nir/algebraic: propagate b2i out of ior/iand
[mesa.git] / src / compiler / nir / nir_opt_algebraic.py
1 #
2 # Copyright (C) 2014 Intel Corporation
3 #
4 # Permission is hereby granted, free of charge, to any person obtaining a
5 # copy of this software and associated documentation files (the "Software"),
6 # to deal in the Software without restriction, including without limitation
7 # the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 # and/or sell copies of the Software, and to permit persons to whom the
9 # Software is furnished to do so, subject to the following conditions:
10 #
11 # The above copyright notice and this permission notice (including the next
12 # paragraph) shall be included in all copies or substantial portions of the
13 # Software.
14 #
15 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 # IN THE SOFTWARE.
22 #
23 # Authors:
24 # Jason Ekstrand (jason@jlekstrand.net)
25
26 from __future__ import print_function
27
28 from collections import OrderedDict
29 import nir_algebraic
30 from nir_opcodes import type_sizes
31 import itertools
32 import struct
33 from math import pi
34
35 # Convenience variables
36 a = 'a'
37 b = 'b'
38 c = 'c'
39 d = 'd'
40 e = 'e'
41
42 # Written in the form (<search>, <replace>) where <search> is an expression
43 # and <replace> is either an expression or a value. An expression is
44 # defined as a tuple of the form ([~]<op>, <src0>, <src1>, <src2>, <src3>)
45 # where each source is either an expression or a value. A value can be
46 # either a numeric constant or a string representing a variable name.
47 #
48 # If the opcode in a search expression is prefixed by a '~' character, this
49 # indicates that the operation is inexact. Such operations will only get
50 # applied to SSA values that do not have the exact bit set. This should be
51 # used by by any optimizations that are not bit-for-bit exact. It should not,
52 # however, be used for backend-requested lowering operations as those need to
53 # happen regardless of precision.
54 #
55 # Variable names are specified as "[#]name[@type][(cond)][.swiz]" where:
56 # "#" indicates that the given variable will only match constants,
57 # type indicates that the given variable will only match values from ALU
58 # instructions with the given output type,
59 # (cond) specifies an additional condition function (see nir_search_helpers.h),
60 # swiz is a swizzle applied to the variable (only in the <replace> expression)
61 #
62 # For constants, you have to be careful to make sure that it is the right
63 # type because python is unaware of the source and destination types of the
64 # opcodes.
65 #
66 # All expression types can have a bit-size specified. For opcodes, this
67 # looks like "op@32", for variables it is "a@32" or "a@uint32" to specify a
68 # type and size. In the search half of the expression this indicates that it
69 # should only match that particular bit-size. In the replace half of the
70 # expression this indicates that the constructed value should have that
71 # bit-size.
72 #
73 # If the opcode in a replacement expression is prefixed by a '!' character,
74 # this indicated that the new expression will be marked exact.
75 #
76 # A special condition "many-comm-expr" can be used with expressions to note
77 # that the expression and its subexpressions have more commutative expressions
78 # than nir_replace_instr can handle. If this special condition is needed with
79 # another condition, the two can be separated by a comma (e.g.,
80 # "(many-comm-expr,is_used_once)").
81
82 # based on https://web.archive.org/web/20180105155939/http://forum.devmaster.net/t/fast-and-accurate-sine-cosine/9648
83 def lowered_sincos(c):
84 x = ('fsub', ('fmul', 2.0, ('ffract', ('fadd', ('fmul', 0.5 / pi, a), c))), 1.0)
85 x = ('fmul', ('fsub', x, ('fmul', x, ('fabs', x))), 4.0)
86 return ('ffma', ('ffma', x, ('fabs', x), ('fneg', x)), 0.225, x)
87
88 def intBitsToFloat(i):
89 return struct.unpack('!f', struct.pack('!I', i))[0]
90
91 optimizations = [
92
93 (('imul', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
94 (('imul', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
95 (('ishl', a, '#b@32'), ('imul', a, ('ishl', 1, b)), 'options->lower_bitops'),
96
97 (('unpack_64_2x32_split_x', ('imul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
98 (('unpack_64_2x32_split_x', ('umul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
99 (('imul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('imul_high', a, b)), 'options->lower_mul_2x32_64'),
100 (('umul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('umul_high', a, b)), 'options->lower_mul_2x32_64'),
101 (('udiv', a, 1), a),
102 (('idiv', a, 1), a),
103 (('umod', a, 1), 0),
104 (('imod', a, 1), 0),
105 (('udiv', a, '#b@32(is_pos_power_of_two)'), ('ushr', a, ('find_lsb', b)), '!options->lower_bitops'),
106 (('idiv', a, '#b@32(is_pos_power_of_two)'), ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', b))), 'options->lower_idiv'),
107 (('idiv', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', ('iabs', b))))), 'options->lower_idiv'),
108 (('umod', a, '#b(is_pos_power_of_two)'), ('iand', a, ('isub', b, 1))),
109
110 (('~fneg', ('fneg', a)), a),
111 (('ineg', ('ineg', a)), a),
112 (('fabs', ('fneg', a)), ('fabs', a)),
113 (('fabs', ('u2f', a)), ('u2f', a)),
114 (('iabs', ('iabs', a)), ('iabs', a)),
115 (('iabs', ('ineg', a)), ('iabs', a)),
116 (('f2b', ('fneg', a)), ('f2b', a)),
117 (('i2b', ('ineg', a)), ('i2b', a)),
118 (('~fadd', a, 0.0), a),
119 (('iadd', a, 0), a),
120 (('usadd_4x8', a, 0), a),
121 (('usadd_4x8', a, ~0), ~0),
122 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
123 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
124 (('iand', ('ior', a, b), ('ior', a, c)), ('ior', a, ('iand', b, c))),
125 (('ior', ('iand', a, b), ('iand', a, c)), ('iand', a, ('ior', b, c))),
126 (('~fadd', ('fneg', a), a), 0.0),
127 (('iadd', ('ineg', a), a), 0),
128 (('iadd', ('ineg', a), ('iadd', a, b)), b),
129 (('iadd', a, ('iadd', ('ineg', a), b)), b),
130 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
131 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
132 (('fadd', ('fsat', a), ('fsat', ('fneg', a))), ('fsat', ('fabs', a))),
133 (('~fmul', a, 0.0), 0.0),
134 (('imul', a, 0), 0),
135 (('umul_unorm_4x8', a, 0), 0),
136 (('umul_unorm_4x8', a, ~0), a),
137 (('~fmul', a, 1.0), a),
138 (('imul', a, 1), a),
139 (('fmul', a, -1.0), ('fneg', a)),
140 (('imul', a, -1), ('ineg', a)),
141 # If a < 0: fsign(a)*a*a => -1*a*a => -a*a => abs(a)*a
142 # If a > 0: fsign(a)*a*a => 1*a*a => a*a => abs(a)*a
143 # If a == 0: fsign(a)*a*a => 0*0*0 => abs(0)*0
144 (('fmul', ('fsign', a), ('fmul', a, a)), ('fmul', ('fabs', a), a)),
145 (('fmul', ('fmul', ('fsign', a), a), a), ('fmul', ('fabs', a), a)),
146 (('~ffma', 0.0, a, b), b),
147 (('~ffma', a, b, 0.0), ('fmul', a, b)),
148 (('ffma', 1.0, a, b), ('fadd', a, b)),
149 (('ffma', -1.0, a, b), ('fadd', ('fneg', a), b)),
150 (('~flrp', a, b, 0.0), a),
151 (('~flrp', a, b, 1.0), b),
152 (('~flrp', a, a, b), a),
153 (('~flrp', 0.0, a, b), ('fmul', a, b)),
154
155 # flrp(a, a + b, c) => a + flrp(0, b, c) => a + (b * c)
156 (('~flrp', a, ('fadd(is_used_once)', a, b), c), ('fadd', ('fmul', b, c), a)),
157 (('~flrp@32', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp32'),
158 (('~flrp@64', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp64'),
159
160 (('~flrp@32', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp32'),
161 (('~flrp@64', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp64'),
162
163 (('~flrp@32', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp32'),
164 (('~flrp@64', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp64'),
165
166 (('~flrp', ('fmul(is_used_once)', a, b), ('fmul(is_used_once)', a, c), d), ('fmul', ('flrp', b, c, d), a)),
167
168 (('~flrp', a, b, ('b2f', 'c@1')), ('bcsel', c, b, a), 'options->lower_flrp32'),
169 (('~flrp', a, 0.0, c), ('fadd', ('fmul', ('fneg', a), c), a)),
170 (('ftrunc', a), ('bcsel', ('flt', a, 0.0), ('fneg', ('ffloor', ('fabs', a))), ('ffloor', ('fabs', a))), 'options->lower_ftrunc'),
171 (('ffloor', a), ('fsub', a, ('ffract', a)), 'options->lower_ffloor'),
172 (('fadd', a, ('fneg', ('ffract', a))), ('ffloor', a), '!options->lower_ffloor'),
173 (('ffract', a), ('fsub', a, ('ffloor', a)), 'options->lower_ffract'),
174 (('fceil', a), ('fneg', ('ffloor', ('fneg', a))), 'options->lower_fceil'),
175 (('~fadd', ('fmul', a, ('fadd', 1.0, ('fneg', ('b2f', 'c@1')))), ('fmul', b, ('b2f', c))), ('bcsel', c, b, a), 'options->lower_flrp32'),
176 (('~fadd@32', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp32'),
177 (('~fadd@64', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp64'),
178 # These are the same as the previous three rules, but it depends on
179 # 1-fsat(x) <=> fsat(1-x). See below.
180 (('~fadd@32', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp32'),
181 (('~fadd@64', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp64'),
182
183 (('~fadd', a, ('fmul', ('b2f', 'c@1'), ('fadd', b, ('fneg', a)))), ('bcsel', c, b, a), 'options->lower_flrp32'),
184 (('~fadd@32', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp32'),
185 (('~fadd@64', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp64'),
186 (('ffma', a, b, c), ('fadd', ('fmul', a, b), c), 'options->lower_ffma'),
187 (('~fadd', ('fmul', a, b), c), ('ffma', a, b, c), 'options->fuse_ffma'),
188
189 (('~fmul', ('fadd', ('iand', ('ineg', ('b2i32', 'a@bool')), ('fmul', b, c)), '#d'), '#e'),
190 ('bcsel', a, ('fmul', ('fadd', ('fmul', b, c), d), e), ('fmul', d, e))),
191
192 (('fdph', a, b), ('fdot4', ('vec4', 'a.x', 'a.y', 'a.z', 1.0), b), 'options->lower_fdph'),
193
194 (('fdot4', ('vec4', a, b, c, 1.0), d), ('fdph', ('vec3', a, b, c), d), '!options->lower_fdph'),
195 (('fdot4', ('vec4', a, 0.0, 0.0, 0.0), b), ('fmul', a, b)),
196 (('fdot4', ('vec4', a, b, 0.0, 0.0), c), ('fdot2', ('vec2', a, b), c)),
197 (('fdot4', ('vec4', a, b, c, 0.0), d), ('fdot3', ('vec3', a, b, c), d)),
198
199 (('fdot3', ('vec3', a, 0.0, 0.0), b), ('fmul', a, b)),
200 (('fdot3', ('vec3', a, b, 0.0), c), ('fdot2', ('vec2', a, b), c)),
201
202 (('fdot2', ('vec2', a, 0.0), b), ('fmul', a, b)),
203 (('fdot2', a, 1.0), ('fadd', 'a.x', 'a.y')),
204
205 # Lower fdot to fsum when it is available
206 (('fdot2', a, b), ('fsum2', ('fmul', a, b)), 'options->lower_fdot'),
207 (('fdot3', a, b), ('fsum3', ('fmul', a, b)), 'options->lower_fdot'),
208 (('fdot4', a, b), ('fsum4', ('fmul', a, b)), 'options->lower_fdot'),
209 (('fsum2', a), ('fadd', 'a.x', 'a.y'), 'options->lower_fdot'),
210
211 # If x >= 0 and x <= 1: fsat(1 - x) == 1 - fsat(x) trivially
212 # If x < 0: 1 - fsat(x) => 1 - 0 => 1 and fsat(1 - x) => fsat(> 1) => 1
213 # If x > 1: 1 - fsat(x) => 1 - 1 => 0 and fsat(1 - x) => fsat(< 0) => 0
214 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
215
216 # 1 - ((1 - a) * (1 - b))
217 # 1 - (1 - a - b + a*b)
218 # 1 - 1 + a + b - a*b
219 # a + b - a*b
220 # a + b*(1 - a)
221 # b*(1 - a) + 1*a
222 # flrp(b, 1, a)
223 (('~fadd@32', 1.0, ('fneg', ('fmul', ('fadd', 1.0, ('fneg', a)), ('fadd', 1.0, ('fneg', b))))),
224 ('flrp', b, 1.0, a), '!options->lower_flrp32'),
225
226 # (a * #b + #c) << #d
227 # ((a * #b) << #d) + (#c << #d)
228 # (a * (#b << #d)) + (#c << #d)
229 (('ishl', ('iadd', ('imul', a, '#b'), '#c'), '#d'),
230 ('iadd', ('imul', a, ('ishl', b, d)), ('ishl', c, d))),
231
232 # (a * #b) << #c
233 # a * (#b << #c)
234 (('ishl', ('imul', a, '#b'), '#c'), ('imul', a, ('ishl', b, c))),
235 ]
236
237 # Care must be taken here. Shifts in NIR uses only the lower log2(bitsize)
238 # bits of the second source. These replacements must correctly handle the
239 # case where (b % bitsize) + (c % bitsize) >= bitsize.
240 for s in [8, 16, 32, 64]:
241 mask = (1 << s) - 1
242
243 ishl = "ishl@{}".format(s)
244 ishr = "ishr@{}".format(s)
245 ushr = "ushr@{}".format(s)
246
247 in_bounds = ('ult', ('iadd', ('iand', b, mask), ('iand', c, mask)), s)
248
249 optimizations.extend([
250 ((ishl, (ishl, a, '#b'), '#c'), ('bcsel', in_bounds, (ishl, a, ('iadd', b, c)), 0)),
251 ((ushr, (ushr, a, '#b'), '#c'), ('bcsel', in_bounds, (ushr, a, ('iadd', b, c)), 0)),
252
253 # To get get -1 for large shifts of negative values, ishr must instead
254 # clamp the shift count to the maximum value.
255 ((ishr, (ishr, a, '#b'), '#c'),
256 (ishr, a, ('imin', ('iadd', ('iand', b, mask), ('iand', c, mask)), s - 1))),
257 ])
258
259 # Optimize a pattern of address calculation created by DXVK where the offset is
260 # divided by 4 and then multipled by 4. This can be turned into an iand and the
261 # additions before can be reassociated to CSE the iand instruction.
262 for log2 in range(1, 7): # powers of two from 2 to 64
263 v = 1 << log2
264 mask = 0xffffffff & ~(v - 1)
265 b_is_multiple = '#b(is_unsigned_multiple_of_{})'.format(v)
266
267 optimizations.extend([
268 # 'a >> #b << #b' -> 'a & ~((1 << #b) - 1)'
269 (('ishl@32', ('ushr@32', a, log2), log2), ('iand', a, mask)),
270
271 # Reassociate for improved CSE
272 (('iand@32', ('iadd@32', a, b_is_multiple), mask), ('iadd', ('iand', a, mask), b)),
273 ])
274
275 # To save space in the state tables, reduce to the set that is known to help.
