nir/algebraic: Add lowering for 64-bit usub_sat
[mesa.git] / src / compiler / nir / nir_opt_algebraic.py
1 #
2 # Copyright (C) 2014 Intel Corporation
3 #
4 # Permission is hereby granted, free of charge, to any person obtaining a
5 # copy of this software and associated documentation files (the "Software"),
6 # to deal in the Software without restriction, including without limitation
7 # the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 # and/or sell copies of the Software, and to permit persons to whom the
9 # Software is furnished to do so, subject to the following conditions:
10 #
11 # The above copyright notice and this permission notice (including the next
12 # paragraph) shall be included in all copies or substantial portions of the
13 # Software.
14 #
15 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 # IN THE SOFTWARE.
22 #
23 # Authors:
24 # Jason Ekstrand (jason@jlekstrand.net)
25
26 from __future__ import print_function
27
28 from collections import OrderedDict
29 import nir_algebraic
30 from nir_opcodes import type_sizes
31 import itertools
32 import struct
33 from math import pi
34
35 # Convenience variables
36 a = 'a'
37 b = 'b'
38 c = 'c'
39 d = 'd'
40 e = 'e'
41
42 # Written in the form (<search>, <replace>) where <search> is an expression
43 # and <replace> is either an expression or a value. An expression is
44 # defined as a tuple of the form ([~]<op>, <src0>, <src1>, <src2>, <src3>)
45 # where each source is either an expression or a value. A value can be
46 # either a numeric constant or a string representing a variable name.
47 #
48 # If the opcode in a search expression is prefixed by a '~' character, this
49 # indicates that the operation is inexact. Such operations will only get
50 # applied to SSA values that do not have the exact bit set. This should be
51 # used by by any optimizations that are not bit-for-bit exact. It should not,
52 # however, be used for backend-requested lowering operations as those need to
53 # happen regardless of precision.
54 #
55 # Variable names are specified as "[#]name[@type][(cond)][.swiz]" where:
56 # "#" indicates that the given variable will only match constants,
57 # type indicates that the given variable will only match values from ALU
58 # instructions with the given output type,
59 # (cond) specifies an additional condition function (see nir_search_helpers.h),
60 # swiz is a swizzle applied to the variable (only in the <replace> expression)
61 #
62 # For constants, you have to be careful to make sure that it is the right
63 # type because python is unaware of the source and destination types of the
64 # opcodes.
65 #
66 # All expression types can have a bit-size specified. For opcodes, this
67 # looks like "op@32", for variables it is "a@32" or "a@uint32" to specify a
68 # type and size. In the search half of the expression this indicates that it
69 # should only match that particular bit-size. In the replace half of the
70 # expression this indicates that the constructed value should have that
71 # bit-size.
72 #
73 # If the opcode in a replacement expression is prefixed by a '!' character,
74 # this indicated that the new expression will be marked exact.
75 #
76 # A special condition "many-comm-expr" can be used with expressions to note
77 # that the expression and its subexpressions have more commutative expressions
78 # than nir_replace_instr can handle. If this special condition is needed with
79 # another condition, the two can be separated by a comma (e.g.,
80 # "(many-comm-expr,is_used_once)").
81
82 # based on https://web.archive.org/web/20180105155939/http://forum.devmaster.net/t/fast-and-accurate-sine-cosine/9648
83 def lowered_sincos(c):
84 x = ('fsub', ('fmul', 2.0, ('ffract', ('fadd', ('fmul', 0.5 / pi, a), c))), 1.0)
85 x = ('fmul', ('fsub', x, ('fmul', x, ('fabs', x))), 4.0)
86 return ('ffma', ('ffma', x, ('fabs', x), ('fneg', x)), 0.225, x)
87
88 def intBitsToFloat(i):
89 return struct.unpack('!f', struct.pack('!I', i))[0]
90
91 optimizations = [
92
93 (('imul', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
94 (('imul', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
95 (('ishl', a, '#b@32'), ('imul', a, ('ishl', 1, b)), 'options->lower_bitops'),
96
97 (('unpack_64_2x32_split_x', ('imul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
98 (('unpack_64_2x32_split_x', ('umul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
99 (('imul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('imul_high', a, b)), 'options->lower_mul_2x32_64'),
100 (('umul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('umul_high', a, b)), 'options->lower_mul_2x32_64'),
101 (('udiv', a, 1), a),
102 (('idiv', a, 1), a),
103 (('umod', a, 1), 0),
104 (('imod', a, 1), 0),
105 (('udiv', a, '#b@32(is_pos_power_of_two)'), ('ushr', a, ('find_lsb', b)), '!options->lower_bitops'),
106 (('idiv', a, '#b@32(is_pos_power_of_two)'), ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', b))), 'options->lower_idiv'),
107 (('idiv', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', ('iabs', b))))), 'options->lower_idiv'),
108 (('umod', a, '#b(is_pos_power_of_two)'), ('iand', a, ('isub', b, 1))),
109
110 (('~fneg', ('fneg', a)), a),
111 (('ineg', ('ineg', a)), a),
112 (('fabs', ('fabs', a)), ('fabs', a)),
113 (('fabs', ('fneg', a)), ('fabs', a)),
114 (('fabs', ('u2f', a)), ('u2f', a)),
115 (('iabs', ('iabs', a)), ('iabs', a)),
116 (('iabs', ('ineg', a)), ('iabs', a)),
117 (('f2b', ('fneg', a)), ('f2b', a)),
118 (('i2b', ('ineg', a)), ('i2b', a)),
119 (('~fadd', a, 0.0), a),
120 (('iadd', a, 0), a),
121 (('usadd_4x8', a, 0), a),
122 (('usadd_4x8', a, ~0), ~0),
123 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
124 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
125 (('~fadd', ('fneg', a), a), 0.0),
126 (('iadd', ('ineg', a), a), 0),
127 (('iadd', ('ineg', a), ('iadd', a, b)), b),
128 (('iadd', a, ('iadd', ('ineg', a), b)), b),
129 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
130 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
131 (('fadd', ('fsat', a), ('fsat', ('fneg', a))), ('fsat', ('fabs', a))),
132 (('~fmul', a, 0.0), 0.0),
133 (('imul', a, 0), 0),
134 (('umul_unorm_4x8', a, 0), 0),
135 (('umul_unorm_4x8', a, ~0), a),
136 (('~fmul', a, 1.0), a),
137 (('imul', a, 1), a),
138 (('fmul', a, -1.0), ('fneg', a)),
139 (('imul', a, -1), ('ineg', a)),
140 # If a < 0: fsign(a)*a*a => -1*a*a => -a*a => abs(a)*a
141 # If a > 0: fsign(a)*a*a => 1*a*a => a*a => abs(a)*a
142 # If a == 0: fsign(a)*a*a => 0*0*0 => abs(0)*0
143 (('fmul', ('fsign', a), ('fmul', a, a)), ('fmul', ('fabs', a), a)),
144 (('fmul', ('fmul', ('fsign', a), a), a), ('fmul', ('fabs', a), a)),
145 (('~ffma', 0.0, a, b), b),
146 (('~ffma', a, b, 0.0), ('fmul', a, b)),
147 (('ffma', 1.0, a, b), ('fadd', a, b)),
148 (('ffma', -1.0, a, b), ('fadd', ('fneg', a), b)),
149 (('~flrp', a, b, 0.0), a),
150 (('~flrp', a, b, 1.0), b),
151 (('~flrp', a, a, b), a),
152 (('~flrp', 0.0, a, b), ('fmul', a, b)),
153
154 # flrp(a, a + b, c) => a + flrp(0, b, c) => a + (b * c)
155 (('~flrp', a, ('fadd(is_used_once)', a, b), c), ('fadd', ('fmul', b, c), a)),
156 (('~flrp@32', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp32'),
157 (('~flrp@64', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp64'),
158
159 (('~flrp@32', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp32'),
160 (('~flrp@64', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp64'),
161
162 (('~flrp@32', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp32'),
163 (('~flrp@64', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp64'),
164
165 (('~flrp', ('fmul(is_used_once)', a, b), ('fmul(is_used_once)', a, c), d), ('fmul', ('flrp', b, c, d), a)),
166
167 (('~flrp', a, b, ('b2f', 'c@1')), ('bcsel', c, b, a), 'options->lower_flrp32'),
168 (('~flrp', a, 0.0, c), ('fadd', ('fmul', ('fneg', a), c), a)),
169 (('ftrunc', a), ('bcsel', ('flt', a, 0.0), ('fneg', ('ffloor', ('fabs', a))), ('ffloor', ('fabs', a))), 'options->lower_ftrunc'),
170 (('ffloor', a), ('fsub', a, ('ffract', a)), 'options->lower_ffloor'),
171 (('fadd', a, ('fneg', ('ffract', a))), ('ffloor', a), '!options->lower_ffloor'),
172 (('ffract', a), ('fsub', a, ('ffloor', a)), 'options->lower_ffract'),
173 (('fceil', a), ('fneg', ('ffloor', ('fneg', a))), 'options->lower_fceil'),
174 (('~fadd', ('fmul', a, ('fadd', 1.0, ('fneg', ('b2f', 'c@1')))), ('fmul', b, ('b2f', c))), ('bcsel', c, b, a), 'options->lower_flrp32'),
175 (('~fadd@32', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp32'),
176 (('~fadd@64', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp64'),
177 # These are the same as the previous three rules, but it depends on
178 # 1-fsat(x) <=> fsat(1-x). See below.
179 (('~fadd@32', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp32'),
180 (('~fadd@64', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp64'),
181
182 (('~fadd', a, ('fmul', ('b2f', 'c@1'), ('fadd', b, ('fneg', a)))), ('bcsel', c, b, a), 'options->lower_flrp32'),
183 (('~fadd@32', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp32'),
184 (('~fadd@64', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp64'),
185 (('ffma', a, b, c), ('fadd', ('fmul', a, b), c), 'options->lower_ffma'),
186 (('~fadd', ('fmul', a, b), c), ('ffma', a, b, c), 'options->fuse_ffma'),
187
188 (('~fmul', ('fadd', ('iand', ('ineg', ('b2i32', 'a@bool')), ('fmul', b, c)), '#d'), '#e'),
189 ('bcsel', a, ('fmul', ('fadd', ('fmul', b, c), d), e), ('fmul', d, e))),
190
191 (('fdph', a, b), ('fdot4', ('vec4', 'a.x', 'a.y', 'a.z', 1.0), b), 'options->lower_fdph'),
192
193 (('fdot4', ('vec4', a, b, c, 1.0), d), ('fdph', ('vec3', a, b, c), d), '!options->lower_fdph'),
194 (('fdot4', ('vec4', a, 0.0, 0.0, 0.0), b), ('fmul', a, b)),
195 (('fdot4', ('vec4', a, b, 0.0, 0.0), c), ('fdot2', ('vec2', a, b), c)),
196 (('fdot4', ('vec4', a, b, c, 0.0), d), ('fdot3', ('vec3', a, b, c), d)),
197
198 (('fdot3', ('vec3', a, 0.0, 0.0), b), ('fmul', a, b)),
199 (('fdot3', ('vec3', a, b, 0.0), c), ('fdot2', ('vec2', a, b), c)),
200
201 (('fdot2', ('vec2', a, 0.0), b), ('fmul', a, b)),
202 (('fdot2', a, 1.0), ('fadd', 'a.x', 'a.y')),
203
204 # Lower fdot to fsum when it is available
205 (('fdot2', a, b), ('fsum2', ('fmul', a, b)), 'options->lower_fdot'),
206 (('fdot3', a, b), ('fsum3', ('fmul', a, b)), 'options->lower_fdot'),
207 (('fdot4', a, b), ('fsum4', ('fmul', a, b)), 'options->lower_fdot'),
208 (('fsum2', a), ('fadd', 'a.x', 'a.y'), 'options->lower_fdot'),
209
210 # If x >= 0 and x <= 1: fsat(1 - x) == 1 - fsat(x) trivially
211 # If x < 0: 1 - fsat(x) => 1 - 0 => 1 and fsat(1 - x) => fsat(> 1) => 1
212 # If x > 1: 1 - fsat(x) => 1 - 1 => 0 and fsat(1 - x) => fsat(< 0) => 0
213 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
214
215 # 1 - ((1 - a) * (1 - b))
216 # 1 - (1 - a - b + a*b)
217 # 1 - 1 + a + b - a*b
218 # a + b - a*b
219 # a + b*(1 - a)
220 # b*(1 - a) + 1*a
221 # flrp(b, 1, a)
222 (('~fadd@32', 1.0, ('fneg', ('fmul', ('fadd', 1.0, ('fneg', a)), ('fadd', 1.0, ('fneg', b))))),
223 ('flrp', b, 1.0, a), '!options->lower_flrp32'),
224
225 # (a * #b + #c) << #d
226 # ((a * #b) << #d) + (#c << #d)
227 # (a * (#b << #d)) + (#c << #d)
228 (('ishl', ('iadd', ('imul', a, '#b'), '#c'), '#d'),
229 ('iadd', ('imul', a, ('ishl', b, d)), ('ishl', c, d))),
230
231 # (a * #b) << #c
232 # a * (#b << #c)
233 (('ishl', ('imul', a, '#b'), '#c'), ('imul', a, ('ishl', b, c))),
234 ]
235
236 # Care must be taken here. Shifts in NIR uses only the lower log2(bitsize)
237 # bits of the second source. These replacements must correctly handle the
238 # case where (b % bitsize) + (c % bitsize) >= bitsize.
