nir/algebraic: Simplify logic to detect sign of an integer
[mesa.git] / src / compiler / nir / nir_opt_algebraic.py
1 #
2 # Copyright (C) 2014 Intel Corporation
3 #
4 # Permission is hereby granted, free of charge, to any person obtaining a
5 # copy of this software and associated documentation files (the "Software"),
6 # to deal in the Software without restriction, including without limitation
7 # the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 # and/or sell copies of the Software, and to permit persons to whom the
9 # Software is furnished to do so, subject to the following conditions:
10 #
11 # The above copyright notice and this permission notice (including the next
12 # paragraph) shall be included in all copies or substantial portions of the
13 # Software.
14 #
15 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 # IN THE SOFTWARE.
22 #
23 # Authors:
24 # Jason Ekstrand (jason@jlekstrand.net)
25
26 from __future__ import print_function
27
28 from collections import OrderedDict
29 import nir_algebraic
30 from nir_opcodes import type_sizes
31 import itertools
32 import struct
33 from math import pi
34
35 # Convenience variables
36 a = 'a'
37 b = 'b'
38 c = 'c'
39 d = 'd'
40 e = 'e'
41
42 # Written in the form (<search>, <replace>) where <search> is an expression
43 # and <replace> is either an expression or a value. An expression is
44 # defined as a tuple of the form ([~]<op>, <src0>, <src1>, <src2>, <src3>)
45 # where each source is either an expression or a value. A value can be
46 # either a numeric constant or a string representing a variable name.
47 #
48 # If the opcode in a search expression is prefixed by a '~' character, this
49 # indicates that the operation is inexact. Such operations will only get
50 # applied to SSA values that do not have the exact bit set. This should be
51 # used by by any optimizations that are not bit-for-bit exact. It should not,
52 # however, be used for backend-requested lowering operations as those need to
53 # happen regardless of precision.
54 #
55 # Variable names are specified as "[#]name[@type][(cond)][.swiz]" where:
56 # "#" indicates that the given variable will only match constants,
57 # type indicates that the given variable will only match values from ALU
58 # instructions with the given output type,
59 # (cond) specifies an additional condition function (see nir_search_helpers.h),
60 # swiz is a swizzle applied to the variable (only in the <replace> expression)
61 #
62 # For constants, you have to be careful to make sure that it is the right
63 # type because python is unaware of the source and destination types of the
64 # opcodes.
65 #
66 # All expression types can have a bit-size specified. For opcodes, this
67 # looks like "op@32", for variables it is "a@32" or "a@uint32" to specify a
68 # type and size. In the search half of the expression this indicates that it
69 # should only match that particular bit-size. In the replace half of the
70 # expression this indicates that the constructed value should have that
71 # bit-size.
72 #
73 # If the opcode in a replacement expression is prefixed by a '!' character,
74 # this indicated that the new expression will be marked exact.
75 #
76 # A special condition "many-comm-expr" can be used with expressions to note
77 # that the expression and its subexpressions have more commutative expressions
78 # than nir_replace_instr can handle. If this special condition is needed with
79 # another condition, the two can be separated by a comma (e.g.,
80 # "(many-comm-expr,is_used_once)").
81
82 # based on https://web.archive.org/web/20180105155939/http://forum.devmaster.net/t/fast-and-accurate-sine-cosine/9648
83 def lowered_sincos(c):
84 x = ('fsub', ('fmul', 2.0, ('ffract', ('fadd', ('fmul', 0.5 / pi, a), c))), 1.0)
85 x = ('fmul', ('fsub', x, ('fmul', x, ('fabs', x))), 4.0)
86 return ('ffma', ('ffma', x, ('fabs', x), ('fneg', x)), 0.225, x)
87
88 def intBitsToFloat(i):
89 return struct.unpack('!f', struct.pack('!I', i))[0]
90
91 optimizations = [
92
93 (('imul', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
94 (('imul', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
95 (('ishl', a, '#b@32'), ('imul', a, ('ishl', 1, b)), 'options->lower_bitops'),
96
97 (('unpack_64_2x32_split_x', ('imul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
98 (('unpack_64_2x32_split_x', ('umul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
99 (('imul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('imul_high', a, b)), 'options->lower_mul_2x32_64'),
100 (('umul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('umul_high', a, b)), 'options->lower_mul_2x32_64'),
101 (('udiv', a, 1), a),
102 (('idiv', a, 1), a),
103 (('umod', a, 1), 0),
104 (('imod', a, 1), 0),
105 (('udiv', a, '#b@32(is_pos_power_of_two)'), ('ushr', a, ('find_lsb', b)), '!options->lower_bitops'),
106 (('idiv', a, '#b@32(is_pos_power_of_two)'), ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', b))), 'options->lower_idiv'),
107 (('idiv', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', ('iabs', b))))), 'options->lower_idiv'),
108 (('umod', a, '#b(is_pos_power_of_two)'), ('iand', a, ('isub', b, 1))),
109
110 (('~fneg', ('fneg', a)), a),
111 (('ineg', ('ineg', a)), a),
112 (('fabs', ('fabs', a)), ('fabs', a)),
113 (('fabs', ('fneg', a)), ('fabs', a)),
114 (('fabs', ('u2f', a)), ('u2f', a)),
115 (('iabs', ('iabs', a)), ('iabs', a)),
116 (('iabs', ('ineg', a)), ('iabs', a)),
117 (('f2b', ('fneg', a)), ('f2b', a)),
118 (('i2b', ('ineg', a)), ('i2b', a)),
119 (('~fadd', a, 0.0), a),
120 (('iadd', a, 0), a),
121 (('usadd_4x8', a, 0), a),
122 (('usadd_4x8', a, ~0), ~0),
123 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
124 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
125 (('~fadd', ('fneg', a), a), 0.0),
126 (('iadd', ('ineg', a), a), 0),
127 (('iadd', ('ineg', a), ('iadd', a, b)), b),
128 (('iadd', a, ('iadd', ('ineg', a), b)), b),
129 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
130 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
131 (('fadd', ('fsat', a), ('fsat', ('fneg', a))), ('fsat', ('fabs', a))),
132 (('~fmul', a, 0.0), 0.0),
133 (('imul', a, 0), 0),
134 (('umul_unorm_4x8', a, 0), 0),
135 (('umul_unorm_4x8', a, ~0), a),
136 (('~fmul', a, 1.0), a),
137 (('imul', a, 1), a),
138 (('fmul', a, -1.0), ('fneg', a)),
139 (('imul', a, -1), ('ineg', a)),
140 # If a < 0: fsign(a)*a*a => -1*a*a => -a*a => abs(a)*a
141 # If a > 0: fsign(a)*a*a => 1*a*a => a*a => abs(a)*a
142 # If a == 0: fsign(a)*a*a => 0*0*0 => abs(0)*0
143 (('fmul', ('fsign', a), ('fmul', a, a)), ('fmul', ('fabs', a), a)),
144 (('fmul', ('fmul', ('fsign', a), a), a), ('fmul', ('fabs', a), a)),
145 (('~ffma', 0.0, a, b), b),
146 (('~ffma', a, b, 0.0), ('fmul', a, b)),
147 (('ffma', 1.0, a, b), ('fadd', a, b)),
148 (('ffma', -1.0, a, b), ('fadd', ('fneg', a), b)),
149 (('~flrp', a, b, 0.0), a),
150 (('~flrp', a, b, 1.0), b),
151 (('~flrp', a, a, b), a),
152 (('~flrp', 0.0, a, b), ('fmul', a, b)),
153
154 # flrp(a, a + b, c) => a + flrp(0, b, c) => a + (b * c)
155 (('~flrp', a, ('fadd(is_used_once)', a, b), c), ('fadd', ('fmul', b, c), a)),
156 (('~flrp@32', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp32'),
157 (('~flrp@64', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp64'),
158
159 (('~flrp@32', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp32'),
160 (('~flrp@64', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp64'),
161
162 (('~flrp@32', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp32'),
163 (('~flrp@64', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp64'),
164
165 (('~flrp', ('fmul(is_used_once)', a, b), ('fmul(is_used_once)', a, c), d), ('fmul', ('flrp', b, c, d), a)),
166
167 (('~flrp', a, b, ('b2f', 'c@1')), ('bcsel', c, b, a), 'options->lower_flrp32'),
168 (('~flrp', a, 0.0, c), ('fadd', ('fmul', ('fneg', a), c), a)),
169 (('ftrunc', a), ('bcsel', ('flt', a, 0.0), ('fneg', ('ffloor', ('fabs', a))), ('ffloor', ('fabs', a))), 'options->lower_ftrunc'),
170 (('ffloor', a), ('fsub', a, ('ffract', a)), 'options->lower_ffloor'),
171 (('fadd', a, ('fneg', ('ffract', a))), ('ffloor', a), '!options->lower_ffloor'),
172 (('ffract', a), ('fsub', a, ('ffloor', a)), 'options->lower_ffract'),
173 (('fceil', a), ('fneg', ('ffloor', ('fneg', a))), 'options->lower_fceil'),
174 (('~fadd', ('fmul', a, ('fadd', 1.0, ('fneg', ('b2f', 'c@1')))), ('fmul', b, ('b2f', c))), ('bcsel', c, b, a), 'options->lower_flrp32'),
175 (('~fadd@32', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp32'),
176 (('~fadd@64', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp64'),
177 # These are the same as the previous three rules, but it depends on
178 # 1-fsat(x) <=> fsat(1-x). See below.
179 (('~fadd@32', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp32'),
180 (('~fadd@64', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp64'),
181
182 (('~fadd', a, ('fmul', ('b2f', 'c@1'), ('fadd', b, ('fneg', a)))), ('bcsel', c, b, a), 'options->lower_flrp32'),
183 (('~fadd@32', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp32'),
184 (('~fadd@64', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp64'),
185 (('ffma', a, b, c), ('fadd', ('fmul', a, b), c), 'options->lower_ffma'),
186 (('~fadd', ('fmul', a, b), c), ('ffma', a, b, c), 'options->fuse_ffma'),
187
188 (('~fmul', ('fadd', ('iand', ('ineg', ('b2i32', 'a@bool')), ('fmul', b, c)), '#d'), '#e'),
189 ('bcsel', a, ('fmul', ('fadd', ('fmul', b, c), d), e), ('fmul', d, e))),
190
191 (('fdph', a, b), ('fdot4', ('vec4', 'a.x', 'a.y', 'a.z', 1.0), b), 'options->lower_fdph'),
192
193 (('fdot4', ('vec4', a, b, c, 1.0), d), ('fdph', ('vec3', a, b, c), d), '!options->lower_fdph'),
194 (('fdot4', ('vec4', a, 0.0, 0.0, 0.0), b), ('fmul', a, b)),
195 (('fdot4', ('vec4', a, b, 0.0, 0.0), c), ('fdot2', ('vec2', a, b), c)),
196 (('fdot4', ('vec4', a, b, c, 0.0), d), ('fdot3', ('vec3', a, b, c), d)),
197
198 (('fdot3', ('vec3', a, 0.0, 0.0), b), ('fmul', a, b)),
199 (('fdot3', ('vec3', a, b, 0.0), c), ('fdot2', ('vec2', a, b), c)),
200
201 (('fdot2', ('vec2', a, 0.0), b), ('fmul', a, b)),
202 (('fdot2', a, 1.0), ('fadd', 'a.x', 'a.y')),
203
204 # Lower fdot to fsum when it is available
205 (('fdot2', a, b), ('fsum2', ('fmul', a, b)), 'options->lower_fdot'),
206 (('fdot3', a, b), ('fsum3', ('fmul', a, b)), 'options->lower_fdot'),
207 (('fdot4', a, b), ('fsum4', ('fmul', a, b)), 'options->lower_fdot'),
208 (('fsum2', a), ('fadd', 'a.x', 'a.y'), 'options->lower_fdot'),
209
210 # If x >= 0 and x <= 1: fsat(1 - x) == 1 - fsat(x) trivially
211 # If x < 0: 1 - fsat(x) => 1 - 0 => 1 and fsat(1 - x) => fsat(> 1) => 1
212 # If x > 1: 1 - fsat(x) => 1 - 1 => 0 and fsat(1 - x) => fsat(< 0) => 0
213 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
214
215 # 1 - ((1 - a) * (1 - b))
216 # 1 - (1 - a - b + a*b)
217 # 1 - 1 + a + b - a*b
218 # a + b - a*b
219 # a + b*(1 - a)
220 # b*(1 - a) + 1*a
221 # flrp(b, 1, a)
222 (('~fadd@32', 1.0, ('fneg', ('fmul', ('fadd', 1.0, ('fneg', a)), ('fadd', 1.0, ('fneg', b))))),
223 ('flrp', b, 1.0, a), '!options->lower_flrp32'),
224
225 # (a * #b + #c) << #d
226 # ((a * #b) << #d) + (#c << #d)
227 # (a * (#b << #d)) + (#c << #d)
228 (('ishl', ('iadd', ('imul', a, '#b'), '#c'), '#d'),
229 ('iadd', ('imul', a, ('ishl', b, d)), ('ishl', c, d))),
230
231 # (a * #b) << #c
232 # a * (#b << #c)
233 (('ishl', ('imul', a, '#b'), '#c'), ('imul', a, ('ishl', b, c))),
234 ]
235
236 # Care must be taken here. Shifts in NIR uses only the lower log2(bitsize)
237 # bits of the second source. These replacements must correctly handle the
238 # case where (b % bitsize) + (c % bitsize) >= bitsize.
