nir/algebraic: coalesce fmod lowering
[mesa.git] / src / compiler / nir / nir_opt_algebraic.py
1 #
2 # Copyright (C) 2014 Intel Corporation
3 #
4 # Permission is hereby granted, free of charge, to any person obtaining a
5 # copy of this software and associated documentation files (the "Software"),
6 # to deal in the Software without restriction, including without limitation
7 # the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 # and/or sell copies of the Software, and to permit persons to whom the
9 # Software is furnished to do so, subject to the following conditions:
10 #
11 # The above copyright notice and this permission notice (including the next
12 # paragraph) shall be included in all copies or substantial portions of the
13 # Software.
14 #
15 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 # IN THE SOFTWARE.
22 #
23 # Authors:
24 # Jason Ekstrand (jason@jlekstrand.net)
25
26 from __future__ import print_function
27
28 from collections import OrderedDict
29 import nir_algebraic
30 from nir_opcodes import type_sizes
31 import itertools
32 import struct
33 from math import pi
34
35 # Convenience variables
36 a = 'a'
37 b = 'b'
38 c = 'c'
39 d = 'd'
40 e = 'e'
41
42 # Written in the form (<search>, <replace>) where <search> is an expression
43 # and <replace> is either an expression or a value. An expression is
44 # defined as a tuple of the form ([~]<op>, <src0>, <src1>, <src2>, <src3>)
45 # where each source is either an expression or a value. A value can be
46 # either a numeric constant or a string representing a variable name.
47 #
48 # If the opcode in a search expression is prefixed by a '~' character, this
49 # indicates that the operation is inexact. Such operations will only get
50 # applied to SSA values that do not have the exact bit set. This should be
51 # used by by any optimizations that are not bit-for-bit exact. It should not,
52 # however, be used for backend-requested lowering operations as those need to
53 # happen regardless of precision.
54 #
55 # Variable names are specified as "[#]name[@type][(cond)][.swiz]" where:
56 # "#" indicates that the given variable will only match constants,
57 # type indicates that the given variable will only match values from ALU
58 # instructions with the given output type,
59 # (cond) specifies an additional condition function (see nir_search_helpers.h),
60 # swiz is a swizzle applied to the variable (only in the <replace> expression)
61 #
62 # For constants, you have to be careful to make sure that it is the right
63 # type because python is unaware of the source and destination types of the
64 # opcodes.
65 #
66 # All expression types can have a bit-size specified. For opcodes, this
67 # looks like "op@32", for variables it is "a@32" or "a@uint32" to specify a
68 # type and size. In the search half of the expression this indicates that it
69 # should only match that particular bit-size. In the replace half of the
70 # expression this indicates that the constructed value should have that
71 # bit-size.
72 #
73 # If the opcode in a replacement expression is prefixed by a '!' character,
74 # this indicated that the new expression will be marked exact.
75 #
76 # A special condition "many-comm-expr" can be used with expressions to note
77 # that the expression and its subexpressions have more commutative expressions
78 # than nir_replace_instr can handle. If this special condition is needed with
79 # another condition, the two can be separated by a comma (e.g.,
80 # "(many-comm-expr,is_used_once)").