239 for s in [8, 16, 32, 64]:
240 mask = (1 << s) - 1
241
242 ishl = "ishl@{}".format(s)
243 ishr = "ishr@{}".format(s)
244 ushr = "ushr@{}".format(s)
245
246 in_bounds = ('ult', ('iadd', ('iand', b, mask), ('iand', c, mask)), s)
247
248 optimizations.extend([
249 ((ishl, (ishl, a, '#b'), '#c'), ('bcsel', in_bounds, (ishl, a, ('iadd', b, c)), 0)),
250 ((ushr, (ushr, a, '#b'), '#c'), ('bcsel', in_bounds, (ushr, a, ('iadd', b, c)), 0)),
251
252 # To get get -1 for large shifts of negative values, ishr must instead
253 # clamp the shift count to the maximum value.
254 ((ishr, (ishr, a, '#b'), '#c'),
255 (ishr, a, ('imin', ('iadd', ('iand', b, mask), ('iand', c, mask)), s - 1))),
256 ])
257
258 optimizations.extend([
259 # This is common for address calculations. Reassociating may enable the
260 # 'a<<c' to be CSE'd. It also helps architectures that have an ISHLADD
261 # instruction or a constant offset field for in load / store instructions.
262 (('ishl', ('iadd', a, '#b'), '#c'), ('iadd', ('ishl', a, c), ('ishl', b, c))),
263
264 # Comparison simplifications
265 (('~inot', ('flt', a, b)), ('fge', a, b)),
266 (('~inot', ('fge', a, b)), ('flt', a, b)),
267 (('inot', ('feq', a, b)), ('fne', a, b)),
268 (('inot', ('fne', a, b)), ('feq', a, b)),
269 (('inot', ('ilt', a, b)), ('ige', a, b)),
270 (('inot', ('ult', a, b)), ('uge', a, b)),
271 (('inot', ('ige', a, b)), ('ilt', a, b)),
272 (('inot', ('uge', a, b)), ('ult', a, b)),
273 (('inot', ('ieq', a, b)), ('ine', a, b)),
274 (('inot', ('ine', a, b)), ('ieq', a, b)),
275
276 (('iand', ('feq', a, b), ('fne', a, b)), False),
277 (('iand', ('flt', a, b), ('flt', b, a)), False),
278 (('iand', ('ieq', a, b), ('ine', a, b)), False),
279 (('iand', ('ilt', a, b), ('ilt', b, a)), False),
280 (('iand', ('ult', a, b), ('ult', b, a)), False),
281
282 # This helps some shaders because, after some optimizations, they end up
283 # with patterns like (-a < -b) || (b < a). In an ideal world, this sort of
284 # matching would be handled by CSE.
285 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
286 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
287 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
288 (('fne', ('fneg', a), ('fneg', b)), ('fne', b, a)),
289 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
290 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
291 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
292 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
293 (('fne', ('fneg', a), -1.0), ('fne', 1.0, a)),
294 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
295
296 (('flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
297 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
298 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
299 (('fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
300 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
301 (('fne', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fne', a, b)),
302
303 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
304 (('flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
305 (('fge', 0.0, ('fsat(is_used_once)', a)), ('fge', 0.0, a)),
306 (('flt', 0.0, ('fsat(is_used_once)', a)), ('flt', 0.0, a)),
307
308 # 0.0 >= b2f(a)
309 # b2f(a) <= 0.0
310 # b2f(a) == 0.0 because b2f(a) can only be 0 or 1
311 # inot(a)
312 (('fge', 0.0, ('b2f', 'a@1')), ('inot', a)),
313
314 (('fge', ('fneg', ('b2f', 'a@1')), 0.0), ('inot', a)),
315
316 (('fne', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
317 (('fne', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
318 (('fne', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('ior', a, b)),
319 (('fne', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('ior', a, b)),
320 (('fne', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
321 (('fne', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
322 (('fne', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('iand', a, b)),
323 (('fne', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ixor', a, b)),
324 (('fne', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ixor', a, b)),
325 (('fne', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ixor', a, b)),
326 (('feq', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
327 (('feq', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
328 (('feq', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('inot', ('ior', a, b))),
329 (('feq', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
330 (('feq', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
331 (('feq', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
332 (('feq', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('inot', ('iand', a, b))),
333 (('feq', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ieq', a, b)),
334 (('feq', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ieq', a, b)),
335 (('feq', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ieq', a, b)),
336
337 # -(b2f(a) + b2f(b)) < 0
338 # 0 < b2f(a) + b2f(b)
339 # 0 != b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
340 # a || b
341 (('flt', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('ior', a, b)),
342 (('flt', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('ior', a, b)),
343
344 # -(b2f(a) + b2f(b)) >= 0
345 # 0 >= b2f(a) + b2f(b)
346 # 0 == b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
347 # !(a || b)
348 (('fge', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('inot', ('ior', a, b))),
349 (('fge', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
350
351 (('flt', a, ('fneg', a)), ('flt', a, 0.0)),
352 (('fge', a, ('fneg', a)), ('fge', a, 0.0)),
353
354 # Some optimizations (below) convert things like (a < b || c < b) into
355 # (min(a, c) < b). However, this interfers with the previous optimizations
356 # that try to remove comparisons with negated sums of b2f. This just
357 # breaks that apart.
358 (('flt', ('fmin', c, ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')))), 0.0),
359 ('ior', ('flt', c, 0.0), ('ior', a, b))),
360
361 (('~flt', ('fadd', a, b), a), ('flt', b, 0.0)),
362 (('~fge', ('fadd', a, b), a), ('fge', b, 0.0)),
363 (('~feq', ('fadd', a, b), a), ('feq', b, 0.0)),
364 (('~fne', ('fadd', a, b), a), ('fne', b, 0.0)),
365 (('~flt', ('fadd(is_used_once)', a, '#b'), '#c'), ('flt', a, ('fadd', c, ('fneg', b)))),
366 (('~flt', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('flt', ('fneg', ('fadd', c, b)), a)),
367 (('~fge', ('fadd(is_used_once)', a, '#b'), '#c'), ('fge', a, ('fadd', c, ('fneg', b)))),
368 (('~fge', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fge', ('fneg', ('fadd', c, b)), a)),
369 (('~feq', ('fadd(is_used_once)', a, '#b'), '#c'), ('feq', a, ('fadd', c, ('fneg', b)))),
370 (('~feq', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('feq', ('fneg', ('fadd', c, b)), a)),
371 (('~fne', ('fadd(is_used_once)', a, '#b'), '#c'), ('fne', a, ('fadd', c, ('fneg', b)))),
372 (('~fne', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fne', ('fneg', ('fadd', c, b)), a)),
373
374 # Cannot remove the addition from ilt or ige due to overflow.
375 (('ieq', ('iadd', a, b), a), ('ieq', b, 0)),
376 (('ine', ('iadd', a, b), a), ('ine', b, 0)),
377
378 # fmin(-b2f(a), b) >= 0.0
379 # -b2f(a) >= 0.0 && b >= 0.0
380 # -b2f(a) == 0.0 && b >= 0.0 -b2f can only be 0 or -1, never >0
381 # b2f(a) == 0.0 && b >= 0.0
382 # a == False && b >= 0.0
383 # !a && b >= 0.0
384 #
385 # The fge in the second replacement is not a typo. I leave the proof that
386 # "fmin(-b2f(a), b) >= 0 <=> fmin(-b2f(a), b) == 0" as an exercise for the
387 # reader.
388 (('fge', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
389 (('feq', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
390
391 (('feq', ('b2f', 'a@1'), 0.0), ('inot', a)),
392 (('~fne', ('b2f', 'a@1'), 0.0), a),
393 (('ieq', ('b2i', 'a@1'), 0), ('inot', a)),
394 (('ine', ('b2i', 'a@1'), 0), a),
395
396 (('fne', ('u2f', a), 0.0), ('ine', a, 0)),
397 (('feq', ('u2f', a), 0.0), ('ieq', a, 0)),
398 (('fge', ('u2f', a), 0.0), True),
399 (('fge', 0.0, ('u2f', a)), ('uge', 0, a)), # ieq instead?
400 (('flt', ('u2f', a), 0.0), False),
401 (('flt', 0.0, ('u2f', a)), ('ult', 0, a)), # ine instead?
402 (('fne', ('i2f', a), 0.0), ('ine', a, 0)),
403 (('feq', ('i2f', a), 0.0), ('ieq', a, 0)),
404 (('fge', ('i2f', a), 0.0), ('ige', a, 0)),
405 (('fge', 0.0, ('i2f', a)), ('ige', 0, a)),
406 (('flt', ('i2f', a), 0.0), ('ilt', a, 0)),
407 (('flt', 0.0, ('i2f', a)), ('ilt', 0, a)),
408
409 # 0.0 < fabs(a)
410 # fabs(a) > 0.0
411 # fabs(a) != 0.0 because fabs(a) must be >= 0
412 # a != 0.0
413 (('~flt', 0.0, ('fabs', a)), ('fne', a, 0.0)),
414
415 # -fabs(a) < 0.0
416 # fabs(a) > 0.0
417 (('~flt', ('fneg', ('fabs', a)), 0.0), ('fne', a, 0.0)),
418
419 # 0.0 >= fabs(a)
420 # 0.0 == fabs(a) because fabs(a) must be >= 0
421 # 0.0 == a
422 (('fge', 0.0, ('fabs', a)), ('feq', a, 0.0)),
423
424 # -fabs(a) >= 0.0
425 # 0.0 >= fabs(a)
426 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
427
428 # (a >= 0.0) && (a <= 1.0) -> fsat(a) == a
429 (('iand', ('fge', a, 0.0), ('fge', 1.0, a)), ('feq', a, ('fsat', a)), '!options->lower_fsat'),
430
431 # (a < 0.0) || (a > 1.0)
432 # !(!(a < 0.0) && !(a > 1.0))
433 # !((a >= 0.0) && (a <= 1.0))
434 # !(a == fsat(a))
435 # a != fsat(a)
436 (('ior', ('flt', a, 0.0), ('flt', 1.0, a)), ('fne', a, ('fsat', a)), '!options->lower_fsat'),
437
438 (('fmax', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('ior', a, b))),
439 (('fmax', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('ior', a, b)))),
440 (('fmin', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
441 (('fmin', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('iand', a, b)))),
442
443 # fmin(b2f(a), b)
444 # bcsel(a, fmin(b2f(a), b), fmin(b2f(a), b))
445 # bcsel(a, fmin(b2f(True), b), fmin(b2f(False), b))
446 # bcsel(a, fmin(1.0, b), fmin(0.0, b))
447 #
448 # Since b is a constant, constant folding will eliminate the fmin and the
449 # fmax. If b is > 1.0, the bcsel will be replaced with a b2f.
