product(['f', 'u', 'i'], ['f', 'u', 'i']):
1469 if x != 'f' and y != 'f' and x != y:
1470 continue
1471
1472 b2x = 'b2f' if x == 'f' else 'b2i'
1473 b2y = 'b2f' if y == 'f' else 'b2i'
1474 x2yN = '{}2{}'.format(x, y)
1475 optimizations.append(((x2yN, (b2x, a)), (b2y, a)))
1476
1477 # Optimize away x2xN(a@N)
1478 for t in ['int', 'uint', 'float', 'bool']:
1479 for N in type_sizes(t):
1480 x2xN = '{0}2{0}{1}'.format(t[0], N)
1481 aN = 'a@{0}'.format(N)
1482 optimizations.append(((x2xN, aN), a))
1483
1484 # Optimize x2xN(y2yM(a@P)) -> y2yN(a) for integers
1485 # In particular, we can optimize away everything except upcast of downcast and
1486 # upcasts where the type differs from the other cast
1487 for N, M in itertools.product(type_sizes('uint'), type_sizes('uint')):
1488 if N < M:
1489 # The outer cast is a down-cast. It doesn't matter what the size of the
1490 # argument of the inner cast is because we'll never been in the upcast
1491 # of downcast case. Regardless of types, we'll always end up with y2yN
1492 # in the end.
1493 for x, y in itertools.product(['i', 'u'], ['i', 'u']):
1494 x2xN = '{0}2{0}{1}'.format(x, N)
1495 y2yM = '{0}2{0}{1}'.format(y, M)
1496 y2yN = '{0}2{0}{1}'.format(y, N)
1497 optimizations.append(((x2xN, (y2yM, a)), (y2yN, a)))
1498 elif N > M:
1499 # If the outer cast is an up-cast, we have to be more careful about the
1500 # size of the argument of the inner cast and with types. In this case,
1501 # the type is always the type of type up-cast which is given by the
1502 # outer cast.
1503 for P in type_sizes('uint'):
1504 # We can't optimize away up-cast of down-cast.
1505 if M < P:
1506 continue
1507
1508 # Because we're doing down-cast of down-cast, the types always have
1509 # to match between the two casts
1510 for x in ['i', 'u']:
1511 x2xN = '{0}2{0}{1}'.format(x, N)
1512 x2xM = '{0}2{0}{1}'.format(x, M)
1513 aP = 'a@{0}'.format(P)
1514 optimizations.append(((x2xN, (x2xM, aP)), (x2xN, a)))
1515 else:
1516 # The N == M case is handled by other optimizations
1517 pass
1518
1519 # Downcast operations should be able to see through pack
1520 for t in ['i', 'u']:
1521 for N in [8, 16, 32]:
1522 x2xN = '{0}2{0}{1}'.format(t, N)
1523 optimizations += [
1524 ((x2xN, ('pack_64_2x32_split', a, b)), (x2xN, a)),
1525 ((x2xN, ('pack_64_2x32_split', a, b)), (x2xN, a)),
1526 ]
1527
1528 # Optimize comparisons with up-casts
1529 for t in ['int', 'uint', 'float']:
1530 for N, M in itertools.product(type_sizes(t), repeat=2):
1531 if N == 1 or N >= M:
1532 continue
1533
1534 cond = 'true'
1535 if N == 8:
1536 cond = 'options->support_8bit_alu'
1537 elif N == 16:
1538 cond = 'options->support_16bit_alu'
1539 x2xM = '{0}2{0}{1}'.format(t[0], M)
1540 x2xN = '{0}2{0}{1}'.format(t[0], N)
1541 aN = 'a@' + str(N)
1542 bN = 'b@' + str(N)
1543 xeq = 'feq' if t == 'float' else 'ieq'
1544 xne = 'fne' if t == 'float' else 'ine'
1545 xge = '{0}ge'.format(t[0])
1546 xlt = '{0}lt'.format(t[0])
1547
1548 # Up-casts are lossless so for correctly signed comparisons of
1549 # up-casted values we can do the comparison at the largest of the two
1550 # original sizes and drop one or both of the casts. (We have
1551 # optimizations to drop the no-op casts which this may generate.)