81
82 # based on https://web.archive.org/web/20180105155939/http://forum.devmaster.net/t/fast-and-accurate-sine-cosine/9648
83 def lowered_sincos(c):
84 x = ('fsub', ('fmul', 2.0, ('ffract', ('fadd', ('fmul', 0.5 / pi, a), c))), 1.0)
85 x = ('fmul', ('fsub', x, ('fmul', x, ('fabs', x))), 4.0)
86 return ('ffma', ('ffma', x, ('fabs', x), ('fneg', x)), 0.225, x)
87
88 def intBitsToFloat(i):
89 return struct.unpack('!f', struct.pack('!I', i))[0]
90
91 optimizations = [
92
93 (('imul', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
94 (('imul', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
95 (('ishl', a, '#b@32'), ('imul', a, ('ishl', 1, b)), 'options->lower_bitops'),
96
97 (('unpack_64_2x32_split_x', ('imul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
98 (('unpack_64_2x32_split_x', ('umul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
99 (('imul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('imul_high', a, b)), 'options->lower_mul_2x32_64'),
100 (('umul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('umul_high', a, b)), 'options->lower_mul_2x32_64'),
101 (('udiv', a, 1), a),
102 (('idiv', a, 1), a),
103 (('umod', a, 1), 0),
104 (('imod', a, 1), 0),
105 (('udiv', a, '#b@32(is_pos_power_of_two)'), ('ushr', a, ('find_lsb', b)), '!options->lower_bitops'),
106 (('idiv', a, '#b@32(is_pos_power_of_two)'), ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', b))), 'options->lower_idiv'),
107 (('idiv', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', ('iabs', b))))), 'options->lower_idiv'),
108 (('umod', a, '#b(is_pos_power_of_two)'), ('iand', a, ('isub', b, 1))),
109
110 (('~fneg', ('fneg', a)), a),
111 (('ineg', ('ineg', a)), a),
112 (('fabs', ('fabs', a)), ('fabs', a)),
113 (('fabs', ('fneg', a)), ('fabs', a)),
114 (('fabs', ('u2f', a)), ('u2f', a)),
115 (('iabs', ('iabs', a)), ('iabs', a)),
116 (('iabs', ('ineg', a)), ('iabs', a)),
117 (('f2b', ('fneg', a)), ('f2b', a)),
118 (('i2b', ('ineg', a)), ('i2b', a)),
119 (('~fadd', a, 0.0), a),
120 (('iadd', a, 0), a),
121 (('usadd_4x8', a, 0), a),
122 (('usadd_4x8', a, ~0), ~0),
123 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
124 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
125 (('~fadd', ('fneg', a), a), 0.0),
126 (('iadd', ('ineg', a), a), 0),
127 (('iadd', ('ineg', a), ('iadd', a, b)), b),
128 (('iadd', a, ('iadd', ('ineg', a), b)), b),
129 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
130 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
131 (('fadd', ('fsat', a), ('fsat', ('fneg', a))), ('fsat', ('fabs', a))),
132 (('~fmul', a, 0.0), 0.0),
133 (('imul', a, 0), 0),
134 (('umul_unorm_4x8', a, 0), 0),
135 (('umul_unorm_4x8', a, ~0), a),
136 (('~fmul', a, 1.0), a),
137 (('imul', a, 1), a),
138 (('fmul', a, -1.0), ('fneg', a)),
139 (('imul', a, -1), ('ineg', a)),
140 # If a < 0: fsign(a)*a*a => -1*a*a => -a*a => abs(a)*a
141 # If a > 0: fsign(a)*a*a => 1*a*a => a*a => abs(a)*a
142 # If a == 0: fsign(a)*a*a => 0*0*0 => abs(0)*0
143 (('fmul', ('fsign', a), ('fmul', a, a)), ('fmul', ('fabs', a), a)),
144 (('fmul', ('fmul', ('fsign', a), a), a), ('fmul', ('fabs', a), a)),
145 (('~ffma', 0.0, a, b), b),
146 (('~ffma', a, b, 0.0), ('fmul', a, b)),
147 (('ffma', 1.0, a, b), ('fadd', a, b)),
148 (('ffma', -1.0, a, b), ('fadd', ('fneg', a), b)),
149 (('~flrp', a, b, 0.0), a),
150 (('~flrp', a, b, 1.0), b),
151 (('~flrp', a, a, b), a),
152 (('~flrp', 0.0, a, b), ('fmul', a, b)),
153
154 # flrp(a, a + b, c) => a + flrp(0, b, c) => a + (b * c)
155 (('~flrp', a, ('fadd(is_used_once)', a, b), c), ('fadd', ('fmul', b, c), a)),
156 (('~flrp@32', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp32'),
157 (('~flrp@64', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp64'),
158
159 (('~flrp@32', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp32'),
160 (('~flrp@64', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp64'),
161
162 (('~flrp@32', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp32'),
163 (('~flrp@64', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp64'),
164
165 (('~flrp', ('fmul(is_used_once)', a, b), ('fmul(is_used_once)', a, c), d), ('fmul', ('flrp', b, c, d), a)),
166
167 (('~flrp', a, b, ('b2f', 'c@1')), ('bcsel', c, b, a), 'options->lower_flrp32'),
168 (('~flrp', a, 0.0, c), ('fadd', ('fmul', ('fneg', a), c), a)),
169 (('ftrunc', a), ('bcsel', ('flt', a, 0.0), ('fneg', ('ffloor', ('fabs', a))), ('ffloor', ('fabs', a))), 'options->lower_ftrunc'),
170 (('ffloor', a), ('fsub', a, ('ffract', a)), 'options->lower_ffloor'),
171 (('fadd', a, ('fneg', ('ffract', a))), ('ffloor', a), '!options->lower_ffloor'),
172 (('ffract', a), ('fsub', a, ('ffloor', a)), 'options->lower_ffract'),
173 (('fceil', a), ('fneg', ('ffloor', ('fneg', a))), 'options->lower_fceil'),
174 (('~fadd', ('fmul', a, ('fadd', 1.0, ('fneg', ('b2f', 'c@1')))), ('fmul', b, ('b2f', c))), ('bcsel', c, b, a), 'options->lower_flrp32'),
175 (('~fadd@32', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp32'),
176 (('~fadd@64', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp64'),
177 # These are the same as the previous three rules, but it depends on
178 # 1-fsat(x) <=> fsat(1-x). See below.