450 (('fmin', ('b2f', 'a@1'), '#b'), ('bcsel', a, ('fmin', b, 1.0), ('fmin', b, 0.0))),
451
452 (('flt', ('fadd(is_used_once)', a, ('fneg', b)), 0.0), ('flt', a, b)),
453
454 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
455 (('~bcsel', ('flt', b, a), b, a), ('fmin', a, b)),
456 (('~bcsel', ('flt', a, b), b, a), ('fmax', a, b)),
457 (('~bcsel', ('fge', a, b), b, a), ('fmin', a, b)),
458 (('~bcsel', ('fge', b, a), b, a), ('fmax', a, b)),
459 (('bcsel', ('i2b', a), b, c), ('bcsel', ('ine', a, 0), b, c)),
460 (('bcsel', ('inot', a), b, c), ('bcsel', a, c, b)),
461 (('bcsel', a, ('bcsel', a, b, c), d), ('bcsel', a, b, d)),
462 (('bcsel', a, b, ('bcsel', a, c, d)), ('bcsel', a, b, d)),
463 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
464 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
465 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
466 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
467 (('bcsel', a, True, b), ('ior', a, b)),
468 (('bcsel', a, a, b), ('ior', a, b)),
469 (('bcsel', a, b, False), ('iand', a, b)),
470 (('bcsel', a, b, a), ('iand', a, b)),
471 (('~fmin', a, a), a),
472 (('~fmax', a, a), a),
473 (('imin', a, a), a),
474 (('imax', a, a), a),
475 (('umin', a, a), a),
476 (('umax', a, a), a),
477 (('fmax', ('fmax', a, b), b), ('fmax', a, b)),
478 (('umax', ('umax', a, b), b), ('umax', a, b)),
479 (('imax', ('imax', a, b), b), ('imax', a, b)),
480 (('fmin', ('fmin', a, b), b), ('fmin', a, b)),
481 (('umin', ('umin', a, b), b), ('umin', a, b)),
482 (('imin', ('imin', a, b), b), ('imin', a, b)),
483 (('iand@32', a, ('inot', ('ishr', a, 31))), ('imax', a, 0)),
484 (('fmax', a, ('fneg', a)), ('fabs', a)),
485 (('imax', a, ('ineg', a)), ('iabs', a)),
486 (('fmin', a, ('fneg', a)), ('fneg', ('fabs', a))),
487 (('imin', a, ('ineg', a)), ('ineg', ('iabs', a))),
488 (('fmin', a, ('fneg', ('fabs', a))), ('fneg', ('fabs', a))),
489 (('imin', a, ('ineg', ('iabs', a))), ('ineg', ('iabs', a))),
490 (('~fmin', a, ('fabs', a)), a),
491 (('imin', a, ('iabs', a)), a),
492 (('~fmax', a, ('fneg', ('fabs', a))), a),
493 (('imax', a, ('ineg', ('iabs', a))), a),
494 (('fmax', a, ('fabs', a)), ('fabs', a)),
495 (('imax', a, ('iabs', a)), ('iabs', a)),
496 (('fmax', a, ('fneg', a)), ('fabs', a)),
497 (('imax', a, ('ineg', a)), ('iabs', a)),
498 (('~fmax', ('fabs', a), 0.0), ('fabs', a)),
499 (('~fmin', ('fmax', a, 0.0), 1.0), ('fsat', a), '!options->lower_fsat'),
500 (('~fmax', ('fmin', a, 1.0), 0.0), ('fsat', a), '!options->lower_fsat'),
501 (('~fmin', ('fmax', a, -1.0), 0.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
502 (('~fmax', ('fmin', a, 0.0), -1.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
503 (('fsat', ('fsign', a)), ('b2f', ('flt', 0.0, a))),
504 (('fsat', ('b2f', a)), ('b2f', a)),
505 (('fsat', a), ('fmin', ('fmax', a, 0.0), 1.0), 'options->lower_fsat'),
506 (('fsat', ('fsat', a)), ('fsat', a)),
507 (('fsat', ('fneg(is_used_once)', ('fadd(is_used_once)', a, b))), ('fsat', ('fadd', ('fneg', a), ('fneg', b))), '!options->lower_fsat'),
508 (('fsat', ('fneg(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fneg', a), b)), '!options->lower_fsat'),
509 (('fsat', ('fabs(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fabs', a), ('fabs', b))), '!options->lower_fsat'),
510 (('fmin', ('fmax', ('fmin', ('fmax', a, b), c), b), c), ('fmin', ('fmax', a, b), c)),
511 (('imin', ('imax', ('imin', ('imax', a, b), c), b), c), ('imin', ('imax', a, b), c)),
512 (('umin', ('umax', ('umin', ('umax', a, b), c), b), c), ('umin', ('umax', a, b), c)),
513 (('fmax', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmax', a, b))),
514 (('fmin', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmin', a, b))),
515 (('extract_u8', ('imin', ('imax', a, 0), 0xff), 0), ('imin', ('imax', a, 0), 0xff)),
516 (('~ior', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmax', b, c))),
517 (('~ior', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmin', a, b), c)),
518 (('~ior', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmin', b, c))),
519 (('~ior', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmax', a, b), c)),
520 (('~ior', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmax', b, c))),
521 (('~ior', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmin', a, b), c)),
522 (('~ior', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmin', b, c))),
523 (('~ior', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmax', a, b), c)),
524 (('~iand', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmin', b, c))),
525 (('~iand', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmax', a, b), c)),
526 (('~iand', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmax', b, c))),
527 (('~iand', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmin', a, b), c)),
528 (('~iand', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmin', b, c))),
529 (('~iand', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmax', a, b), c)),
530 (('~iand', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmax', b, c))),
531 (('~iand', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmin', a, b), c)),
532
533 (('ior', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imax', b, c))),
534 (('ior', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imin', a, b), c)),
535 (('ior', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imin', b, c))),
536 (('ior', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imax', a, b), c)),
537 (('ior', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umax', b, c))),
538 (('ior', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umin', a, b), c)),
539 (('ior', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umin', b, c))),
540 (('ior', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umax', a, b), c)),
541 (('iand', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imin', b, c))),
542 (('iand', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imax', a, b), c)),
543 (('iand', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imax', b, c))),
544 (('iand', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imin', a, b), c)),
545 (('iand', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umin', b, c))),
546 (('iand', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umax', a, b), c)),
547 (('iand', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umax', b, c))),
548 (('iand', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umin', a, b), c)),
549
550 # These derive from the previous patterns with the application of b < 0 <=>
551 # 0 < -b. The transformation should be applied if either comparison is
552 # used once as this ensures that the number of comparisons will not
553 # increase. The sources to the ior and iand are not symmetric, so the
554 # rules have to be duplicated to get this behavior.
555 (('~ior', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
556 (('~ior', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
557 (('~ior', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
558 (('~ior', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
559 (('~iand', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
560 (('~iand', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
561 (('~iand', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
562 (('~iand', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
563
564 # Common pattern like 'if (i == 0 || i == 1 || ...)'
565 (('ior', ('ieq', a, 0), ('ieq', a, 1)), ('uge', 1, a)),
566 (('ior', ('uge', 1, a), ('ieq', a, 2)), ('uge', 2, a)),
567 (('ior', ('uge', 2, a), ('ieq', a, 3)), ('uge', 3, a)),
568
569 # The (i2f32, ...) part is an open-coded fsign. When that is combined with
570 # the bcsel, it's basically copysign(1.0, a). There is no copysign in NIR,
571 # so emit an open-coded version of that.
572 (('bcsel@32', ('feq', a, 0.0), 1.0, ('i2f32', ('iadd', ('b2i32', ('flt', 0.0, 'a@32')), ('ineg', ('b2i32', ('flt', 'a@32', 0.0)))))),
573 ('ior', 0x3f800000, ('iand', a, 0x80000000))),
574
575 (('ior', a, ('ieq', a, False)), True),
576 (('ior', a, ('inot', a)), -1),
577
578 (('ine', ('ineg', ('b2i32', 'a@1')), ('ineg', ('b2i32', 'b@1'))), ('ine', a, b)),
579 (('b2i32', ('ine', 'a@1', 'b@1')), ('b2i32', ('ixor', a, b))),
580
581 (('iand', ('ieq', 'a@32', 0), ('ieq', 'b@32', 0)), ('ieq', ('ior', 'a@32', 'b@32'), 0), '!options->lower_bitops'),
582
583 # These patterns can result when (a < b || a < c) => (a < min(b, c))
584 # transformations occur before constant propagation and loop-unrolling.
585 (('~flt', a, ('fmax', b, a)), ('flt', a, b)),
586 (('~flt', ('fmin', a, b), a), ('flt', b, a)),
587 (('~fge', a, ('fmin', b, a)), True),
588 (('~fge', ('fmax', a, b), a), True),
589 (('~flt', a, ('fmin', b, a)), False),
590 (('~flt', ('fmax', a, b), a), False),
591 (('~fge', a, ('fmax', b, a)), ('fge', a, b)),
592 (('~fge', ('fmin', a, b), a), ('fge', b, a)),
593
594 (('ilt', a, ('imax', b, a)), ('ilt', a, b)),
595 (('ilt', ('imin', a, b), a), ('ilt', b, a)),
596 (('ige', a, ('imin', b, a)), True),
597 (('ige', ('imax', a, b), a), True),
598 (('ult', a, ('umax', b, a)), ('ult', a, b)),
599 (('ult', ('umin', a, b), a), ('ult', b, a)),
600 (('uge', a, ('umin', b, a)), True),
601 (('uge', ('umax', a, b), a), True),
602 (('ilt', a, ('imin', b, a)), False),
603 (('ilt', ('imax', a, b), a), False),
604 (('ige', a, ('imax', b, a)), ('ige', a, b)),
605 (('ige', ('imin', a, b), a), ('ige', b, a)),
606 (('ult', a, ('umin', b, a)), False),
607 (('ult', ('umax', a, b), a), False),
608 (('uge', a, ('umax', b, a)), ('uge', a, b)),
609 (('uge', ('umin', a, b), a), ('uge', b, a)),
610 (('ult', a, ('iand', b, a)), False),
611 (('ult', ('ior', a, b), a), False),
612 (('uge', a, ('iand', b, a)), True),
613 (('uge', ('ior', a, b), a), True),
614
615 (('ilt', '#a', ('imax', '#b', c)), ('ior', ('ilt', a, b), ('ilt', a, c))),
616 (('ilt', ('imin', '#a', b), '#c'), ('ior', ('ilt', a, c), ('ilt', b, c))),
617 (('ige', '#a', ('imin', '#b', c)), ('ior', ('ige', a, b), ('ige', a, c))),
618 (('ige', ('imax', '#a', b), '#c'), ('ior', ('ige', a, c), ('ige', b, c))),
619 (('ult', '#a', ('umax', '#b', c)), ('ior', ('ult', a, b), ('ult', a, c))),
620 (('ult', ('umin', '#a', b), '#c'), ('ior', ('ult', a, c), ('ult', b, c))),
621 (('uge', '#a', ('umin', '#b', c)), ('ior', ('uge', a, b), ('uge', a, c))),
622 (('uge', ('umax', '#a', b), '#c'), ('ior', ('uge', a, c), ('uge', b, c))),
623 (('ilt', '#a', ('imin', '#b', c)), ('iand', ('ilt', a, b), ('ilt', a, c))),
624 (('ilt', ('imax', '#a', b), '#c'), ('iand', ('ilt', a, c), ('ilt', b, c))),
625 (('ige', '#a', ('imax', '#b', c)), ('iand', ('ige', a, b), ('ige', a, c))),
626 (('ige', ('imin', '#a', b), '#c'), ('iand', ('ige', a, c), ('ige', b, c))),
627 (('ult', '#a', ('umin', '#b', c)), ('iand', ('ult', a, b), ('ult', a, c))),
628 (('ult', ('umax', '#a', b), '#c'), ('iand', ('ult', a, c), ('ult', b, c))),
629 (('uge', '#a', ('umax', '#b', c)), ('iand', ('uge', a, b), ('uge', a, c))),
630 (('uge', ('umin', '#a', b), '#c'), ('iand', ('uge', a, c), ('uge', b, c))),
631
632 # Thanks to sign extension, the ishr(a, b) is negative if and only if a is
633 # negative.