239 for s in [8, 16, 32, 64]:
240 mask = (1 << s) - 1
241
242 ishl = "ishl@{}".format(s)
243 ishr = "ishr@{}".format(s)
244 ushr = "ushr@{}".format(s)
245
246 in_bounds = ('ult', ('iadd', ('iand', b, mask), ('iand', c, mask)), s)
247
248 optimizations.extend([
249 ((ishl, (ishl, a, '#b'), '#c'), ('bcsel', in_bounds, (ishl, a, ('iadd', b, c)), 0)),
250 ((ushr, (ushr, a, '#b'), '#c'), ('bcsel', in_bounds, (ushr, a, ('iadd', b, c)), 0)),
251
252 # To get get -1 for large shifts of negative values, ishr must instead
253 # clamp the shift count to the maximum value.
254 ((ishr, (ishr, a, '#b'), '#c'),
255 (ishr, a, ('imin', ('iadd', ('iand', b, mask), ('iand', c, mask)), s - 1))),
256 ])
257
258 # Optimize a pattern of address calculation created by DXVK where the offset is
259 # divided by 4 and then multipled by 4. This can be turned into an iand and the
260 # additions before can be reassociated to CSE the iand instruction.
261 for log2 in range(1, 7): # powers of two from 2 to 64
262 v = 1 << log2
263 mask = 0xffffffff & ~(v - 1)
264 b_is_multiple = '#b(is_unsigned_multiple_of_{})'.format(v)
265
266 optimizations.extend([
267 # 'a >> #b << #b' -> 'a & ~((1 << #b) - 1)'
268 (('ishl@32', ('ushr@32', a, log2), log2), ('iand', a, mask)),
269
270 # Reassociate for improved CSE
271 (('iand@32', ('iadd@32', a, b_is_multiple), mask), ('iadd', ('iand', a, mask), b)),
272 ])
273
274 optimizations.extend([
275 # This is common for address calculations. Reassociating may enable the
276 # 'a<<c' to be CSE'd. It also helps architectures that have an ISHLADD
277 # instruction or a constant offset field for in load / store instructions.
278 (('ishl', ('iadd', a, '#b'), '#c'), ('iadd', ('ishl', a, c), ('ishl', b, c))),
279
280 # Comparison simplifications
281 (('~inot', ('flt', a, b)), ('fge', a, b)),
282 (('~inot', ('fge', a, b)), ('flt', a, b)),
283 (('inot', ('feq', a, b)), ('fne', a, b)),
284 (('inot', ('fne', a, b)), ('feq', a, b)),
285 (('inot', ('ilt', a, b)), ('ige', a, b)),
286 (('inot', ('ult', a, b)), ('uge', a, b)),
287 (('inot', ('ige', a, b)), ('ilt', a, b)),
288 (('inot', ('uge', a, b)), ('ult', a, b)),
289 (('inot', ('ieq', a, b)), ('ine', a, b)),
290 (('inot', ('ine', a, b)), ('ieq', a, b)),
291
292 (('iand', ('feq', a, b), ('fne', a, b)), False),
293 (('iand', ('flt', a, b), ('flt', b, a)), False),
294 (('iand', ('ieq', a, b), ('ine', a, b)), False),
295 (('iand', ('ilt', a, b), ('ilt', b, a)), False),
296 (('iand', ('ult', a, b), ('ult', b, a)), False),
297
298 # This helps some shaders because, after some optimizations, they end up
299 # with patterns like (-a < -b) || (b < a). In an ideal world, this sort of
300 # matching would be handled by CSE.
301 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
302 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
303 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
304 (('fne', ('fneg', a), ('fneg', b)), ('fne', b, a)),
305 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
306 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
307 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
308 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
309 (('fne', ('fneg', a), -1.0), ('fne', 1.0, a)),
310 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
311
312 (('flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
313 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
314 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
315 (('fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
316 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
317 (('fne', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fne', a, b)),
318
319 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
320 (('flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
321 (('fge', 0.0, ('fsat(is_used_once)', a)), ('fge', 0.0, a)),
322 (('flt', 0.0, ('fsat(is_used_once)', a)), ('flt', 0.0, a)),
323
324 # 0.0 >= b2f(a)
325 # b2f(a) <= 0.0
326 # b2f(a) == 0.0 because b2f(a) can only be 0 or 1
327 # inot(a)
328 (('fge', 0.0, ('b2f', 'a@1')), ('inot', a)),
329
330 (('fge', ('fneg', ('b2f', 'a@1')), 0.0), ('inot', a)),
331
332 (('fne', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
333 (('fne', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
334 (('fne', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('ior', a, b)),
335 (('fne', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('ior', a, b)),
336 (('fne', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
337 (('fne', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
338 (('fne', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('iand', a, b)),
339 (('fne', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ixor', a, b)),
340 (('fne', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ixor', a, b)),
341 (('fne', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ixor', a, b)),
342 (('feq', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
343 (('feq', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
344 (('feq', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('inot', ('ior', a, b))),
345 (('feq', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
346 (('feq', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
347 (('feq', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
348 (('feq', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('inot', ('iand', a, b))),
349 (('feq', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ieq', a, b)),
350 (('feq', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ieq', a, b)),
351 (('feq', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ieq', a, b)),
352
353 # -(b2f(a) + b2f(b)) < 0
354 # 0 < b2f(a) + b2f(b)
355 # 0 != b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
356 # a || b
357 (('flt', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('ior', a, b)),
358 (('flt', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('ior', a, b)),
359
360 # -(b2f(a) + b2f(b)) >= 0
361 # 0 >= b2f(a) + b2f(b)
362 # 0 == b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
363 # !(a || b)
364 (('fge', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('inot', ('ior', a, b))),
365 (('fge', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
366
367 (('flt', a, ('fneg', a)), ('flt', a, 0.0)),
368 (('fge', a, ('fneg', a)), ('fge', a, 0.0)),
369
370 # Some optimizations (below) convert things like (a < b || c < b) into
371 # (min(a, c) < b). However, this interfers with the previous optimizations
372 # that try to remove comparisons with negated sums of b2f. This just
373 # breaks that apart.
374 (('flt', ('fmin', c, ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')))), 0.0),
375 ('ior', ('flt', c, 0.0), ('ior', a, b))),
376
377 (('~flt', ('fadd', a, b), a), ('flt', b, 0.0)),
378 (('~fge', ('fadd', a, b), a), ('fge', b, 0.0)),
379 (('~feq', ('fadd', a, b), a), ('feq', b, 0.0)),
380 (('~fne', ('fadd', a, b), a), ('fne', b, 0.0)),
381 (('~flt', ('fadd(is_used_once)', a, '#b'), '#c'), ('flt', a, ('fadd', c, ('fneg', b)))),
382 (('~flt', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('flt', ('fneg', ('fadd', c, b)), a)),
383 (('~fge', ('fadd(is_used_once)', a, '#b'), '#c'), ('fge', a, ('fadd', c, ('fneg', b)))),
384 (('~fge', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fge', ('fneg', ('fadd', c, b)), a)),
385 (('~feq', ('fadd(is_used_once)', a, '#b'), '#c'), ('feq', a, ('fadd', c, ('fneg', b)))),
386 (('~feq', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('feq', ('fneg', ('fadd', c, b)), a)),
387 (('~fne', ('fadd(is_used_once)', a, '#b'), '#c'), ('fne', a, ('fadd', c, ('fneg', b)))),
388 (('~fne', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fne', ('fneg', ('fadd', c, b)), a)),
389
390 # Cannot remove the addition from ilt or ige due to overflow.
391 (('ieq', ('iadd', a, b), a), ('ieq', b, 0)),
392 (('ine', ('iadd', a, b), a), ('ine', b, 0)),
393
394 # fmin(-b2f(a), b) >= 0.0
395 # -b2f(a) >= 0.0 && b >= 0.0
396 # -b2f(a) == 0.0 && b >= 0.0 -b2f can only be 0 or -1, never >0
397 # b2f(a) == 0.0 && b >= 0.0
398 # a == False && b >= 0.0
399 # !a && b >= 0.0
400 #
401 # The fge in the second replacement is not a typo. I leave the proof that
402 # "fmin(-b2f(a), b) >= 0 <=> fmin(-b2f(a), b) == 0" as an exercise for the
403 # reader.
404 (('fge', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
405 (('feq', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
406
407 (('feq', ('b2f', 'a@1'), 0.0), ('inot', a)),
408 (('~fne', ('b2f', 'a@1'), 0.0), a),
409 (('ieq', ('b2i', 'a@1'), 0), ('inot', a)),
410 (('ine', ('b2i', 'a@1'), 0), a),
411
412 (('fne', ('u2f', a), 0.0), ('ine', a, 0)),
413 (('feq', ('u2f', a), 0.0), ('ieq', a, 0)),
414 (('fge', ('u2f', a), 0.0), True),
415 (('fge', 0.0, ('u2f', a)), ('uge', 0, a)), # ieq instead?
416 (('flt', ('u2f', a), 0.0), False),
417 (('flt', 0.0, ('u2f', a)), ('ult', 0, a)), # ine instead?
418 (('fne', ('i2f', a), 0.0), ('ine', a, 0)),
419 (('feq', ('i2f', a), 0.0), ('ieq', a, 0)),
420 (('fge', ('i2f', a), 0.0), ('ige', a, 0)),
421 (('fge', 0.0, ('i2f', a)), ('ige', 0, a)),
422 (('flt', ('i2f', a), 0.0), ('ilt', a, 0)),
423 (('flt', 0.0, ('i2f', a)), ('ilt', 0, a)),
424
425 # 0.0 < fabs(a)
426 # fabs(a) > 0.0
427 # fabs(a) != 0.0 because fabs(a) must be >= 0
428 # a != 0.0
429 (('~flt', 0.0, ('fabs', a)), ('fne', a, 0.0)),
430
431 # -fabs(a) < 0.0
432 # fabs(a) > 0.0
433 (('~flt', ('fneg', ('fabs', a)), 0.0), ('fne', a, 0.0)),
434
435 # 0.0 >= fabs(a)
436 # 0.0 == fabs(a) because fabs(a) must be >= 0
437 # 0.0 == a
438 (('fge', 0.0, ('fabs', a)), ('feq', a, 0.0)),
439
440 # -fabs(a) >= 0.0
441 # 0.0 >= fabs(a)
442 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
443
444 # (a >= 0.0) && (a <= 1.0) -> fsat(a) == a
445 (('iand', ('fge', a, 0.0), ('fge', 1.0, a)), ('feq', a, ('fsat', a)), '!options->lower_fsat'),
446
447 # (a < 0.0) || (a > 1.0)
448 # !(!(a < 0.0) && !(a > 1.0))
449 # !((a >= 0.0) && (a <= 1.0))
450 # !(a == fsat(a))
451 # a != fsat(a)
452 (('ior', ('flt', a, 0.0), ('flt', 1.0, a)), ('fne', a, ('fsat', a)), '!options->lower_fsat'),
453
454 (('fmax', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('ior', a, b))),
455 (('fmax', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('ior', a, b)))),
456 (('fmin', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
457 (('fmin', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('iand', a, b)))),
458
459 # fmin(b2f(a), b)
460 # bcsel(a, fmin(b2f(a), b), fmin(b2f(a), b))
461 # bcsel(a, fmin(b2f(True), b), fmin(b2f(False), b))
462 # bcsel(a, fmin(1.0, b), fmin(0.0, b))
463 #
464 # Since b is a constant, constant folding will eliminate the fmin and the
465 # fmax. If b is > 1.0, the bcsel will be replaced with a b2f.