1552 for P in type_sizes(t):
1553 if P == 1 or P > N:
1554 continue
1555
1556 bP = 'b@' + str(P)
1557 optimizations += [
1558 ((xeq, (x2xM, aN), (x2xM, bP)), (xeq, a, (x2xN, b)), cond),
1559 ((xne, (x2xM, aN), (x2xM, bP)), (xne, a, (x2xN, b)), cond),
1560 ((xge, (x2xM, aN), (x2xM, bP)), (xge, a, (x2xN, b)), cond),
1561 ((xlt, (x2xM, aN), (x2xM, bP)), (xlt, a, (x2xN, b)), cond),
1562 ((xge, (x2xM, bP), (x2xM, aN)), (xge, (x2xN, b), a), cond),
1563 ((xlt, (x2xM, bP), (x2xM, aN)), (xlt, (x2xN, b), a), cond),
1564 ]
1565
1566 # The next bit doesn't work on floats because the range checks would
1567 # get way too complicated.
1568 if t in ['int', 'uint']:
1569 if t == 'int':
1570 xN_min = -(1 << (N - 1))
1571 xN_max = (1 << (N - 1)) - 1
1572 elif t == 'uint':
1573 xN_min = 0
1574 xN_max = (1 << N) - 1
1575 else:
1576 assert False
1577
1578 # If we're up-casting and comparing to a constant, we can unfold
1579 # the comparison into a comparison with the shrunk down constant
1580 # and a check that the constant fits in the smaller bit size.
1581 optimizations += [
1582 ((xeq, (x2xM, aN), '#b'),
1583 ('iand', (xeq, a, (x2xN, b)), (xeq, (x2xM, (x2xN, b)), b)), cond),
1584 ((xne, (x2xM, aN), '#b'),
1585 ('ior', (xne, a, (x2xN, b)), (xne, (x2xM, (x2xN, b)), b)), cond),
1586 ((xlt, (x2xM, aN), '#b'),
1587 ('iand', (xlt, xN_min, b),
1588 ('ior', (xlt, xN_max, b), (xlt, a, (x2xN, b)))), cond),
1589 ((xlt, '#a', (x2xM, bN)),
1590 ('iand', (xlt, a, xN_max),
1591 ('ior', (xlt, a, xN_min), (xlt, (x2xN, a), b))), cond),
1592 ((xge, (x2xM, aN), '#b'),
1593 ('iand', (xge, xN_max, b),
1594 ('ior', (xge, xN_min, b), (xge, a, (x2xN, b)))), cond),
1595 ((xge, '#a', (x2xM, bN)),
1596 ('iand', (xge, a, xN_min),
1597 ('ior', (xge, a, xN_max), (xge, (x2xN, a), b))), cond),
1598 ]
1599
1600 def fexp2i(exp, bits):
1601 # Generate an expression which constructs value 2.0^exp or 0.0.
1602 #
1603 # We assume that exp is already in a valid range:
1604 #
1605 # * [-15, 15] for 16-bit float
1606 # * [-127, 127] for 32-bit float
1607 # * [-1023, 1023] for 16-bit float
1608 #
1609 # If exp is the lowest value in the valid range, a value of 0.0 is
1610 # constructed. Otherwise, the value 2.0^exp is constructed.
1611 if bits == 16:
1612 return ('i2i16', ('ishl', ('iadd', exp, 15), 10))
1613 elif bits == 32:
1614 return ('ishl', ('iadd', exp, 127), 23)
1615 elif bits == 64:
1616 return ('pack_64_2x32_split', 0, ('ishl', ('iadd', exp, 1023), 20))
1617 else:
1618 assert False
1619
1620 def ldexp(f, exp, bits):
1621 # The maximum possible range for a normal exponent is [-126, 127] and,
1622 # throwing in denormals, you get a maximum range of [-149, 127]. This
1623 # means that we can potentially have a swing of +-276. If you start with
1624 # FLT_MAX, you actually have to do ldexp(FLT_MAX, -278) to get it to flush
1625 # all the way to zero. The GLSL spec only requires that we handle a subset
1626 # of this range. From version 4.60 of the spec:
1627 #
1628 # "If exp is greater than +128 (single-precision) or +1024
1629 # (double-precision), the value returned is undefined. If exp is less
1630 # than -126 (single-precision) or -1022 (double-precision), the value
1631 # returned may be flushed to zero. Additionally, splitting the value
1632 # into a significand and exponent using frexp() and then reconstructing
1633 # a floating-point value using ldexp() should yield the original input
1634 # for zero and all finite non-denormalized values."