634 (('bcsel', ('ilt', a, 0), ('ineg', ('ishr', a, b)), ('ishr', a, b)),
635 ('iabs', ('ishr', a, b))),
636 (('iabs', ('ishr', ('iabs', a), b)), ('ishr', ('iabs', a), b)),
637
638 (('fabs', ('slt', a, b)), ('slt', a, b)),
639 (('fabs', ('sge', a, b)), ('sge', a, b)),
640 (('fabs', ('seq', a, b)), ('seq', a, b)),
641 (('fabs', ('sne', a, b)), ('sne', a, b)),
642 (('slt', a, b), ('b2f', ('flt', a, b)), 'options->lower_scmp'),
643 (('sge', a, b), ('b2f', ('fge', a, b)), 'options->lower_scmp'),
644 (('seq', a, b), ('b2f', ('feq', a, b)), 'options->lower_scmp'),
645 (('sne', a, b), ('b2f', ('fne', a, b)), 'options->lower_scmp'),
646 (('seq', ('seq', a, b), 1.0), ('seq', a, b)),
647 (('seq', ('sne', a, b), 1.0), ('sne', a, b)),
648 (('seq', ('slt', a, b), 1.0), ('slt', a, b)),
649 (('seq', ('sge', a, b), 1.0), ('sge', a, b)),
650 (('sne', ('seq', a, b), 0.0), ('seq', a, b)),
651 (('sne', ('sne', a, b), 0.0), ('sne', a, b)),
652 (('sne', ('slt', a, b), 0.0), ('slt', a, b)),
653 (('sne', ('sge', a, b), 0.0), ('sge', a, b)),
654 (('seq', ('seq', a, b), 0.0), ('sne', a, b)),
655 (('seq', ('sne', a, b), 0.0), ('seq', a, b)),
656 (('seq', ('slt', a, b), 0.0), ('sge', a, b)),
657 (('seq', ('sge', a, b), 0.0), ('slt', a, b)),
658 (('sne', ('seq', a, b), 1.0), ('sne', a, b)),
659 (('sne', ('sne', a, b), 1.0), ('seq', a, b)),
660 (('sne', ('slt', a, b), 1.0), ('sge', a, b)),
661 (('sne', ('sge', a, b), 1.0), ('slt', a, b)),
662 (('fall_equal2', a, b), ('fmin', ('seq', 'a.x', 'b.x'), ('seq', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
663 (('fall_equal3', a, b), ('seq', ('fany_nequal3', a, b), 0.0), 'options->lower_vector_cmp'),
664 (('fall_equal4', a, b), ('seq', ('fany_nequal4', a, b), 0.0), 'options->lower_vector_cmp'),
665 (('fany_nequal2', a, b), ('fmax', ('sne', 'a.x', 'b.x'), ('sne', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
666 (('fany_nequal3', a, b), ('fsat', ('fdot3', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
667 (('fany_nequal4', a, b), ('fsat', ('fdot4', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
668 (('fne', ('fneg', a), a), ('fne', a, 0.0)),
669 (('feq', ('fneg', a), a), ('feq', a, 0.0)),
670 # Emulating booleans
671 (('imul', ('b2i', 'a@1'), ('b2i', 'b@1')), ('b2i', ('iand', a, b))),
672 (('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
673 (('fsat', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('b2f', ('ior', a, b))),
674 (('iand', 'a@bool32', 1.0), ('b2f', a)),
675 # True/False are ~0 and 0 in NIR. b2i of True is 1, and -1 is ~0 (True).
676 (('ineg', ('b2i32', 'a@32')), a),
677 (('flt', ('fneg', ('b2f', 'a@1')), 0), a), # Generated by TGSI KILL_IF.
678 # Comparison with the same args. Note that these are not done for
679 # the float versions because NaN always returns false on float
680 # inequalities.
681 (('ilt', a, a), False),
682 (('ige', a, a), True),
683 (('ieq', a, a), True),
684 (('ine', a, a), False),
685 (('ult', a, a), False),
686 (('uge', a, a), True),
687 # Logical and bit operations
688 (('iand', a, a), a),
689 (('iand', a, ~0), a),
690 (('iand', a, 0), 0),
691 (('ior', a, a), a),
692 (('ior', a, 0), a),
693 (('ior', a, True), True),
694 (('ixor', a, a), 0),
695 (('ixor', a, 0), a),
696 (('inot', ('inot', a)), a),
697 (('ior', ('iand', a, b), b), b),
698 (('ior', ('ior', a, b), b), ('ior', a, b)),
699 (('iand', ('ior', a, b), b), b),
700 (('iand', ('iand', a, b), b), ('iand', a, b)),
701 # DeMorgan's Laws
702 (('iand', ('inot', a), ('inot', b)), ('inot', ('ior', a, b))),
703 (('ior', ('inot', a), ('inot', b)), ('inot', ('iand', a, b))),
704 # Shift optimizations
705 (('ishl', 0, a), 0),
706 (('ishl', a, 0), a),
707 (('ishr', 0, a), 0),
708 (('ishr', a, 0), a),
709 (('ushr', 0, a), 0),
710 (('ushr', a, 0), a),
711 (('iand', 0xff, ('ushr@32', a, 24)), ('ushr', a, 24)),
712 (('iand', 0xffff, ('ushr@32', a, 16)), ('ushr', a, 16)),
713 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('iadd', 16, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
714 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('isub', 16, b))), ('urol', a, b), '!options->lower_rotate'),
715 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('iadd', 32, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
716 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('isub', 32, b))), ('urol', a, b), '!options->lower_rotate'),
717 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('iadd', 16, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
718 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('isub', 16, b))), ('uror', a, b), '!options->lower_rotate'),
719 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('iadd', 32, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
720 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('isub', 32, b))), ('uror', a, b), '!options->lower_rotate'),
721 (('urol@16', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 16, b))), 'options->lower_rotate'),
722 (('urol@32', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 32, b))), 'options->lower_rotate'),
723 (('uror@16', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 16, b))), 'options->lower_rotate'),
724 (('uror@32', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 32, b))), 'options->lower_rotate'),
725 # Exponential/logarithmic identities
726 (('~fexp2', ('flog2', a)), a), # 2^lg2(a) = a
727 (('~flog2', ('fexp2', a)), a), # lg2(2^a) = a
728 (('fpow', a, b), ('fexp2', ('fmul', ('flog2', a), b)), 'options->lower_fpow'), # a^b = 2^(lg2(a)*b)
729 (('~fexp2', ('fmul', ('flog2', a), b)), ('fpow', a, b), '!options->lower_fpow'), # 2^(lg2(a)*b) = a^b
730 (('~fexp2', ('fadd', ('fmul', ('flog2', a), b), ('fmul', ('flog2', c), d))),
731 ('~fmul', ('fpow', a, b), ('fpow', c, d)), '!options->lower_fpow'), # 2^(lg2(a) * b + lg2(c) + d) = a^b * c^d
732 (('~fexp2', ('fmul', ('flog2', a), 2.0)), ('fmul', a, a)),
733 (('~fexp2', ('fmul', ('flog2', a), 4.0)), ('fmul', ('fmul', a, a), ('fmul', a, a))),
734 (('~fpow', a, 1.0), a),
735 (('~fpow', a, 2.0), ('fmul', a, a)),
736 (('~fpow', a, 4.0), ('fmul', ('fmul', a, a), ('fmul', a, a))),
737 (('~fpow', 2.0, a), ('fexp2', a)),
738 (('~fpow', ('fpow', a, 2.2), 0.454545), a),
739 (('~fpow', ('fabs', ('fpow', a, 2.2)), 0.454545), ('fabs', a)),
740 (('~fsqrt', ('fexp2', a)), ('fexp2', ('fmul', 0.5, a))),
741 (('~frcp', ('fexp2', a)), ('fexp2', ('fneg', a))),
742 (('~frsq', ('fexp2', a)), ('fexp2', ('fmul', -0.5, a))),
743 (('~flog2', ('fsqrt', a)), ('fmul', 0.5, ('flog2', a))),
744 (('~flog2', ('frcp', a)), ('fneg', ('flog2', a))),
745 (('~flog2', ('frsq', a)), ('fmul', -0.5, ('flog2', a))),
746 (('~flog2', ('fpow', a, b)), ('fmul', b, ('flog2', a))),
747 (('~fmul', ('fexp2(is_used_once)', a), ('fexp2(is_used_once)', b)), ('fexp2', ('fadd', a, b))),
748 (('bcsel', ('flt', a, 0.0), 0.0, ('fsqrt', a)), ('fsqrt', ('fmax', a, 0.0))),
749 (('~fmul', ('fsqrt', a), ('fsqrt', a)), ('fabs',a)),
750 # Division and reciprocal
751 (('~fdiv', 1.0, a), ('frcp', a)),
752 (('fdiv', a, b), ('fmul', a, ('frcp', b)), 'options->lower_fdiv'),
753 (('~frcp', ('frcp', a)), a),
754 (('~frcp', ('fsqrt', a)), ('frsq', a)),
755 (('fsqrt', a), ('frcp', ('frsq', a)), 'options->lower_fsqrt'),
756 (('~frcp', ('frsq', a)), ('fsqrt', a), '!options->lower_fsqrt'),
757 # Trig
758 (('fsin', a), lowered_sincos(0.5), 'options->lower_sincos'),
759 (('fcos', a), lowered_sincos(0.75), 'options->lower_sincos'),
760 # Boolean simplifications
761 (('i2b32(is_used_by_if)', a), ('ine32', a, 0)),
762 (('i2b1(is_used_by_if)', a), ('ine', a, 0)),
763 (('ieq', a, True), a),
764 (('ine(is_not_used_by_if)', a, True), ('inot', a)),
765 (('ine', a, False), a),
766 (('ieq(is_not_used_by_if)', a, False), ('inot', 'a')),
767 (('bcsel', a, True, False), a),
768 (('bcsel', a, False, True), ('inot', a)),
769 (('bcsel@32', a, 1.0, 0.0), ('b2f', a)),
770 (('bcsel@32', a, 0.0, 1.0), ('b2f', ('inot', a))),
771 (('bcsel@32', a, -1.0, -0.0), ('fneg', ('b2f', a))),
772 (('bcsel@32', a, -0.0, -1.0), ('fneg', ('b2f', ('inot', a)))),
773 (('bcsel', True, b, c), b),
774 (('bcsel', False, b, c), c),
775 (('bcsel', a, ('b2f(is_used_once)', 'b@32'), ('b2f', 'c@32')), ('b2f', ('bcsel', a, b, c))),
776
777 (('bcsel', a, b, b), b),
778 (('~fcsel', a, b, b), b),
779
780 # D3D Boolean emulation
781 (('bcsel', a, -1, 0), ('ineg', ('b2i', 'a@1'))),
782 (('bcsel', a, 0, -1), ('ineg', ('b2i', ('inot', a)))),
783 (('iand', ('ineg', ('b2i', 'a@1')), ('ineg', ('b2i', 'b@1'))),
784 ('ineg', ('b2i', ('iand', a, b)))),
785 (('ior', ('ineg', ('b2i','a@1')), ('ineg', ('b2i', 'b@1'))),
786 ('ineg', ('b2i', ('ior', a, b)))),
787 (('ieq', ('ineg', ('b2i', 'a@1')), 0), ('inot', a)),
788 (('ieq', ('ineg', ('b2i', 'a@1')), -1), a),
789 (('ine', ('ineg', ('b2i', 'a@1')), 0), a),
790 (('ine', ('ineg', ('b2i', 'a@1')), -1), ('inot', a)),
791 (('iand', ('ineg', ('b2i', a)), 1.0), ('b2f', a)),
792 (('iand', ('ineg', ('b2i', a)), 1), ('b2i', a)),
793
794 # SM5 32-bit shifts are defined to use the 5 least significant bits
795 (('ishl', 'a@32', ('iand', 31, b)), ('ishl', a, b)),
796 (('ishr', 'a@32', ('iand', 31, b)), ('ishr', a, b)),
797 (('ushr', 'a@32', ('iand', 31, b)), ('ushr', a, b)),
798
799 # Conversions
800 (('i2b32', ('b2i', 'a@32')), a),
801 (('f2i', ('ftrunc', a)), ('f2i', a)),
802 (('f2u', ('ftrunc', a)), ('f2u', a)),
803 (('i2b', ('ineg', a)), ('i2b', a)),
804 (('i2b', ('iabs', a)), ('i2b', a)),
805 (('inot', ('f2b1', a)), ('feq', a, 0.0)),
806
807 # The C spec says, "If the value of the integral part cannot be represented
808 # by the integer type, the behavior is undefined." "Undefined" can mean
809 # "the conversion doesn't happen at all."