276 # Previously, this was range(1, 32). In addition, a couple rules inside the
277 # loop are commented out. Revisit someday, probably after mesa/#2635 has some
278 # resolution.
279 for i in [1, 2, 16, 24]:
280 lo_mask = 0xffffffff >> i
281 hi_mask = (0xffffffff << i) & 0xffffffff
282
283 optimizations.extend([
284 # This pattern seems to only help in the soft-fp64 code.
285 (('ishl@32', ('iand', 'a@32', lo_mask), i), ('ishl', a, i)),
286 # (('ushr@32', ('iand', 'a@32', hi_mask), i), ('ushr', a, i)),
287 # (('ishr@32', ('iand', 'a@32', hi_mask), i), ('ishr', a, i)),
288
289 (('iand', ('ishl', 'a@32', i), hi_mask), ('ishl', a, i)),
290 (('iand', ('ushr', 'a@32', i), lo_mask), ('ushr', a, i)),
291 # (('iand', ('ishr', 'a@32', i), lo_mask), ('ushr', a, i)), # Yes, ushr is correct
292 ])
293
294 optimizations.extend([
295 # This is common for address calculations. Reassociating may enable the
296 # 'a<<c' to be CSE'd. It also helps architectures that have an ISHLADD
297 # instruction or a constant offset field for in load / store instructions.
298 (('ishl', ('iadd', a, '#b'), '#c'), ('iadd', ('ishl', a, c), ('ishl', b, c))),
299
300 # Comparison simplifications
301 (('~inot', ('flt', a, b)), ('fge', a, b)),
302 (('~inot', ('fge', a, b)), ('flt', a, b)),
303 (('inot', ('feq', a, b)), ('fne', a, b)),
304 (('inot', ('fne', a, b)), ('feq', a, b)),
305 (('inot', ('ilt', a, b)), ('ige', a, b)),
306 (('inot', ('ult', a, b)), ('uge', a, b)),
307 (('inot', ('ige', a, b)), ('ilt', a, b)),
308 (('inot', ('uge', a, b)), ('ult', a, b)),
309 (('inot', ('ieq', a, b)), ('ine', a, b)),
310 (('inot', ('ine', a, b)), ('ieq', a, b)),
311
312 (('iand', ('feq', a, b), ('fne', a, b)), False),
313 (('iand', ('flt', a, b), ('flt', b, a)), False),
314 (('iand', ('ieq', a, b), ('ine', a, b)), False),
315 (('iand', ('ilt', a, b), ('ilt', b, a)), False),
316 (('iand', ('ult', a, b), ('ult', b, a)), False),
317
318 # This helps some shaders because, after some optimizations, they end up
319 # with patterns like (-a < -b) || (b < a). In an ideal world, this sort of
320 # matching would be handled by CSE.
321 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
322 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
323 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
324 (('fne', ('fneg', a), ('fneg', b)), ('fne', b, a)),
325 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
326 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
327 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
328 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
329 (('fne', ('fneg', a), -1.0), ('fne', 1.0, a)),
330 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
331
332 (('flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
333 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
334 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
335 (('fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
336 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
337 (('fne', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fne', a, b)),
338
339 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
340 (('flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
341 (('fge', 0.0, ('fsat(is_used_once)', a)), ('fge', 0.0, a)),
342 (('flt', 0.0, ('fsat(is_used_once)', a)), ('flt', 0.0, a)),
343
344 # 0.0 >= b2f(a)
345 # b2f(a) <= 0.0
346 # b2f(a) == 0.0 because b2f(a) can only be 0 or 1
347 # inot(a)
348 (('fge', 0.0, ('b2f', 'a@1')), ('inot', a)),
349
350 (('fge', ('fneg', ('b2f', 'a@1')), 0.0), ('inot', a)),
351
352 (('fne', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
353 (('fne', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
354 (('fne', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('ior', a, b)),
355 (('fne', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('ior', a, b)),
356 (('fne', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
357 (('fne', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
358 (('fne', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('iand', a, b)),
359 (('fne', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ixor', a, b)),
360 (('fne', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ixor', a, b)),
361 (('fne', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ixor', a, b)),
362 (('feq', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
363 (('feq', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
364 (('feq', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('inot', ('ior', a, b))),
365 (('feq', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
366 (('feq', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
367 (('feq', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
368 (('feq', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('inot', ('iand', a, b))),
369 (('feq', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ieq', a, b)),
370 (('feq', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ieq', a, b)),
371 (('feq', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ieq', a, b)),
372
373 # -(b2f(a) + b2f(b)) < 0
374 # 0 < b2f(a) + b2f(b)
375 # 0 != b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
376 # a || b
377 (('flt', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('ior', a, b)),
378 (('flt', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('ior', a, b)),
379
380 # -(b2f(a) + b2f(b)) >= 0
381 # 0 >= b2f(a) + b2f(b)
382 # 0 == b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
383 # !(a || b)
384 (('fge', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('inot', ('ior', a, b))),
385 (('fge', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
386
387 (('flt', a, ('fneg', a)), ('flt', a, 0.0)),
388 (('fge', a, ('fneg', a)), ('fge', a, 0.0)),
389
390 # Some optimizations (below) convert things like (a < b || c < b) into
391 # (min(a, c) < b). However, this interfers with the previous optimizations
392 # that try to remove comparisons with negated sums of b2f. This just
393 # breaks that apart.
394 (('flt', ('fmin', c, ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')))), 0.0),
395 ('ior', ('flt', c, 0.0), ('ior', a, b))),
396
397 (('~flt', ('fadd', a, b), a), ('flt', b, 0.0)),
398 (('~fge', ('fadd', a, b), a), ('fge', b, 0.0)),
399 (('~feq', ('fadd', a, b), a), ('feq', b, 0.0)),
400 (('~fne', ('fadd', a, b), a), ('fne', b, 0.0)),
401 (('~flt', ('fadd(is_used_once)', a, '#b'), '#c'), ('flt', a, ('fadd', c, ('fneg', b)))),
402 (('~flt', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('flt', ('fneg', ('fadd', c, b)), a)),
403 (('~fge', ('fadd(is_used_once)', a, '#b'), '#c'), ('fge', a, ('fadd', c, ('fneg', b)))),
404 (('~fge', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fge', ('fneg', ('fadd', c, b)), a)),
405 (('~feq', ('fadd(is_used_once)', a, '#b'), '#c'), ('feq', a, ('fadd', c, ('fneg', b)))),
406 (('~feq', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('feq', ('fneg', ('fadd', c, b)), a)),
407 (('~fne', ('fadd(is_used_once)', a, '#b'), '#c'), ('fne', a, ('fadd', c, ('fneg', b)))),
408 (('~fne', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fne', ('fneg', ('fadd', c, b)), a)),
409
410 # Cannot remove the addition from ilt or ige due to overflow.
411 (('ieq', ('iadd', a, b), a), ('ieq', b, 0)),
412 (('ine', ('iadd', a, b), a), ('ine', b, 0)),
413
414 # fmin(-b2f(a), b) >= 0.0
415 # -b2f(a) >= 0.0 && b >= 0.0
416 # -b2f(a) == 0.0 && b >= 0.0 -b2f can only be 0 or -1, never >0
417 # b2f(a) == 0.0 && b >= 0.0
418 # a == False && b >= 0.0
419 # !a && b >= 0.0
420 #
421 # The fge in the second replacement is not a typo. I leave the proof that
422 # "fmin(-b2f(a), b) >= 0 <=> fmin(-b2f(a), b) == 0" as an exercise for the
423 # reader.
424 (('fge', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
425 (('feq', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
426
427 (('feq', ('b2f', 'a@1'), 0.0), ('inot', a)),
428 (('~fne', ('b2f', 'a@1'), 0.0), a),
429 (('ieq', ('b2i', 'a@1'), 0), ('inot', a)),
430 (('ine', ('b2i', 'a@1'), 0), a),
431
432 (('fne', ('u2f', a), 0.0), ('ine', a, 0)),
433 (('feq', ('u2f', a), 0.0), ('ieq', a, 0)),
434 (('fge', ('u2f', a), 0.0), True),
435 (('fge', 0.0, ('u2f', a)), ('uge', 0, a)), # ieq instead?
436 (('flt', ('u2f', a), 0.0), False),
437 (('flt', 0.0, ('u2f', a)), ('ult', 0, a)), # ine instead?
438 (('fne', ('i2f', a), 0.0), ('ine', a, 0)),
439 (('feq', ('i2f', a), 0.0), ('ieq', a, 0)),
440 (('fge', ('i2f', a), 0.0), ('ige', a, 0)),
441 (('fge', 0.0, ('i2f', a)), ('ige', 0, a)),
442 (('flt', ('i2f', a), 0.0), ('ilt', a, 0)),
443 (('flt', 0.0, ('i2f', a)), ('ilt', 0, a)),
444
445 # 0.0 < fabs(a)
446 # fabs(a) > 0.0
447 # fabs(a) != 0.0 because fabs(a) must be >= 0
448 # a != 0.0
449 (('~flt', 0.0, ('fabs', a)), ('fne', a, 0.0)),
450
451 # -fabs(a) < 0.0
452 # fabs(a) > 0.0
453 (('~flt', ('fneg', ('fabs', a)), 0.0), ('fne', a, 0.0)),
454
455 # 0.0 >= fabs(a)
456 # 0.0 == fabs(a) because fabs(a) must be >= 0
457 # 0.0 == a
458 (('fge', 0.0, ('fabs', a)), ('feq', a, 0.0)),
459
460 # -fabs(a) >= 0.0
461 # 0.0 >= fabs(a)
462 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
463
464 # (a >= 0.0) && (a <= 1.0) -> fsat(a) == a
465 (('iand', ('fge', a, 0.0), ('fge', 1.0, a)), ('feq', a, ('fsat', a)), '!options->lower_fsat'),
466
467 # (a < 0.0) || (a > 1.0)
468 # !(!(a < 0.0) && !(a > 1.0))
469 # !((a >= 0.0) && (a <= 1.0))
470 # !(a == fsat(a))
471 # a != fsat(a)
472 (('ior', ('flt', a, 0.0), ('flt', 1.0, a)), ('fne', a, ('fsat', a)), '!options->lower_fsat'),
473
474 (('fmax', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('ior', a, b))),
475 (('fmax', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('ior', a, b)))),
476 (('fmin', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
477 (('fmin', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('iand', a, b)))),
478
479 # fmin(b2f(a), b)
480 # bcsel(a, fmin(b2f(a), b), fmin(b2f(a), b))
481 # bcsel(a, fmin(b2f(True), b), fmin(b2f(False), b))
482 # bcsel(a, fmin(1.0, b), fmin(0.0, b))
483 #
484 # Since b is a constant, constant folding will eliminate the fmin and the
485 # fmax. If b is > 1.0, the bcsel will be replaced with a b2f.
486 (('fmin', ('b2f', 'a@1'), '#b'), ('bcsel', a, ('fmin', b, 1.0), ('fmin', b, 0.0))),
487
488 (('flt', ('fadd(is_used_once)', a, ('fneg', b)), 0.0), ('flt', a, b)),
489
490 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
491 (('~bcsel', ('flt', b, a), b, a), ('fmin', a, b)),
492 (('~bcsel', ('flt', a, b), b, a), ('fmax', a, b)),
493 (('~bcsel', ('fge', a, b), b, a), ('fmin', a, b)),
494 (('~bcsel', ('fge', b, a), b, a), ('fmax', a, b)),
495 (('bcsel', ('i2b', a), b, c), ('bcsel', ('ine', a, 0), b, c)),
496 (('bcsel', ('inot', a), b, c), ('bcsel', a, c, b)),
497 (('bcsel', a, ('bcsel', a, b, c), d), ('bcsel', a, b, d)),
498 (('bcsel', a, b, ('bcsel', a, c, d)), ('bcsel', a, b, d)),
499 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
500 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
501 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
502 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
503 (('bcsel', a, True, b), ('ior', a, b)),
504 (('bcsel', a, a, b), ('ior', a, b)),
505 (('bcsel', a, b, False), ('iand', a, b)),
506 (('bcsel', a, b, a), ('iand', a, b)),
507 (('~fmin', a, a), a),
508 (('~fmax', a, a), a),
509 (('imin', a, a), a),
510 (('imax', a, a), a),
511 (('umin', a, a), a),
512 (('umax', a, a), a),
513 (('fmax', ('fmax', a, b), b), ('fmax', a, b)),
514 (('umax', ('umax', a, b), b), ('umax', a, b)),
515 (('imax', ('imax', a, b), b), ('imax', a, b)),
516 (('fmin', ('fmin', a, b), b), ('fmin', a, b)),
517 (('umin', ('umin', a, b), b), ('umin', a, b)),
518 (('imin', ('imin', a, b), b), ('imin', a, b)),
519 (('iand@32', a, ('inot', ('ishr', a, 31))), ('imax', a, 0)),
520
521 # Simplify logic to detect sign of an integer.
522 (('ieq', ('iand', 'a@32', 0x80000000), 0x00000000), ('ige', a, 0)),
523 (('ine', ('iand', 'a@32', 0x80000000), 0x80000000), ('ige', a, 0)),
524 (('ine', ('iand', 'a@32', 0x80000000), 0x00000000), ('ilt', a, 0)),
525 (('ieq', ('iand', 'a@32', 0x80000000), 0x80000000), ('ilt', a, 0)),
526 (('ine', ('ushr', 'a@32', 31), 0), ('ilt', a, 0)),
527 (('ieq', ('ushr', 'a@32', 31), 0), ('ige', a, 0)),
528 (('ieq', ('ushr', 'a@32', 31), 1), ('ilt', a, 0)),
529 (('ine', ('ushr', 'a@32', 31), 1), ('ige', a, 0)),
530 (('ine', ('ishr', 'a@32', 31), 0), ('ilt', a, 0)),
531 (('ieq', ('ishr', 'a@32', 31), 0), ('ige', a, 0)),
532 (('ieq', ('ishr', 'a@32', 31), -1), ('ilt', a, 0)),
533 (('ine', ('ishr', 'a@32', 31), -1), ('ige', a, 0)),
534
535 (('fmin', a, ('fneg', a)), ('fneg', ('fabs', a))),
536 (('imin', a, ('ineg', a)), ('ineg', ('iabs', a))),
537 (('fmin', a, ('fneg', ('fabs', a))), ('fneg', ('fabs', a))),
538 (('imin', a, ('ineg', ('iabs', a))), ('ineg', ('iabs', a))),
539 (('~fmin', a, ('fabs', a)), a),
540 (('imin', a, ('iabs', a)), a),
541 (('~fmax', a, ('fneg', ('fabs', a))), a),
542 (('imax', a, ('ineg', ('iabs', a))), a),
543 (('fmax', a, ('fabs', a)), ('fabs', a)),
544 (('imax', a, ('iabs', a)), ('iabs', a)),
545 (('fmax', a, ('fneg', a)), ('fabs', a)),
546 (('imax', a, ('ineg', a)), ('iabs', a)),
547 (('~fmax', ('fabs', a), 0.0), ('fabs', a)),
548 (('fmin', ('fmax', a, 0.0), 1.0), ('fsat', a), '!options->lower_fsat'),
549 # fmax(fmin(a, 1.0), 0.0) is inexact because it returns 1.0 on NaN, while
550 # fsat(a) returns 0.0.