466 (('fmin', ('b2f', 'a@1'), '#b'), ('bcsel', a, ('fmin', b, 1.0), ('fmin', b, 0.0))),
467
468 (('flt', ('fadd(is_used_once)', a, ('fneg', b)), 0.0), ('flt', a, b)),
469
470 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
471 (('~bcsel', ('flt', b, a), b, a), ('fmin', a, b)),
472 (('~bcsel', ('flt', a, b), b, a), ('fmax', a, b)),
473 (('~bcsel', ('fge', a, b), b, a), ('fmin', a, b)),
474 (('~bcsel', ('fge', b, a), b, a), ('fmax', a, b)),
475 (('bcsel', ('i2b', a), b, c), ('bcsel', ('ine', a, 0), b, c)),
476 (('bcsel', ('inot', a), b, c), ('bcsel', a, c, b)),
477 (('bcsel', a, ('bcsel', a, b, c), d), ('bcsel', a, b, d)),
478 (('bcsel', a, b, ('bcsel', a, c, d)), ('bcsel', a, b, d)),
479 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
480 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
481 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
482 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
483 (('bcsel', a, True, b), ('ior', a, b)),
484 (('bcsel', a, a, b), ('ior', a, b)),
485 (('bcsel', a, b, False), ('iand', a, b)),
486 (('bcsel', a, b, a), ('iand', a, b)),
487 (('~fmin', a, a), a),
488 (('~fmax', a, a), a),
489 (('imin', a, a), a),
490 (('imax', a, a), a),
491 (('umin', a, a), a),
492 (('umax', a, a), a),
493 (('fmax', ('fmax', a, b), b), ('fmax', a, b)),
494 (('umax', ('umax', a, b), b), ('umax', a, b)),
495 (('imax', ('imax', a, b), b), ('imax', a, b)),
496 (('fmin', ('fmin', a, b), b), ('fmin', a, b)),
497 (('umin', ('umin', a, b), b), ('umin', a, b)),
498 (('imin', ('imin', a, b), b), ('imin', a, b)),
499 (('iand@32', a, ('inot', ('ishr', a, 31))), ('imax', a, 0)),
500
501 # Simplify logic to detect sign of an integer.
502 (('ieq', ('iand', a, 0x80000000), 0x00000000), ('ige', a, 0)),
503 (('ine', ('iand', a, 0x80000000), 0x80000000), ('ige', a, 0)),
504 (('ine', ('iand', a, 0x80000000), 0x00000000), ('ilt', a, 0)),
505 (('ieq', ('iand', a, 0x80000000), 0x80000000), ('ilt', a, 0)),
506 (('ine', ('ushr', 'a@32', 31), 0), ('ilt', a, 0)),
507 (('ieq', ('ushr', 'a@32', 31), 0), ('ige', a, 0)),
508 (('ieq', ('ushr', 'a@32', 31), 1), ('ilt', a, 0)),
509 (('ine', ('ushr', 'a@32', 31), 1), ('ige', a, 0)),
510 (('ine', ('ishr', 'a@32', 31), 0), ('ilt', a, 0)),
511 (('ieq', ('ishr', 'a@32', 31), 0), ('ige', a, 0)),
512 (('ieq', ('ishr', 'a@32', 31), -1), ('ilt', a, 0)),
513 (('ine', ('ishr', 'a@32', 31), -1), ('ige', a, 0)),
514
515 (('fmin', a, ('fneg', a)), ('fneg', ('fabs', a))),
516 (('imin', a, ('ineg', a)), ('ineg', ('iabs', a))),
517 (('fmin', a, ('fneg', ('fabs', a))), ('fneg', ('fabs', a))),
518 (('imin', a, ('ineg', ('iabs', a))), ('ineg', ('iabs', a))),
519 (('~fmin', a, ('fabs', a)), a),
520 (('imin', a, ('iabs', a)), a),
521 (('~fmax', a, ('fneg', ('fabs', a))), a),
522 (('imax', a, ('ineg', ('iabs', a))), a),
523 (('fmax', a, ('fabs', a)), ('fabs', a)),
524 (('imax', a, ('iabs', a)), ('iabs', a)),
525 (('fmax', a, ('fneg', a)), ('fabs', a)),
526 (('imax', a, ('ineg', a)), ('iabs', a)),
527 (('~fmax', ('fabs', a), 0.0), ('fabs', a)),
528 (('~fmin', ('fmax', a, 0.0), 1.0), ('fsat', a), '!options->lower_fsat'),
529 (('~fmax', ('fmin', a, 1.0), 0.0), ('fsat', a), '!options->lower_fsat'),
530 (('~fmin', ('fmax', a, -1.0), 0.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
531 (('~fmax', ('fmin', a, 0.0), -1.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
532 (('fsat', ('fsign', a)), ('b2f', ('flt', 0.0, a))),
533 (('fsat', ('b2f', a)), ('b2f', a)),
534 (('fsat', a), ('fmin', ('fmax', a, 0.0), 1.0), 'options->lower_fsat'),
535 (('fsat', ('fsat', a)), ('fsat', a)),
536 (('fsat', ('fneg(is_used_once)', ('fadd(is_used_once)', a, b))), ('fsat', ('fadd', ('fneg', a), ('fneg', b))), '!options->lower_fsat'),
537 (('fsat', ('fneg(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fneg', a), b)), '!options->lower_fsat'),
538 (('fsat', ('fabs(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fabs', a), ('fabs', b))), '!options->lower_fsat'),
539 (('fmin', ('fmax', ('fmin', ('fmax', a, b), c), b), c), ('fmin', ('fmax', a, b), c)),
540 (('imin', ('imax', ('imin', ('imax', a, b), c), b), c), ('imin', ('imax', a, b), c)),
541 (('umin', ('umax', ('umin', ('umax', a, b), c), b), c), ('umin', ('umax', a, b), c)),
542 (('fmax', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmax', a, b))),
543 (('fmin', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmin', a, b))),
544 (('extract_u8', ('imin', ('imax', a, 0), 0xff), 0), ('imin', ('imax', a, 0), 0xff)),
545 (('~ior', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmax', b, c))),
546 (('~ior', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmin', a, b), c)),
547 (('~ior', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmin', b, c))),
548 (('~ior', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmax', a, b), c)),
549 (('~ior', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmax', b, c))),
550 (('~ior', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmin', a, b), c)),
551 (('~ior', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmin', b, c))),
552 (('~ior', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmax', a, b), c)),
553 (('~iand', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmin', b, c))),
554 (('~iand', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmax', a, b), c)),
555 (('~iand', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmax', b, c))),
556 (('~iand', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmin', a, b), c)),
557 (('~iand', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmin', b, c))),
558 (('~iand', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmax', a, b), c)),
559 (('~iand', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmax', b, c))),
560 (('~iand', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmin', a, b), c)),
561
562 (('ior', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imax', b, c))),
563 (('ior', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imin', a, b), c)),
564 (('ior', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imin', b, c))),
565 (('ior', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imax', a, b), c)),
566 (('ior', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umax', b, c))),
567 (('ior', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umin', a, b), c)),
568 (('ior', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umin', b, c))),
569 (('ior', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umax', a, b), c)),
570 (('iand', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imin', b, c))),
571 (('iand', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imax', a, b), c)),
572 (('iand', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imax', b, c))),
573 (('iand', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imin', a, b), c)),
574 (('iand', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umin', b, c))),
575 (('iand', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umax', a, b), c)),
576 (('iand', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umax', b, c))),
577 (('iand', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umin', a, b), c)),
578
579 # These derive from the previous patterns with the application of b < 0 <=>
580 # 0 < -b. The transformation should be applied if either comparison is
581 # used once as this ensures that the number of comparisons will not
582 # increase. The sources to the ior and iand are not symmetric, so the
583 # rules have to be duplicated to get this behavior.
584 (('~ior', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
585 (('~ior', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
586 (('~ior', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
587 (('~ior', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
588 (('~iand', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
589 (('~iand', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
590 (('~iand', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
591 (('~iand', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
592
593 # Common pattern like 'if (i == 0 || i == 1 || ...)'
594 (('ior', ('ieq', a, 0), ('ieq', a, 1)), ('uge', 1, a)),
595 (('ior', ('uge', 1, a), ('ieq', a, 2)), ('uge', 2, a)),
596 (('ior', ('uge', 2, a), ('ieq', a, 3)), ('uge', 3, a)),
597
598 # The (i2f32, ...) part is an open-coded fsign. When that is combined with
599 # the bcsel, it's basically copysign(1.0, a). There is no copysign in NIR,
600 # so emit an open-coded version of that.
601 (('bcsel@32', ('feq', a, 0.0), 1.0, ('i2f32', ('iadd', ('b2i32', ('flt', 0.0, 'a@32')), ('ineg', ('b2i32', ('flt', 'a@32', 0.0)))))),
602 ('ior', 0x3f800000, ('iand', a, 0x80000000))),
603
604 (('ior', a, ('ieq', a, False)), True),
605 (('ior', a, ('inot', a)), -1),
606
607 (('ine', ('ineg', ('b2i32', 'a@1')), ('ineg', ('b2i32', 'b@1'))), ('ine', a, b)),
608 (('b2i32', ('ine', 'a@1', 'b@1')), ('b2i32', ('ixor', a, b))),
609
610 (('iand', ('ieq', 'a@32', 0), ('ieq', 'b@32', 0)), ('ieq', ('ior', 'a@32', 'b@32'), 0), '!options->lower_bitops'),
611
612 # These patterns can result when (a < b || a < c) => (a < min(b, c))
613 # transformations occur before constant propagation and loop-unrolling.
614 (('~flt', a, ('fmax', b, a)), ('flt', a, b)),
615 (('~flt', ('fmin', a, b), a), ('flt', b, a)),
616 (('~fge', a, ('fmin', b, a)), True),
617 (('~fge', ('fmax', a, b), a), True),
618 (('~flt', a, ('fmin', b, a)), False),
619 (('~flt', ('fmax', a, b), a), False),
620 (('~fge', a, ('fmax', b, a)), ('fge', a, b)),
621 (('~fge', ('fmin', a, b), a), ('fge', b, a)),
622
623 (('ilt', a, ('imax', b, a)), ('ilt', a, b)),
624 (('ilt', ('imin', a, b), a), ('ilt', b, a)),
625 (('ige', a, ('imin', b, a)), True),
626 (('ige', ('imax', a, b), a), True),
627 (('ult', a, ('umax', b, a)), ('ult', a, b)),
628 (('ult', ('umin', a, b), a), ('ult', b, a)),
629 (('uge', a, ('umin', b, a)), True),
630 (('uge', ('umax', a, b), a), True),
631 (('ilt', a, ('imin', b, a)), False),
632 (('ilt', ('imax', a, b), a), False),
633 (('ige', a, ('imax', b, a)), ('ige', a, b)),
634 (('ige', ('imin', a, b), a), ('ige', b, a)),
635 (('ult', a, ('umin', b, a)), False),
636 (('ult', ('umax', a, b), a), False),
637 (('uge', a, ('umax', b, a)), ('uge', a, b)),
638 (('uge', ('umin', a, b), a), ('uge', b, a)),
639 (('ult', a, ('iand', b, a)), False),
640 (('ult', ('ior', a, b), a), False),
641 (('uge', a, ('iand', b, a)), True),
642 (('uge', ('ior', a, b), a), True),
643
644 (('ilt', '#a', ('imax', '#b', c)), ('ior', ('ilt', a, b), ('ilt', a, c))),
645 (('ilt', ('imin', '#a', b), '#c'), ('ior', ('ilt', a, c), ('ilt', b, c))),
646 (('ige', '#a', ('imin', '#b', c)), ('ior', ('ige', a, b), ('ige', a, c))),
647 (('ige', ('imax', '#a', b), '#c'), ('ior', ('ige', a, c), ('ige', b, c))),
648 (('ult', '#a', ('umax', '#b', c)), ('ior', ('ult', a, b), ('ult', a, c))),
649 (('ult', ('umin', '#a', b), '#c'), ('ior', ('ult', a, c), ('ult', b, c))),
650 (('uge', '#a', ('umin', '#b', c)), ('ior', ('uge', a, b), ('uge', a, c))),
651 (('uge', ('umax', '#a', b), '#c'), ('ior', ('uge', a, c), ('uge', b, c))),
652 (('ilt', '#a', ('imin', '#b', c)), ('iand', ('ilt', a, b), ('ilt', a, c))),
653 (('ilt', ('imax', '#a', b), '#c'), ('iand', ('ilt', a, c), ('ilt', b, c))),
654 (('ige', '#a', ('imax', '#b', c)), ('iand', ('ige', a, b), ('ige', a, c))),
655 (('ige', ('imin', '#a', b), '#c'), ('iand', ('ige', a, c), ('ige', b, c))),
656 (('ult', '#a', ('umin', '#b', c)), ('iand', ('ult', a, b), ('ult', a, c))),
657 (('ult', ('umax', '#a', b), '#c'), ('iand', ('ult', a, c), ('ult', b, c))),
658 (('uge', '#a', ('umax', '#b', c)), ('iand', ('uge', a, b), ('uge', a, c))),
659 (('uge', ('umin', '#a', b), '#c'), ('iand', ('uge', a, c), ('uge', b, c))),
660
661 # Thanks to sign extension, the ishr(a, b) is negative if and only if a is
662 # negative.