810 (('~i2f32', ('f2i32', 'a@32')), ('ftrunc', a)),
811
812 # Ironically, mark these as imprecise because removing the conversions may
813 # preserve more precision than doing the conversions (e.g.,
814 # uint(float(0x81818181u)) == 0x81818200).
815 (('~f2i32', ('i2f', 'a@32')), a),
816 (('~f2i32', ('u2f', 'a@32')), a),
817 (('~f2u32', ('i2f', 'a@32')), a),
818 (('~f2u32', ('u2f', 'a@32')), a),
819
820 (('ffloor', 'a(is_integral)'), a),
821 (('fceil', 'a(is_integral)'), a),
822 (('ftrunc', 'a(is_integral)'), a),
823 # fract(x) = x - floor(x), so fract(NaN) = NaN
824 (('~ffract', 'a(is_integral)'), 0.0),
825 (('fabs', 'a(is_not_negative)'), a),
826 (('iabs', 'a(is_not_negative)'), a),
827 (('fsat', 'a(is_not_positive)'), 0.0),
828
829 # Section 5.4.1 (Conversion and Scalar Constructors) of the GLSL 4.60 spec
830 # says:
831 #
832 # It is undefined to convert a negative floating-point value to an
833 # uint.
834 #
835 # Assuming that (uint)some_float behaves like (uint)(int)some_float allows
836 # some optimizations in the i965 backend to proceed.
837 (('ige', ('f2u', a), b), ('ige', ('f2i', a), b)),
838 (('ige', b, ('f2u', a)), ('ige', b, ('f2i', a))),
839 (('ilt', ('f2u', a), b), ('ilt', ('f2i', a), b)),
840 (('ilt', b, ('f2u', a)), ('ilt', b, ('f2i', a))),
841
842 (('~fmin', 'a(is_not_negative)', 1.0), ('fsat', a), '!options->lower_fsat'),
843
844 # The result of the multiply must be in [-1, 0], so the result of the ffma
845 # must be in [0, 1].
846 (('flt', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), False),
847 (('flt', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), False),
848 (('fmax', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0)),
849 (('fmax', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0)),
850
851 (('fne', 'a(is_not_zero)', 0.0), True),
852 (('feq', 'a(is_not_zero)', 0.0), False),
853
854 # In this chart, + means value > 0 and - means value < 0.
855 #
856 # + >= + -> unknown 0 >= + -> false - >= + -> false
857 # + >= 0 -> true 0 >= 0 -> true - >= 0 -> false
858 # + >= - -> true 0 >= - -> true - >= - -> unknown
859 #
860 # Using grouping conceptually similar to a Karnaugh map...
861 #
862 # (+ >= 0, + >= -, 0 >= 0, 0 >= -) == (is_not_negative >= is_not_positive) -> true
863 # (0 >= +, - >= +) == (is_not_positive >= gt_zero) -> false
864 # (- >= +, - >= 0) == (lt_zero >= is_not_negative) -> false
865 #
866 # The flt / ilt cases just invert the expected result.
867 #
868 # The results expecting true, must be marked imprecise. The results
869 # expecting false are fine because NaN compared >= or < anything is false.
870
871 (('~fge', 'a(is_not_negative)', 'b(is_not_positive)'), True),
872 (('fge', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
873 (('fge', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
874
875 (('flt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
876 (('~flt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
877 (('~flt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
878
879 (('ine', 'a(is_not_zero)', 0), True),
880 (('ieq', 'a(is_not_zero)', 0), False),
881
882 (('ige', 'a(is_not_negative)', 'b(is_not_positive)'), True),
883 (('ige', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
884 (('ige', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
885
886 (('ilt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
887 (('ilt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
888 (('ilt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
889
890 (('ult', 0, 'a(is_gt_zero)'), True),
891
892 # Packing and then unpacking does nothing
893 (('unpack_64_2x32_split_x', ('pack_64_2x32_split', a, b)), a),
894 (('unpack_64_2x32_split_y', ('pack_64_2x32_split', a, b)), b),
895 (('pack_64_2x32_split', ('unpack_64_2x32_split_x', a),
896 ('unpack_64_2x32_split_y', a)), a),
897
898 # Comparing two halves of an unpack separately. While this optimization
899 # should be correct for non-constant values, it's less obvious that it's
900 # useful in that case. For constant values, the pack will fold and we're
901 # guaranteed to reduce the whole tree to one instruction.
902 (('iand', ('ieq', ('unpack_32_2x16_split_x', a), '#b'),
903 ('ieq', ('unpack_32_2x16_split_y', a), '#c')),
904 ('ieq', a, ('pack_32_2x16_split', b, c))),
905
906 # Byte extraction
907 (('ushr', 'a@16', 8), ('extract_u8', a, 1), '!options->lower_extract_byte'),
908 (('ushr', 'a@32', 24), ('extract_u8', a, 3), '!options->lower_extract_byte'),
909 (('ushr', 'a@64', 56), ('extract_u8', a, 7), '!options->lower_extract_byte'),
910 (('ishr', 'a@16', 8), ('extract_i8', a, 1), '!options->lower_extract_byte'),
911 (('ishr', 'a@32', 24), ('extract_i8', a, 3), '!options->lower_extract_byte'),
912 (('ishr', 'a@64', 56), ('extract_i8', a, 7), '!options->lower_extract_byte'),
913 (('iand', 0xff, a), ('extract_u8', a, 0), '!options->lower_extract_byte'),
914
915 # Useless masking before unpacking
916 (('unpack_half_2x16_split_x', ('iand', a, 0xffff)), ('unpack_half_2x16_split_x', a)),
917 (('unpack_32_2x16_split_x', ('iand', a, 0xffff)), ('unpack_32_2x16_split_x', a)),
918 (('unpack_64_2x32_split_x', ('iand', a, 0xffffffff)), ('unpack_64_2x32_split_x', a)),
919 (('unpack_half_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_half_2x16_split_y', a)),
920 (('unpack_32_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_32_2x16_split_y', a)),
921 (('unpack_64_2x32_split_y', ('iand', a, 0xffffffff00000000)), ('unpack_64_2x32_split_y', a)),
922 ])
923
924 # After the ('extract_u8', a, 0) pattern, above, triggers, there will be
925 # patterns like those below.
926 for op in ('ushr', 'ishr'):
927 optimizations.extend([(('extract_u8', (op, 'a@16', 8), 0), ('extract_u8', a, 1))])
928 optimizations.extend([(('extract_u8', (op, 'a@32', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 4)])
929 optimizations.extend([(('extract_u8', (op, 'a@64', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 8)])
930
931 optimizations.extend([(('extract_u8', ('extract_u16', a, 1), 0), ('extract_u8', a, 2))])
932
933 # After the ('extract_[iu]8', a, 3) patterns, above, trigger, there will be
934 # patterns like those below.
935 for op in ('extract_u8', 'extract_i8'):
936 optimizations.extend([((op, ('ishl', 'a@16', 8), 1), (op, a, 0))])
937 optimizations.extend([((op, ('ishl', 'a@32', 24 - 8 * i), 3), (op, a, i)) for i in range(2, -1, -1)])
938 optimizations.extend([((op, ('ishl', 'a@64', 56 - 8 * i), 7), (op, a, i)) for i in range(6, -1, -1)])
939
940 optimizations.extend([
941 # Word extraction
942 (('ushr', ('ishl', 'a@32', 16), 16), ('extract_u16', a, 0), '!options->lower_extract_word'),
943 (('ushr', 'a@32', 16), ('extract_u16', a, 1), '!options->lower_extract_word'),
944 (('ishr', ('ishl', 'a@32', 16), 16), ('extract_i16', a, 0), '!options->lower_extract_word'),
945 (('ishr', 'a@32', 16), ('extract_i16', a, 1), '!options->lower_extract_word'),
946 (('iand', 0xffff, a), ('extract_u16', a, 0), '!options->lower_extract_word'),
947
948 # Subtracts
949 (('ussub_4x8', a, 0), a),
950 (('ussub_4x8', a, ~0), 0),
951 # Lower all Subtractions first - they can get recombined later
952 (('fsub', a, b), ('fadd', a, ('fneg', b))),
953 (('isub', a, b), ('iadd', a, ('ineg', b))),
954 (('uabs_usub', a, b), ('bcsel', ('ult', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
955 # This is correct. We don't need isub_sat because the result type is unsigned, so it cannot overflow.
956 (('uabs_isub', a, b), ('bcsel', ('ilt', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
957
958 # Propagate negation up multiplication chains
959 (('fmul(is_used_by_non_fsat)', ('fneg', a), b), ('fneg', ('fmul', a, b))),
960 (('imul', ('ineg', a), b), ('ineg', ('imul', a, b))),
961
962 # Propagate constants up multiplication chains
963 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fmul', ('fmul', a, c), b)),
964 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('imul', ('imul', a, c), b)),
965 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fadd', ('fadd', a, c), b)),
966 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('iadd', ('iadd', a, c), b)),
967
968 # Reassociate constants in add/mul chains so they can be folded together.
969 # For now, we mostly only handle cases where the constants are separated by
970 # a single non-constant. We could do better eventually.
971 (('~fmul', '#a', ('fmul', 'b(is_not_const)', '#c')), ('fmul', ('fmul', a, c), b)),
972 (('imul', '#a', ('imul', 'b(is_not_const)', '#c')), ('imul', ('imul', a, c), b)),
973 (('~fadd', '#a', ('fadd', 'b(is_not_const)', '#c')), ('fadd', ('fadd', a, c), b)),
974 (('~fadd', '#a', ('fneg', ('fadd', 'b(is_not_const)', '#c'))), ('fadd', ('fadd', a, ('fneg', c)), ('fneg', b))),
975 (('iadd', '#a', ('iadd', 'b(is_not_const)', '#c')), ('iadd', ('iadd', a, c), b)),
976
977 # Drop mul-div by the same value when there's no wrapping.
978 (('idiv', ('imul(no_signed_wrap)', a, b), b), a),
979
980 # By definition...