551 (('~fmax', ('fmin', a, 1.0), 0.0), ('fsat', a), '!options->lower_fsat'),
552 # fmin(fmax(a, -1.0), 0.0) is inexact because it returns -1.0 on NaN, while
553 # fneg(fsat(fneg(a))) returns -0.0 on NaN.
554 (('~fmin', ('fmax', a, -1.0), 0.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
555 # fmax(fmin(a, 0.0), -1.0) is inexact because it returns 0.0 on NaN, while
556 # fneg(fsat(fneg(a))) returns -0.0 on NaN. This only matters if
557 # SignedZeroInfNanPreserve is set, but we don't currently have any way of
558 # representing this in the optimizations other than the usual ~.
559 (('~fmax', ('fmin', a, 0.0), -1.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
560 (('fsat', ('fsign', a)), ('b2f', ('flt', 0.0, a))),
561 (('fsat', ('b2f', a)), ('b2f', a)),
562 (('fsat', a), ('fmin', ('fmax', a, 0.0), 1.0), 'options->lower_fsat'),
563 (('fsat', ('fsat', a)), ('fsat', a)),
564 (('fsat', ('fneg(is_used_once)', ('fadd(is_used_once)', a, b))), ('fsat', ('fadd', ('fneg', a), ('fneg', b))), '!options->lower_fsat'),
565 (('fsat', ('fneg(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fneg', a), b)), '!options->lower_fsat'),
566 (('fsat', ('fabs(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fabs', a), ('fabs', b))), '!options->lower_fsat'),
567 (('fmin', ('fmax', ('fmin', ('fmax', a, b), c), b), c), ('fmin', ('fmax', a, b), c)),
568 (('imin', ('imax', ('imin', ('imax', a, b), c), b), c), ('imin', ('imax', a, b), c)),
569 (('umin', ('umax', ('umin', ('umax', a, b), c), b), c), ('umin', ('umax', a, b), c)),
570 # Both the left and right patterns are "b" when isnan(a), so this is exact.
571 (('fmax', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmax', a, b))),
572 # The left pattern is 0.0 when isnan(a) (because fmin(fsat(NaN), b) ->
573 # fmin(0.0, b)) while the right one is "b", so this optimization is inexact.
574 (('~fmin', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmin', a, b))),
575
576 # If a in [0,b] then b-a is also in [0,b]. Since b in [0,1], max(b-a, 0) =
577 # fsat(b-a).
578 #
579 # If a > b, then b-a < 0 and max(b-a, 0) = fsat(b-a) = 0
580 #
581 # This should be NaN safe since max(NaN, 0) = fsat(NaN) = 0.
582 (('fmax', ('fadd(is_used_once)', ('fneg', 'a(is_not_negative)'), '#b@32(is_zero_to_one)'), 0.0),
583 ('fsat', ('fadd', ('fneg', a), b)), '!options->lower_fsat'),
584
585 (('extract_u8', ('imin', ('imax', a, 0), 0xff), 0), ('imin', ('imax', a, 0), 0xff)),
586 (('~ior', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmax', b, c))),
587 (('~ior', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmin', a, b), c)),
588 (('~ior', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmin', b, c))),
589 (('~ior', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmax', a, b), c)),
590 (('~ior', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmax', b, c))),
591 (('~ior', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmin', a, b), c)),
592 (('~ior', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmin', b, c))),
593 (('~ior', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmax', a, b), c)),
594 (('~iand', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmin', b, c))),
595 (('~iand', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmax', a, b), c)),
596 (('~iand', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmax', b, c))),
597 (('~iand', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmin', a, b), c)),
598 (('~iand', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmin', b, c))),
599 (('~iand', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmax', a, b), c)),
600 (('~iand', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmax', b, c))),
601 (('~iand', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmin', a, b), c)),
602
603 (('ior', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imax', b, c))),
604 (('ior', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imin', a, b), c)),
605 (('ior', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imin', b, c))),
606 (('ior', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imax', a, b), c)),
607 (('ior', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umax', b, c))),
608 (('ior', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umin', a, b), c)),
609 (('ior', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umin', b, c))),
610 (('ior', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umax', a, b), c)),
611 (('iand', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imin', b, c))),
612 (('iand', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imax', a, b), c)),
613 (('iand', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imax', b, c))),
614 (('iand', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imin', a, b), c)),
615 (('iand', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umin', b, c))),
616 (('iand', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umax', a, b), c)),
617 (('iand', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umax', b, c))),
618 (('iand', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umin', a, b), c)),
619
620 # These derive from the previous patterns with the application of b < 0 <=>
621 # 0 < -b. The transformation should be applied if either comparison is
622 # used once as this ensures that the number of comparisons will not
623 # increase. The sources to the ior and iand are not symmetric, so the
624 # rules have to be duplicated to get this behavior.
625 (('~ior', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
626 (('~ior', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
627 (('~ior', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
628 (('~ior', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
629 (('~iand', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
630 (('~iand', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
631 (('~iand', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
632 (('~iand', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
633
634 # Common pattern like 'if (i == 0 || i == 1 || ...)'
635 (('ior', ('ieq', a, 0), ('ieq', a, 1)), ('uge', 1, a)),
636 (('ior', ('uge', 1, a), ('ieq', a, 2)), ('uge', 2, a)),
637 (('ior', ('uge', 2, a), ('ieq', a, 3)), ('uge', 3, a)),
638
639 # The (i2f32, ...) part is an open-coded fsign. When that is combined with
640 # the bcsel, it's basically copysign(1.0, a). There is no copysign in NIR,
641 # so emit an open-coded version of that.
642 (('bcsel@32', ('feq', a, 0.0), 1.0, ('i2f32', ('iadd', ('b2i32', ('flt', 0.0, 'a@32')), ('ineg', ('b2i32', ('flt', 'a@32', 0.0)))))),
643 ('ior', 0x3f800000, ('iand', a, 0x80000000))),
644
645 (('ior', a, ('ieq', a, False)), True),
646 (('ior', a, ('inot', a)), -1),
647
648 (('ine', ('ineg', ('b2i32', 'a@1')), ('ineg', ('b2i32', 'b@1'))), ('ine', a, b)),
649 (('b2i32', ('ine', 'a@1', 'b@1')), ('b2i32', ('ixor', a, b))),
650
651 (('iand', ('ieq', 'a@32', 0), ('ieq', 'b@32', 0)), ('ieq', ('umax', a, b), 0)),
652 (('ior', ('ieq', 'a@32', 0), ('ieq', 'b@32', 0)), ('ieq', ('umin', a, b), 0)),
653 (('iand', ('ine', 'a@32', 0), ('ine', 'b@32', 0)), ('ine', ('umin', a, b), 0)),
654 (('ior', ('ine', 'a@32', 0), ('ine', 'b@32', 0)), ('ine', ('umax', a, b), 0)),
655
656 # This pattern occurs coutresy of __flt64_nonnan in the soft-fp64 code.
657 # The first part of the iand comes from the !__feq64_nonnan.
658 #
659 # The second pattern is a reformulation of the first based on the relation
660 # (a == 0 || y == 0) <=> umin(a, y) == 0, where b in the first equation
661 # happens to be y == 0.
662 (('iand', ('inot', ('iand', ('ior', ('ieq', a, 0), b), c)), ('ilt', a, 0)),
663 ('iand', ('inot', ('iand', b , c)), ('ilt', a, 0))),
664 (('iand', ('inot', ('iand', ('ieq', ('umin', a, b), 0), c)), ('ilt', a, 0)),
665 ('iand', ('inot', ('iand', ('ieq', b , 0), c)), ('ilt', a, 0))),
666
667 # These patterns can result when (a < b || a < c) => (a < min(b, c))
668 # transformations occur before constant propagation and loop-unrolling.
669 (('~flt', a, ('fmax', b, a)), ('flt', a, b)),
670 (('~flt', ('fmin', a, b), a), ('flt', b, a)),
671 (('~fge', a, ('fmin', b, a)), True),
672 (('~fge', ('fmax', a, b), a), True),
673 (('~flt', a, ('fmin', b, a)), False),
674 (('~flt', ('fmax', a, b), a), False),
675 (('~fge', a, ('fmax', b, a)), ('fge', a, b)),
676 (('~fge', ('fmin', a, b), a), ('fge', b, a)),
677
678 (('ilt', a, ('imax', b, a)), ('ilt', a, b)),
679 (('ilt', ('imin', a, b), a), ('ilt', b, a)),
680 (('ige', a, ('imin', b, a)), True),
681 (('ige', ('imax', a, b), a), True),
682 (('ult', a, ('umax', b, a)), ('ult', a, b)),
683 (('ult', ('umin', a, b), a), ('ult', b, a)),
684 (('uge', a, ('umin', b, a)), True),
685 (('uge', ('umax', a, b), a), True),
686 (('ilt', a, ('imin', b, a)), False),
687 (('ilt', ('imax', a, b), a), False),
688 (('ige', a, ('imax', b, a)), ('ige', a, b)),
689 (('ige', ('imin', a, b), a), ('ige', b, a)),
690 (('ult', a, ('umin', b, a)), False),
691 (('ult', ('umax', a, b), a), False),
692 (('uge', a, ('umax', b, a)), ('uge', a, b)),
693 (('uge', ('umin', a, b), a), ('uge', b, a)),
694 (('ult', a, ('iand', b, a)), False),
695 (('ult', ('ior', a, b), a), False),
696 (('uge', a, ('iand', b, a)), True),
697 (('uge', ('ior', a, b), a), True),
698
699 (('ilt', '#a', ('imax', '#b', c)), ('ior', ('ilt', a, b), ('ilt', a, c))),
700 (('ilt', ('imin', '#a', b), '#c'), ('ior', ('ilt', a, c), ('ilt', b, c))),
701 (('ige', '#a', ('imin', '#b', c)), ('ior', ('ige', a, b), ('ige', a, c))),
702 (('ige', ('imax', '#a', b), '#c'), ('ior', ('ige', a, c), ('ige', b, c))),
703 (('ult', '#a', ('umax', '#b', c)), ('ior', ('ult', a, b), ('ult', a, c))),
704 (('ult', ('umin', '#a', b), '#c'), ('ior', ('ult', a, c), ('ult', b, c))),
705 (('uge', '#a', ('umin', '#b', c)), ('ior', ('uge', a, b), ('uge', a, c))),
706 (('uge', ('umax', '#a', b), '#c'), ('ior', ('uge', a, c), ('uge', b, c))),
707 (('ilt', '#a', ('imin', '#b', c)), ('iand', ('ilt', a, b), ('ilt', a, c))),
708 (('ilt', ('imax', '#a', b), '#c'), ('iand', ('ilt', a, c), ('ilt', b, c))),
709 (('ige', '#a', ('imax', '#b', c)), ('iand', ('ige', a, b), ('ige', a, c))),
710 (('ige', ('imin', '#a', b), '#c'), ('iand', ('ige', a, c), ('ige', b, c))),
711 (('ult', '#a', ('umin', '#b', c)), ('iand', ('ult', a, b), ('ult', a, c))),
712 (('ult', ('umax', '#a', b), '#c'), ('iand', ('ult', a, c), ('ult', b, c))),
713 (('uge', '#a', ('umax', '#b', c)), ('iand', ('uge', a, b), ('uge', a, c))),
714 (('uge', ('umin', '#a', b), '#c'), ('iand', ('uge', a, c), ('uge', b, c))),
715
716 # Thanks to sign extension, the ishr(a, b) is negative if and only if a is
717 # negative.
718 (('bcsel', ('ilt', a, 0), ('ineg', ('ishr', a, b)), ('ishr', a, b)),
719 ('iabs', ('ishr', a, b))),
720 (('iabs', ('ishr', ('iabs', a), b)), ('ishr', ('iabs', a), b)),
721
722 (('fabs', ('slt', a, b)), ('slt', a, b)),
723 (('fabs', ('sge', a, b)), ('sge', a, b)),
724 (('fabs', ('seq', a, b)), ('seq', a, b)),
725 (('fabs', ('sne', a, b)), ('sne', a, b)),
726 (('slt', a, b), ('b2f', ('flt', a, b)), 'options->lower_scmp'),
727 (('sge', a, b), ('b2f', ('fge', a, b)), 'options->lower_scmp'),
728 (('seq', a, b), ('b2f', ('feq', a, b)), 'options->lower_scmp'),
729 (('sne', a, b), ('b2f', ('fne', a, b)), 'options->lower_scmp'),
730 (('seq', ('seq', a, b), 1.0), ('seq', a, b)),
731 (('seq', ('sne', a, b), 1.0), ('sne', a, b)),
732 (('seq', ('slt', a, b), 1.0), ('slt', a, b)),
733 (('seq', ('sge', a, b), 1.0), ('sge', a, b)),
734 (('sne', ('seq', a, b), 0.0), ('seq', a, b)),
735 (('sne', ('sne', a, b), 0.0), ('sne', a, b)),
736 (('sne', ('slt', a, b), 0.0), ('slt', a, b)),
737 (('sne', ('sge', a, b), 0.0), ('sge', a, b)),
738 (('seq', ('seq', a, b), 0.0), ('sne', a, b)),
739 (('seq', ('sne', a, b), 0.0), ('seq', a, b)),
740 (('seq', ('slt', a, b), 0.0), ('sge', a, b)),
741 (('seq', ('sge', a, b), 0.0), ('slt', a, b)),
742 (('sne', ('seq', a, b), 1.0), ('sne', a, b)),
743 (('sne', ('sne', a, b), 1.0), ('seq', a, b)),
744 (('sne', ('slt', a, b), 1.0), ('sge', a, b)),
745 (('sne', ('sge', a, b), 1.0), ('slt', a, b)),
746 (('fall_equal2', a, b), ('fmin', ('seq', 'a.x', 'b.x'), ('seq', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
747 (('fall_equal3', a, b), ('seq', ('fany_nequal3', a, b), 0.0), 'options->lower_vector_cmp'),
748 (('fall_equal4', a, b), ('seq', ('fany_nequal4', a, b), 0.0), 'options->lower_vector_cmp'),
749 (('fany_nequal2', a, b), ('fmax', ('sne', 'a.x', 'b.x'), ('sne', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
750 (('fany_nequal3', a, b), ('fsat', ('fdot3', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
751 (('fany_nequal4', a, b), ('fsat', ('fdot4', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
752 (('fne', ('fneg', a), a), ('fne', a, 0.0)),
753 (('feq', ('fneg', a), a), ('feq', a, 0.0)),
754 # Emulating booleans
755 (('imul', ('b2i', 'a@1'), ('b2i', 'b@1')), ('b2i', ('iand', a, b))),
756 (('iand', ('b2i', 'a@1'), ('b2i', 'b@1')), ('b2i', ('iand', a, b))),
757 (('ior', ('b2i', 'a@1'), ('b2i', 'b@1')), ('b2i', ('ior', a, b))),
758 (('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
759 (('fsat', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('b2f', ('ior', a, b))),
760 (('iand', 'a@bool32', 1.0), ('b2f', a)),
761 # True/False are ~0 and 0 in NIR. b2i of True is 1, and -1 is ~0 (True).