1635 #
1636 # The SPIR-V spec has similar language.
1637 #
1638 # In order to handle the maximum value +128 using the fexp2i() helper
1639 # above, we have to split the exponent in half and do two multiply
1640 # operations.
1641 #
1642 # First, we clamp exp to a reasonable range. Specifically, we clamp to
1643 # twice the full range that is valid for the fexp2i() function above. If
1644 # exp/2 is the bottom value of that range, the fexp2i() expression will
1645 # yield 0.0f which, when multiplied by f, will flush it to zero which is
1646 # allowed by the GLSL and SPIR-V specs for low exponent values. If the
1647 # value is clamped from above, then it must have been above the supported
1648 # range of the GLSL built-in and therefore any return value is acceptable.
1649 if bits == 16:
1650 exp = ('imin', ('imax', exp, -30), 30)
1651 elif bits == 32:
1652 exp = ('imin', ('imax', exp, -254), 254)
1653 elif bits == 64:
1654 exp = ('imin', ('imax', exp, -2046), 2046)
1655 else:
1656 assert False
1657
1658 # Now we compute two powers of 2, one for exp/2 and one for exp-exp/2.
1659 # (We use ishr which isn't the same for -1, but the -1 case still works
1660 # since we use exp-exp/2 as the second exponent.) While the spec
1661 # technically defines ldexp as f * 2.0^exp, simply multiplying once doesn't
1662 # work with denormals and doesn't allow for the full swing in exponents
1663 # that you can get with normalized values. Instead, we create two powers
1664 # of two and multiply by them each in turn. That way the effective range
1665 # of our exponent is doubled.
1666 pow2_1 = fexp2i(('ishr', exp, 1), bits)
1667 pow2_2 = fexp2i(('isub', exp, ('ishr', exp, 1)), bits)
1668 return ('fmul', ('fmul', f, pow2_1), pow2_2)
1669
1670 optimizations += [
1671 (('ldexp@16', 'x', 'exp'), ldexp('x', 'exp', 16), 'options->lower_ldexp'),
1672 (('ldexp@32', 'x', 'exp'), ldexp('x', 'exp', 32), 'options->lower_ldexp'),
1673 (('ldexp@64', 'x', 'exp'), ldexp('x', 'exp', 64), 'options->lower_ldexp'),
1674 ]
1675
1676 # Unreal Engine 4 demo applications open-codes bitfieldReverse()
1677 def bitfield_reverse(u):
1678 step1 = ('ior', ('ishl', u, 16), ('ushr', u, 16))
1679 step2 = ('ior', ('ishl', ('iand', step1, 0x00ff00ff), 8), ('ushr', ('iand', step1, 0xff00ff00), 8))
1680 step3 = ('ior', ('ishl', ('iand', step2, 0x0f0f0f0f), 4), ('ushr', ('iand', step2, 0xf0f0f0f0), 4))
1681 step4 = ('ior', ('ishl', ('iand', step3, 0x33333333), 2), ('ushr', ('iand', step3, 0xcccccccc), 2))
1682 step5 = ('ior(many-comm-expr)', ('ishl', ('iand', step4, 0x55555555), 1), ('ushr', ('iand', step4, 0xaaaaaaaa), 1))
1683
1684 return step5
1685
1686 optimizations += [(bitfield_reverse('x@32'), ('bitfield_reverse', 'x'), '!options->lower_bitfield_reverse')]
1687
1688 # For any float comparison operation, "cmp", if you have "a == a && a cmp b"
1689 # then the "a == a" is redundant because it's equivalent to "a is not NaN"
1690 # and, if a is a NaN then the second comparison will fail anyway.
1691 for op in ['flt', 'fge', 'feq']:
1692 optimizations += [
1693 (('iand', ('feq', a, a), (op, a, b)), ('!' + op, a, b)),
1694 (('iand', ('feq', a, a), (op, b, a)), ('!' + op, b, a)),
1695 ]
1696
1697 # Add optimizations to handle the case where the result of a ternary is
1698 # compared to a constant. This way we can take things like
1699 #
1700 # (a ? 0 : 1) > 0
1701 #
1702 # and turn it into
1703 #
1704 # a ? (0 > 0) : (1 > 0)
1705 #
1706 # which constant folding will eat for lunch. The resulting ternary will
1707 # further get cleaned up by the boolean reductions above and we will be
1708 # left with just the original variable "a".