981 (('bcsel', ('ige', ('find_lsb', a), 0), ('find_lsb', a), -1), ('find_lsb', a)),
982 (('bcsel', ('ige', ('ifind_msb', a), 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
983 (('bcsel', ('ige', ('ufind_msb', a), 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
984
985 (('bcsel', ('ine', a, 0), ('find_lsb', a), -1), ('find_lsb', a)),
986 (('bcsel', ('ine', a, 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
987 (('bcsel', ('ine', a, 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
988
989 (('bcsel', ('ine', a, -1), ('ifind_msb', a), -1), ('ifind_msb', a)),
990
991 # Misc. lowering
992 (('fmod@16', a, b), ('fsub', a, ('fmul', b, ('ffloor', ('fdiv', a, b)))), 'options->lower_fmod'),
993 (('fmod@32', a, b), ('fsub', a, ('fmul', b, ('ffloor', ('fdiv', a, b)))), 'options->lower_fmod'),
994 (('frem', a, b), ('fsub', a, ('fmul', b, ('ftrunc', ('fdiv', a, b)))), 'options->lower_fmod'),
995 (('uadd_carry@32', a, b), ('b2i', ('ult', ('iadd', a, b), a)), 'options->lower_uadd_carry'),
996 (('usub_borrow@32', a, b), ('b2i', ('ult', a, b)), 'options->lower_usub_borrow'),
997
998 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
999 ('bcsel', ('ult', 31, 'bits'), 'insert',
1000 ('bfi', ('bfm', 'bits', 'offset'), 'insert', 'base')),
1001 'options->lower_bitfield_insert'),
1002 (('ihadd', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1003 (('uhadd', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1004 (('irhadd', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1005 (('urhadd', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1006 (('ihadd@64', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1007 (('uhadd@64', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1008 (('irhadd@64', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1009 (('urhadd@64', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1010
1011 (('uadd_sat', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_add_sat'),
1012 (('usub_sat', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_add_sat'),
1013 (('usub_sat@64', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_usub_sat64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1014
1015 # Alternative lowering that doesn't rely on bfi.
1016 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1017 ('bcsel', ('ult', 31, 'bits'),
1018 'insert',
1019 (('ior',
1020 ('iand', 'base', ('inot', ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))),
1021 ('iand', ('ishl', 'insert', 'offset'), ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))))),
1022 'options->lower_bitfield_insert_to_shifts'),
1023
1024 # Alternative lowering that uses bitfield_select.
1025 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1026 ('bcsel', ('ult', 31, 'bits'), 'insert',
1027 ('bitfield_select', ('bfm', 'bits', 'offset'), ('ishl', 'insert', 'offset'), 'base')),
1028 'options->lower_bitfield_insert_to_bitfield_select'),
1029
1030 (('ibitfield_extract', 'value', 'offset', 'bits'),
1031 ('bcsel', ('ult', 31, 'bits'), 'value',
1032 ('ibfe', 'value', 'offset', 'bits')),
1033 'options->lower_bitfield_extract'),
1034
1035 (('ubitfield_extract', 'value', 'offset', 'bits'),
1036 ('bcsel', ('ult', 31, 'bits'), 'value',
1037 ('ubfe', 'value', 'offset', 'bits')),
1038 'options->lower_bitfield_extract'),
1039
1040 # Note that these opcodes are defined to only use the five least significant bits of 'offset' and 'bits'
1041 (('ubfe', 'value', 'offset', ('iand', 31, 'bits')), ('ubfe', 'value', 'offset', 'bits')),
1042 (('ubfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ubfe', 'value', 'offset', 'bits')),
1043 (('ibfe', 'value', 'offset', ('iand', 31, 'bits')), ('ibfe', 'value', 'offset', 'bits')),
1044 (('ibfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ibfe', 'value', 'offset', 'bits')),
1045 (('bfm', 'bits', ('iand', 31, 'offset')), ('bfm', 'bits', 'offset')),
1046 (('bfm', ('iand', 31, 'bits'), 'offset'), ('bfm', 'bits', 'offset')),
1047
1048 (('ibitfield_extract', 'value', 'offset', 'bits'),
1049 ('bcsel', ('ieq', 0, 'bits'),
1050 0,
1051 ('ishr',
1052 ('ishl', 'value', ('isub', ('isub', 32, 'bits'), 'offset')),
1053 ('isub', 32, 'bits'))),
1054 'options->lower_bitfield_extract_to_shifts'),
1055
1056 (('ubitfield_extract', 'value', 'offset', 'bits'),
1057 ('iand',
1058 ('ushr', 'value', 'offset'),
1059 ('bcsel', ('ieq', 'bits', 32),
1060 0xffffffff,
1061 ('isub', ('ishl', 1, 'bits'), 1))),
1062 'options->lower_bitfield_extract_to_shifts'),
1063
1064 (('ifind_msb', 'value'),
1065 ('ufind_msb', ('bcsel', ('ilt', 'value', 0), ('inot', 'value'), 'value')),
1066 'options->lower_ifind_msb'),
1067
1068 (('find_lsb', 'value'),
1069 ('ufind_msb', ('iand', 'value', ('ineg', 'value'))),
1070 'options->lower_find_lsb'),
1071
1072 (('extract_i8', a, 'b@32'),
1073 ('ishr', ('ishl', a, ('imul', ('isub', 3, b), 8)), 24),
1074 'options->lower_extract_byte'),
1075
1076 (('extract_u8', a, 'b@32'),
1077 ('iand', ('ushr', a, ('imul', b, 8)), 0xff),
1078 'options->lower_extract_byte'),
1079
1080 (('extract_i16', a, 'b@32'),
1081 ('ishr', ('ishl', a, ('imul', ('isub', 1, b), 16)), 16),
1082 'options->lower_extract_word'),
1083
1084 (('extract_u16', a, 'b@32'),
1085 ('iand', ('ushr', a, ('imul', b, 16)), 0xffff),
1086 'options->lower_extract_word'),
1087
1088 (('pack_unorm_2x16', 'v'),
1089 ('pack_uvec2_to_uint',
1090 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 65535.0)))),
1091 'options->lower_pack_unorm_2x16'),
1092
1093 (('pack_unorm_4x8', 'v'),
1094 ('pack_uvec4_to_uint',
1095 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 255.0)))),
1096 'options->lower_pack_unorm_4x8'),
1097
1098 (('pack_snorm_2x16', 'v'),
1099 ('pack_uvec2_to_uint',
1100 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 32767.0)))),
1101 'options->lower_pack_snorm_2x16'),
1102
1103 (('pack_snorm_4x8', 'v'),
1104 ('pack_uvec4_to_uint',
1105 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 127.0)))),
1106 'options->lower_pack_snorm_4x8'),
1107
1108 (('unpack_unorm_2x16', 'v'),
1109 ('fdiv', ('u2f32', ('vec2', ('extract_u16', 'v', 0),
1110 ('extract_u16', 'v', 1))),
1111 65535.0),
1112 'options->lower_unpack_unorm_2x16'),
1113
1114 (('unpack_unorm_4x8', 'v'),
1115 ('fdiv', ('u2f32', ('vec4', ('extract_u8', 'v', 0),
1116 ('extract_u8', 'v', 1),
1117 ('extract_u8', 'v', 2),
1118 ('extract_u8', 'v', 3))),
1119 255.0),
1120 'options->lower_unpack_unorm_4x8'),
1121
1122 (('unpack_snorm_2x16', 'v'),
1123 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec2', ('extract_i16', 'v', 0),
1124 ('extract_i16', 'v', 1))),
1125 32767.0))),
1126 'options->lower_unpack_snorm_2x16'),
1127
1128 (('unpack_snorm_4x8', 'v'),
1129 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec4', ('extract_i8', 'v', 0),
1130 ('extract_i8', 'v', 1),
1131 ('extract_i8', 'v', 2),
1132 ('extract_i8', 'v', 3))),
1133 127.0))),
1134 'options->lower_unpack_snorm_4x8'),
1135
1136 (('pack_half_2x16_split', 'a@32', 'b@32'),
1137 ('ior', ('ishl', ('u2u32', ('f2f16', b)), 16), ('u2u32', ('f2f16', a))),
1138 'options->lower_pack_half_2x16_split'),
1139
1140 (('unpack_half_2x16_split_x', 'a@32'),
1141 ('f2f32', ('u2u16', a)),
1142 'options->lower_unpack_half_2x16_split'),
1143
1144 (('unpack_half_2x16_split_y', 'a@32'),
1145 ('f2f32', ('u2u16', ('ushr', a, 16))),
1146 'options->lower_unpack_half_2x16_split'),
1147
1148 (('isign', a), ('imin', ('imax', a, -1), 1), 'options->lower_isign'),
1149 (('fsign', a), ('fsub', ('b2f', ('flt', 0.0, a)), ('b2f', ('flt', a, 0.0))), 'options->lower_fsign'),
1150
1151 # Address/offset calculations:
1152 # Drivers supporting imul24 should use the nir_lower_amul() pass, this
1153 # rule converts everyone else to imul:
1154 (('amul', a, b), ('imul', a, b), '!options->has_imul24'),
1155
1156 (('imad24_ir3', a, b, 0), ('imul24', a, b)),
1157 (('imad24_ir3', a, 0, c), (c)),
1158 (('imad24_ir3', a, 1, c), ('iadd', a, c)),
1159
1160 # if first two srcs are const, crack apart the imad so constant folding
1161 # can clean up the imul:
1162 # TODO ffma should probably get a similar rule:
1163 (('imad24_ir3', '#a', '#b', c), ('iadd', ('imul', a, b), c)),
1164
1165 # These will turn 24b address/offset calc back into 32b shifts, but
1166 # it should be safe to get back some of the bits of precision that we
1167 # already decided were no necessary:
1168 (('imul24', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
1169 (('imul24', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
1170 (('imul24', a, 0), (0)),
1171 ])
1172
1173 # bit_size dependent lowerings
1174 for bit_size in [8, 16, 32, 64]:
1175 # convenience constants
1176 intmax = (1 << (bit_size - 1)) - 1
1177 intmin = 1 << (bit_size - 1)
1178
1179 optimizations += [
1180 (('iadd_sat@' + str(bit_size), a, b),
1181 ('bcsel', ('ige', b, 1), ('bcsel', ('ilt', ('iadd', a, b), a), intmax, ('iadd', a, b)),
1182 ('bcsel', ('ilt', a, ('iadd', a, b)), intmin, ('iadd', a, b))), 'options->lower_add_sat'),
1183 (('isub_sat@' + str(bit_size), a, b),
1184 ('bcsel', ('ilt', b, 0), ('bcsel', ('ilt', ('isub', a, b), a), intmax, ('isub', a, b)),
1185 ('bcsel', ('ilt', a, ('isub', a, b)), intmin, ('isub', a, b))), 'options->lower_add_sat'),
1186 ]
1187
1188 invert = OrderedDict([('feq', 'fne'), ('fne', 'feq'), ('fge', 'flt'), ('flt', 'fge')])
1189
1190 for left, right in itertools.combinations_with_replacement(invert.keys(), 2):
1191 optimizations.append((('inot', ('ior(is_used_once)', (left, a, b), (right, c, d))),
1192 ('iand', (invert[left], a, b), (invert[right], c, d))))
1193 optimizations.append((('inot', ('iand(is_used_once)', (left, a, b), (right, c, d))),
1194 ('ior', (invert[left], a, b), (invert[right], c, d))))
1195
1196 # Optimize x2bN(b2x(x)) -> x
1197 for size in type_sizes('bool'):
1198 aN = 'a@' + str(size)
1199 f2bN = 'f2b' + str(size)
1200 i2bN = 'i2b' + str(size)
1201 optimizations.append(((f2bN, ('b2f', aN)), a))
1202 optimizations.append(((i2bN, ('b2i', aN)), a))
1203
1204 # Optimize x2yN(b2x(x)) -> b2y
1205 for x, y in itertools.product(['f', 'u', 'i'], ['f', 'u', 'i']):
1206 if x != 'f' and y != 'f' and x != y:
1207 continue
1208
1209 b2x = 'b2f' if x == 'f' else 'b2i'
1210 b2y = 'b2f' if y == 'f' else 'b2i'
1211 x2yN = '{}2{}'.format(x, y)
1212 optimizations.append(((x2yN, (b2x, a)), (b2y, a)))
1213
1214 # Optimize away x2xN(a@N)
1215 for t in ['int', 'uint', 'float']:
1216 for N in type_sizes(t):
1217 x2xN = '{0}2{0}{1}'.format(t[0], N)
1218 aN = 'a@{0}'.format(N)
1219 optimizations.append(((x2xN, aN), a))
1220
1221 # Optimize x2xN(y2yM(a@P)) -> y2yN(a) for integers
1222 # In particular, we can optimize away everything except upcast of downcast and
1223 # upcasts where the type differs from the other cast
1224 for N, M in itertools.product(type_sizes('uint'), type_sizes('uint')):
1225 if N < M:
1226 # The outer cast is a down-cast. It doesn't matter what the size of the
1227 # argument of the inner cast is because we'll never been in the upcast
1228 # of downcast case. Regardless of types, we'll always end up with y2yN
1229 # in the end.