762 (('ineg', ('b2i32', 'a@32')), a),
763 (('flt', ('fneg', ('b2f', 'a@1')), 0), a), # Generated by TGSI KILL_IF.
764 # Comparison with the same args. Note that these are not done for
765 # the float versions because NaN always returns false on float
766 # inequalities.
767 (('ilt', a, a), False),
768 (('ige', a, a), True),
769 (('ieq', a, a), True),
770 (('ine', a, a), False),
771 (('ult', a, a), False),
772 (('uge', a, a), True),
773 # Logical and bit operations
774 (('iand', a, a), a),
775 (('iand', a, ~0), a),
776 (('iand', a, 0), 0),
777 (('ior', a, a), a),
778 (('ior', a, 0), a),
779 (('ior', a, True), True),
780 (('ixor', a, a), 0),
781 (('ixor', a, 0), a),
782 (('inot', ('inot', a)), a),
783 (('ior', ('iand', a, b), b), b),
784 (('ior', ('ior', a, b), b), ('ior', a, b)),
785 (('iand', ('ior', a, b), b), b),
786 (('iand', ('iand', a, b), b), ('iand', a, b)),
787 # DeMorgan's Laws
788 (('iand', ('inot', a), ('inot', b)), ('inot', ('ior', a, b))),
789 (('ior', ('inot', a), ('inot', b)), ('inot', ('iand', a, b))),
790 # Shift optimizations
791 (('ishl', 0, a), 0),
792 (('ishl', a, 0), a),
793 (('ishr', 0, a), 0),
794 (('ishr', a, 0), a),
795 (('ushr', 0, a), 0),
796 (('ushr', a, 0), a),
797 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('iadd', 16, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
798 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('isub', 16, b))), ('urol', a, b), '!options->lower_rotate'),
799 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('iadd', 32, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
800 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('isub', 32, b))), ('urol', a, b), '!options->lower_rotate'),
801 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('iadd', 16, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
802 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('isub', 16, b))), ('uror', a, b), '!options->lower_rotate'),
803 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('iadd', 32, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
804 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('isub', 32, b))), ('uror', a, b), '!options->lower_rotate'),
805 (('urol@16', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 16, b))), 'options->lower_rotate'),
806 (('urol@32', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 32, b))), 'options->lower_rotate'),
807 (('uror@16', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 16, b))), 'options->lower_rotate'),
808 (('uror@32', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 32, b))), 'options->lower_rotate'),
809 # Exponential/logarithmic identities
810 (('~fexp2', ('flog2', a)), a), # 2^lg2(a) = a
811 (('~flog2', ('fexp2', a)), a), # lg2(2^a) = a
812 (('fpow', a, b), ('fexp2', ('fmul', ('flog2', a), b)), 'options->lower_fpow'), # a^b = 2^(lg2(a)*b)
813 (('~fexp2', ('fmul', ('flog2', a), b)), ('fpow', a, b), '!options->lower_fpow'), # 2^(lg2(a)*b) = a^b
814 (('~fexp2', ('fadd', ('fmul', ('flog2', a), b), ('fmul', ('flog2', c), d))),
815 ('~fmul', ('fpow', a, b), ('fpow', c, d)), '!options->lower_fpow'), # 2^(lg2(a) * b + lg2(c) + d) = a^b * c^d
816 (('~fexp2', ('fmul', ('flog2', a), 0.5)), ('fsqrt', a)),
817 (('~fexp2', ('fmul', ('flog2', a), 2.0)), ('fmul', a, a)),
818 (('~fexp2', ('fmul', ('flog2', a), 4.0)), ('fmul', ('fmul', a, a), ('fmul', a, a))),
819 (('~fpow', a, 1.0), a),
820 (('~fpow', a, 2.0), ('fmul', a, a)),
821 (('~fpow', a, 4.0), ('fmul', ('fmul', a, a), ('fmul', a, a))),
822 (('~fpow', 2.0, a), ('fexp2', a)),
823 (('~fpow', ('fpow', a, 2.2), 0.454545), a),
824 (('~fpow', ('fabs', ('fpow', a, 2.2)), 0.454545), ('fabs', a)),
825 (('~fsqrt', ('fexp2', a)), ('fexp2', ('fmul', 0.5, a))),
826 (('~frcp', ('fexp2', a)), ('fexp2', ('fneg', a))),
827 (('~frsq', ('fexp2', a)), ('fexp2', ('fmul', -0.5, a))),
828 (('~flog2', ('fsqrt', a)), ('fmul', 0.5, ('flog2', a))),
829 (('~flog2', ('frcp', a)), ('fneg', ('flog2', a))),
830 (('~flog2', ('frsq', a)), ('fmul', -0.5, ('flog2', a))),
831 (('~flog2', ('fpow', a, b)), ('fmul', b, ('flog2', a))),
832 (('~fmul', ('fexp2(is_used_once)', a), ('fexp2(is_used_once)', b)), ('fexp2', ('fadd', a, b))),
833 (('bcsel', ('flt', a, 0.0), 0.0, ('fsqrt', a)), ('fsqrt', ('fmax', a, 0.0))),
834 (('~fmul', ('fsqrt', a), ('fsqrt', a)), ('fabs',a)),
835 # Division and reciprocal
836 (('~fdiv', 1.0, a), ('frcp', a)),
837 (('fdiv', a, b), ('fmul', a, ('frcp', b)), 'options->lower_fdiv'),
838 (('~frcp', ('frcp', a)), a),
839 (('~frcp', ('fsqrt', a)), ('frsq', a)),
840 (('fsqrt', a), ('frcp', ('frsq', a)), 'options->lower_fsqrt'),
841 (('~frcp', ('frsq', a)), ('fsqrt', a), '!options->lower_fsqrt'),
842 # Trig
843 (('fsin', a), lowered_sincos(0.5), 'options->lower_sincos'),
844 (('fcos', a), lowered_sincos(0.75), 'options->lower_sincos'),
845 # Boolean simplifications
846 (('i2b32(is_used_by_if)', a), ('ine32', a, 0)),
847 (('i2b1(is_used_by_if)', a), ('ine', a, 0)),
848 (('ieq', a, True), a),
849 (('ine(is_not_used_by_if)', a, True), ('inot', a)),
850 (('ine', a, False), a),
851 (('ieq(is_not_used_by_if)', a, False), ('inot', 'a')),
852 (('bcsel', a, True, False), a),
853 (('bcsel', a, False, True), ('inot', a)),
854 (('bcsel@32', a, 1.0, 0.0), ('b2f', a)),
855 (('bcsel@32', a, 0.0, 1.0), ('b2f', ('inot', a))),
856 (('bcsel@32', a, -1.0, -0.0), ('fneg', ('b2f', a))),
857 (('bcsel@32', a, -0.0, -1.0), ('fneg', ('b2f', ('inot', a)))),
858 (('bcsel', True, b, c), b),
859 (('bcsel', False, b, c), c),
860 (('bcsel', a, ('b2f(is_used_once)', 'b@32'), ('b2f', 'c@32')), ('b2f', ('bcsel', a, b, c))),
861
862 (('bcsel', a, b, b), b),
863 (('~fcsel', a, b, b), b),
864
865 # D3D Boolean emulation
866 (('bcsel', a, -1, 0), ('ineg', ('b2i', 'a@1'))),
867 (('bcsel', a, 0, -1), ('ineg', ('b2i', ('inot', a)))),
868 (('bcsel', a, 1, 0), ('b2i', 'a@1')),
869 (('bcsel', a, 0, 1), ('b2i', ('inot', a))),
870 (('iand', ('ineg', ('b2i', 'a@1')), ('ineg', ('b2i', 'b@1'))),
871 ('ineg', ('b2i', ('iand', a, b)))),
872 (('ior', ('ineg', ('b2i','a@1')), ('ineg', ('b2i', 'b@1'))),
873 ('ineg', ('b2i', ('ior', a, b)))),
874 (('ieq', ('ineg', ('b2i', 'a@1')), 0), ('inot', a)),
875 (('ieq', ('ineg', ('b2i', 'a@1')), -1), a),
876 (('ine', ('ineg', ('b2i', 'a@1')), 0), a),
877 (('ine', ('ineg', ('b2i', 'a@1')), -1), ('inot', a)),
878 (('iand', ('ineg', ('b2i', a)), 1.0), ('b2f', a)),
879 (('iand', ('ineg', ('b2i', a)), 1), ('b2i', a)),
880
881 # SM5 32-bit shifts are defined to use the 5 least significant bits
882 (('ishl', 'a@32', ('iand', 31, b)), ('ishl', a, b)),
883 (('ishr', 'a@32', ('iand', 31, b)), ('ishr', a, b)),
884 (('ushr', 'a@32', ('iand', 31, b)), ('ushr', a, b)),
885
886 # Conversions
887 (('i2b32', ('b2i', 'a@32')), a),
888 (('f2i', ('ftrunc', a)), ('f2i', a)),
889 (('f2u', ('ftrunc', a)), ('f2u', a)),
890 (('i2b', ('ineg', a)), ('i2b', a)),
891 (('i2b', ('iabs', a)), ('i2b', a)),
892 (('inot', ('f2b1', a)), ('feq', a, 0.0)),
893
894 # The C spec says, "If the value of the integral part cannot be represented
895 # by the integer type, the behavior is undefined." "Undefined" can mean
896 # "the conversion doesn't happen at all."
897 (('~i2f32', ('f2i32', 'a@32')), ('ftrunc', a)),
898
899 # Ironically, mark these as imprecise because removing the conversions may
900 # preserve more precision than doing the conversions (e.g.,
901 # uint(float(0x81818181u)) == 0x81818200).
902 (('~f2i32', ('i2f', 'a@32')), a),
903 (('~f2i32', ('u2f', 'a@32')), a),
904 (('~f2u32', ('i2f', 'a@32')), a),
905 (('~f2u32', ('u2f', 'a@32')), a),
906
907 # Conversions from 16 bits to 32 bits and back can always be removed
908 (('f2f16', ('f2f32', 'a@16')), a),
909 (('f2fmp', ('f2f32', 'a@16')), a),
910 (('i2i16', ('i2i32', 'a@16')), a),
911 (('i2imp', ('i2i32', 'a@16')), a),
912 (('u2u16', ('u2u32', 'a@16')), a),
913 (('u2ump', ('u2u32', 'a@16')), a),
914 (('f2f16', ('b2f32', 'a@1')), ('b2f16', a)),
915 (('f2fmp', ('b2f32', 'a@1')), ('b2f16', a)),
916 (('i2i16', ('b2i32', 'a@1')), ('b2i16', a)),
917 (('i2imp', ('b2i32', 'a@1')), ('b2i16', a)),
918 (('u2u16', ('b2i32', 'a@1')), ('b2i16', a)),
919 (('u2ump', ('b2i32', 'a@1')), ('b2i16', a)),
920 # Conversions to 16 bits would be lossy so they should only be removed if
921 # the instruction was generated by the precision lowering pass.
922 (('f2f32', ('f2fmp', 'a@32')), a),
923 (('i2i32', ('i2imp', 'a@32')), a),
924 (('u2u32', ('u2ump', 'a@32')), a),
925
926 (('ffloor', 'a(is_integral)'), a),
927 (('fceil', 'a(is_integral)'), a),
928 (('ftrunc', 'a(is_integral)'), a),
929 # fract(x) = x - floor(x), so fract(NaN) = NaN
930 (('~ffract', 'a(is_integral)'), 0.0),
931 (('fabs', 'a(is_not_negative)'), a),
932 (('iabs', 'a(is_not_negative)'), a),
933 (('fsat', 'a(is_not_positive)'), 0.0),
934
935 # Section 5.4.1 (Conversion and Scalar Constructors) of the GLSL 4.60 spec
936 # says:
937 #
938 # It is undefined to convert a negative floating-point value to an
939 # uint.
940 #
941 # Assuming that (uint)some_float behaves like (uint)(int)some_float allows
942 # some optimizations in the i965 backend to proceed.
943 (('ige', ('f2u', a), b), ('ige', ('f2i', a), b)),
944 (('ige', b, ('f2u', a)), ('ige', b, ('f2i', a))),
945 (('ilt', ('f2u', a), b), ('ilt', ('f2i', a), b)),
946 (('ilt', b, ('f2u', a)), ('ilt', b, ('f2i', a))),
947
948 (('~fmin', 'a(is_not_negative)', 1.0), ('fsat', a), '!options->lower_fsat'),
949
950 # The result of the multiply must be in [-1, 0], so the result of the ffma
951 # must be in [0, 1].
952 (('flt', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), False),
953 (('flt', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), False),
954 (('fmax', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0)),
955 (('fmax', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0)),
956
957 (('fne', 'a(is_not_zero)', 0.0), True),
958 (('feq', 'a(is_not_zero)', 0.0), False),
959
960 # In this chart, + means value > 0 and - means value < 0.
961 #
962 # + >= + -> unknown 0 >= + -> false - >= + -> false
963 # + >= 0 -> true 0 >= 0 -> true - >= 0 -> false
964 # + >= - -> true 0 >= - -> true - >= - -> unknown
965 #
966 # Using grouping conceptually similar to a Karnaugh map...
967 #
968 # (+ >= 0, + >= -, 0 >= 0, 0 >= -) == (is_not_negative >= is_not_positive) -> true
969 # (0 >= +, - >= +) == (is_not_positive >= gt_zero) -> false
970 # (- >= +, - >= 0) == (lt_zero >= is_not_negative) -> false
971 #
972 # The flt / ilt cases just invert the expected result.
973 #
974 # The results expecting true, must be marked imprecise. The results
975 # expecting false are fine because NaN compared >= or < anything is false.
976
977 (('~fge', 'a(is_not_negative)', 'b(is_not_positive)'), True),
978 (('fge', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
979 (('fge', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
980
981 (('flt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
982 (('~flt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
983 (('~flt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
984
985 (('ine', 'a(is_not_zero)', 0), True),
986 (('ieq', 'a(is_not_zero)', 0), False),
987
988 (('ige', 'a(is_not_negative)', 'b(is_not_positive)'), True),
989 (('ige', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
990 (('ige', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
991
992 (('ilt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
993 (('ilt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
994 (('ilt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
995
996 (('ult', 0, 'a(is_gt_zero)'), True),
997 (('ult', a, 0), False),
998
999 # Packing and then unpacking does nothing
1000 (('unpack_64_2x32_split_x', ('pack_64_2x32_split', a, b)), a),
1001 (('unpack_64_2x32_split_y', ('pack_64_2x32_split', a, b)), b),
1002 (('unpack_64_2x32', ('pack_64_2x32_split', a, b)), ('vec2', a, b)),
1003 (('unpack_64_2x32', ('pack_64_2x32', a)), a),
1004 (('pack_64_2x32_split', ('unpack_64_2x32_split_x', a),
1005 ('unpack_64_2x32_split_y', a)), a),
1006 (('pack_64_2x32', ('vec2', ('unpack_64_2x32_split_x', a),
1007 ('unpack_64_2x32_split_y', a))), a),
1008 (('pack_64_2x32', ('unpack_64_2x32', a)), a),
1009
1010 # Comparing two halves of an unpack separately. While this optimization
1011 # should be correct for non-constant values, it's less obvious that it's
1012 # useful in that case. For constant values, the pack will fold and we're
1013 # guaranteed to reduce the whole tree to one instruction.