1709 for op in ['flt', 'fge', 'feq', 'fne',
1710 'ilt', 'ige', 'ieq', 'ine', 'ult', 'uge']:
1711 optimizations += [
1712 ((op, ('bcsel', 'a', '#b', '#c'), '#d'),
1713 ('bcsel', 'a', (op, 'b', 'd'), (op, 'c', 'd'))),
1714 ((op, '#d', ('bcsel', a, '#b', '#c')),
1715 ('bcsel', 'a', (op, 'd', 'b'), (op, 'd', 'c'))),
1716 ]
1717
1718
1719 # For example, this converts things like
1720 #
1721 # 1 + mix(0, a - 1, condition)
1722 #
1723 # into
1724 #
1725 # mix(1, (a-1)+1, condition)
1726 #
1727 # Other optimizations will rearrange the constants.
1728 for op in ['fadd', 'fmul', 'iadd', 'imul']:
1729 optimizations += [
1730 ((op, ('bcsel(is_used_once)', a, '#b', c), '#d'), ('bcsel', a, (op, b, d), (op, c, d)))
1731 ]
1732
1733 # For derivatives in compute shaders, GLSL_NV_compute_shader_derivatives
1734 # states:
1735 #
1736 # If neither layout qualifier is specified, derivatives in compute shaders
1737 # return zero, which is consistent with the handling of built-in texture
1738 # functions like texture() in GLSL 4.50 compute shaders.
1739 for op in ['fddx', 'fddx_fine', 'fddx_coarse',
1740 'fddy', 'fddy_fine', 'fddy_coarse']:
1741 optimizations += [
1742 ((op, 'a'), 0.0, 'info->stage == MESA_SHADER_COMPUTE && info->cs.derivative_group == DERIVATIVE_GROUP_NONE')
1743 ]
1744
1745 # Some optimizations for ir3-specific instructions.
1746 optimizations += [
1747 # 'al * bl': If either 'al' or 'bl' is zero, return zero.
1748 (('umul_low', '#a(is_lower_half_zero)', 'b'), (0)),
1749 # '(ah * bl) << 16 + c': If either 'ah' or 'bl' is zero, return 'c'.
1750 (('imadsh_mix16', '#a@32(is_lower_half_zero)', 'b@32', 'c@32'), ('c')),
1751 (('imadsh_mix16', 'a@32', '#b@32(is_upper_half_zero)', 'c@32'), ('c')),
1752 ]
1753
1754 # These kinds of sequences can occur after nir_opt_peephole_select.
1755 #
1756 # NOTE: fadd is not handled here because that gets in the way of ffma
1757 # generation in the i965 driver. Instead, fadd and ffma are handled in
1758 # late_optimizations.
1759
1760 for op in ['flrp']:
1761 optimizations += [
1762 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1763 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1764 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1765 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1766 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1767 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1768 ]
1769
1770 for op in ['fmul', 'iadd', 'imul', 'iand', 'ior', 'ixor', 'fmin', 'fmax', 'imin', 'imax', 'umin', 'umax']:
1771 optimizations += [
1772 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1773 (('bcsel', a, (op + '(is_used_once)', b, 'c(is_not_const)'), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1774 (('bcsel', a, (op, b, 'c(is_not_const)'), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1775 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1776 ]
1777
1778 for op in ['fpow']:
1779 optimizations += [
1780 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1781 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1782 (('bcsel', a, (op + '(is_used_once)', b, c), (op, d, c)), (op, ('bcsel', a, b, d), c)),
1783 (('bcsel', a, (op, b, c), (op + '(is_used_once)', d, c)), (op, ('bcsel', a, b, d), c)),
1784 ]
1785
1786 for op in ['frcp', 'frsq', 'fsqrt', 'fexp2', 'flog2', 'fsign', 'fsin', 'fcos', 'fneg', 'fabs', 'fsign']:
1787 optimizations += [
1788 (('bcsel', c, (op + '(is_used_once)', a), (op + '(is_used_once)', b)), (op, ('bcsel', c, a, b))),
1789 ]
1790
1791 for op in ['ineg', 'iabs', 'inot', 'isign']:
1792 optimizations += [
1793 ((op, ('bcsel', c, '#a', '#b')), ('bcsel', c, (op, a), (op, b))),
1794 ]
1795
1796 # This section contains optimizations to propagate downsizing conversions of
1797 # constructed vectors into vectors of downsized components. Whether this is
1798 # useful depends on the SIMD semantics of the backend. On a true SIMD machine,
1799 # this reduces the register pressure of the vector itself and often enables the
1800 # conversions to be eliminated via other algebraic rules or constant folding.