663 (('bcsel', ('ilt', a, 0), ('ineg', ('ishr', a, b)), ('ishr', a, b)),
664 ('iabs', ('ishr', a, b))),
665 (('iabs', ('ishr', ('iabs', a), b)), ('ishr', ('iabs', a), b)),
666
667 (('fabs', ('slt', a, b)), ('slt', a, b)),
668 (('fabs', ('sge', a, b)), ('sge', a, b)),
669 (('fabs', ('seq', a, b)), ('seq', a, b)),
670 (('fabs', ('sne', a, b)), ('sne', a, b)),
671 (('slt', a, b), ('b2f', ('flt', a, b)), 'options->lower_scmp'),
672 (('sge', a, b), ('b2f', ('fge', a, b)), 'options->lower_scmp'),
673 (('seq', a, b), ('b2f', ('feq', a, b)), 'options->lower_scmp'),
674 (('sne', a, b), ('b2f', ('fne', a, b)), 'options->lower_scmp'),
675 (('seq', ('seq', a, b), 1.0), ('seq', a, b)),
676 (('seq', ('sne', a, b), 1.0), ('sne', a, b)),
677 (('seq', ('slt', a, b), 1.0), ('slt', a, b)),
678 (('seq', ('sge', a, b), 1.0), ('sge', a, b)),
679 (('sne', ('seq', a, b), 0.0), ('seq', a, b)),
680 (('sne', ('sne', a, b), 0.0), ('sne', a, b)),
681 (('sne', ('slt', a, b), 0.0), ('slt', a, b)),
682 (('sne', ('sge', a, b), 0.0), ('sge', a, b)),
683 (('seq', ('seq', a, b), 0.0), ('sne', a, b)),
684 (('seq', ('sne', a, b), 0.0), ('seq', a, b)),
685 (('seq', ('slt', a, b), 0.0), ('sge', a, b)),
686 (('seq', ('sge', a, b), 0.0), ('slt', a, b)),
687 (('sne', ('seq', a, b), 1.0), ('sne', a, b)),
688 (('sne', ('sne', a, b), 1.0), ('seq', a, b)),
689 (('sne', ('slt', a, b), 1.0), ('sge', a, b)),
690 (('sne', ('sge', a, b), 1.0), ('slt', a, b)),
691 (('fall_equal2', a, b), ('fmin', ('seq', 'a.x', 'b.x'), ('seq', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
692 (('fall_equal3', a, b), ('seq', ('fany_nequal3', a, b), 0.0), 'options->lower_vector_cmp'),
693 (('fall_equal4', a, b), ('seq', ('fany_nequal4', a, b), 0.0), 'options->lower_vector_cmp'),
694 (('fany_nequal2', a, b), ('fmax', ('sne', 'a.x', 'b.x'), ('sne', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
695 (('fany_nequal3', a, b), ('fsat', ('fdot3', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
696 (('fany_nequal4', a, b), ('fsat', ('fdot4', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
697 (('fne', ('fneg', a), a), ('fne', a, 0.0)),
698 (('feq', ('fneg', a), a), ('feq', a, 0.0)),
699 # Emulating booleans
700 (('imul', ('b2i', 'a@1'), ('b2i', 'b@1')), ('b2i', ('iand', a, b))),
701 (('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
702 (('fsat', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('b2f', ('ior', a, b))),
703 (('iand', 'a@bool32', 1.0), ('b2f', a)),
704 # True/False are ~0 and 0 in NIR. b2i of True is 1, and -1 is ~0 (True).
705 (('ineg', ('b2i32', 'a@32')), a),
706 (('flt', ('fneg', ('b2f', 'a@1')), 0), a), # Generated by TGSI KILL_IF.
707 # Comparison with the same args. Note that these are not done for
708 # the float versions because NaN always returns false on float
709 # inequalities.
710 (('ilt', a, a), False),
711 (('ige', a, a), True),
712 (('ieq', a, a), True),
713 (('ine', a, a), False),
714 (('ult', a, a), False),
715 (('uge', a, a), True),
716 # Logical and bit operations
717 (('iand', a, a), a),
718 (('iand', a, ~0), a),
719 (('iand', a, 0), 0),
720 (('ior', a, a), a),
721 (('ior', a, 0), a),
722 (('ior', a, True), True),
723 (('ixor', a, a), 0),
724 (('ixor', a, 0), a),
725 (('inot', ('inot', a)), a),
726 (('ior', ('iand', a, b), b), b),
727 (('ior', ('ior', a, b), b), ('ior', a, b)),
728 (('iand', ('ior', a, b), b), b),
729 (('iand', ('iand', a, b), b), ('iand', a, b)),
730 # DeMorgan's Laws
731 (('iand', ('inot', a), ('inot', b)), ('inot', ('ior', a, b))),
732 (('ior', ('inot', a), ('inot', b)), ('inot', ('iand', a, b))),
733 # Shift optimizations
734 (('ishl', 0, a), 0),
735 (('ishl', a, 0), a),
736 (('ishr', 0, a), 0),
737 (('ishr', a, 0), a),
738 (('ushr', 0, a), 0),
739 (('ushr', a, 0), a),
740 (('iand', 0xff, ('ushr@32', a, 24)), ('ushr', a, 24)),
741 (('iand', 0xffff, ('ushr@32', a, 16)), ('ushr', a, 16)),
742 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('iadd', 16, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
743 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('isub', 16, b))), ('urol', a, b), '!options->lower_rotate'),
744 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('iadd', 32, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
745 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('isub', 32, b))), ('urol', a, b), '!options->lower_rotate'),
746 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('iadd', 16, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
747 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('isub', 16, b))), ('uror', a, b), '!options->lower_rotate'),
748 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('iadd', 32, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
749 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('isub', 32, b))), ('uror', a, b), '!options->lower_rotate'),
750 (('urol@16', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 16, b))), 'options->lower_rotate'),
751 (('urol@32', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 32, b))), 'options->lower_rotate'),
752 (('uror@16', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 16, b))), 'options->lower_rotate'),
753 (('uror@32', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 32, b))), 'options->lower_rotate'),
754 # Exponential/logarithmic identities
755 (('~fexp2', ('flog2', a)), a), # 2^lg2(a) = a
756 (('~flog2', ('fexp2', a)), a), # lg2(2^a) = a
757 (('fpow', a, b), ('fexp2', ('fmul', ('flog2', a), b)), 'options->lower_fpow'), # a^b = 2^(lg2(a)*b)
758 (('~fexp2', ('fmul', ('flog2', a), b)), ('fpow', a, b), '!options->lower_fpow'), # 2^(lg2(a)*b) = a^b
759 (('~fexp2', ('fadd', ('fmul', ('flog2', a), b), ('fmul', ('flog2', c), d))),
760 ('~fmul', ('fpow', a, b), ('fpow', c, d)), '!options->lower_fpow'), # 2^(lg2(a) * b + lg2(c) + d) = a^b * c^d
761 (('~fexp2', ('fmul', ('flog2', a), 2.0)), ('fmul', a, a)),
762 (('~fexp2', ('fmul', ('flog2', a), 4.0)), ('fmul', ('fmul', a, a), ('fmul', a, a))),
763 (('~fpow', a, 1.0), a),
764 (('~fpow', a, 2.0), ('fmul', a, a)),
765 (('~fpow', a, 4.0), ('fmul', ('fmul', a, a), ('fmul', a, a))),
766 (('~fpow', 2.0, a), ('fexp2', a)),
767 (('~fpow', ('fpow', a, 2.2), 0.454545), a),
768 (('~fpow', ('fabs', ('fpow', a, 2.2)), 0.454545), ('fabs', a)),
769 (('~fsqrt', ('fexp2', a)), ('fexp2', ('fmul', 0.5, a))),
770 (('~frcp', ('fexp2', a)), ('fexp2', ('fneg', a))),
771 (('~frsq', ('fexp2', a)), ('fexp2', ('fmul', -0.5, a))),
772 (('~flog2', ('fsqrt', a)), ('fmul', 0.5, ('flog2', a))),
773 (('~flog2', ('frcp', a)), ('fneg', ('flog2', a))),
774 (('~flog2', ('frsq', a)), ('fmul', -0.5, ('flog2', a))),
775 (('~flog2', ('fpow', a, b)), ('fmul', b, ('flog2', a))),
776 (('~fmul', ('fexp2(is_used_once)', a), ('fexp2(is_used_once)', b)), ('fexp2', ('fadd', a, b))),
777 (('bcsel', ('flt', a, 0.0), 0.0, ('fsqrt', a)), ('fsqrt', ('fmax', a, 0.0))),
778 (('~fmul', ('fsqrt', a), ('fsqrt', a)), ('fabs',a)),
779 # Division and reciprocal
780 (('~fdiv', 1.0, a), ('frcp', a)),
781 (('fdiv', a, b), ('fmul', a, ('frcp', b)), 'options->lower_fdiv'),
782 (('~frcp', ('frcp', a)), a),
783 (('~frcp', ('fsqrt', a)), ('frsq', a)),
784 (('fsqrt', a), ('frcp', ('frsq', a)), 'options->lower_fsqrt'),
785 (('~frcp', ('frsq', a)), ('fsqrt', a), '!options->lower_fsqrt'),
786 # Trig
787 (('fsin', a), lowered_sincos(0.5), 'options->lower_sincos'),
788 (('fcos', a), lowered_sincos(0.75), 'options->lower_sincos'),
789 # Boolean simplifications
790 (('i2b32(is_used_by_if)', a), ('ine32', a, 0)),
791 (('i2b1(is_used_by_if)', a), ('ine', a, 0)),
792 (('ieq', a, True), a),
793 (('ine(is_not_used_by_if)', a, True), ('inot', a)),
794 (('ine', a, False), a),
795 (('ieq(is_not_used_by_if)', a, False), ('inot', 'a')),
796 (('bcsel', a, True, False), a),
797 (('bcsel', a, False, True), ('inot', a)),
798 (('bcsel@32', a, 1.0, 0.0), ('b2f', a)),
799 (('bcsel@32', a, 0.0, 1.0), ('b2f', ('inot', a))),
800 (('bcsel@32', a, -1.0, -0.0), ('fneg', ('b2f', a))),
801 (('bcsel@32', a, -0.0, -1.0), ('fneg', ('b2f', ('inot', a)))),
802 (('bcsel', True, b, c), b),
803 (('bcsel', False, b, c), c),
804 (('bcsel', a, ('b2f(is_used_once)', 'b@32'), ('b2f', 'c@32')), ('b2f', ('bcsel', a, b, c))),
805
806 (('bcsel', a, b, b), b),
807 (('~fcsel', a, b, b), b),
808
809 # D3D Boolean emulation
810 (('bcsel', a, -1, 0), ('ineg', ('b2i', 'a@1'))),
811 (('bcsel', a, 0, -1), ('ineg', ('b2i', ('inot', a)))),
812 (('iand', ('ineg', ('b2i', 'a@1')), ('ineg', ('b2i', 'b@1'))),
813 ('ineg', ('b2i', ('iand', a, b)))),
814 (('ior', ('ineg', ('b2i','a@1')), ('ineg', ('b2i', 'b@1'))),
815 ('ineg', ('b2i', ('ior', a, b)))),
816 (('ieq', ('ineg', ('b2i', 'a@1')), 0), ('inot', a)),
817 (('ieq', ('ineg', ('b2i', 'a@1')), -1), a),
818 (('ine', ('ineg', ('b2i', 'a@1')), 0), a),
819 (('ine', ('ineg', ('b2i', 'a@1')), -1), ('inot', a)),
820 (('iand', ('ineg', ('b2i', a)), 1.0), ('b2f', a)),
821 (('iand', ('ineg', ('b2i', a)), 1), ('b2i', a)),
822
823 # SM5 32-bit shifts are defined to use the 5 least significant bits
824 (('ishl', 'a@32', ('iand', 31, b)), ('ishl', a, b)),
825 (('ishr', 'a@32', ('iand', 31, b)), ('ishr', a, b)),
826 (('ushr', 'a@32', ('iand', 31, b)), ('ushr', a, b)),
827
828 # Conversions
829 (('i2b32', ('b2i', 'a@32')), a),
830 (('f2i', ('ftrunc', a)), ('f2i', a)),
831 (('f2u', ('ftrunc', a)), ('f2u', a)),
832 (('i2b', ('ineg', a)), ('i2b', a)),
833 (('i2b', ('iabs', a)), ('i2b', a)),
834 (('inot', ('f2b1', a)), ('feq', a, 0.0)),
835
836 # The C spec says, "If the value of the integral part cannot be represented
837 # by the integer type, the behavior is undefined." "Undefined" can mean
838 # "the conversion doesn't happen at all."
839 (('~i2f32', ('f2i32', 'a@32')), ('ftrunc', a)),
840
841 # Ironically, mark these as imprecise because removing the conversions may
842 # preserve more precision than doing the conversions (e.g.,
843 # uint(float(0x81818181u)) == 0x81818200).