1014 (('iand', ('ieq', ('unpack_32_2x16_split_x', a), '#b'),
1015 ('ieq', ('unpack_32_2x16_split_y', a), '#c')),
1016 ('ieq', a, ('pack_32_2x16_split', b, c))),
1017
1018 # Byte extraction
1019 (('ushr', 'a@16', 8), ('extract_u8', a, 1), '!options->lower_extract_byte'),
1020 (('ushr', 'a@32', 24), ('extract_u8', a, 3), '!options->lower_extract_byte'),
1021 (('ushr', 'a@64', 56), ('extract_u8', a, 7), '!options->lower_extract_byte'),
1022 (('ishr', 'a@16', 8), ('extract_i8', a, 1), '!options->lower_extract_byte'),
1023 (('ishr', 'a@32', 24), ('extract_i8', a, 3), '!options->lower_extract_byte'),
1024 (('ishr', 'a@64', 56), ('extract_i8', a, 7), '!options->lower_extract_byte'),
1025 (('iand', 0xff, a), ('extract_u8', a, 0), '!options->lower_extract_byte'),
1026
1027 (('ubfe', a, 0, 8), ('extract_u8', a, 0), '!options->lower_extract_byte'),
1028 (('ubfe', a, 8, 8), ('extract_u8', a, 1), '!options->lower_extract_byte'),
1029 (('ubfe', a, 16, 8), ('extract_u8', a, 2), '!options->lower_extract_byte'),
1030 (('ubfe', a, 24, 8), ('extract_u8', a, 3), '!options->lower_extract_byte'),
1031 (('ibfe', a, 0, 8), ('extract_i8', a, 0), '!options->lower_extract_byte'),
1032 (('ibfe', a, 8, 8), ('extract_i8', a, 1), '!options->lower_extract_byte'),
1033 (('ibfe', a, 16, 8), ('extract_i8', a, 2), '!options->lower_extract_byte'),
1034 (('ibfe', a, 24, 8), ('extract_i8', a, 3), '!options->lower_extract_byte'),
1035
1036 # Word extraction
1037 (('ushr', ('ishl', 'a@32', 16), 16), ('extract_u16', a, 0), '!options->lower_extract_word'),
1038 (('ushr', 'a@32', 16), ('extract_u16', a, 1), '!options->lower_extract_word'),
1039 (('ishr', ('ishl', 'a@32', 16), 16), ('extract_i16', a, 0), '!options->lower_extract_word'),
1040 (('ishr', 'a@32', 16), ('extract_i16', a, 1), '!options->lower_extract_word'),
1041 (('iand', 0xffff, a), ('extract_u16', a, 0), '!options->lower_extract_word'),
1042
1043 (('ubfe', a, 0, 16), ('extract_u16', a, 0), '!options->lower_extract_word'),
1044 (('ubfe', a, 16, 16), ('extract_u16', a, 1), '!options->lower_extract_word'),
1045 (('ibfe', a, 0, 16), ('extract_i16', a, 0), '!options->lower_extract_word'),
1046 (('ibfe', a, 16, 16), ('extract_i16', a, 1), '!options->lower_extract_word'),
1047
1048 # Useless masking before unpacking
1049 (('unpack_half_2x16_split_x', ('iand', a, 0xffff)), ('unpack_half_2x16_split_x', a)),
1050 (('unpack_32_2x16_split_x', ('iand', a, 0xffff)), ('unpack_32_2x16_split_x', a)),
1051 (('unpack_64_2x32_split_x', ('iand', a, 0xffffffff)), ('unpack_64_2x32_split_x', a)),
1052 (('unpack_half_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_half_2x16_split_y', a)),
1053 (('unpack_32_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_32_2x16_split_y', a)),
1054 (('unpack_64_2x32_split_y', ('iand', a, 0xffffffff00000000)), ('unpack_64_2x32_split_y', a)),
1055
1056 (('unpack_half_2x16_split_x', ('extract_u16', a, 0)), ('unpack_half_2x16_split_x', a)),
1057 (('unpack_half_2x16_split_x', ('extract_u16', a, 1)), ('unpack_half_2x16_split_y', a)),
1058 (('unpack_32_2x16_split_x', ('extract_u16', a, 0)), ('unpack_32_2x16_split_x', a)),
1059 (('unpack_32_2x16_split_x', ('extract_u16', a, 1)), ('unpack_32_2x16_split_y', a)),
1060
1061 # Optimize half packing
1062 (('ishl', ('pack_half_2x16', ('vec2', a, 0)), 16), ('pack_half_2x16', ('vec2', 0, a))),
1063 (('ushr', ('pack_half_2x16', ('vec2', 0, a)), 16), ('pack_half_2x16', ('vec2', a, 0))),
1064
1065 (('iadd', ('pack_half_2x16', ('vec2', a, 0)), ('pack_half_2x16', ('vec2', 0, b))),
1066 ('pack_half_2x16', ('vec2', a, b))),
1067 (('ior', ('pack_half_2x16', ('vec2', a, 0)), ('pack_half_2x16', ('vec2', 0, b))),
1068 ('pack_half_2x16', ('vec2', a, b))),
1069
1070 (('ishl', ('pack_half_2x16_split', a, 0), 16), ('pack_half_2x16_split', 0, a)),
1071 (('ushr', ('pack_half_2x16_split', 0, a), 16), ('pack_half_2x16_split', a, 0)),
1072 (('extract_u16', ('pack_half_2x16_split', 0, a), 1), ('pack_half_2x16_split', a, 0)),
1073
1074 (('iadd', ('pack_half_2x16_split', a, 0), ('pack_half_2x16_split', 0, b)), ('pack_half_2x16_split', a, b)),
1075 (('ior', ('pack_half_2x16_split', a, 0), ('pack_half_2x16_split', 0, b)), ('pack_half_2x16_split', a, b)),
1076 ])
1077
1078 # After the ('extract_u8', a, 0) pattern, above, triggers, there will be
1079 # patterns like those below.
1080 for op in ('ushr', 'ishr'):
1081 optimizations.extend([(('extract_u8', (op, 'a@16', 8), 0), ('extract_u8', a, 1))])
1082 optimizations.extend([(('extract_u8', (op, 'a@32', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 4)])
1083 optimizations.extend([(('extract_u8', (op, 'a@64', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 8)])
1084
1085 optimizations.extend([(('extract_u8', ('extract_u16', a, 1), 0), ('extract_u8', a, 2))])
1086
1087 # After the ('extract_[iu]8', a, 3) patterns, above, trigger, there will be
1088 # patterns like those below.
1089 for op in ('extract_u8', 'extract_i8'):
1090 optimizations.extend([((op, ('ishl', 'a@16', 8), 1), (op, a, 0))])
1091 optimizations.extend([((op, ('ishl', 'a@32', 24 - 8 * i), 3), (op, a, i)) for i in range(2, -1, -1)])
1092 optimizations.extend([((op, ('ishl', 'a@64', 56 - 8 * i), 7), (op, a, i)) for i in range(6, -1, -1)])
1093
1094 optimizations.extend([
1095 # Subtracts
1096 (('ussub_4x8', a, 0), a),
1097 (('ussub_4x8', a, ~0), 0),
1098 # Lower all Subtractions first - they can get recombined later
1099 (('fsub', a, b), ('fadd', a, ('fneg', b))),
1100 (('isub', a, b), ('iadd', a, ('ineg', b))),
1101 (('uabs_usub', a, b), ('bcsel', ('ult', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
1102 # This is correct. We don't need isub_sat because the result type is unsigned, so it cannot overflow.
1103 (('uabs_isub', a, b), ('bcsel', ('ilt', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
1104
1105 # Propagate negation up multiplication chains
1106 (('fmul(is_used_by_non_fsat)', ('fneg', a), b), ('fneg', ('fmul', a, b))),
1107 (('imul', ('ineg', a), b), ('ineg', ('imul', a, b))),
1108
1109 # Propagate constants up multiplication chains
1110 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fmul', ('fmul', a, c), b)),
1111 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('imul', ('imul', a, c), b)),
1112 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fadd', ('fadd', a, c), b)),
1113 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('iadd', ('iadd', a, c), b)),
1114
1115 # Reassociate constants in add/mul chains so they can be folded together.
1116 # For now, we mostly only handle cases where the constants are separated by
1117 # a single non-constant. We could do better eventually.
1118 (('~fmul', '#a', ('fmul', 'b(is_not_const)', '#c')), ('fmul', ('fmul', a, c), b)),
1119 (('imul', '#a', ('imul', 'b(is_not_const)', '#c')), ('imul', ('imul', a, c), b)),
1120 (('~fadd', '#a', ('fadd', 'b(is_not_const)', '#c')), ('fadd', ('fadd', a, c), b)),
1121 (('~fadd', '#a', ('fneg', ('fadd', 'b(is_not_const)', '#c'))), ('fadd', ('fadd', a, ('fneg', c)), ('fneg', b))),
1122 (('iadd', '#a', ('iadd', 'b(is_not_const)', '#c')), ('iadd', ('iadd', a, c), b)),
1123 (('iand', '#a', ('iand', 'b(is_not_const)', '#c')), ('iand', ('iand', a, c), b)),
1124 (('ior', '#a', ('ior', 'b(is_not_const)', '#c')), ('ior', ('ior', a, c), b)),
1125 (('ixor', '#a', ('ixor', 'b(is_not_const)', '#c')), ('ixor', ('ixor', a, c), b)),
1126
1127 # Drop mul-div by the same value when there's no wrapping.
1128 (('idiv', ('imul(no_signed_wrap)', a, b), b), a),
1129
1130 # By definition...
1131 (('bcsel', ('ige', ('find_lsb', a), 0), ('find_lsb', a), -1), ('find_lsb', a)),
1132 (('bcsel', ('ige', ('ifind_msb', a), 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
1133 (('bcsel', ('ige', ('ufind_msb', a), 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
1134
1135 (('bcsel', ('ine', a, 0), ('find_lsb', a), -1), ('find_lsb', a)),
1136 (('bcsel', ('ine', a, 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
1137 (('bcsel', ('ine', a, 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
1138
1139 (('bcsel', ('ine', a, -1), ('ifind_msb', a), -1), ('ifind_msb', a)),
1140
1141 (('~fmul', ('bcsel(is_used_once)', c, -1.0, 1.0), b), ('bcsel', c, ('fneg', b), b)),
1142 (('~fmul', ('bcsel(is_used_once)', c, 1.0, -1.0), b), ('bcsel', c, b, ('fneg', b))),
1143 (('~bcsel', ('flt', a, 0.0), ('fneg', a), a), ('fabs', a)),
1144
1145 (('fmin3@64', a, b, c), ('fmin@64', a, ('fmin@64', b, c))),
1146 (('fmax3@64', a, b, c), ('fmax@64', a, ('fmax@64', b, c))),
1147 (('fmed3@64', a, b, c), ('fmax@64', ('fmin@64', ('fmax@64', a, b), c), ('fmin@64', a, b))),
1148
1149 # Misc. lowering
1150 (('fmod', a, b), ('fsub', a, ('fmul', b, ('ffloor', ('fdiv', a, b)))), 'options->lower_fmod'),
1151 (('frem', a, b), ('fsub', a, ('fmul', b, ('ftrunc', ('fdiv', a, b)))), 'options->lower_fmod'),
1152 (('uadd_carry@32', a, b), ('b2i', ('ult', ('iadd', a, b), a)), 'options->lower_uadd_carry'),
1153 (('usub_borrow@32', a, b), ('b2i', ('ult', a, b)), 'options->lower_usub_borrow'),
1154
1155 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1156 ('bcsel', ('ult', 31, 'bits'), 'insert',
1157 ('bfi', ('bfm', 'bits', 'offset'), 'insert', 'base')),
1158 'options->lower_bitfield_insert'),
1159 (('ihadd', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1160 (('uhadd', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1161 (('irhadd', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1162 (('urhadd', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1163 (('ihadd@64', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1164 (('uhadd@64', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1165 (('irhadd@64', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1166 (('urhadd@64', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1167
1168 (('uadd_sat@64', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_add_sat || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1169 (('uadd_sat', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_add_sat'),
1170 (('usub_sat', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_add_sat'),
1171 (('usub_sat@64', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_usub_sat64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1172
1173 # int64_t sum = a + b;
1174 #
1175 # if (a < 0 && b < 0 && a < sum)
1176 # sum = INT64_MIN;
1177 # } else if (a >= 0 && b >= 0 && sum < a)
1178 # sum = INT64_MAX;
1179 # }
1180 #
1181 # A couple optimizations are applied.
1182 #
1183 # 1. a < sum => sum >= 0. This replacement works because it is known that
1184 # a < 0 and b < 0, so sum should also be < 0 unless there was
1185 # underflow.
1186 #
1187 # 2. sum < a => sum < 0. This replacement works because it is known that
1188 # a >= 0 and b >= 0, so sum should also be >= 0 unless there was
1189 # overflow.
1190 #
1191 # 3. Invert the second if-condition and swap the order of parameters for
1192 # the bcsel. !(a >= 0 && b >= 0 && sum < 0) becomes !(a >= 0) || !(b >=
1193 # 0) || !(sum < 0), and that becomes (a < 0) || (b < 0) || (sum >= 0)
1194 #
1195 # On Intel Gen11, this saves ~11 instructions.
1196 (('iadd_sat@64', a, b), ('bcsel',
1197 ('iand', ('iand', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)),
1198 0x8000000000000000,
1199 ('bcsel',
1200 ('ior', ('ior', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)),
1201 ('iadd', a, b),
1202 0x7fffffffffffffff)),
1203 '(options->lower_int64_options & nir_lower_iadd64) != 0'),
1204
1205 # int64_t sum = a - b;
1206 #
1207 # if (a < 0 && b >= 0 && a < sum)
1208 # sum = INT64_MIN;
1209 # } else if (a >= 0 && b < 0 && a >= sum)
1210 # sum = INT64_MAX;
1211 # }
1212 #
1213 # Optimizations similar to the iadd_sat case are applied here.
1214 (('isub_sat@64', a, b), ('bcsel',
1215 ('iand', ('iand', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)),
1216 0x8000000000000000,
1217 ('bcsel',
1218 ('ior', ('ior', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)),
1219 ('isub', a, b),
1220 0x7fffffffffffffff)),
1221 '(options->lower_int64_options & nir_lower_iadd64) != 0'),
1222
1223 # These are done here instead of in the backend because the int64 lowering
1224 # pass will make a mess of the patterns. The first patterns are
1225 # conditioned on nir_lower_minmax64 because it was not clear that it was
1226 # always an improvement on platforms that have real int64 support. No
1227 # shaders in shader-db hit this, so it was hard to say one way or the
1228 # other.
1229 (('ilt', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1230 (('ilt', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1231 (('ige', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1232 (('ige', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1233 (('ilt', 'a@64', 0), ('ilt', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1234 (('ige', 'a@64', 0), ('ige', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1235
1236 (('ine', 'a@64', 0), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1237 (('ieq', 'a@64', 0), ('ieq', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1238 # 0u < uint(a) <=> uint(a) != 0u
1239 (('ult', 0, 'a@64'), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1240
1241 # Alternative lowering that doesn't rely on bfi.