1801 # In the worst case on a SIMD architecture, the propagated conversions may be
1802 # revectorized via nir_opt_vectorize so instruction count is minimally
1803 # impacted.
1804 #
1805 # On a machine with SIMD-within-a-register only, this actually
1806 # counterintuitively hurts instruction count. These machines are the same that
1807 # require vectorize_vec2_16bit, so we predicate the optimizations on that flag
1808 # not being set.
1809 #
1810 # Finally for scalar architectures, there should be no difference in generated
1811 # code since it all ends up scalarized at the end, but it might minimally help
1812 # compile-times.
1813
1814 for i in range(2, 4 + 1):
1815 for T in ('f', 'u', 'i'):
1816 vec_inst = ('vec' + str(i),)
1817
1818 indices = ['a', 'b', 'c', 'd']
1819 suffix_in = tuple((indices[j] + '@32') for j in range(i))
1820
1821 to_16 = '{}2{}16'.format(T, T)
1822 to_mp = '{}2{}mp'.format(T, T)
1823
1824 out_16 = tuple((to_16, indices[j]) for j in range(i))
1825 out_mp = tuple((to_mp, indices[j]) for j in range(i))
1826
1827 optimizations += [
1828 ((to_16, vec_inst + suffix_in), vec_inst + out_16, '!options->vectorize_vec2_16bit'),
1829 ((to_mp, vec_inst + suffix_in), vec_inst + out_mp, '!options->vectorize_vec2_16bit')
1830 ]
1831
1832 # This section contains "late" optimizations that should be run before
1833 # creating ffmas and calling regular optimizations for the final time.
1834 # Optimizations should go here if they help code generation and conflict
1835 # with the regular optimizations.
1836 before_ffma_optimizations = [
1837 # Propagate constants down multiplication chains
1838 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fmul', ('fmul', a, c), b)),
1839 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('imul', ('imul', a, c), b)),
1840 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fadd', ('fadd', a, c), b)),
1841 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('iadd', ('iadd', a, c), b)),
1842
1843 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
1844 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
1845 (('~fadd', ('fneg', a), a), 0.0),
1846 (('iadd', ('ineg', a), a), 0),
1847 (('iadd', ('ineg', a), ('iadd', a, b)), b),
1848 (('iadd', a, ('iadd', ('ineg', a), b)), b),
1849 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
1850 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
1851
1852 (('~flrp@32', ('fadd(is_used_once)', a, -1.0), ('fadd(is_used_once)', a, 1.0), d), ('fadd', ('flrp', -1.0, 1.0, d), a)),
1853 (('~flrp@32', ('fadd(is_used_once)', a, 1.0), ('fadd(is_used_once)', a, -1.0), d), ('fadd', ('flrp', 1.0, -1.0, d), a)),
1854 (('~flrp@32', ('fadd(is_used_once)', a, '#b'), ('fadd(is_used_once)', a, '#c'), d), ('fadd', ('fmul', d, ('fadd', c, ('fneg', b))), ('fadd', a, b))),
1855 ]
1856
1857 # This section contains "late" optimizations that should be run after the
1858 # regular optimizations have finished. Optimizations should go here if
1859 # they help code generation but do not necessarily produce code that is
1860 # more easily optimizable.
1861 late_optimizations = [
1862 # Most of these optimizations aren't quite safe when you get infinity or
1863 # Nan involved but the first one should be fine.