844 (('~f2i32', ('i2f', 'a@32')), a),
845 (('~f2i32', ('u2f', 'a@32')), a),
846 (('~f2u32', ('i2f', 'a@32')), a),
847 (('~f2u32', ('u2f', 'a@32')), a),
848
849 # Conversions from float16 to float32 and back can always be removed
850 (('f2f16', ('f2f32', 'a@16')), a),
851 (('f2fmp', ('f2f32', 'a@16')), a),
852 # Conversions to float16 would be lossy so they should only be removed if
853 # the instruction was generated by the precision lowering pass.
854 (('f2f32', ('f2fmp', 'a@32')), a),
855
856 (('ffloor', 'a(is_integral)'), a),
857 (('fceil', 'a(is_integral)'), a),
858 (('ftrunc', 'a(is_integral)'), a),
859 # fract(x) = x - floor(x), so fract(NaN) = NaN
860 (('~ffract', 'a(is_integral)'), 0.0),
861 (('fabs', 'a(is_not_negative)'), a),
862 (('iabs', 'a(is_not_negative)'), a),
863 (('fsat', 'a(is_not_positive)'), 0.0),
864
865 # Section 5.4.1 (Conversion and Scalar Constructors) of the GLSL 4.60 spec
866 # says:
867 #
868 # It is undefined to convert a negative floating-point value to an
869 # uint.
870 #
871 # Assuming that (uint)some_float behaves like (uint)(int)some_float allows
872 # some optimizations in the i965 backend to proceed.
873 (('ige', ('f2u', a), b), ('ige', ('f2i', a), b)),
874 (('ige', b, ('f2u', a)), ('ige', b, ('f2i', a))),
875 (('ilt', ('f2u', a), b), ('ilt', ('f2i', a), b)),
876 (('ilt', b, ('f2u', a)), ('ilt', b, ('f2i', a))),
877
878 (('~fmin', 'a(is_not_negative)', 1.0), ('fsat', a), '!options->lower_fsat'),
879
880 # The result of the multiply must be in [-1, 0], so the result of the ffma
881 # must be in [0, 1].
882 (('flt', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), False),
883 (('flt', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), False),
884 (('fmax', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0)),
885 (('fmax', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0)),
886
887 (('fne', 'a(is_not_zero)', 0.0), True),
888 (('feq', 'a(is_not_zero)', 0.0), False),
889
890 # In this chart, + means value > 0 and - means value < 0.
891 #
892 # + >= + -> unknown 0 >= + -> false - >= + -> false
893 # + >= 0 -> true 0 >= 0 -> true - >= 0 -> false
894 # + >= - -> true 0 >= - -> true - >= - -> unknown
895 #
896 # Using grouping conceptually similar to a Karnaugh map...
897 #
898 # (+ >= 0, + >= -, 0 >= 0, 0 >= -) == (is_not_negative >= is_not_positive) -> true
899 # (0 >= +, - >= +) == (is_not_positive >= gt_zero) -> false
900 # (- >= +, - >= 0) == (lt_zero >= is_not_negative) -> false
901 #
902 # The flt / ilt cases just invert the expected result.
903 #
904 # The results expecting true, must be marked imprecise. The results
905 # expecting false are fine because NaN compared >= or < anything is false.
906
907 (('~fge', 'a(is_not_negative)', 'b(is_not_positive)'), True),
908 (('fge', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
909 (('fge', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
910
911 (('flt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
912 (('~flt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
913 (('~flt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
914
915 (('ine', 'a(is_not_zero)', 0), True),
916 (('ieq', 'a(is_not_zero)', 0), False),
917
918 (('ige', 'a(is_not_negative)', 'b(is_not_positive)'), True),
919 (('ige', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
920 (('ige', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
921
922 (('ilt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
923 (('ilt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
924 (('ilt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
925
926 (('ult', 0, 'a(is_gt_zero)'), True),
927
928 # Packing and then unpacking does nothing
929 (('unpack_64_2x32_split_x', ('pack_64_2x32_split', a, b)), a),
930 (('unpack_64_2x32_split_y', ('pack_64_2x32_split', a, b)), b),
931 (('pack_64_2x32_split', ('unpack_64_2x32_split_x', a),
932 ('unpack_64_2x32_split_y', a)), a),
933
934 # Comparing two halves of an unpack separately. While this optimization
935 # should be correct for non-constant values, it's less obvious that it's
936 # useful in that case. For constant values, the pack will fold and we're
937 # guaranteed to reduce the whole tree to one instruction.
938 (('iand', ('ieq', ('unpack_32_2x16_split_x', a), '#b'),
939 ('ieq', ('unpack_32_2x16_split_y', a), '#c')),
940 ('ieq', a, ('pack_32_2x16_split', b, c))),
941
942 # Byte extraction
943 (('ushr', 'a@16', 8), ('extract_u8', a, 1), '!options->lower_extract_byte'),
944 (('ushr', 'a@32', 24), ('extract_u8', a, 3), '!options->lower_extract_byte'),
945 (('ushr', 'a@64', 56), ('extract_u8', a, 7), '!options->lower_extract_byte'),
946 (('ishr', 'a@16', 8), ('extract_i8', a, 1), '!options->lower_extract_byte'),
947 (('ishr', 'a@32', 24), ('extract_i8', a, 3), '!options->lower_extract_byte'),
948 (('ishr', 'a@64', 56), ('extract_i8', a, 7), '!options->lower_extract_byte'),
949 (('iand', 0xff, a), ('extract_u8', a, 0), '!options->lower_extract_byte'),
950
951 # Useless masking before unpacking
952 (('unpack_half_2x16_split_x', ('iand', a, 0xffff)), ('unpack_half_2x16_split_x', a)),
953 (('unpack_32_2x16_split_x', ('iand', a, 0xffff)), ('unpack_32_2x16_split_x', a)),
954 (('unpack_64_2x32_split_x', ('iand', a, 0xffffffff)), ('unpack_64_2x32_split_x', a)),
955 (('unpack_half_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_half_2x16_split_y', a)),
956 (('unpack_32_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_32_2x16_split_y', a)),
957 (('unpack_64_2x32_split_y', ('iand', a, 0xffffffff00000000)), ('unpack_64_2x32_split_y', a)),
958
959 # Optimize half packing
960 (('ishl', ('pack_half_2x16', ('vec2', a, 0)), 16), ('pack_half_2x16', ('vec2', 0, a))),
961 (('ishr', ('pack_half_2x16', ('vec2', 0, a)), 16), ('pack_half_2x16', ('vec2', a, 0))),
962
963 (('iadd', ('pack_half_2x16', ('vec2', a, 0)), ('pack_half_2x16', ('vec2', 0, b))),
964 ('pack_half_2x16', ('vec2', a, b))),
965 (('ior', ('pack_half_2x16', ('vec2', a, 0)), ('pack_half_2x16', ('vec2', 0, b))),
966 ('pack_half_2x16', ('vec2', a, b))),
967 ])
968
969 # After the ('extract_u8', a, 0) pattern, above, triggers, there will be
970 # patterns like those below.
971 for op in ('ushr', 'ishr'):
972 optimizations.extend([(('extract_u8', (op, 'a@16', 8), 0), ('extract_u8', a, 1))])
973 optimizations.extend([(('extract_u8', (op, 'a@32', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 4)])
974 optimizations.extend([(('extract_u8', (op, 'a@64', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 8)])
975
976 optimizations.extend([(('extract_u8', ('extract_u16', a, 1), 0), ('extract_u8', a, 2))])
977
978 # After the ('extract_[iu]8', a, 3) patterns, above, trigger, there will be
979 # patterns like those below.
980 for op in ('extract_u8', 'extract_i8'):
981 optimizations.extend([((op, ('ishl', 'a@16', 8), 1), (op, a, 0))])
982 optimizations.extend([((op, ('ishl', 'a@32', 24 - 8 * i), 3), (op, a, i)) for i in range(2, -1, -1)])
983 optimizations.extend([((op, ('ishl', 'a@64', 56 - 8 * i), 7), (op, a, i)) for i in range(6, -1, -1)])
984
985 optimizations.extend([
986 # Word extraction
987 (('ushr', ('ishl', 'a@32', 16), 16), ('extract_u16', a, 0), '!options->lower_extract_word'),
988 (('ushr', 'a@32', 16), ('extract_u16', a, 1), '!options->lower_extract_word'),
989 (('ishr', ('ishl', 'a@32', 16), 16), ('extract_i16', a, 0), '!options->lower_extract_word'),
990 (('ishr', 'a@32', 16), ('extract_i16', a, 1), '!options->lower_extract_word'),
991 (('iand', 0xffff, a), ('extract_u16', a, 0), '!options->lower_extract_word'),
992
993 # Subtracts
994 (('ussub_4x8', a, 0), a),
995 (('ussub_4x8', a, ~0), 0),
996 # Lower all Subtractions first - they can get recombined later
997 (('fsub', a, b), ('fadd', a, ('fneg', b))),
998 (('isub', a, b), ('iadd', a, ('ineg', b))),
999 (('uabs_usub', a, b), ('bcsel', ('ult', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
1000 # This is correct. We don't need isub_sat because the result type is unsigned, so it cannot overflow.
1001 (('uabs_isub', a, b), ('bcsel', ('ilt', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
1002
1003 # Propagate negation up multiplication chains
1004 (('fmul(is_used_by_non_fsat)', ('fneg', a), b), ('fneg', ('fmul', a, b))),
1005 (('imul', ('ineg', a), b), ('ineg', ('imul', a, b))),
1006
1007 # Propagate constants up multiplication chains
1008 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fmul', ('fmul', a, c), b)),
1009 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('imul', ('imul', a, c), b)),
1010 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fadd', ('fadd', a, c), b)),
1011 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('iadd', ('iadd', a, c), b)),
1012
1013 # Reassociate constants in add/mul chains so they can be folded together.
1014 # For now, we mostly only handle cases where the constants are separated by
1015 # a single non-constant. We could do better eventually.
1016 (('~fmul', '#a', ('fmul', 'b(is_not_const)', '#c')), ('fmul', ('fmul', a, c), b)),
1017 (('imul', '#a', ('imul', 'b(is_not_const)', '#c')), ('imul', ('imul', a, c), b)),
1018 (('~fadd', '#a', ('fadd', 'b(is_not_const)', '#c')), ('fadd', ('fadd', a, c), b)),
1019 (('~fadd', '#a', ('fneg', ('fadd', 'b(is_not_const)', '#c'))), ('fadd', ('fadd', a, ('fneg', c)), ('fneg', b))),
1020 (('iadd', '#a', ('iadd', 'b(is_not_const)', '#c')), ('iadd', ('iadd', a, c), b)),
1021
1022 # Drop mul-div by the same value when there's no wrapping.
1023 (('idiv', ('imul(no_signed_wrap)', a, b), b), a),
1024
1025 # By definition...
1026 (('bcsel', ('ige', ('find_lsb', a), 0), ('find_lsb', a), -1), ('find_lsb', a)),
1027 (('bcsel', ('ige', ('ifind_msb', a), 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
1028 (('bcsel', ('ige', ('ufind_msb', a), 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
1029
1030 (('bcsel', ('ine', a, 0), ('find_lsb', a), -1), ('find_lsb', a)),
1031 (('bcsel', ('ine', a, 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
1032 (('bcsel', ('ine', a, 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
1033
1034 (('bcsel', ('ine', a, -1), ('ifind_msb', a), -1), ('ifind_msb', a)),
1035
1036 # Misc. lowering
1037 (('fmod', a, b), ('fsub', a, ('fmul', b, ('ffloor', ('fdiv', a, b)))), 'options->lower_fmod'),
1038 (('frem', a, b), ('fsub', a, ('fmul', b, ('ftrunc', ('fdiv', a, b)))), 'options->lower_fmod'),
1039 (('uadd_carry@32', a, b), ('b2i', ('ult', ('iadd', a, b), a)), 'options->lower_uadd_carry'),
1040 (('usub_borrow@32', a, b), ('b2i', ('ult', a, b)), 'options->lower_usub_borrow'),
1041
1042 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1043 ('bcsel', ('ult', 31, 'bits'), 'insert',
1044 ('bfi', ('bfm', 'bits', 'offset'), 'insert', 'base')),
1045 'options->lower_bitfield_insert'),
1046 (('ihadd', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1047 (('uhadd', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1048 (('irhadd', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1049 (('urhadd', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1050 (('ihadd@64', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1051 (('uhadd@64', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1052 (('irhadd@64', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1053 (('urhadd@64', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1054
1055 (('uadd_sat@64', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_add_sat || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1056 (('uadd_sat', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_add_sat'),
1057 (('usub_sat', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_add_sat'),
1058 (('usub_sat@64', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_usub_sat64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1059
1060 # int64_t sum = a + b;
1061 #
1062 # if (a < 0 && b < 0 && a < sum)
1063 # sum = INT64_MIN;
1064 # } else if (a >= 0 && b >= 0 && sum < a)
1065 # sum = INT64_MAX;
1066 # }
1067 #
1068 # A couple optimizations are applied.