1242 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1243 ('bcsel', ('ult', 31, 'bits'),
1244 'insert',
1245 (('ior',
1246 ('iand', 'base', ('inot', ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))),
1247 ('iand', ('ishl', 'insert', 'offset'), ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))))),
1248 'options->lower_bitfield_insert_to_shifts'),
1249
1250 # Alternative lowering that uses bitfield_select.
1251 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1252 ('bcsel', ('ult', 31, 'bits'), 'insert',
1253 ('bitfield_select', ('bfm', 'bits', 'offset'), ('ishl', 'insert', 'offset'), 'base')),
1254 'options->lower_bitfield_insert_to_bitfield_select'),
1255
1256 (('ibitfield_extract', 'value', 'offset', 'bits'),
1257 ('bcsel', ('ult', 31, 'bits'), 'value',
1258 ('ibfe', 'value', 'offset', 'bits')),
1259 'options->lower_bitfield_extract'),
1260
1261 (('ubitfield_extract', 'value', 'offset', 'bits'),
1262 ('bcsel', ('ult', 31, 'bits'), 'value',
1263 ('ubfe', 'value', 'offset', 'bits')),
1264 'options->lower_bitfield_extract'),
1265
1266 # Note that these opcodes are defined to only use the five least significant bits of 'offset' and 'bits'
1267 (('ubfe', 'value', 'offset', ('iand', 31, 'bits')), ('ubfe', 'value', 'offset', 'bits')),
1268 (('ubfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ubfe', 'value', 'offset', 'bits')),
1269 (('ibfe', 'value', 'offset', ('iand', 31, 'bits')), ('ibfe', 'value', 'offset', 'bits')),
1270 (('ibfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ibfe', 'value', 'offset', 'bits')),
1271 (('bfm', 'bits', ('iand', 31, 'offset')), ('bfm', 'bits', 'offset')),
1272 (('bfm', ('iand', 31, 'bits'), 'offset'), ('bfm', 'bits', 'offset')),
1273
1274 # Section 8.8 (Integer Functions) of the GLSL 4.60 spec says:
1275 #
1276 # If bits is zero, the result will be zero.
1277 #
1278 # These patterns prevent other patterns from generating invalid results
1279 # when count is zero.
1280 (('ubfe', a, b, 0), 0),
1281 (('ibfe', a, b, 0), 0),
1282
1283 (('ubfe', a, 0, '#b'), ('iand', a, ('ushr', 0xffffffff, ('ineg', b)))),
1284
1285 (('b2i32', ('i2b', ('ubfe', a, b, 1))), ('ubfe', a, b, 1)),
1286 (('b2i32', ('i2b', ('ibfe', a, b, 1))), ('ubfe', a, b, 1)), # ubfe in the replacement is correct
1287 (('ine', ('ibfe(is_used_once)', a, '#b', '#c'), 0), ('ine', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)),
1288 (('ieq', ('ibfe(is_used_once)', a, '#b', '#c'), 0), ('ieq', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)),
1289 (('ine', ('ubfe(is_used_once)', a, '#b', '#c'), 0), ('ine', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)),
1290 (('ieq', ('ubfe(is_used_once)', a, '#b', '#c'), 0), ('ieq', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)),
1291
1292 (('ibitfield_extract', 'value', 'offset', 'bits'),
1293 ('bcsel', ('ieq', 0, 'bits'),
1294 0,
1295 ('ishr',
1296 ('ishl', 'value', ('isub', ('isub', 32, 'bits'), 'offset')),
1297 ('isub', 32, 'bits'))),
1298 'options->lower_bitfield_extract_to_shifts'),
1299
1300 (('ubitfield_extract', 'value', 'offset', 'bits'),
1301 ('iand',
1302 ('ushr', 'value', 'offset'),
1303 ('bcsel', ('ieq', 'bits', 32),
1304 0xffffffff,
1305 ('isub', ('ishl', 1, 'bits'), 1))),
1306 'options->lower_bitfield_extract_to_shifts'),
1307
1308 (('ifind_msb', 'value'),
1309 ('ufind_msb', ('bcsel', ('ilt', 'value', 0), ('inot', 'value'), 'value')),
1310 'options->lower_ifind_msb'),
1311
1312 (('find_lsb', 'value'),
1313 ('ufind_msb', ('iand', 'value', ('ineg', 'value'))),
1314 'options->lower_find_lsb'),
1315
1316 (('extract_i8', a, 'b@32'),
1317 ('ishr', ('ishl', a, ('imul', ('isub', 3, b), 8)), 24),
1318 'options->lower_extract_byte'),
1319
1320 (('extract_u8', a, 'b@32'),
1321 ('iand', ('ushr', a, ('imul', b, 8)), 0xff),
1322 'options->lower_extract_byte'),
1323
1324 (('extract_i16', a, 'b@32'),
1325 ('ishr', ('ishl', a, ('imul', ('isub', 1, b), 16)), 16),
1326 'options->lower_extract_word'),
1327
1328 (('extract_u16', a, 'b@32'),
1329 ('iand', ('ushr', a, ('imul', b, 16)), 0xffff),
1330 'options->lower_extract_word'),
1331
1332 (('pack_unorm_2x16', 'v'),
1333 ('pack_uvec2_to_uint',
1334 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 65535.0)))),
1335 'options->lower_pack_unorm_2x16'),
1336
1337 (('pack_unorm_4x8', 'v'),
1338 ('pack_uvec4_to_uint',
1339 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 255.0)))),
1340 'options->lower_pack_unorm_4x8'),
1341
1342 (('pack_snorm_2x16', 'v'),
1343 ('pack_uvec2_to_uint',
1344 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 32767.0)))),
1345 'options->lower_pack_snorm_2x16'),
1346
1347 (('pack_snorm_4x8', 'v'),
1348 ('pack_uvec4_to_uint',
1349 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 127.0)))),
1350 'options->lower_pack_snorm_4x8'),
1351
1352 (('unpack_unorm_2x16', 'v'),
1353 ('fdiv', ('u2f32', ('vec2', ('extract_u16', 'v', 0),
1354 ('extract_u16', 'v', 1))),
1355 65535.0),
1356 'options->lower_unpack_unorm_2x16'),
1357
1358 (('unpack_unorm_4x8', 'v'),
1359 ('fdiv', ('u2f32', ('vec4', ('extract_u8', 'v', 0),
1360 ('extract_u8', 'v', 1),
1361 ('extract_u8', 'v', 2),
1362 ('extract_u8', 'v', 3))),
1363 255.0),
1364 'options->lower_unpack_unorm_4x8'),
1365
1366 (('unpack_snorm_2x16', 'v'),
1367 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec2', ('extract_i16', 'v', 0),
1368 ('extract_i16', 'v', 1))),
1369 32767.0))),
1370 'options->lower_unpack_snorm_2x16'),
1371
1372 (('unpack_snorm_4x8', 'v'),
1373 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec4', ('extract_i8', 'v', 0),
1374 ('extract_i8', 'v', 1),
1375 ('extract_i8', 'v', 2),
1376 ('extract_i8', 'v', 3))),
1377 127.0))),
1378 'options->lower_unpack_snorm_4x8'),
1379
1380 (('pack_half_2x16_split', 'a@32', 'b@32'),
1381 ('ior', ('ishl', ('u2u32', ('f2f16', b)), 16), ('u2u32', ('f2f16', a))),
1382 'options->lower_pack_split'),
1383
1384 (('unpack_half_2x16_split_x', 'a@32'),
1385 ('f2f32', ('u2u16', a)),
1386 'options->lower_pack_split'),
1387
1388 (('unpack_half_2x16_split_y', 'a@32'),
1389 ('f2f32', ('u2u16', ('ushr', a, 16))),
1390 'options->lower_pack_split'),
1391
1392 (('pack_32_2x16_split', 'a@16', 'b@16'),
1393 ('ior', ('ishl', ('u2u32', b), 16), ('u2u32', a)),
1394 'options->lower_pack_split'),
1395
1396 (('unpack_32_2x16_split_x', 'a@32'),
1397 ('u2u16', a),
1398 'options->lower_pack_split'),
1399
1400 (('unpack_32_2x16_split_y', 'a@32'),
1401 ('u2u16', ('ushr', 'a', 16)),
1402 'options->lower_pack_split'),
1403
1404 (('isign', a), ('imin', ('imax', a, -1), 1), 'options->lower_isign'),
1405 (('imin', ('imax', a, -1), 1), ('isign', a), '!options->lower_isign'),
1406 (('imax', ('imin', a, 1), -1), ('isign', a), '!options->lower_isign'),
1407 (('fsign', a), ('fsub', ('b2f', ('flt', 0.0, a)), ('b2f', ('flt', a, 0.0))), 'options->lower_fsign'),
1408 (('fadd', ('b2f32', ('flt', 0.0, 'a@32')), ('fneg', ('b2f32', ('flt', 'a@32', 0.0)))), ('fsign', a), '!options->lower_fsign'),
1409 (('iadd', ('b2i32', ('flt', 0, 'a@32')), ('ineg', ('b2i32', ('flt', 'a@32', 0)))), ('f2i32', ('fsign', a)), '!options->lower_fsign'),
1410
1411 # Address/offset calculations:
1412 # Drivers supporting imul24 should use the nir_lower_amul() pass, this
1413 # rule converts everyone else to imul:
1414 (('amul', a, b), ('imul', a, b), '!options->has_imul24'),
1415
1416 (('umul24', a, b),
1417 ('imul', ('iand', a, 0xffffff), ('iand', b, 0xffffff)),
1418 '!options->has_umul24'),
1419 (('umad24', a, b, c),
1420 ('iadd', ('imul', ('iand', a, 0xffffff), ('iand', b, 0xffffff)), c),
1421 '!options->has_umad24'),
1422
1423 (('imad24_ir3', a, b, 0), ('imul24', a, b)),
1424 (('imad24_ir3', a, 0, c), (c)),
1425 (('imad24_ir3', a, 1, c), ('iadd', a, c)),
1426
1427 # if first two srcs are const, crack apart the imad so constant folding
1428 # can clean up the imul:
1429 # TODO ffma should probably get a similar rule:
1430 (('imad24_ir3', '#a', '#b', c), ('iadd', ('imul', a, b), c)),
1431
1432 # These will turn 24b address/offset calc back into 32b shifts, but
1433 # it should be safe to get back some of the bits of precision that we
1434 # already decided were no necessary:
1435 (('imul24', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
1436 (('imul24', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
1437 (('imul24', a, 0), (0)),
1438 ])
1439
1440 # bit_size dependent lowerings
1441 for bit_size in [8, 16, 32, 64]:
1442 # convenience constants
1443 intmax = (1 << (bit_size - 1)) - 1
1444 intmin = 1 << (bit_size - 1)
1445
1446 optimizations += [
1447 (('iadd_sat@' + str(bit_size), a, b),
1448 ('bcsel', ('ige', b, 1), ('bcsel', ('ilt', ('iadd', a, b), a), intmax, ('iadd', a, b)),
1449 ('bcsel', ('ilt', a, ('iadd', a, b)), intmin, ('iadd', a, b))), 'options->lower_add_sat'),
1450 (('isub_sat@' + str(bit_size), a, b),
1451 ('bcsel', ('ilt', b, 0), ('bcsel', ('ilt', ('isub', a, b), a), intmax, ('isub', a, b)),
1452 ('bcsel', ('ilt', a, ('isub', a, b)), intmin, ('isub', a, b))), 'options->lower_add_sat'),
1453 ]
1454
1455 invert = OrderedDict([('feq', 'fne'), ('fne', 'feq')])
1456
1457 for left, right in itertools.combinations_with_replacement(invert.keys(), 2):
1458 optimizations.append((('inot', ('ior(is_used_once)', (left, a, b), (right, c, d))),
1459 ('iand', (invert[left], a, b), (invert[right], c, d))))
1460 optimizations.append((('inot', ('iand(is_used_once)', (left, a, b), (right, c, d))),
1461 ('ior', (invert[left], a, b), (invert[right], c, d))))
1462
1463 # Optimize x2bN(b2x(x)) -> x
1464 for size in type_sizes('bool'):
1465 aN = 'a@' + str(size)
1466 f2bN = 'f2b' + str(size)
1467 i2bN = 'i2b' + str(size)
1468 optimizations.append(((f2bN, ('b2f', aN)), a))
1469 optimizations.append(((i2bN, ('b2i', aN)), a))
1470
1471 # Optimize x2yN(b2x(x)) -> b2y
1472 for x, y in itertools.product(['f', 'u', 'i'], ['f', 'u', 'i']):
1473 if x != 'f' and y != 'f' and x != y:
1474 continue
1475
1476 b2x = 'b2f' if x == 'f' else 'b2i'
1477 b2y = 'b2f' if y == 'f' else 'b2i'
1478 x2yN = '{}2{}'.format(x, y)
1479 optimizations.append(((x2yN, (b2x, a)), (b2y, a)))
1480
1481 # Optimize away x2xN(a@N)
1482 for t in ['int', 'uint', 'float', 'bool']:
1483 for N in type_sizes(t):
1484 x2xN = '{0}2{0}{1}'.format(t[0], N)
1485 aN = 'a@{0}'.format(N)
1486 optimizations.append(((x2xN, aN), a))
1487
1488 # Optimize x2xN(y2yM(a@P)) -> y2yN(a) for integers
1489 # In particular, we can optimize away everything except upcast of downcast and
1490 # upcasts where the type differs from the other cast
1491 for N, M in itertools.product(type_sizes('uint'), type_sizes('uint')):
1492 if N < M:
1493 # The outer cast is a down-cast. It doesn't matter what the size of the
1494 # argument of the inner cast is because we'll never been in the upcast
1495 # of downcast case. Regardless of types, we'll always end up with y2yN
1496 # in the end.
1497 for x, y in itertools.product(['i', 'u'], ['i', 'u']):
1498 x2xN = '{0}2{0}{1}'.format(x, N)
1499 y2yM = '{0}2{0}{1}'.format(y, M)
1500 y2yN = '{0}2{0}{1}'.format(y, N)
1501 optimizations.append(((x2xN, (y2yM, a)), (y2yN, a)))
1502 elif N > M:
1503 # If the outer cast is an up-cast, we have to be more careful about the
1504 # size of the argument of the inner cast and with types. In this case,
1505 # the type is always the type of type up-cast which is given by the
1506 # outer cast.
1507 for P in type_sizes('uint'):
1508 # We can't optimize away up-cast of down-cast.