1864 (('flt', ('fadd', a, b), 0.0), ('flt', a, ('fneg', b))),
1865 (('flt', ('fneg', ('fadd', a, b)), 0.0), ('flt', ('fneg', a), b)),
1866 (('~fge', ('fadd', a, b), 0.0), ('fge', a, ('fneg', b))),
1867 (('~fge', ('fneg', ('fadd', a, b)), 0.0), ('fge', ('fneg', a), b)),
1868 (('~feq', ('fadd', a, b), 0.0), ('feq', a, ('fneg', b))),
1869 (('~fne', ('fadd', a, b), 0.0), ('fne', a, ('fneg', b))),
1870
1871 # nir_lower_to_source_mods will collapse this, but its existence during the
1872 # optimization loop can prevent other optimizations.
1873 (('fneg', ('fneg', a)), a),
1874
1875 # Subtractions get lowered during optimization, so we need to recombine them
1876 (('fadd', 'a', ('fneg', 'b')), ('fsub', 'a', 'b'), '!options->lower_sub'),
1877 (('iadd', 'a', ('ineg', 'b')), ('isub', 'a', 'b'), '!options->lower_sub'),
1878 (('fneg', a), ('fsub', 0.0, a), 'options->lower_negate'),
1879 (('ineg', a), ('isub', 0, a), 'options->lower_negate'),
1880
1881 # These are duplicated from the main optimizations table. The late
1882 # patterns that rearrange expressions like x - .5 < 0 to x < .5 can create
1883 # new patterns like these. The patterns that compare with zero are removed
1884 # because they are unlikely to be created in by anything in
1885 # late_optimizations.
1886 (('flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
1887 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
1888 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
1889 (('fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
1890 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
1891 (('fne', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fne', a, b)),
1892
1893 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
1894 (('flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
1895
1896 (('~fge', ('fmin(is_used_once)', ('fadd(is_used_once)', a, b), ('fadd', c, d)), 0.0), ('iand', ('fge', a, ('fneg', b)), ('fge', c, ('fneg', d)))),
1897
1898 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
1899 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
1900 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
1901 (('fne', ('fneg', a), ('fneg', b)), ('fne', b, a)),
1902 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
1903 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
1904 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
1905 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
1906 (('fne', ('fneg', a), -1.0), ('fne', 1.0, a)),
1907 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
1908
1909 (('ior', a, a), a),
1910 (('iand', a, a), a),
1911
1912 (('iand', ('ine(is_used_once)', 'a@32', 0), ('ine', 'b@32', 0)), ('ine', ('umin', a, b), 0)),
1913 (('ior', ('ieq(is_used_once)', 'a@32', 0), ('ieq', 'b@32', 0)), ('ieq', ('umin', a, b), 0)),
1914
1915 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
1916
1917 (('fdot2', a, b), ('fdot_replicated2', a, b), 'options->fdot_replicates'),
1918 (('fdot3', a, b), ('fdot_replicated3', a, b), 'options->fdot_replicates'),
1919 (('fdot4', a, b), ('fdot_replicated4', a, b), 'options->fdot_replicates'),
1920 (('fdph', a, b), ('fdph_replicated', a, b), 'options->fdot_replicates'),
1921
1922 (('~flrp@32', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
1923 (('~flrp@64', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
1924
1925 (('~fadd@32', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp32'),
1926 (('~fadd@64', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp64'),
1927
1928 # A similar operation could apply to any ffma(#a, b, #(-a/2)), but this
1929 # particular operation is common for expanding values stored in a texture
1930 # from [0,1] to [-1,1].
1931 (('~ffma@32', a, 2.0, -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1932 (('~ffma@32', a, -2.0, -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1933 (('~ffma@32', a, -2.0, 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1934 (('~ffma@32', a, 2.0, 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1935 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1936 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1937 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1938 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1939
1940 # flrp(a, b, a)
1941 # a*(1-a) + b*a
1942 # a + -a*a + a*b (1)
1943 # a + a*(b - a)
1944 # Option 1: ffma(a, (b-a), a)
1945 #
1946 # Alternately, after (1):
1947 # a*(1+b) + -a*a
1948 # a*((1+b) + -a)
1949 #
1950 # Let b=1
1951 #
1952 # Option 2: ffma(a, 2, -(a*a))
1953 # Option 3: ffma(a, 2, (-a)*a)
1954 # Option 4: ffma(a, -a, (2*a)
1955 # Option 5: a * (2 - a)
1956 #
1957 # There are a lot of other possible combinations.