1230 for x, y in itertools.product(['i', 'u'], ['i', 'u']):
1231 x2xN = '{0}2{0}{1}'.format(x, N)
1232 y2yM = '{0}2{0}{1}'.format(y, M)
1233 y2yN = '{0}2{0}{1}'.format(y, N)
1234 optimizations.append(((x2xN, (y2yM, a)), (y2yN, a)))
1235 elif N > M:
1236 # If the outer cast is an up-cast, we have to be more careful about the
1237 # size of the argument of the inner cast and with types. In this case,
1238 # the type is always the type of type up-cast which is given by the
1239 # outer cast.
1240 for P in type_sizes('uint'):
1241 # We can't optimize away up-cast of down-cast.
1242 if M < P:
1243 continue
1244
1245 # Because we're doing down-cast of down-cast, the types always have
1246 # to match between the two casts
1247 for x in ['i', 'u']:
1248 x2xN = '{0}2{0}{1}'.format(x, N)
1249 x2xM = '{0}2{0}{1}'.format(x, M)
1250 aP = 'a@{0}'.format(P)
1251 optimizations.append(((x2xN, (x2xM, aP)), (x2xN, a)))
1252 else:
1253 # The N == M case is handled by other optimizations
1254 pass
1255
1256 # Optimize comparisons with up-casts
1257 for t in ['int', 'uint', 'float']:
1258 for N, M in itertools.product(type_sizes(t), repeat=2):
1259 if N == 1 or N >= M:
1260 continue
1261
1262 x2xM = '{0}2{0}{1}'.format(t[0], M)
1263 x2xN = '{0}2{0}{1}'.format(t[0], N)
1264 aN = 'a@' + str(N)
1265 bN = 'b@' + str(N)
1266 xeq = 'feq' if t == 'float' else 'ieq'
1267 xne = 'fne' if t == 'float' else 'ine'
1268 xge = '{0}ge'.format(t[0])
1269 xlt = '{0}lt'.format(t[0])
1270
1271 # Up-casts are lossless so for correctly signed comparisons of
1272 # up-casted values we can do the comparison at the largest of the two
1273 # original sizes and drop one or both of the casts. (We have
1274 # optimizations to drop the no-op casts which this may generate.)
1275 for P in type_sizes(t):
1276 if P == 1 or P > N:
1277 continue
1278
1279 bP = 'b@' + str(P)
1280 optimizations += [
1281 ((xeq, (x2xM, aN), (x2xM, bP)), (xeq, a, (x2xN, b))),
1282 ((xne, (x2xM, aN), (x2xM, bP)), (xne, a, (x2xN, b))),
1283 ((xge, (x2xM, aN), (x2xM, bP)), (xge, a, (x2xN, b))),
1284 ((xlt, (x2xM, aN), (x2xM, bP)), (xlt, a, (x2xN, b))),
1285 ((xge, (x2xM, bP), (x2xM, aN)), (xge, (x2xN, b), a)),
1286 ((xlt, (x2xM, bP), (x2xM, aN)), (xlt, (x2xN, b), a)),
1287 ]
1288
1289 # The next bit doesn't work on floats because the range checks would
1290 # get way too complicated.
1291 if t in ['int', 'uint']:
1292 if t == 'int':
1293 xN_min = -(1 << (N - 1))
1294 xN_max = (1 << (N - 1)) - 1
1295 elif t == 'uint':
1296 xN_min = 0
1297 xN_max = (1 << N) - 1
1298 else:
1299 assert False
1300
1301 # If we're up-casting and comparing to a constant, we can unfold
1302 # the comparison into a comparison with the shrunk down constant
1303 # and a check that the constant fits in the smaller bit size.
1304 optimizations += [
1305 ((xeq, (x2xM, aN), '#b'),
1306 ('iand', (xeq, a, (x2xN, b)), (xeq, (x2xM, (x2xN, b)), b))),
1307 ((xne, (x2xM, aN), '#b'),
1308 ('ior', (xne, a, (x2xN, b)), (xne, (x2xM, (x2xN, b)), b))),
1309 ((xlt, (x2xM, aN), '#b'),
1310 ('iand', (xlt, xN_min, b),
1311 ('ior', (xlt, xN_max, b), (xlt, a, (x2xN, b))))),
1312 ((xlt, '#a', (x2xM, bN)),
1313 ('iand', (xlt, a, xN_max),
1314 ('ior', (xlt, a, xN_min), (xlt, (x2xN, a), b)))),
1315 ((xge, (x2xM, aN), '#b'),
1316 ('iand', (xge, xN_max, b),
1317 ('ior', (xge, xN_min, b), (xge, a, (x2xN, b))))),
1318 ((xge, '#a', (x2xM, bN)),
1319 ('iand', (xge, a, xN_min),
1320 ('ior', (xge, a, xN_max), (xge, (x2xN, a), b)))),
1321 ]
1322
1323 def fexp2i(exp, bits):
1324 # We assume that exp is already in the right range.
1325 if bits == 16:
1326 return ('i2i16', ('ishl', ('iadd', exp, 15), 10))
1327 elif bits == 32:
1328 return ('ishl', ('iadd', exp, 127), 23)
1329 elif bits == 64:
1330 return ('pack_64_2x32_split', 0, ('ishl', ('iadd', exp, 1023), 20))
1331 else:
1332 assert False
1333
1334 def ldexp(f, exp, bits):
1335 # First, we clamp exp to a reasonable range. The maximum possible range
1336 # for a normal exponent is [-126, 127] and, throwing in denormals, you get
1337 # a maximum range of [-149, 127]. This means that we can potentially have
1338 # a swing of +-276. If you start with FLT_MAX, you actually have to do
1339 # ldexp(FLT_MAX, -278) to get it to flush all the way to zero. The GLSL
1340 # spec, on the other hand, only requires that we handle an exponent value
1341 # in the range [-126, 128]. This implementation is *mostly* correct; it
1342 # handles a range on exp of [-252, 254] which allows you to create any
1343 # value (including denorms if the hardware supports it) and to adjust the
1344 # exponent of any normal value to anything you want.
1345 if bits == 16:
1346 exp = ('imin', ('imax', exp, -28), 30)
1347 elif bits == 32:
1348 exp = ('imin', ('imax', exp, -252), 254)
1349 elif bits == 64:
1350 exp = ('imin', ('imax', exp, -2044), 2046)
1351 else:
1352 assert False
1353
1354 # Now we compute two powers of 2, one for exp/2 and one for exp-exp/2.
1355 # (We use ishr which isn't the same for -1, but the -1 case still works
1356 # since we use exp-exp/2 as the second exponent.) While the spec
1357 # technically defines ldexp as f * 2.0^exp, simply multiplying once doesn't
1358 # work with denormals and doesn't allow for the full swing in exponents
1359 # that you can get with normalized values. Instead, we create two powers
1360 # of two and multiply by them each in turn. That way the effective range
1361 # of our exponent is doubled.
1362 pow2_1 = fexp2i(('ishr', exp, 1), bits)
1363 pow2_2 = fexp2i(('isub', exp, ('ishr', exp, 1)), bits)
1364 return ('fmul', ('fmul', f, pow2_1), pow2_2)
1365
1366 optimizations += [
1367 (('ldexp@16', 'x', 'exp'), ldexp('x', 'exp', 16), 'options->lower_ldexp'),
1368 (('ldexp@32', 'x', 'exp'), ldexp('x', 'exp', 32), 'options->lower_ldexp'),
1369 (('ldexp@64', 'x', 'exp'), ldexp('x', 'exp', 64), 'options->lower_ldexp'),
1370 ]
1371
1372 # Unreal Engine 4 demo applications open-codes bitfieldReverse()
1373 def bitfield_reverse(u):
1374 step1 = ('ior', ('ishl', u, 16), ('ushr', u, 16))
1375 step2 = ('ior', ('ishl', ('iand', step1, 0x00ff00ff), 8), ('ushr', ('iand', step1, 0xff00ff00), 8))
1376 step3 = ('ior', ('ishl', ('iand', step2, 0x0f0f0f0f), 4), ('ushr', ('iand', step2, 0xf0f0f0f0), 4))
1377 step4 = ('ior', ('ishl', ('iand', step3, 0x33333333), 2), ('ushr', ('iand', step3, 0xcccccccc), 2))
1378 step5 = ('ior(many-comm-expr)', ('ishl', ('iand', step4, 0x55555555), 1), ('ushr', ('iand', step4, 0xaaaaaaaa), 1))
1379
1380 return step5
1381
1382 optimizations += [(bitfield_reverse('x@32'), ('bitfield_reverse', 'x'), '!options->lower_bitfield_reverse')]
1383
1384 # For any float comparison operation, "cmp", if you have "a == a && a cmp b"
1385 # then the "a == a" is redundant because it's equivalent to "a is not NaN"
1386 # and, if a is a NaN then the second comparison will fail anyway.
1387 for op in ['flt', 'fge', 'feq']:
1388 optimizations += [
1389 (('iand', ('feq', a, a), (op, a, b)), ('!' + op, a, b)),
1390 (('iand', ('feq', a, a), (op, b, a)), ('!' + op, b, a)),
1391 ]
1392
1393 # Add optimizations to handle the case where the result of a ternary is
1394 # compared to a constant. This way we can take things like
1395 #
1396 # (a ? 0 : 1) > 0
1397 #
1398 # and turn it into
1399 #
1400 # a ? (0 > 0) : (1 > 0)
1401 #
1402 # which constant folding will eat for lunch. The resulting ternary will
1403 # further get cleaned up by the boolean reductions above and we will be
1404 # left with just the original variable "a".
1405 for op in ['flt', 'fge', 'feq', 'fne',
1406 'ilt', 'ige', 'ieq', 'ine', 'ult', 'uge']:
1407 optimizations += [
1408 ((op, ('bcsel', 'a', '#b', '#c'), '#d'),
1409 ('bcsel', 'a', (op, 'b', 'd'), (op, 'c', 'd'))),
1410 ((op, '#d', ('bcsel', a, '#b', '#c')),
1411 ('bcsel', 'a', (op, 'd', 'b'), (op, 'd', 'c'))),
1412 ]
1413
1414
1415 # For example, this converts things like
1416 #
1417 # 1 + mix(0, a - 1, condition)
1418 #
1419 # into
1420 #
1421 # mix(1, (a-1)+1, condition)
1422 #
1423 # Other optimizations will rearrange the constants.
1424 for op in ['fadd', 'fmul', 'iadd', 'imul']:
1425 optimizations += [
1426 ((op, ('bcsel(is_used_once)', a, '#b', c), '#d'), ('bcsel', a, (op, b, d), (op, c, d)))
1427 ]
1428
1429 # For derivatives in compute shaders, GLSL_NV_compute_shader_derivatives
1430 # states:
1431 #
1432 # If neither layout qualifier is specified, derivatives in compute shaders
1433 # return zero, which is consistent with the handling of built-in texture
1434 # functions like texture() in GLSL 4.50 compute shaders.