1509 if M < P:
1510 continue
1511
1512 # Because we're doing down-cast of down-cast, the types always have
1513 # to match between the two casts
1514 for x in ['i', 'u']:
1515 x2xN = '{0}2{0}{1}'.format(x, N)
1516 x2xM = '{0}2{0}{1}'.format(x, M)
1517 aP = 'a@{0}'.format(P)
1518 optimizations.append(((x2xN, (x2xM, aP)), (x2xN, a)))
1519 else:
1520 # The N == M case is handled by other optimizations
1521 pass
1522
1523 # Downcast operations should be able to see through pack
1524 for t in ['i', 'u']:
1525 for N in [8, 16, 32]:
1526 x2xN = '{0}2{0}{1}'.format(t, N)
1527 optimizations += [
1528 ((x2xN, ('pack_64_2x32_split', a, b)), (x2xN, a)),
1529 ((x2xN, ('pack_64_2x32_split', a, b)), (x2xN, a)),
1530 ]
1531
1532 # Optimize comparisons with up-casts
1533 for t in ['int', 'uint', 'float']:
1534 for N, M in itertools.product(type_sizes(t), repeat=2):
1535 if N == 1 or N >= M:
1536 continue
1537
1538 cond = 'true'
1539 if N == 8:
1540 cond = 'options->support_8bit_alu'
1541 elif N == 16:
1542 cond = 'options->support_16bit_alu'
1543 x2xM = '{0}2{0}{1}'.format(t[0], M)
1544 x2xN = '{0}2{0}{1}'.format(t[0], N)
1545 aN = 'a@' + str(N)
1546 bN = 'b@' + str(N)
1547 xeq = 'feq' if t == 'float' else 'ieq'
1548 xne = 'fne' if t == 'float' else 'ine'
1549 xge = '{0}ge'.format(t[0])
1550 xlt = '{0}lt'.format(t[0])
1551
1552 # Up-casts are lossless so for correctly signed comparisons of
1553 # up-casted values we can do the comparison at the largest of the two
1554 # original sizes and drop one or both of the casts. (We have
1555 # optimizations to drop the no-op casts which this may generate.)
1556 for P in type_sizes(t):
1557 if P == 1 or P > N:
1558 continue
1559
1560 bP = 'b@' + str(P)
1561 optimizations += [
1562 ((xeq, (x2xM, aN), (x2xM, bP)), (xeq, a, (x2xN, b)), cond),
1563 ((xne, (x2xM, aN), (x2xM, bP)), (xne, a, (x2xN, b)), cond),
1564 ((xge, (x2xM, aN), (x2xM, bP)), (xge, a, (x2xN, b)), cond),
1565 ((xlt, (x2xM, aN), (x2xM, bP)), (xlt, a, (x2xN, b)), cond),
1566 ((xge, (x2xM, bP), (x2xM, aN)), (xge, (x2xN, b), a), cond),
1567 ((xlt, (x2xM, bP), (x2xM, aN)), (xlt, (x2xN, b), a), cond),
1568 ]
1569
1570 # The next bit doesn't work on floats because the range checks would
1571 # get way too complicated.
1572 if t in ['int', 'uint']:
1573 if t == 'int':
1574 xN_min = -(1 << (N - 1))
1575 xN_max = (1 << (N - 1)) - 1
1576 elif t == 'uint':
1577 xN_min = 0
1578 xN_max = (1 << N) - 1
1579 else:
1580 assert False
1581
1582 # If we're up-casting and comparing to a constant, we can unfold
1583 # the comparison into a comparison with the shrunk down constant
1584 # and a check that the constant fits in the smaller bit size.
1585 optimizations += [
1586 ((xeq, (x2xM, aN), '#b'),
1587 ('iand', (xeq, a, (x2xN, b)), (xeq, (x2xM, (x2xN, b)), b)), cond),
1588 ((xne, (x2xM, aN), '#b'),
1589 ('ior', (xne, a, (x2xN, b)), (xne, (x2xM, (x2xN, b)), b)), cond),
1590 ((xlt, (x2xM, aN), '#b'),
1591 ('iand', (xlt, xN_min, b),
1592 ('ior', (xlt, xN_max, b), (xlt, a, (x2xN, b)))), cond),
1593 ((xlt, '#a', (x2xM, bN)),
1594 ('iand', (xlt, a, xN_max),
1595 ('ior', (xlt, a, xN_min), (xlt, (x2xN, a), b))), cond),
1596 ((xge, (x2xM, aN), '#b'),
1597 ('iand', (xge, xN_max, b),
1598 ('ior', (xge, xN_min, b), (xge, a, (x2xN, b)))), cond),
1599 ((xge, '#a', (x2xM, bN)),
1600 ('iand', (xge, a, xN_min),
1601 ('ior', (xge, a, xN_max), (xge, (x2xN, a), b))), cond),
1602 ]
1603
1604 def fexp2i(exp, bits):
1605 # Generate an expression which constructs value 2.0^exp or 0.0.
1606 #
1607 # We assume that exp is already in a valid range:
1608 #
1609 # * [-15, 15] for 16-bit float
1610 # * [-127, 127] for 32-bit float
1611 # * [-1023, 1023] for 16-bit float
1612 #
1613 # If exp is the lowest value in the valid range, a value of 0.0 is
1614 # constructed. Otherwise, the value 2.0^exp is constructed.
1615 if bits == 16:
1616 return ('i2i16', ('ishl', ('iadd', exp, 15), 10))
1617 elif bits == 32:
1618 return ('ishl', ('iadd', exp, 127), 23)
1619 elif bits == 64:
1620 return ('pack_64_2x32_split', 0, ('ishl', ('iadd', exp, 1023), 20))
1621 else:
1622 assert False
1623
1624 def ldexp(f, exp, bits):
1625 # The maximum possible range for a normal exponent is [-126, 127] and,
1626 # throwing in denormals, you get a maximum range of [-149, 127]. This
1627 # means that we can potentially have a swing of +-276. If you start with
1628 # FLT_MAX, you actually have to do ldexp(FLT_MAX, -278) to get it to flush
1629 # all the way to zero. The GLSL spec only requires that we handle a subset
1630 # of this range. From version 4.60 of the spec:
1631 #
1632 # "If exp is greater than +128 (single-precision) or +1024
1633 # (double-precision), the value returned is undefined. If exp is less
1634 # than -126 (single-precision) or -1022 (double-precision), the value
1635 # returned may be flushed to zero. Additionally, splitting the value
1636 # into a significand and exponent using frexp() and then reconstructing
1637 # a floating-point value using ldexp() should yield the original input
1638 # for zero and all finite non-denormalized values."
1639 #
1640 # The SPIR-V spec has similar language.
1641 #
1642 # In order to handle the maximum value +128 using the fexp2i() helper
1643 # above, we have to split the exponent in half and do two multiply
1644 # operations.
1645 #
1646 # First, we clamp exp to a reasonable range. Specifically, we clamp to
1647 # twice the full range that is valid for the fexp2i() function above. If
1648 # exp/2 is the bottom value of that range, the fexp2i() expression will
1649 # yield 0.0f which, when multiplied by f, will flush it to zero which is
1650 # allowed by the GLSL and SPIR-V specs for low exponent values. If the
1651 # value is clamped from above, then it must have been above the supported
1652 # range of the GLSL built-in and therefore any return value is acceptable.
1653 if bits == 16:
1654 exp = ('imin', ('imax', exp, -30), 30)
1655 elif bits == 32:
1656 exp = ('imin', ('imax', exp, -254), 254)
1657 elif bits == 64:
1658 exp = ('imin', ('imax', exp, -2046), 2046)
1659 else:
1660 assert False
1661
1662 # Now we compute two powers of 2, one for exp/2 and one for exp-exp/2.
1663 # (We use ishr which isn't the same for -1, but the -1 case still works
1664 # since we use exp-exp/2 as the second exponent.) While the spec
1665 # technically defines ldexp as f * 2.0^exp, simply multiplying once doesn't
1666 # work with denormals and doesn't allow for the full swing in exponents
1667 # that you can get with normalized values. Instead, we create two powers
1668 # of two and multiply by them each in turn. That way the effective range
1669 # of our exponent is doubled.
1670 pow2_1 = fexp2i(('ishr', exp, 1), bits)
1671 pow2_2 = fexp2i(('isub', exp, ('ishr', exp, 1)), bits)
1672 return ('fmul', ('fmul', f, pow2_1), pow2_2)
1673
1674 optimizations += [
1675 (('ldexp@16', 'x', 'exp'), ldexp('x', 'exp', 16), 'options->lower_ldexp'),
1676 (('ldexp@32', 'x', 'exp'), ldexp('x', 'exp', 32), 'options->lower_ldexp'),
1677 (('ldexp@64', 'x', 'exp'), ldexp('x', 'exp', 64), 'options->lower_ldexp'),
1678 ]
1679
1680 # Unreal Engine 4 demo applications open-codes bitfieldReverse()
1681 def bitfield_reverse(u):
1682 step1 = ('ior', ('ishl', u, 16), ('ushr', u, 16))
1683 step2 = ('ior', ('ishl', ('iand', step1, 0x00ff00ff), 8), ('ushr', ('iand', step1, 0xff00ff00), 8))
1684 step3 = ('ior', ('ishl', ('iand', step2, 0x0f0f0f0f), 4), ('ushr', ('iand', step2, 0xf0f0f0f0), 4))
1685 step4 = ('ior', ('ishl', ('iand', step3, 0x33333333), 2), ('ushr', ('iand', step3, 0xcccccccc), 2))
1686 step5 = ('ior(many-comm-expr)', ('ishl', ('iand', step4, 0x55555555), 1), ('ushr', ('iand', step4, 0xaaaaaaaa), 1))
1687
1688 return step5
1689
1690 optimizations += [(bitfield_reverse('x@32'), ('bitfield_reverse', 'x'), '!options->lower_bitfield_reverse')]
1691
1692 # For any float comparison operation, "cmp", if you have "a == a && a cmp b"
1693 # then the "a == a" is redundant because it's equivalent to "a is not NaN"
1694 # and, if a is a NaN then the second comparison will fail anyway.
1695 for op in ['flt', 'fge', 'feq']:
1696 optimizations += [
1697 (('iand', ('feq', a, a), (op, a, b)), ('!' + op, a, b)),
1698 (('iand', ('feq', a, a), (op, b, a)), ('!' + op, b, a)),
1699 ]
1700
1701 # Add optimizations to handle the case where the result of a ternary is
1702 # compared to a constant. This way we can take things like
1703 #
1704 # (a ? 0 : 1) > 0
1705 #
1706 # and turn it into
1707 #
1708 # a ? (0 > 0) : (1 > 0)
1709 #
1710 # which constant folding will eat for lunch. The resulting ternary will
1711 # further get cleaned up by the boolean reductions above and we will be
1712 # left with just the original variable "a".
1713 for op in ['flt', 'fge', 'feq', 'fne',
1714 'ilt', 'ige', 'ieq', 'ine', 'ult', 'uge']:
1715 optimizations += [
1716 ((op, ('bcsel', 'a', '#b', '#c'), '#d'),
1717 ('bcsel', 'a', (op, 'b', 'd'), (op, 'c', 'd'))),
1718 ((op, '#d', ('bcsel', a, '#b', '#c')),
1719 ('bcsel', 'a', (op, 'd', 'b'), (op, 'd', 'c'))),
1720 ]
1721
1722
1723 # For example, this converts things like
1724 #
1725 # 1 + mix(0, a - 1, condition)
1726 #
1727 # into
1728 #
1729 # mix(1, (a-1)+1, condition)
1730 #
1731 # Other optimizations will rearrange the constants.
1732 for op in ['fadd', 'fmul', 'iadd', 'imul']:
1733 optimizations += [
1734 ((op, ('bcsel(is_used_once)', a, '#b', c), '#d'), ('bcsel', a, (op, b, d), (op, c, d)))
1735 ]
1736
1737 # For derivatives in compute shaders, GLSL_NV_compute_shader_derivatives
1738 # states:
1739 #
1740 # If neither layout qualifier is specified, derivatives in compute shaders
1741 # return zero, which is consistent with the handling of built-in texture
1742 # functions like texture() in GLSL 4.50 compute shaders.
1743 for op in ['fddx', 'fddx_fine', 'fddx_coarse',
1744 'fddy', 'fddy_fine', 'fddy_coarse']:
1745 optimizations += [
1746 ((op, 'a'), 0.0, 'info->stage == MESA_SHADER_COMPUTE && info->cs.derivative_group == DERIVATIVE_GROUP_NONE')
1747 ]
1748
1749 # Some optimizations for ir3-specific instructions.
1750 optimizations += [
1751 # 'al * bl': If either 'al' or 'bl' is zero, return zero.
1752 (('umul_low', '#a(is_lower_half_zero)', 'b'), (0)),
1753 # '(ah * bl) << 16 + c': If either 'ah' or 'bl' is zero, return 'c'.
1754 (('imadsh_mix16', '#a@32(is_lower_half_zero)', 'b@32', 'c@32'), ('c')),
1755 (('imadsh_mix16', 'a@32', '#b@32(is_upper_half_zero)', 'c@32'), ('c')),
1756 ]
1757
1758 # These kinds of sequences can occur after nir_opt_peephole_select.
1759 #
1760 # NOTE: fadd is not handled here because that gets in the way of ffma
1761 # generation in the i965 driver. Instead, fadd and ffma are handled in
1762 # late_optimizations.
1763
1764 for op in ['flrp']:
1765 optimizations += [
1766 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1767 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1768 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1769 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1770 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1771 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1772 ]
1773
1774 for op in ['fmul', 'iadd', 'imul', 'iand', 'ior', 'ixor', 'fmin', 'fmax', 'imin', 'imax', 'umin', 'umax']:
1775 optimizations += [
1776 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1777 (('bcsel', a, (op + '(is_used_once)', b, 'c(is_not_const)'), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1778 (('bcsel', a, (op, b, 'c(is_not_const)'), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1779 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1780 ]
1781
1782 for op in ['fpow']:
1783 optimizations += [
1784 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1785 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1786 (('bcsel', a, (op + '(is_used_once)', b, c), (op, d, c)), (op, ('bcsel', a, b, d), c)),
1787 (('bcsel', a, (op, b, c), (op + '(is_used_once)', d, c)), (op, ('bcsel', a, b, d), c)),
1788 ]
1789
1790 for op in ['frcp', 'frsq', 'fsqrt', 'fexp2', 'flog2', 'fsign', 'fsin', 'fcos', 'fneg', 'fabs', 'fsign']:
1791 optimizations += [
1792 (('bcsel', c, (op + '(is_used_once)', a), (op + '(is_used_once)', b)), (op, ('bcsel', c, a, b))),
1793 ]
1794
1795 for op in ['ineg', 'iabs', 'inot', 'isign']:
1796 optimizations += [
1797 ((op, ('bcsel', c, '#a', '#b')), ('bcsel', c, (op, a), (op, b))),
1798 ]
1799
1800 # This section contains optimizations to propagate downsizing conversions of
1801 # constructed vectors into vectors of downsized components. Whether this is
1802 # useful depends on the SIMD semantics of the backend. On a true SIMD machine,
1803 # this reduces the register pressure of the vector itself and often enables the
1804 # conversions to be eliminated via other algebraic rules or constant folding.
1805 # In the worst case on a SIMD architecture, the propagated conversions may be
1806 # revectorized via nir_opt_vectorize so instruction count is minimally
1807 # impacted.
1808 #
1809 # On a machine with SIMD-within-a-register only, this actually
1810 # counterintuitively hurts instruction count. These machines are the same that
1811 # require vectorize_vec2_16bit, so we predicate the optimizations on that flag
1812 # not being set.
1813 #
1814 # Finally for scalar architectures, there should be no difference in generated
1815 # code since it all ends up scalarized at the end, but it might minimally help
1816 # compile-times.