1958 (('~ffma@32', ('fadd', b, ('fneg', a)), a, a), ('flrp', a, b, a), '!options->lower_flrp32'),
1959 (('~ffma@32', a, 2.0, ('fneg', ('fmul', a, a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1960 (('~ffma@32', a, 2.0, ('fmul', ('fneg', a), a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1961 (('~ffma@32', a, ('fneg', a), ('fmul', 2.0, a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1962 (('~fmul@32', a, ('fadd', 2.0, ('fneg', a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1963
1964 # we do these late so that we don't get in the way of creating ffmas
1965 (('fmin', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmin', a, b))),
1966 (('fmax', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmax', a, b))),
1967
1968 (('bcsel', a, 0, ('b2f32', ('inot', 'b@bool'))), ('b2f32', ('inot', ('ior', a, b)))),
1969
1970 # Putting this in 'optimizations' interferes with the bcsel(a, op(b, c),
1971 # op(b, d)) => op(b, bcsel(a, c, d)) transformations. I do not know why.
1972 (('bcsel', ('feq', ('fsqrt', 'a(is_not_negative)'), 0.0), intBitsToFloat(0x7f7fffff), ('frsq', a)),
1973 ('fmin', ('frsq', a), intBitsToFloat(0x7f7fffff))),
1974
1975 # Things that look like DPH in the source shader may get expanded to
1976 # something that looks like dot(v1.xyz, v2.xyz) + v1.w by the time it gets
1977 # to NIR. After FFMA is generated, this can look like:
1978 #
1979 # fadd(ffma(v1.z, v2.z, ffma(v1.y, v2.y, fmul(v1.x, v2.x))), v1.w)
1980 #
1981 # Reassociate the last addition into the first multiplication.
1982 #
1983 # Some shaders do not use 'invariant' in vertex and (possibly) geometry
1984 # shader stages on some outputs that are intended to be invariant. For
1985 # various reasons, this optimization may not be fully applied in all
1986 # shaders used for different rendering passes of the same geometry. This
1987 # can result in Z-fighting artifacts (at best). For now, disable this
1988 # optimization in these stages. See bugzilla #111490. In tessellation
1989 # stages applications seem to use 'precise' when necessary, so allow the
1990 # optimization in those stages.
1991 (('~fadd', ('ffma(is_used_once)', a, b, ('ffma', c, d, ('fmul', 'e(is_not_const_and_not_fsign)', 'f(is_not_const_and_not_fsign)'))), 'g(is_not_const)'),
1992 ('ffma', a, b, ('ffma', c, d, ('ffma', e, 'f', 'g'))), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
1993 (('~fadd', ('ffma(is_used_once)', a, b, ('fmul', 'c(is_not_const_and_not_fsign)', 'd(is_not_const_and_not_fsign)') ), 'e(is_not_const)'),
1994 ('ffma', a, b, ('ffma', c, d, e)), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
1995
1996 # Convert *2*mp instructions to concrete *2*16 instructions. At this point
1997 # any conversions that could have been removed will have been removed in
1998 # nir_opt_algebraic so any remaining ones are required.
1999 (('f2fmp', a), ('f2f16', a)),
2000 (('i2imp', a), ('i2i16', a)),
2001 (('u2ump', a), ('u2u16', a)),
2002
2003 # Section 8.8 (Integer Functions) of the GLSL 4.60 spec says:
2004 #
2005 # If bits is zero, the result will be zero.
2006 #
2007 # These prevent the next two lowerings generating incorrect results when
2008 # count is zero.
2009 (('ubfe', a, b, 0), 0),
2010 (('ibfe', a, b, 0), 0),
2011
2012 # On Intel GPUs, BFE is a 3-source instruction. Like all 3-source
2013 # instructions on Intel GPUs, it cannot have an immediate values as
2014 # sources. There are also limitations on source register strides. As a
2015 # result, it is very easy for 3-source instruction combined with either
2016 # loads of immediate values or copies from weird register strides to be
2017 # more expensive than the primitive instructions it represents.