1069 #
1070 # 1. a < sum => sum >= 0. This replacement works because it is known that
1071 # a < 0 and b < 0, so sum should also be < 0 unless there was
1072 # underflow.
1073 #
1074 # 2. sum < a => sum < 0. This replacement works because it is known that
1075 # a >= 0 and b >= 0, so sum should also be >= 0 unless there was
1076 # overflow.
1077 #
1078 # 3. Invert the second if-condition and swap the order of parameters for
1079 # the bcsel. !(a >= 0 && b >= 0 && sum < 0) becomes !(a >= 0) || !(b >=
1080 # 0) || !(sum < 0), and that becomes (a < 0) || (b < 0) || (sum >= 0)
1081 #
1082 # On Intel Gen11, this saves ~11 instructions.
1083 (('iadd_sat@64', a, b), ('bcsel',
1084 ('iand', ('iand', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)),
1085 0x8000000000000000,
1086 ('bcsel',
1087 ('ior', ('ior', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)),
1088 ('iadd', a, b),
1089 0x7fffffffffffffff)),
1090 '(options->lower_int64_options & nir_lower_iadd64) != 0'),
1091
1092 # int64_t sum = a - b;
1093 #
1094 # if (a < 0 && b >= 0 && a < sum)
1095 # sum = INT64_MIN;
1096 # } else if (a >= 0 && b < 0 && a >= sum)
1097 # sum = INT64_MAX;
1098 # }
1099 #
1100 # Optimizations similar to the iadd_sat case are applied here.
1101 (('isub_sat@64', a, b), ('bcsel',
1102 ('iand', ('iand', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)),
1103 0x8000000000000000,
1104 ('bcsel',
1105 ('ior', ('ior', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)),
1106 ('isub', a, b),
1107 0x7fffffffffffffff)),
1108 '(options->lower_int64_options & nir_lower_iadd64) != 0'),
1109
1110 # These are done here instead of in the backend because the int64 lowering
1111 # pass will make a mess of the patterns. The first patterns are
1112 # conditioned on nir_lower_minmax64 because it was not clear that it was
1113 # always an improvement on platforms that have real int64 support. No
1114 # shaders in shader-db hit this, so it was hard to say one way or the
1115 # other.
1116 (('ilt', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1117 (('ilt', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1118 (('ige', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1119 (('ige', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1120 (('ilt', 'a@64', 0), ('ilt', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1121 (('ige', 'a@64', 0), ('ige', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1122
1123 (('ine', 'a@64', 0), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1124 (('ieq', 'a@64', 0), ('ieq', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1125 # 0u < uint(a) <=> uint(a) != 0u
1126 (('ult', 0, 'a@64'), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1127
1128 # Alternative lowering that doesn't rely on bfi.
1129 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1130 ('bcsel', ('ult', 31, 'bits'),
1131 'insert',
1132 (('ior',
1133 ('iand', 'base', ('inot', ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))),
1134 ('iand', ('ishl', 'insert', 'offset'), ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))))),
1135 'options->lower_bitfield_insert_to_shifts'),
1136
1137 # Alternative lowering that uses bitfield_select.
1138 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1139 ('bcsel', ('ult', 31, 'bits'), 'insert',
1140 ('bitfield_select', ('bfm', 'bits', 'offset'), ('ishl', 'insert', 'offset'), 'base')),
1141 'options->lower_bitfield_insert_to_bitfield_select'),
1142
1143 (('ibitfield_extract', 'value', 'offset', 'bits'),
1144 ('bcsel', ('ult', 31, 'bits'), 'value',
1145 ('ibfe', 'value', 'offset', 'bits')),
1146 'options->lower_bitfield_extract'),
1147
1148 (('ubitfield_extract', 'value', 'offset', 'bits'),
1149 ('bcsel', ('ult', 31, 'bits'), 'value',
1150 ('ubfe', 'value', 'offset', 'bits')),
1151 'options->lower_bitfield_extract'),
1152
1153 # Note that these opcodes are defined to only use the five least significant bits of 'offset' and 'bits'
1154 (('ubfe', 'value', 'offset', ('iand', 31, 'bits')), ('ubfe', 'value', 'offset', 'bits')),
1155 (('ubfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ubfe', 'value', 'offset', 'bits')),
1156 (('ibfe', 'value', 'offset', ('iand', 31, 'bits')), ('ibfe', 'value', 'offset', 'bits')),
1157 (('ibfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ibfe', 'value', 'offset', 'bits')),
1158 (('bfm', 'bits', ('iand', 31, 'offset')), ('bfm', 'bits', 'offset')),
1159 (('bfm', ('iand', 31, 'bits'), 'offset'), ('bfm', 'bits', 'offset')),
1160
1161 (('ibitfield_extract', 'value', 'offset', 'bits'),
1162 ('bcsel', ('ieq', 0, 'bits'),
1163 0,
1164 ('ishr',
1165 ('ishl', 'value', ('isub', ('isub', 32, 'bits'), 'offset')),
1166 ('isub', 32, 'bits'))),
1167 'options->lower_bitfield_extract_to_shifts'),
1168
1169 (('ubitfield_extract', 'value', 'offset', 'bits'),
1170 ('iand',
1171 ('ushr', 'value', 'offset'),
1172 ('bcsel', ('ieq', 'bits', 32),
1173 0xffffffff,
1174 ('isub', ('ishl', 1, 'bits'), 1))),
1175 'options->lower_bitfield_extract_to_shifts'),
1176
1177 (('ifind_msb', 'value'),
1178 ('ufind_msb', ('bcsel', ('ilt', 'value', 0), ('inot', 'value'), 'value')),
1179 'options->lower_ifind_msb'),
1180
1181 (('find_lsb', 'value'),
1182 ('ufind_msb', ('iand', 'value', ('ineg', 'value'))),
1183 'options->lower_find_lsb'),
1184
1185 (('extract_i8', a, 'b@32'),
1186 ('ishr', ('ishl', a, ('imul', ('isub', 3, b), 8)), 24),
1187 'options->lower_extract_byte'),
1188
1189 (('extract_u8', a, 'b@32'),
1190 ('iand', ('ushr', a, ('imul', b, 8)), 0xff),
1191 'options->lower_extract_byte'),
1192
1193 (('extract_i16', a, 'b@32'),
1194 ('ishr', ('ishl', a, ('imul', ('isub', 1, b), 16)), 16),
1195 'options->lower_extract_word'),
1196
1197 (('extract_u16', a, 'b@32'),
1198 ('iand', ('ushr', a, ('imul', b, 16)), 0xffff),
1199 'options->lower_extract_word'),
1200
1201 (('pack_unorm_2x16', 'v'),
1202 ('pack_uvec2_to_uint',
1203 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 65535.0)))),
1204 'options->lower_pack_unorm_2x16'),
1205
1206 (('pack_unorm_4x8', 'v'),
1207 ('pack_uvec4_to_uint',
1208 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 255.0)))),
1209 'options->lower_pack_unorm_4x8'),
1210
1211 (('pack_snorm_2x16', 'v'),
1212 ('pack_uvec2_to_uint',
1213 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 32767.0)))),
1214 'options->lower_pack_snorm_2x16'),
1215
1216 (('pack_snorm_4x8', 'v'),
1217 ('pack_uvec4_to_uint',
1218 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 127.0)))),
1219 'options->lower_pack_snorm_4x8'),
1220
1221 (('unpack_unorm_2x16', 'v'),
1222 ('fdiv', ('u2f32', ('vec2', ('extract_u16', 'v', 0),
1223 ('extract_u16', 'v', 1))),
1224 65535.0),
1225 'options->lower_unpack_unorm_2x16'),
1226
1227 (('unpack_unorm_4x8', 'v'),
1228 ('fdiv', ('u2f32', ('vec4', ('extract_u8', 'v', 0),
1229 ('extract_u8', 'v', 1),
1230 ('extract_u8', 'v', 2),
1231 ('extract_u8', 'v', 3))),
1232 255.0),
1233 'options->lower_unpack_unorm_4x8'),
1234
1235 (('unpack_snorm_2x16', 'v'),
1236 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec2', ('extract_i16', 'v', 0),
1237 ('extract_i16', 'v', 1))),
1238 32767.0))),
1239 'options->lower_unpack_snorm_2x16'),
1240
1241 (('unpack_snorm_4x8', 'v'),
1242 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec4', ('extract_i8', 'v', 0),
1243 ('extract_i8', 'v', 1),
1244 ('extract_i8', 'v', 2),
1245 ('extract_i8', 'v', 3))),
1246 127.0))),
1247 'options->lower_unpack_snorm_4x8'),
1248
1249 (('pack_half_2x16_split', 'a@32', 'b@32'),
1250 ('ior', ('ishl', ('u2u32', ('f2f16', b)), 16), ('u2u32', ('f2f16', a))),
1251 'options->lower_pack_half_2x16_split'),
1252
1253 (('unpack_half_2x16_split_x', 'a@32'),
1254 ('f2f32', ('u2u16', a)),
1255 'options->lower_unpack_half_2x16_split'),
1256
1257 (('unpack_half_2x16_split_y', 'a@32'),
1258 ('f2f32', ('u2u16', ('ushr', a, 16))),
1259 'options->lower_unpack_half_2x16_split'),
1260
1261 (('isign', a), ('imin', ('imax', a, -1), 1), 'options->lower_isign'),
1262 (('fsign', a), ('fsub', ('b2f', ('flt', 0.0, a)), ('b2f', ('flt', a, 0.0))), 'options->lower_fsign'),
1263
1264 # Address/offset calculations:
1265 # Drivers supporting imul24 should use the nir_lower_amul() pass, this
1266 # rule converts everyone else to imul:
1267 (('amul', a, b), ('imul', a, b), '!options->has_imul24'),
1268
1269 (('imad24_ir3', a, b, 0), ('imul24', a, b)),
1270 (('imad24_ir3', a, 0, c), (c)),
1271 (('imad24_ir3', a, 1, c), ('iadd', a, c)),
1272
1273 # if first two srcs are const, crack apart the imad so constant folding
1274 # can clean up the imul:
1275 # TODO ffma should probably get a similar rule:
1276 (('imad24_ir3', '#a', '#b', c), ('iadd', ('imul', a, b), c)),
1277
1278 # These will turn 24b address/offset calc back into 32b shifts, but
1279 # it should be safe to get back some of the bits of precision that we
1280 # already decided were no necessary:
1281 (('imul24', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
1282 (('imul24', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
1283 (('imul24', a, 0), (0)),
1284 ])
1285
1286 # bit_size dependent lowerings
1287 for bit_size in [8, 16, 32, 64]:
1288 # convenience constants
1289 intmax = (1 << (bit_size - 1)) - 1
1290 intmin = 1 << (bit_size - 1)
1291
1292 optimizations += [
1293 (('iadd_sat@' + str(bit_size), a, b),
1294 ('bcsel', ('ige', b, 1), ('bcsel', ('ilt', ('iadd', a, b), a), intmax, ('iadd', a, b)),
1295 ('bcsel', ('ilt', a, ('iadd', a, b)), intmin, ('iadd', a, b))), 'options->lower_add_sat'),
1296 (('isub_sat@' + str(bit_size), a, b),
1297 ('bcsel', ('ilt', b, 0), ('bcsel', ('ilt', ('isub', a, b), a), intmax, ('isub', a, b)),
1298 ('bcsel', ('ilt', a, ('isub', a, b)), intmin, ('isub', a, b))), 'options->lower_add_sat'),
1299 ]
1300
1301 invert = OrderedDict([('feq', 'fne'), ('fne', 'feq')])
1302
1303 for left, right in itertools.combinations_with_replacement(invert.keys(), 2):
1304 optimizations.append((('inot', ('ior(is_used_once)', (left, a, b), (right, c, d))),
1305 ('iand', (invert[left], a, b), (invert[right], c, d))))
1306 optimizations.append((('inot', ('iand(is_used_once)', (left, a, b), (right, c, d))),
1307 ('ior', (invert[left], a, b), (invert[right], c, d))))
1308
1309 # Optimize x2bN(b2x(x)) -> x
1310 for size in type_sizes('bool'):
1311 aN = 'a@' + str(size)
1312 f2bN = 'f2b' + str(size)
1313 i2bN = 'i2b' + str(size)
1314 optimizations.append(((f2bN, ('b2f', aN)), a))
1315 optimizations.append(((i2bN, ('b2i', aN)), a))
1316
1317 # Optimize x2yN(b2x(x)) -> b2y
1318 for x, y in itertools.product(['f', 'u', 'i'], ['f', 'u', 'i']):
1319 if x != 'f' and y != 'f' and x != y:
1320 continue
1321
1322 b2x = 'b2f' if x == 'f' else 'b2i'
1323 b2y = 'b2f' if y == 'f' else 'b2i'
1324 x2yN = '{}2{}'.format(x, y)
1325 optimizations.append(((x2yN, (b2x, a)), (b2y, a)))
1326
1327 # Optimize away x2xN(a@N)
1328 for t in ['int', 'uint', 'float']:
1329 for N in type_sizes(t):
1330 x2xN = '{0}2{0}{1}'.format(t[0], N)
1331 aN = 'a@{0}'.format(N)
1332 optimizations.append(((x2xN, aN), a))
1333
1334 # Optimize x2xN(y2yM(a@P)) -> y2yN(a) for integers
1335 # In particular, we can optimize away everything except upcast of downcast and
1336 # upcasts where the type differs from the other cast
1337 for N, M in itertools.product(type_sizes('uint'), type_sizes('uint')):
1338 if N < M:
1339 # The outer cast is a down-cast. It doesn't matter what the size of the
1340 # argument of the inner cast is because we'll never been in the upcast
1341 # of downcast case. Regardless of types, we'll always end up with y2yN
1342 # in the end.