1435 for op in ['fddx', 'fddx_fine', 'fddx_coarse',
1436 'fddy', 'fddy_fine', 'fddy_coarse']:
1437 optimizations += [
1438 ((op, 'a'), 0.0, 'info->stage == MESA_SHADER_COMPUTE && info->cs.derivative_group == DERIVATIVE_GROUP_NONE')
1439 ]
1440
1441 # Some optimizations for ir3-specific instructions.
1442 optimizations += [
1443 # 'al * bl': If either 'al' or 'bl' is zero, return zero.
1444 (('umul_low', '#a(is_lower_half_zero)', 'b'), (0)),
1445 # '(ah * bl) << 16 + c': If either 'ah' or 'bl' is zero, return 'c'.
1446 (('imadsh_mix16', '#a@32(is_lower_half_zero)', 'b@32', 'c@32'), ('c')),
1447 (('imadsh_mix16', 'a@32', '#b@32(is_upper_half_zero)', 'c@32'), ('c')),
1448 ]
1449
1450 # These kinds of sequences can occur after nir_opt_peephole_select.
1451 #
1452 # NOTE: fadd is not handled here because that gets in the way of ffma
1453 # generation in the i965 driver. Instead, fadd and ffma are handled in
1454 # late_optimizations.
1455
1456 for op in ['flrp']:
1457 optimizations += [
1458 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1459 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1460 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1461 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1462 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1463 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1464 ]
1465
1466 for op in ['fmul', 'iadd', 'imul', 'iand', 'ior', 'ixor', 'fmin', 'fmax', 'imin', 'imax', 'umin', 'umax']:
1467 optimizations += [
1468 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1469 (('bcsel', a, (op + '(is_used_once)', b, 'c(is_not_const)'), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1470 (('bcsel', a, (op, b, 'c(is_not_const)'), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1471 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1472 ]
1473
1474 for op in ['fpow']:
1475 optimizations += [
1476 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1477 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1478 (('bcsel', a, (op + '(is_used_once)', b, c), (op, d, c)), (op, ('bcsel', a, b, d), c)),
1479 (('bcsel', a, (op, b, c), (op + '(is_used_once)', d, c)), (op, ('bcsel', a, b, d), c)),
1480 ]
1481
1482 for op in ['frcp', 'frsq', 'fsqrt', 'fexp2', 'flog2', 'fsign', 'fsin', 'fcos']:
1483 optimizations += [
1484 (('bcsel', a, (op + '(is_used_once)', b), (op, c)), (op, ('bcsel', a, b, c))),
1485 (('bcsel', a, (op, b), (op + '(is_used_once)', c)), (op, ('bcsel', a, b, c))),
1486 ]
1487
1488 # This section contains "late" optimizations that should be run before
1489 # creating ffmas and calling regular optimizations for the final time.
1490 # Optimizations should go here if they help code generation and conflict
1491 # with the regular optimizations.
1492 before_ffma_optimizations = [
1493 # Propagate constants down multiplication chains
1494 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fmul', ('fmul', a, c), b)),
1495 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('imul', ('imul', a, c), b)),
1496 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fadd', ('fadd', a, c), b)),
1497 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('iadd', ('iadd', a, c), b)),
1498
1499 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
1500 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
1501 (('~fadd', ('fneg', a), a), 0.0),
1502 (('iadd', ('ineg', a), a), 0),
1503 (('iadd', ('ineg', a), ('iadd', a, b)), b),
1504 (('iadd', a, ('iadd', ('ineg', a), b)), b),
1505 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
1506 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
1507
1508 (('~flrp@32', ('fadd(is_used_once)', a, -1.0), ('fadd(is_used_once)', a, 1.0), d), ('fadd', ('flrp', -1.0, 1.0, d), a)),
1509 (('~flrp@32', ('fadd(is_used_once)', a, 1.0), ('fadd(is_used_once)', a, -1.0), d), ('fadd', ('flrp', 1.0, -1.0, d), a)),
1510 (('~flrp@32', ('fadd(is_used_once)', a, '#b'), ('fadd(is_used_once)', a, '#c'), d), ('fadd', ('fmul', d, ('fadd', c, ('fneg', b))), ('fadd', a, b))),
1511 ]
1512
1513 # This section contains "late" optimizations that should be run after the
1514 # regular optimizations have finished. Optimizations should go here if
1515 # they help code generation but do not necessarily produce code that is
1516 # more easily optimizable.
1517 late_optimizations = [
1518 # Most of these optimizations aren't quite safe when you get infinity or
1519 # Nan involved but the first one should be fine.
1520 (('flt', ('fadd', a, b), 0.0), ('flt', a, ('fneg', b))),
1521 (('flt', ('fneg', ('fadd', a, b)), 0.0), ('flt', ('fneg', a), b)),
1522 (('~fge', ('fadd', a, b), 0.0), ('fge', a, ('fneg', b))),
1523 (('~fge', ('fneg', ('fadd', a, b)), 0.0), ('fge', ('fneg', a), b)),
1524 (('~feq', ('fadd', a, b), 0.0), ('feq', a, ('fneg', b))),
1525 (('~fne', ('fadd', a, b), 0.0), ('fne', a, ('fneg', b))),
1526
1527 # nir_lower_to_source_mods will collapse this, but its existence during the
1528 # optimization loop can prevent other optimizations.
1529 (('fneg', ('fneg', a)), a),
1530
1531 # Subtractions get lowered during optimization, so we need to recombine them
1532 (('fadd', 'a', ('fneg', 'b')), ('fsub', 'a', 'b'), '!options->lower_sub'),
1533 (('iadd', 'a', ('ineg', 'b')), ('isub', 'a', 'b'), '!options->lower_sub'),
1534 (('fneg', a), ('fsub', 0.0, a), 'options->lower_negate'),
1535 (('ineg', a), ('isub', 0, a), 'options->lower_negate'),
1536
1537 # These are duplicated from the main optimizations table. The late
1538 # patterns that rearrange expressions like x - .5 < 0 to x < .5 can create
1539 # new patterns like these. The patterns that compare with zero are removed
1540 # because they are unlikely to be created in by anything in
1541 # late_optimizations.
1542 (('flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
1543 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
1544 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
1545 (('fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
1546 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
1547 (('fne', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fne', a, b)),
1548
1549 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
1550 (('flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
1551
1552 (('~fge', ('fmin(is_used_once)', ('fadd(is_used_once)', a, b), ('fadd', c, d)), 0.0), ('iand', ('fge', a, ('fneg', b)), ('fge', c, ('fneg', d)))),
1553
1554 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
1555 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
1556 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
1557 (('fne', ('fneg', a), ('fneg', b)), ('fne', b, a)),
1558 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
1559 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
1560 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
1561 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
1562 (('fne', ('fneg', a), -1.0), ('fne', 1.0, a)),
1563 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
1564
1565 (('ior', a, a), a),
1566 (('iand', a, a), a),
1567
1568 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
1569
1570 (('fdot2', a, b), ('fdot_replicated2', a, b), 'options->fdot_replicates'),
1571 (('fdot3', a, b), ('fdot_replicated3', a, b), 'options->fdot_replicates'),
1572 (('fdot4', a, b), ('fdot_replicated4', a, b), 'options->fdot_replicates'),
1573 (('fdph', a, b), ('fdph_replicated', a, b), 'options->fdot_replicates'),
1574
1575 (('~flrp@32', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
1576 (('~flrp@64', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
1577
1578 (('~fadd@32', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp32'),
1579 (('~fadd@64', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp64'),
1580
1581 # A similar operation could apply to any ffma(#a, b, #(-a/2)), but this
1582 # particular operation is common for expanding values stored in a texture
1583 # from [0,1] to [-1,1].
1584 (('~ffma@32', a, 2.0, -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1585 (('~ffma@32', a, -2.0, -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1586 (('~ffma@32', a, -2.0, 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1587 (('~ffma@32', a, 2.0, 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1588 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1589 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1590 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1591 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1592
1593 # flrp(a, b, a)
1594 # a*(1-a) + b*a
1595 # a + -a*a + a*b (1)
1596 # a + a*(b - a)
1597 # Option 1: ffma(a, (b-a), a)
1598 #
1599 # Alternately, after (1):
1600 # a*(1+b) + -a*a
1601 # a*((1+b) + -a)
1602 #
1603 # Let b=1
1604 #
1605 # Option 2: ffma(a, 2, -(a*a))
1606 # Option 3: ffma(a, 2, (-a)*a)
1607 # Option 4: ffma(a, -a, (2*a)
1608 # Option 5: a * (2 - a)
1609 #
1610 # There are a lot of other possible combinations.
1611 (('~ffma@32', ('fadd', b, ('fneg', a)), a, a), ('flrp', a, b, a), '!options->lower_flrp32'),
1612 (('~ffma@32', a, 2.0, ('fneg', ('fmul', a, a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1613 (('~ffma@32', a, 2.0, ('fmul', ('fneg', a), a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1614 (('~ffma@32', a, ('fneg', a), ('fmul', 2.0, a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1615 (('~fmul@32', a, ('fadd', 2.0, ('fneg', a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1616
1617 # we do these late so that we don't get in the way of creating ffmas
1618 (('fmin', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmin', a, b))),
1619 (('fmax', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmax', a, b))),
1620
1621 (('bcsel', a, 0, ('b2f32', ('inot', 'b@bool'))), ('b2f32', ('inot', ('ior', a, b)))),
1622
1623 # Putting this in 'optimizations' interferes with the bcsel(a, op(b, c),
1624 # op(b, d)) => op(b, bcsel(a, c, d)) transformations. I do not know why.
1625 (('bcsel', ('feq', ('fsqrt', 'a(is_not_negative)'), 0.0), intBitsToFloat(0x7f7fffff), ('frsq', a)),
1626 ('fmin', ('frsq', a), intBitsToFloat(0x7f7fffff))),
1627
1628 # Things that look like DPH in the source shader may get expanded to
1629 # something that looks like dot(v1.xyz, v2.xyz) + v1.w by the time it gets
1630 # to NIR. After FFMA is generated, this can look like:
1631 #
1632 # fadd(ffma(v1.z, v2.z, ffma(v1.y, v2.y, fmul(v1.x, v2.x))), v1.w)
1633 #
1634 # Reassociate the last addition into the first multiplication.
1635 #
1636 # Some shaders do not use 'invariant' in vertex and (possibly) geometry
1637 # shader stages on some outputs that are intended to be invariant. For
1638 # various reasons, this optimization may not be fully applied in all
1639 # shaders used for different rendering passes of the same geometry. This
1640 # can result in Z-fighting artifacts (at best). For now, disable this
1641 # optimization in these stages. See bugzilla #111490. In tessellation
1642 # stages applications seem to use 'precise' when necessary, so allow the
1643 # optimization in those stages.
1644 (('~fadd', ('ffma(is_used_once)', a, b, ('ffma', c, d, ('fmul', 'e(is_not_const_and_not_fsign)', 'f(is_not_const_and_not_fsign)'))), 'g(is_not_const)'),
1645 ('ffma', a, b, ('ffma', c, d, ('ffma', e, 'f', 'g'))), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
1646 (('~fadd', ('ffma(is_used_once)', a, b, ('fmul', 'c(is_not_const_and_not_fsign)', 'd(is_not_const_and_not_fsign)') ), 'e(is_not_const)'),
1647 ('ffma', a, b, ('ffma', c, d, e)), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
1648 ]
1649
1650 for op in ['fadd']:
1651 late_optimizations += [
1652 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1653 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1654 ]
1655
1656 for op in ['ffma']:
1657 late_optimizations += [
1658 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1659 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1660
1661 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1662 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1663 ]
1664
1665 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic", optimizations).render())
1666 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_before_ffma",
1667 before_ffma_optimizations).render())
1668 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_late",
1669 late_optimizations).render())