2018 (('ubfe', a, '#b', '#c'), ('iand', ('ushr', 0xffffffff, ('ineg', c)), ('ushr', a, b)), 'options->lower_bfe_with_two_constants'),
2019
2020 # b is the lowest order bit to be extracted and c is the number of bits to
2021 # extract. The inner shift removes the bits above b + c by shifting left
2022 # 32 - (b + c). ishl only sees the low 5 bits of the shift count, which is
2023 # -(b + c). The outer shift moves the bit that was at b to bit zero.
2024 # After the first shift, that bit is now at b + (32 - (b + c)) or 32 - c.
2025 # This means that it must be shifted right by 32 - c or -c bits.
2026 (('ibfe', a, '#b', '#c'), ('ishr', ('ishl', a, ('ineg', ('iadd', b, c))), ('ineg', c)), 'options->lower_bfe_with_two_constants'),
2027
2028 # Clean up no-op shifts that may result from the bfe lowerings.
2029 (('ishl', a, 0), a),
2030 (('ishl', a, -32), a),
2031 (('ishr', a, 0), a),
2032 (('ishr', a, -32), a),
2033 (('ushr', a, 0), a),
2034 ]
2035
2036 for op in ['fadd']:
2037 late_optimizations += [
2038 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
2039 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
2040 ]
2041
2042 for op in ['ffma']:
2043 late_optimizations += [
2044 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
2045 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
2046
2047 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
2048 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
2049 ]
2050
2051 distribute_src_mods = [
2052 # Try to remove some spurious negations rather than pushing them down.
2053 (('fmul', ('fneg', a), ('fneg', b)), ('fmul', a, b)),
2054 (('ffma', ('fneg', a), ('fneg', b), c), ('ffma', a, b, c)),
2055 (('fdot_replicated2', ('fneg', a), ('fneg', b)), ('fdot_replicated2', a, b)),
2056 (('fdot_replicated3', ('fneg', a), ('fneg', b)), ('fdot_replicated3', a, b)),
2057 (('fdot_replicated4', ('fneg', a), ('fneg', b)), ('fdot_replicated4', a, b)),
2058 (('fneg', ('fneg', a)), a),
2059
2060 (('fneg', ('fmul(is_used_once)', a, b)), ('fmul', ('fneg', a), b)),
2061 (('fabs', ('fmul(is_used_once)', a, b)), ('fmul', ('fabs', a), ('fabs', b))),
2062
2063 (('fneg', ('ffma(is_used_once)', a, b, c)), ('ffma', ('fneg', a), b, ('fneg', c))),
2064 (('fneg', ('flrp(is_used_once)', a, b, c)), ('flrp', ('fneg', a), ('fneg', b), c)),
2065 (('fneg', ('fadd(is_used_once)', a, b)), ('fadd', ('fneg', a), ('fneg', b))),
2066
2067 # Note that fmin <-> fmax. I don't think there is a way to distribute
2068 # fabs() into fmin or fmax.
2069 (('fneg', ('fmin(is_used_once)', a, b)), ('fmax', ('fneg', a), ('fneg', b))),
2070 (('fneg', ('fmax(is_used_once)', a, b)), ('fmin', ('fneg', a), ('fneg', b))),
2071
2072 (('fneg', ('fdot_replicated2(is_used_once)', a, b)), ('fdot_replicated2', ('fneg', a), b)),
2073 (('fneg', ('fdot_replicated3(is_used_once)', a, b)), ('fdot_replicated3', ('fneg', a), b)),
2074 (('fneg', ('fdot_replicated4(is_used_once)', a, b)), ('fdot_replicated4', ('fneg', a), b)),
2075
2076 # fdph works mostly like fdot, but to get the correct result, the negation
2077 # must be applied to the second source.
2078 (('fneg', ('fdph_replicated(is_used_once)', a, b)), ('fdph_replicated', a, ('fneg', b))),
2079
2080 (('fneg', ('fsign(is_used_once)', a)), ('fsign', ('fneg', a))),
2081 (('fabs', ('fsign(is_used_once)', a)), ('fsign', ('fabs', a))),
2082 ]
2083
2084 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic", optimizations).render())
2085 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_before_ffma",
2086 before_ffma_optimizations).render())
2087 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_late",
2088 late_optimizations).render())
2089 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_distribute_src_mods",
2090 distribute_src_mods).render())