1343 for x, y in itertools.product(['i', 'u'], ['i', 'u']):
1344 x2xN = '{0}2{0}{1}'.format(x, N)
1345 y2yM = '{0}2{0}{1}'.format(y, M)
1346 y2yN = '{0}2{0}{1}'.format(y, N)
1347 optimizations.append(((x2xN, (y2yM, a)), (y2yN, a)))
1348 elif N > M:
1349 # If the outer cast is an up-cast, we have to be more careful about the
1350 # size of the argument of the inner cast and with types. In this case,
1351 # the type is always the type of type up-cast which is given by the
1352 # outer cast.
1353 for P in type_sizes('uint'):
1354 # We can't optimize away up-cast of down-cast.
1355 if M < P:
1356 continue
1357
1358 # Because we're doing down-cast of down-cast, the types always have
1359 # to match between the two casts
1360 for x in ['i', 'u']:
1361 x2xN = '{0}2{0}{1}'.format(x, N)
1362 x2xM = '{0}2{0}{1}'.format(x, M)
1363 aP = 'a@{0}'.format(P)
1364 optimizations.append(((x2xN, (x2xM, aP)), (x2xN, a)))
1365 else:
1366 # The N == M case is handled by other optimizations
1367 pass
1368
1369 # Optimize comparisons with up-casts
1370 for t in ['int', 'uint', 'float']:
1371 for N, M in itertools.product(type_sizes(t), repeat=2):
1372 if N == 1 or N >= M:
1373 continue
1374
1375 x2xM = '{0}2{0}{1}'.format(t[0], M)
1376 x2xN = '{0}2{0}{1}'.format(t[0], N)
1377 aN = 'a@' + str(N)
1378 bN = 'b@' + str(N)
1379 xeq = 'feq' if t == 'float' else 'ieq'
1380 xne = 'fne' if t == 'float' else 'ine'
1381 xge = '{0}ge'.format(t[0])
1382 xlt = '{0}lt'.format(t[0])
1383
1384 # Up-casts are lossless so for correctly signed comparisons of
1385 # up-casted values we can do the comparison at the largest of the two
1386 # original sizes and drop one or both of the casts. (We have
1387 # optimizations to drop the no-op casts which this may generate.)
1388 for P in type_sizes(t):
1389 if P == 1 or P > N:
1390 continue
1391
1392 bP = 'b@' + str(P)
1393 optimizations += [
1394 ((xeq, (x2xM, aN), (x2xM, bP)), (xeq, a, (x2xN, b))),
1395 ((xne, (x2xM, aN), (x2xM, bP)), (xne, a, (x2xN, b))),
1396 ((xge, (x2xM, aN), (x2xM, bP)), (xge, a, (x2xN, b))),
1397 ((xlt, (x2xM, aN), (x2xM, bP)), (xlt, a, (x2xN, b))),
1398 ((xge, (x2xM, bP), (x2xM, aN)), (xge, (x2xN, b), a)),
1399 ((xlt, (x2xM, bP), (x2xM, aN)), (xlt, (x2xN, b), a)),
1400 ]
1401
1402 # The next bit doesn't work on floats because the range checks would
1403 # get way too complicated.
1404 if t in ['int', 'uint']:
1405 if t == 'int':
1406 xN_min = -(1 << (N - 1))
1407 xN_max = (1 << (N - 1)) - 1
1408 elif t == 'uint':
1409 xN_min = 0
1410 xN_max = (1 << N) - 1
1411 else:
1412 assert False
1413
1414 # If we're up-casting and comparing to a constant, we can unfold
1415 # the comparison into a comparison with the shrunk down constant
1416 # and a check that the constant fits in the smaller bit size.
1417 optimizations += [
1418 ((xeq, (x2xM, aN), '#b'),
1419 ('iand', (xeq, a, (x2xN, b)), (xeq, (x2xM, (x2xN, b)), b))),
1420 ((xne, (x2xM, aN), '#b'),
1421 ('ior', (xne, a, (x2xN, b)), (xne, (x2xM, (x2xN, b)), b))),
1422 ((xlt, (x2xM, aN), '#b'),
1423 ('iand', (xlt, xN_min, b),
1424 ('ior', (xlt, xN_max, b), (xlt, a, (x2xN, b))))),
1425 ((xlt, '#a', (x2xM, bN)),
1426 ('iand', (xlt, a, xN_max),
1427 ('ior', (xlt, a, xN_min), (xlt, (x2xN, a), b)))),
1428 ((xge, (x2xM, aN), '#b'),
1429 ('iand', (xge, xN_max, b),
1430 ('ior', (xge, xN_min, b), (xge, a, (x2xN, b))))),
1431 ((xge, '#a', (x2xM, bN)),
1432 ('iand', (xge, a, xN_min),
1433 ('ior', (xge, a, xN_max), (xge, (x2xN, a), b)))),
1434 ]
1435
1436 def fexp2i(exp, bits):
1437 # Generate an expression which constructs value 2.0^exp or 0.0.
1438 #
1439 # We assume that exp is already in a valid range:
1440 #
1441 # * [-15, 15] for 16-bit float
1442 # * [-127, 127] for 32-bit float
1443 # * [-1023, 1023] for 16-bit float
1444 #
1445 # If exp is the lowest value in the valid range, a value of 0.0 is
1446 # constructed. Otherwise, the value 2.0^exp is constructed.
1447 if bits == 16:
1448 return ('i2i16', ('ishl', ('iadd', exp, 15), 10))
1449 elif bits == 32:
1450 return ('ishl', ('iadd', exp, 127), 23)
1451 elif bits == 64:
1452 return ('pack_64_2x32_split', 0, ('ishl', ('iadd', exp, 1023), 20))
1453 else:
1454 assert False
1455
1456 def ldexp(f, exp, bits):
1457 # The maximum possible range for a normal exponent is [-126, 127] and,
1458 # throwing in denormals, you get a maximum range of [-149, 127]. This
1459 # means that we can potentially have a swing of +-276. If you start with
1460 # FLT_MAX, you actually have to do ldexp(FLT_MAX, -278) to get it to flush
1461 # all the way to zero. The GLSL spec only requires that we handle a subset
1462 # of this range. From version 4.60 of the spec:
1463 #
1464 # "If exp is greater than +128 (single-precision) or +1024
1465 # (double-precision), the value returned is undefined. If exp is less
1466 # than -126 (single-precision) or -1022 (double-precision), the value
1467 # returned may be flushed to zero. Additionally, splitting the value
1468 # into a significand and exponent using frexp() and then reconstructing
1469 # a floating-point value using ldexp() should yield the original input
1470 # for zero and all finite non-denormalized values."
1471 #
1472 # The SPIR-V spec has similar language.
1473 #
1474 # In order to handle the maximum value +128 using the fexp2i() helper
1475 # above, we have to split the exponent in half and do two multiply
1476 # operations.
1477 #
1478 # First, we clamp exp to a reasonable range. Specifically, we clamp to
1479 # twice the full range that is valid for the fexp2i() function above. If
1480 # exp/2 is the bottom value of that range, the fexp2i() expression will
1481 # yield 0.0f which, when multiplied by f, will flush it to zero which is
1482 # allowed by the GLSL and SPIR-V specs for low exponent values. If the
1483 # value is clamped from above, then it must have been above the supported
1484 # range of the GLSL built-in and therefore any return value is acceptable.
1485 if bits == 16:
1486 exp = ('imin', ('imax', exp, -30), 30)
1487 elif bits == 32:
1488 exp = ('imin', ('imax', exp, -254), 254)
1489 elif bits == 64:
1490 exp = ('imin', ('imax', exp, -2046), 2046)
1491 else:
1492 assert False
1493
1494 # Now we compute two powers of 2, one for exp/2 and one for exp-exp/2.
1495 # (We use ishr which isn't the same for -1, but the -1 case still works
1496 # since we use exp-exp/2 as the second exponent.) While the spec
1497 # technically defines ldexp as f * 2.0^exp, simply multiplying once doesn't
1498 # work with denormals and doesn't allow for the full swing in exponents
1499 # that you can get with normalized values. Instead, we create two powers
1500 # of two and multiply by them each in turn. That way the effective range
1501 # of our exponent is doubled.
1502 pow2_1 = fexp2i(('ishr', exp, 1), bits)
1503 pow2_2 = fexp2i(('isub', exp, ('ishr', exp, 1)), bits)
1504 return ('fmul', ('fmul', f, pow2_1), pow2_2)
1505
1506 optimizations += [
1507 (('ldexp@16', 'x', 'exp'), ldexp('x', 'exp', 16), 'options->lower_ldexp'),
1508 (('ldexp@32', 'x', 'exp'), ldexp('x', 'exp', 32), 'options->lower_ldexp'),
1509 (('ldexp@64', 'x', 'exp'), ldexp('x', 'exp', 64), 'options->lower_ldexp'),
1510 ]
1511
1512 # Unreal Engine 4 demo applications open-codes bitfieldReverse()
1513 def bitfield_reverse(u):
1514 step1 = ('ior', ('ishl', u, 16), ('ushr', u, 16))
1515 step2 = ('ior', ('ishl', ('iand', step1, 0x00ff00ff), 8), ('ushr', ('iand', step1, 0xff00ff00), 8))
1516 step3 = ('ior', ('ishl', ('iand', step2, 0x0f0f0f0f), 4), ('ushr', ('iand', step2, 0xf0f0f0f0), 4))
1517 step4 = ('ior', ('ishl', ('iand', step3, 0x33333333), 2), ('ushr', ('iand', step3, 0xcccccccc), 2))
1518 step5 = ('ior(many-comm-expr)', ('ishl', ('iand', step4, 0x55555555), 1), ('ushr', ('iand', step4, 0xaaaaaaaa), 1))
1519
1520 return step5
1521
1522 optimizations += [(bitfield_reverse('x@32'), ('bitfield_reverse', 'x'), '!options->lower_bitfield_reverse')]
1523
1524 # For any float comparison operation, "cmp", if you have "a == a && a cmp b"
1525 # then the "a == a" is redundant because it's equivalent to "a is not NaN"
1526 # and, if a is a NaN then the second comparison will fail anyway.
1527 for op in ['flt', 'fge', 'feq']:
1528 optimizations += [
1529 (('iand', ('feq', a, a), (op, a, b)), ('!' + op, a, b)),
1530 (('iand', ('feq', a, a), (op, b, a)), ('!' + op, b, a)),
1531 ]
1532
1533 # Add optimizations to handle the case where the result of a ternary is
1534 # compared to a constant. This way we can take things like
1535 #
1536 # (a ? 0 : 1) > 0
1537 #
1538 # and turn it into
1539 #
1540 # a ? (0 > 0) : (1 > 0)
1541 #
1542 # which constant folding will eat for lunch. The resulting ternary will
1543 # further get cleaned up by the boolean reductions above and we will be
1544 # left with just the original variable "a".
1545 for op in ['flt', 'fge', 'feq', 'fne',
1546 'ilt', 'ige', 'ieq', 'ine', 'ult', 'uge']:
1547 optimizations += [
1548 ((op, ('bcsel', 'a', '#b', '#c'), '#d'),
1549 ('bcsel', 'a', (op, 'b', 'd'), (op, 'c', 'd'))),
1550 ((op, '#d', ('bcsel', a, '#b', '#c')),
1551 ('bcsel', 'a', (op, 'd', 'b'), (op, 'd', 'c'))),
1552 ]
1553
1554
1555 # For example, this converts things like
1556 #
1557 # 1 + mix(0, a - 1, condition)
1558 #
1559 # into
1560 #
1561 # mix(1, (a-1)+1, condition)
1562 #
1563 # Other optimizations will rearrange the constants.