179 (('~fadd@32', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp32'),
180 (('~fadd@64', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp64'),
181
182 (('~fadd', a, ('fmul', ('b2f', 'c@1'), ('fadd', b, ('fneg', a)))), ('bcsel', c, b, a), 'options->lower_flrp32'),
183 (('~fadd@32', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp32'),
184 (('~fadd@64', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp64'),
185 (('ffma', a, b, c), ('fadd', ('fmul', a, b), c), 'options->lower_ffma'),
186 (('~fadd', ('fmul', a, b), c), ('ffma', a, b, c), 'options->fuse_ffma'),
187
188 (('~fmul', ('fadd', ('iand', ('ineg', ('b2i32', 'a@bool')), ('fmul', b, c)), '#d'), '#e'),
189 ('bcsel', a, ('fmul', ('fadd', ('fmul', b, c), d), e), ('fmul', d, e))),
190
191 (('fdph', a, b), ('fdot4', ('vec4', 'a.x', 'a.y', 'a.z', 1.0), b), 'options->lower_fdph'),
192
193 (('fdot4', ('vec4', a, b, c, 1.0), d), ('fdph', ('vec3', a, b, c), d), '!options->lower_fdph'),
194 (('fdot4', ('vec4', a, 0.0, 0.0, 0.0), b), ('fmul', a, b)),
195 (('fdot4', ('vec4', a, b, 0.0, 0.0), c), ('fdot2', ('vec2', a, b), c)),
196 (('fdot4', ('vec4', a, b, c, 0.0), d), ('fdot3', ('vec3', a, b, c), d)),
197
198 (('fdot3', ('vec3', a, 0.0, 0.0), b), ('fmul', a, b)),
199 (('fdot3', ('vec3', a, b, 0.0), c), ('fdot2', ('vec2', a, b), c)),
200
201 (('fdot2', ('vec2', a, 0.0), b), ('fmul', a, b)),
202 (('fdot2', a, 1.0), ('fadd', 'a.x', 'a.y')),
203
204 # Lower fdot to fsum when it is available
205 (('fdot2', a, b), ('fsum2', ('fmul', a, b)), 'options->lower_fdot'),
206 (('fdot3', a, b), ('fsum3', ('fmul', a, b)), 'options->lower_fdot'),
207 (('fdot4', a, b), ('fsum4', ('fmul', a, b)), 'options->lower_fdot'),
208 (('fsum2', a), ('fadd', 'a.x', 'a.y'), 'options->lower_fdot'),
209
210 # If x >= 0 and x <= 1: fsat(1 - x) == 1 - fsat(x) trivially
211 # If x < 0: 1 - fsat(x) => 1 - 0 => 1 and fsat(1 - x) => fsat(> 1) => 1
212 # If x > 1: 1 - fsat(x) => 1 - 1 => 0 and fsat(1 - x) => fsat(< 0) => 0
213 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
214
215 # 1 - ((1 - a) * (1 - b))
216 # 1 - (1 - a - b + a*b)
217 # 1 - 1 + a + b - a*b
218 # a + b - a*b
219 # a + b*(1 - a)
220 # b*(1 - a) + 1*a
221 # flrp(b, 1, a)
222 (('~fadd@32', 1.0, ('fneg', ('fmul', ('fadd', 1.0, ('fneg', a)), ('fadd', 1.0, ('fneg', b))))),
223 ('flrp', b, 1.0, a), '!options->lower_flrp32'),
224
225 # (a * #b + #c) << #d
226 # ((a * #b) << #d) + (#c << #d)
227 # (a * (#b << #d)) + (#c << #d)
228 (('ishl', ('iadd', ('imul', a, '#b'), '#c'), '#d'),
229 ('iadd', ('imul', a, ('ishl', b, d)), ('ishl', c, d))),
230
231 # (a * #b) << #c
232 # a * (#b << #c)
233 (('ishl', ('imul', a, '#b'), '#c'), ('imul', a, ('ishl', b, c))),
234 ]
235
236 # Care must be taken here. Shifts in NIR uses only the lower log2(bitsize)
237 # bits of the second source. These replacements must correctly handle the
238 # case where (b % bitsize) + (c % bitsize) >= bitsize.