1817
1818 for i in range(2, 4 + 1):
1819 for T in ('f', 'u', 'i'):
1820 vec_inst = ('vec' + str(i),)
1821
1822 indices = ['a', 'b', 'c', 'd']
1823 suffix_in = tuple((indices[j] + '@32') for j in range(i))
1824
1825 to_16 = '{}2{}16'.format(T, T)
1826 to_mp = '{}2{}mp'.format(T, T)
1827
1828 out_16 = tuple((to_16, indices[j]) for j in range(i))
1829 out_mp = tuple((to_mp, indices[j]) for j in range(i))
1830
1831 optimizations += [
1832 ((to_16, vec_inst + suffix_in), vec_inst + out_16, '!options->vectorize_vec2_16bit'),
1833 ((to_mp, vec_inst + suffix_in), vec_inst + out_mp, '!options->vectorize_vec2_16bit')
1834 ]
1835
1836 # This section contains "late" optimizations that should be run before
1837 # creating ffmas and calling regular optimizations for the final time.
1838 # Optimizations should go here if they help code generation and conflict
1839 # with the regular optimizations.
1840 before_ffma_optimizations = [
1841 # Propagate constants down multiplication chains
1842 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fmul', ('fmul', a, c), b)),
1843 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('imul', ('imul', a, c), b)),
1844 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fadd', ('fadd', a, c), b)),
1845 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('iadd', ('iadd', a, c), b)),
1846
1847 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
1848 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
1849 (('~fadd', ('fneg', a), a), 0.0),
1850 (('iadd', ('ineg', a), a), 0),
1851 (('iadd', ('ineg', a), ('iadd', a, b)), b),
1852 (('iadd', a, ('iadd', ('ineg', a), b)), b),
1853 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
1854 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
1855
1856 (('~flrp@32', ('fadd(is_used_once)', a, -1.0), ('fadd(is_used_once)', a, 1.0), d), ('fadd', ('flrp', -1.0, 1.0, d), a)),
1857 (('~flrp@32', ('fadd(is_used_once)', a, 1.0), ('fadd(is_used_once)', a, -1.0), d), ('fadd', ('flrp', 1.0, -1.0, d), a)),
1858 (('~flrp@32', ('fadd(is_used_once)', a, '#b'), ('fadd(is_used_once)', a, '#c'), d), ('fadd', ('fmul', d, ('fadd', c, ('fneg', b))), ('fadd', a, b))),
1859 ]
1860
1861 # This section contains "late" optimizations that should be run after the
1862 # regular optimizations have finished. Optimizations should go here if
1863 # they help code generation but do not necessarily produce code that is
1864 # more easily optimizable.
1865 late_optimizations = [
1866 # Most of these optimizations aren't quite safe when you get infinity or
1867 # Nan involved but the first one should be fine.
1868 (('flt', ('fadd', a, b), 0.0), ('flt', a, ('fneg', b))),
1869 (('flt', ('fneg', ('fadd', a, b)), 0.0), ('flt', ('fneg', a), b)),
1870 (('~fge', ('fadd', a, b), 0.0), ('fge', a, ('fneg', b))),
1871 (('~fge', ('fneg', ('fadd', a, b)), 0.0), ('fge', ('fneg', a), b)),
1872 (('~feq', ('fadd', a, b), 0.0), ('feq', a, ('fneg', b))),
1873 (('~fne', ('fadd', a, b), 0.0), ('fne', a, ('fneg', b))),
1874
1875 # nir_lower_to_source_mods will collapse this, but its existence during the
1876 # optimization loop can prevent other optimizations.
1877 (('fneg', ('fneg', a)), a),
1878
1879 # Subtractions get lowered during optimization, so we need to recombine them
1880 (('fadd', 'a', ('fneg', 'b')), ('fsub', 'a', 'b'), '!options->lower_sub'),
1881 (('iadd', 'a', ('ineg', 'b')), ('isub', 'a', 'b'), '!options->lower_sub'),
1882 (('fneg', a), ('fsub', 0.0, a), 'options->lower_negate'),
1883 (('ineg', a), ('isub', 0, a), 'options->lower_negate'),
1884
1885 # These are duplicated from the main optimizations table. The late
1886 # patterns that rearrange expressions like x - .5 < 0 to x < .5 can create
1887 # new patterns like these. The patterns that compare with zero are removed
1888 # because they are unlikely to be created in by anything in
1889 # late_optimizations.
1890 (('flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
1891 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
1892 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
1893 (('fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
1894 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
1895 (('fne', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fne', a, b)),
1896
1897 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
1898 (('flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
1899
1900 (('~fge', ('fmin(is_used_once)', ('fadd(is_used_once)', a, b), ('fadd', c, d)), 0.0), ('iand', ('fge', a, ('fneg', b)), ('fge', c, ('fneg', d)))),
1901
1902 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
1903 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
1904 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
1905 (('fne', ('fneg', a), ('fneg', b)), ('fne', b, a)),
1906 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
1907 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
1908 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
1909 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
1910 (('fne', ('fneg', a), -1.0), ('fne', 1.0, a)),
1911 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
1912
1913 (('ior', a, a), a),
1914 (('iand', a, a), a),
1915
1916 (('iand', ('ine(is_used_once)', 'a@32', 0), ('ine', 'b@32', 0)), ('ine', ('umin', a, b), 0)),
1917 (('ior', ('ieq(is_used_once)', 'a@32', 0), ('ieq', 'b@32', 0)), ('ieq', ('umin', a, b), 0)),
1918
1919 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
1920
1921 (('fdot2', a, b), ('fdot_replicated2', a, b), 'options->fdot_replicates'),
1922 (('fdot3', a, b), ('fdot_replicated3', a, b), 'options->fdot_replicates'),
1923 (('fdot4', a, b), ('fdot_replicated4', a, b), 'options->fdot_replicates'),
1924 (('fdph', a, b), ('fdph_replicated', a, b), 'options->fdot_replicates'),
1925
1926 (('~flrp@32', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
1927 (('~flrp@64', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
1928
1929 (('~fadd@32', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp32'),
1930 (('~fadd@64', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp64'),
1931
1932 # A similar operation could apply to any ffma(#a, b, #(-a/2)), but this
1933 # particular operation is common for expanding values stored in a texture
1934 # from [0,1] to [-1,1].
1935 (('~ffma@32', a, 2.0, -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1936 (('~ffma@32', a, -2.0, -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1937 (('~ffma@32', a, -2.0, 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1938 (('~ffma@32', a, 2.0, 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1939 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1940 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1941 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1942 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1943
1944 # flrp(a, b, a)
1945 # a*(1-a) + b*a
1946 # a + -a*a + a*b (1)
1947 # a + a*(b - a)
1948 # Option 1: ffma(a, (b-a), a)
1949 #
1950 # Alternately, after (1):
1951 # a*(1+b) + -a*a
1952 # a*((1+b) + -a)
1953 #
1954 # Let b=1
1955 #
1956 # Option 2: ffma(a, 2, -(a*a))
1957 # Option 3: ffma(a, 2, (-a)*a)
1958 # Option 4: ffma(a, -a, (2*a)
1959 # Option 5: a * (2 - a)
1960 #
1961 # There are a lot of other possible combinations.
1962 (('~ffma@32', ('fadd', b, ('fneg', a)), a, a), ('flrp', a, b, a), '!options->lower_flrp32'),
1963 (('~ffma@32', a, 2.0, ('fneg', ('fmul', a, a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1964 (('~ffma@32', a, 2.0, ('fmul', ('fneg', a), a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1965 (('~ffma@32', a, ('fneg', a), ('fmul', 2.0, a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1966 (('~fmul@32', a, ('fadd', 2.0, ('fneg', a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1967
1968 # we do these late so that we don't get in the way of creating ffmas
1969 (('fmin', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmin', a, b))),
1970 (('fmax', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmax', a, b))),
1971
1972 (('bcsel', a, 0, ('b2f32', ('inot', 'b@bool'))), ('b2f32', ('inot', ('ior', a, b)))),
1973
1974 # Putting this in 'optimizations' interferes with the bcsel(a, op(b, c),
1975 # op(b, d)) => op(b, bcsel(a, c, d)) transformations. I do not know why.
1976 (('bcsel', ('feq', ('fsqrt', 'a(is_not_negative)'), 0.0), intBitsToFloat(0x7f7fffff), ('frsq', a)),
1977 ('fmin', ('frsq', a), intBitsToFloat(0x7f7fffff))),
1978
1979 # Things that look like DPH in the source shader may get expanded to
1980 # something that looks like dot(v1.xyz, v2.xyz) + v1.w by the time it gets
1981 # to NIR. After FFMA is generated, this can look like:
1982 #
1983 # fadd(ffma(v1.z, v2.z, ffma(v1.y, v2.y, fmul(v1.x, v2.x))), v1.w)
1984 #
1985 # Reassociate the last addition into the first multiplication.
1986 #
1987 # Some shaders do not use 'invariant' in vertex and (possibly) geometry
1988 # shader stages on some outputs that are intended to be invariant. For
1989 # various reasons, this optimization may not be fully applied in all
1990 # shaders used for different rendering passes of the same geometry. This
1991 # can result in Z-fighting artifacts (at best). For now, disable this
1992 # optimization in these stages. See bugzilla #111490. In tessellation
1993 # stages applications seem to use 'precise' when necessary, so allow the
1994 # optimization in those stages.
1995 (('~fadd', ('ffma(is_used_once)', a, b, ('ffma', c, d, ('fmul', 'e(is_not_const_and_not_fsign)', 'f(is_not_const_and_not_fsign)'))), 'g(is_not_const)'),
1996 ('ffma', a, b, ('ffma', c, d, ('ffma', e, 'f', 'g'))), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
1997 (('~fadd', ('ffma(is_used_once)', a, b, ('fmul', 'c(is_not_const_and_not_fsign)', 'd(is_not_const_and_not_fsign)') ), 'e(is_not_const)'),
1998 ('ffma', a, b, ('ffma', c, d, e)), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
1999
2000 # Convert *2*mp instructions to concrete *2*16 instructions. At this point
2001 # any conversions that could have been removed will have been removed in
2002 # nir_opt_algebraic so any remaining ones are required.
2003 (('f2fmp', a), ('f2f16', a)),
2004 (('i2imp', a), ('i2i16', a)),
2005 (('u2ump', a), ('u2u16', a)),
2006
2007 # Section 8.8 (Integer Functions) of the GLSL 4.60 spec says:
2008 #
2009 # If bits is zero, the result will be zero.
2010 #
2011 # These prevent the next two lowerings generating incorrect results when
2012 # count is zero.
2013 (('ubfe', a, b, 0), 0),
2014 (('ibfe', a, b, 0), 0),
2015
2016 # On Intel GPUs, BFE is a 3-source instruction. Like all 3-source
2017 # instructions on Intel GPUs, it cannot have an immediate values as
2018 # sources. There are also limitations on source register strides. As a
2019 # result, it is very easy for 3-source instruction combined with either
2020 # loads of immediate values or copies from weird register strides to be
2021 # more expensive than the primitive instructions it represents.
2022 (('ubfe', a, '#b', '#c'), ('iand', ('ushr', 0xffffffff, ('ineg', c)), ('ushr', a, b)), 'options->lower_bfe_with_two_constants'),
2023
2024 # b is the lowest order bit to be extracted and c is the number of bits to
2025 # extract. The inner shift removes the bits above b + c by shifting left
2026 # 32 - (b + c). ishl only sees the low 5 bits of the shift count, which is
2027 # -(b + c). The outer shift moves the bit that was at b to bit zero.
2028 # After the first shift, that bit is now at b + (32 - (b + c)) or 32 - c.
2029 # This means that it must be shifted right by 32 - c or -c bits.
2030 (('ibfe', a, '#b', '#c'), ('ishr', ('ishl', a, ('ineg', ('iadd', b, c))), ('ineg', c)), 'options->lower_bfe_with_two_constants'),
2031
2032 # Clean up no-op shifts that may result from the bfe lowerings.
2033 (('ishl', a, 0), a),
2034 (('ishl', a, -32), a),
2035 (('ishr', a, 0), a),
2036 (('ishr', a, -32), a),
2037 (('ushr', a, 0), a),
2038 ]
2039
2040 for op in ['fadd']:
2041 late_optimizations += [
2042 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
2043 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
2044 ]
2045
2046 for op in ['ffma']:
2047 late_optimizations += [
2048 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
2049 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
2050
2051 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
2052 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
2053 ]
2054
2055 distribute_src_mods = [
2056 # Try to remove some spurious negations rather than pushing them down.
2057 (('fmul', ('fneg', a), ('fneg', b)), ('fmul', a, b)),
2058 (('ffma', ('fneg', a), ('fneg', b), c), ('ffma', a, b, c)),
2059 (('fdot_replicated2', ('fneg', a), ('fneg', b)), ('fdot_replicated2', a, b)),
2060 (('fdot_replicated3', ('fneg', a), ('fneg', b)), ('fdot_replicated3', a, b)),
2061 (('fdot_replicated4', ('fneg', a), ('fneg', b)), ('fdot_replicated4', a, b)),
2062 (('fneg', ('fneg', a)), a),
2063
2064 (('fneg', ('fmul(is_used_once)', a, b)), ('fmul', ('fneg', a), b)),
2065 (('fabs', ('fmul(is_used_once)', a, b)), ('fmul', ('fabs', a), ('fabs', b))),
2066
2067 (('fneg', ('ffma(is_used_once)', a, b, c)), ('ffma', ('fneg', a), b, ('fneg', c))),
2068 (('fneg', ('flrp(is_used_once)', a, b, c)), ('flrp', ('fneg', a), ('fneg', b), c)),
2069 (('fneg', ('fadd(is_used_once)', a, b)), ('fadd', ('fneg', a), ('fneg', b))),
2070
2071 # Note that fmin <-> fmax. I don't think there is a way to distribute
2072 # fabs() into fmin or fmax.
2073 (('fneg', ('fmin(is_used_once)', a, b)), ('fmax', ('fneg', a), ('fneg', b))),
2074 (('fneg', ('fmax(is_used_once)', a, b)), ('fmin', ('fneg', a), ('fneg', b))),
2075
2076 (('fneg', ('fdot_replicated2(is_used_once)', a, b)), ('fdot_replicated2', ('fneg', a), b)),
2077 (('fneg', ('fdot_replicated3(is_used_once)', a, b)), ('fdot_replicated3', ('fneg', a), b)),
2078 (('fneg', ('fdot_replicated4(is_used_once)', a, b)), ('fdot_replicated4', ('fneg', a), b)),
2079
2080 # fdph works mostly like fdot, but to get the correct result, the negation
2081 # must be applied to the second source.
2082 (('fneg', ('fdph_replicated(is_used_once)', a, b)), ('fdph_replicated', a, ('fneg', b))),
2083
2084 (('fneg', ('fsign(is_used_once)', a)), ('fsign', ('fneg', a))),
2085 (('fabs', ('fsign(is_used_once)', a)), ('fsign', ('fabs', a))),
2086 ]
2087
2088 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic", optimizations).render())
2089 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_before_ffma",
2090 before_ffma_optimizations).render())
2091 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_late",
2092 late_optimizations).render())
2093 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_distribute_src_mods",
2094 distribute_src_mods).render())