1564 for op in ['fadd', 'fmul', 'iadd', 'imul']:
1565 optimizations += [
1566 ((op, ('bcsel(is_used_once)', a, '#b', c), '#d'), ('bcsel', a, (op, b, d), (op, c, d)))
1567 ]
1568
1569 # For derivatives in compute shaders, GLSL_NV_compute_shader_derivatives
1570 # states:
1571 #
1572 # If neither layout qualifier is specified, derivatives in compute shaders
1573 # return zero, which is consistent with the handling of built-in texture
1574 # functions like texture() in GLSL 4.50 compute shaders.
1575 for op in ['fddx', 'fddx_fine', 'fddx_coarse',
1576 'fddy', 'fddy_fine', 'fddy_coarse']:
1577 optimizations += [
1578 ((op, 'a'), 0.0, 'info->stage == MESA_SHADER_COMPUTE && info->cs.derivative_group == DERIVATIVE_GROUP_NONE')
1579 ]
1580
1581 # Some optimizations for ir3-specific instructions.
1582 optimizations += [
1583 # 'al * bl': If either 'al' or 'bl' is zero, return zero.
1584 (('umul_low', '#a(is_lower_half_zero)', 'b'), (0)),
1585 # '(ah * bl) << 16 + c': If either 'ah' or 'bl' is zero, return 'c'.
1586 (('imadsh_mix16', '#a@32(is_lower_half_zero)', 'b@32', 'c@32'), ('c')),
1587 (('imadsh_mix16', 'a@32', '#b@32(is_upper_half_zero)', 'c@32'), ('c')),
1588 ]
1589
1590 # These kinds of sequences can occur after nir_opt_peephole_select.
1591 #
1592 # NOTE: fadd is not handled here because that gets in the way of ffma
1593 # generation in the i965 driver. Instead, fadd and ffma are handled in
1594 # late_optimizations.
1595
1596 for op in ['flrp']:
1597 optimizations += [
1598 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1599 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1600 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1601 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1602 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1603 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1604 ]
1605
1606 for op in ['fmul', 'iadd', 'imul', 'iand', 'ior', 'ixor', 'fmin', 'fmax', 'imin', 'imax', 'umin', 'umax']:
1607 optimizations += [
1608 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1609 (('bcsel', a, (op + '(is_used_once)', b, 'c(is_not_const)'), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1610 (('bcsel', a, (op, b, 'c(is_not_const)'), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1611 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1612 ]
1613
1614 for op in ['fpow']:
1615 optimizations += [
1616 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1617 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1618 (('bcsel', a, (op + '(is_used_once)', b, c), (op, d, c)), (op, ('bcsel', a, b, d), c)),
1619 (('bcsel', a, (op, b, c), (op + '(is_used_once)', d, c)), (op, ('bcsel', a, b, d), c)),
1620 ]
1621
1622 for op in ['frcp', 'frsq', 'fsqrt', 'fexp2', 'flog2', 'fsign', 'fsin', 'fcos']:
1623 optimizations += [
1624 (('bcsel', a, (op + '(is_used_once)', b), (op, c)), (op, ('bcsel', a, b, c))),
1625 (('bcsel', a, (op, b), (op + '(is_used_once)', c)), (op, ('bcsel', a, b, c))),
1626 ]
1627
1628 # This section contains "late" optimizations that should be run before
1629 # creating ffmas and calling regular optimizations for the final time.
1630 # Optimizations should go here if they help code generation and conflict
1631 # with the regular optimizations.
1632 before_ffma_optimizations = [
1633 # Propagate constants down multiplication chains
1634 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fmul', ('fmul', a, c), b)),
1635 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('imul', ('imul', a, c), b)),
1636 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fadd', ('fadd', a, c), b)),
1637 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('iadd', ('iadd', a, c), b)),
1638
1639 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
1640 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
1641 (('~fadd', ('fneg', a), a), 0.0),
1642 (('iadd', ('ineg', a), a), 0),
1643 (('iadd', ('ineg', a), ('iadd', a, b)), b),
1644 (('iadd', a, ('iadd', ('ineg', a), b)), b),
1645 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
1646 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
1647
1648 (('~flrp@32', ('fadd(is_used_once)', a, -1.0), ('fadd(is_used_once)', a, 1.0), d), ('fadd', ('flrp', -1.0, 1.0, d), a)),
1649 (('~flrp@32', ('fadd(is_used_once)', a, 1.0), ('fadd(is_used_once)', a, -1.0), d), ('fadd', ('flrp', 1.0, -1.0, d), a)),
1650 (('~flrp@32', ('fadd(is_used_once)', a, '#b'), ('fadd(is_used_once)', a, '#c'), d), ('fadd', ('fmul', d, ('fadd', c, ('fneg', b))), ('fadd', a, b))),
1651 ]
1652
1653 # This section contains "late" optimizations that should be run after the
1654 # regular optimizations have finished. Optimizations should go here if
1655 # they help code generation but do not necessarily produce code that is
1656 # more easily optimizable.
1657 late_optimizations = [
1658 # Most of these optimizations aren't quite safe when you get infinity or
1659 # Nan involved but the first one should be fine.
1660 (('flt', ('fadd', a, b), 0.0), ('flt', a, ('fneg', b))),
1661 (('flt', ('fneg', ('fadd', a, b)), 0.0), ('flt', ('fneg', a), b)),
1662 (('~fge', ('fadd', a, b), 0.0), ('fge', a, ('fneg', b))),
1663 (('~fge', ('fneg', ('fadd', a, b)), 0.0), ('fge', ('fneg', a), b)),
1664 (('~feq', ('fadd', a, b), 0.0), ('feq', a, ('fneg', b))),
1665 (('~fne', ('fadd', a, b), 0.0), ('fne', a, ('fneg', b))),
1666
1667 # nir_lower_to_source_mods will collapse this, but its existence during the
1668 # optimization loop can prevent other optimizations.
1669 (('fneg', ('fneg', a)), a),
1670
1671 # Subtractions get lowered during optimization, so we need to recombine them
1672 (('fadd', 'a', ('fneg', 'b')), ('fsub', 'a', 'b'), '!options->lower_sub'),
1673 (('iadd', 'a', ('ineg', 'b')), ('isub', 'a', 'b'), '!options->lower_sub'),
1674 (('fneg', a), ('fsub', 0.0, a), 'options->lower_negate'),
1675 (('ineg', a), ('isub', 0, a), 'options->lower_negate'),
1676
1677 # These are duplicated from the main optimizations table. The late
1678 # patterns that rearrange expressions like x - .5 < 0 to x < .5 can create
1679 # new patterns like these. The patterns that compare with zero are removed
1680 # because they are unlikely to be created in by anything in
1681 # late_optimizations.
1682 (('flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
1683 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
1684 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
1685 (('fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
1686 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
1687 (('fne', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fne', a, b)),
1688
1689 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
1690 (('flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
1691
1692 (('~fge', ('fmin(is_used_once)', ('fadd(is_used_once)', a, b), ('fadd', c, d)), 0.0), ('iand', ('fge', a, ('fneg', b)), ('fge', c, ('fneg', d)))),
1693
1694 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
1695 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
1696 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
1697 (('fne', ('fneg', a), ('fneg', b)), ('fne', b, a)),
1698 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
1699 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
1700 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
1701 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
1702 (('fne', ('fneg', a), -1.0), ('fne', 1.0, a)),
1703 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
1704
1705 (('ior', a, a), a),
1706 (('iand', a, a), a),
1707
1708 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
1709
1710 (('fdot2', a, b), ('fdot_replicated2', a, b), 'options->fdot_replicates'),
1711 (('fdot3', a, b), ('fdot_replicated3', a, b), 'options->fdot_replicates'),
1712 (('fdot4', a, b), ('fdot_replicated4', a, b), 'options->fdot_replicates'),
1713 (('fdph', a, b), ('fdph_replicated', a, b), 'options->fdot_replicates'),
1714
1715 (('~flrp@32', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
1716 (('~flrp@64', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
1717
1718 (('~fadd@32', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp32'),
1719 (('~fadd@64', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp64'),
1720
1721 # A similar operation could apply to any ffma(#a, b, #(-a/2)), but this
1722 # particular operation is common for expanding values stored in a texture
1723 # from [0,1] to [-1,1].
1724 (('~ffma@32', a, 2.0, -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1725 (('~ffma@32', a, -2.0, -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1726 (('~ffma@32', a, -2.0, 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1727 (('~ffma@32', a, 2.0, 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1728 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1729 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1730 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1731 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1732
1733 # flrp(a, b, a)
1734 # a*(1-a) + b*a
1735 # a + -a*a + a*b (1)
1736 # a + a*(b - a)
1737 # Option 1: ffma(a, (b-a), a)
1738 #
1739 # Alternately, after (1):
1740 # a*(1+b) + -a*a
1741 # a*((1+b) + -a)
1742 #
1743 # Let b=1
1744 #
1745 # Option 2: ffma(a, 2, -(a*a))
1746 # Option 3: ffma(a, 2, (-a)*a)
1747 # Option 4: ffma(a, -a, (2*a)
1748 # Option 5: a * (2 - a)
1749 #
1750 # There are a lot of other possible combinations.
1751 (('~ffma@32', ('fadd', b, ('fneg', a)), a, a), ('flrp', a, b, a), '!options->lower_flrp32'),
1752 (('~ffma@32', a, 2.0, ('fneg', ('fmul', a, a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1753 (('~ffma@32', a, 2.0, ('fmul', ('fneg', a), a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1754 (('~ffma@32', a, ('fneg', a), ('fmul', 2.0, a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1755 (('~fmul@32', a, ('fadd', 2.0, ('fneg', a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1756
1757 # we do these late so that we don't get in the way of creating ffmas
1758 (('fmin', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmin', a, b))),
1759 (('fmax', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmax', a, b))),
1760
1761 (('bcsel', a, 0, ('b2f32', ('inot', 'b@bool'))), ('b2f32', ('inot', ('ior', a, b)))),
1762
1763 # Putting this in 'optimizations' interferes with the bcsel(a, op(b, c),
1764 # op(b, d)) => op(b, bcsel(a, c, d)) transformations. I do not know why.
1765 (('bcsel', ('feq', ('fsqrt', 'a(is_not_negative)'), 0.0), intBitsToFloat(0x7f7fffff), ('frsq', a)),
1766 ('fmin', ('frsq', a), intBitsToFloat(0x7f7fffff))),
1767
1768 # Things that look like DPH in the source shader may get expanded to
1769 # something that looks like dot(v1.xyz, v2.xyz) + v1.w by the time it gets
1770 # to NIR. After FFMA is generated, this can look like:
1771 #
1772 # fadd(ffma(v1.z, v2.z, ffma(v1.y, v2.y, fmul(v1.x, v2.x))), v1.w)
1773 #
1774 # Reassociate the last addition into the first multiplication.
1775 #
1776 # Some shaders do not use 'invariant' in vertex and (possibly) geometry
1777 # shader stages on some outputs that are intended to be invariant. For
1778 # various reasons, this optimization may not be fully applied in all
1779 # shaders used for different rendering passes of the same geometry. This
1780 # can result in Z-fighting artifacts (at best). For now, disable this
1781 # optimization in these stages. See bugzilla #111490. In tessellation
1782 # stages applications seem to use 'precise' when necessary, so allow the
1783 # optimization in those stages.
1784 (('~fadd', ('ffma(is_used_once)', a, b, ('ffma', c, d, ('fmul', 'e(is_not_const_and_not_fsign)', 'f(is_not_const_and_not_fsign)'))), 'g(is_not_const)'),
1785 ('ffma', a, b, ('ffma', c, d, ('ffma', e, 'f', 'g'))), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
1786 (('~fadd', ('ffma(is_used_once)', a, b, ('fmul', 'c(is_not_const_and_not_fsign)', 'd(is_not_const_and_not_fsign)') ), 'e(is_not_const)'),
1787 ('ffma', a, b, ('ffma', c, d, e)), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
1788
1789 # Convert f2fmp instructions to concrete f2f16 instructions. At this point
1790 # any conversions that could have been removed will have been removed in
1791 # nir_opt_algebraic so any remaining ones are required.
1792 (('f2fmp', a), ('f2f16', a)),
1793 ]
1794
1795 for op in ['fadd']:
1796 late_optimizations += [
1797 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1798 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1799 ]
1800
1801 for op in ['ffma']:
1802 late_optimizations += [
1803 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1804 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1805
1806 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1807 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1808 ]
1809
1810 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic", optimizations).render())
1811 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_before_ffma",
1812 before_ffma_optimizations).render())
1813 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_late",
1814 late_optimizations).render())