239 for s in [8, 16, 32, 64]:
240 mask = (1 << s) - 1
241
242 ishl = "ishl@{}".format(s)
243 ishr = "ishr@{}".format(s)
244 ushr = "ushr@{}".format(s)
245
246 in_bounds = ('ult', ('iadd', ('iand', b, mask), ('iand', c, mask)), s)
247
248 optimizations.extend([
249 ((ishl, (ishl, a, '#b'), '#c'), ('bcsel', in_bounds, (ishl, a, ('iadd', b, c)), 0)),
250 ((ushr, (ushr, a, '#b'), '#c'), ('bcsel', in_bounds, (ushr, a, ('iadd', b, c)), 0)),
251
252 # To get get -1 for large shifts of negative values, ishr must instead
253 # clamp the shift count to the maximum value.
254 ((ishr, (ishr, a, '#b'), '#c'),
255 (ishr, a, ('imin', ('iadd', ('iand', b, mask), ('iand', c, mask)), s - 1))),
256 ])
257
258 # Optimize a pattern of address calculation created by DXVK where the offset is
259 # divided by 4 and then multipled by 4. This can be turned into an iand and the
260 # additions before can be reassociated to CSE the iand instruction.
261 for log2 in range(1, 7): # powers of two from 2 to 64
262 v = 1 << log2
263 mask = 0xffffffff & ~(v - 1)
264 b_is_multiple = '#b(is_unsigned_multiple_of_{})'.format(v)
265
266 optimizations.extend([
267 # 'a >> #b << #b' -> 'a & ~((1 << #b) - 1)'
268 (('ishl@32', ('ushr@32', a, log2), log2), ('iand', a, mask)),
269
270 # Reassociate for improved CSE
271 (('iand@32', ('iadd@32', a, b_is_multiple), mask), ('iadd', ('iand', a, mask), b)),
272 ])
273
274 optimizations.extend([
275 # This is common for address calculations. Reassociating may enable the
276 # 'a<<c' to be CSE'd. It also helps architectures that have an ISHLADD
277 # instruction or a constant offset field for in load / store instructions.
278 (('ishl', ('iadd', a, '#b'), '#c'), ('iadd', ('ishl', a, c), ('ishl', b, c))),
279
280 # Comparison simplifications
281 (('~inot', ('flt', a, b)), ('fge', a, b)),
282 (('~inot', ('fge', a, b)), ('flt', a, b)),
283 (('inot', ('feq', a, b)), ('fne', a, b)),
284 (('inot', ('fne', a, b)), ('feq', a, b)),
285 (('inot', ('ilt', a, b)), ('ige', a, b)),
286 (('inot', ('ult', a, b)), ('uge', a, b)),
287 (('inot', ('ige', a, b)), ('ilt', a, b)),
288 (('inot', ('uge', a, b)), ('ult', a, b)),
289 (('inot', ('ieq', a, b)), ('ine', a, b)),
290 (('inot', ('ine', a, b)), ('ieq', a, b)),
291
292 (('iand', ('feq', a, b), ('fne', a, b)), False),
293 (('iand', ('flt', a, b), ('flt', b, a)), False),
294 (('iand', ('ieq', a, b), ('ine', a, b)), False),
295 (('iand', ('ilt', a, b), ('ilt', b, a)), False),
296 (('iand', ('ult', a, b), ('ult', b, a)), False),
297
298 # This helps some shaders because, after some optimizations, they end up
299 # with patterns like (-a < -b) || (b < a). In an ideal world, this sort of
300 # matching would be handled by CSE.
301 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
302 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
303 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
304 (('fne', ('fneg', a), ('fneg', b)), ('fne', b, a)),
305 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
306 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
307 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
308 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
309 (('fne', ('fneg', a), -1.0), ('fne', 1.0, a)),
310 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
311
312 (('flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
313 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
314 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
315 (('fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
316 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
317 (('fne', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fne', a, b)),
318
319 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
320 (('flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
321 (('fge', 0.0, ('fsat(is_used_once)', a)), ('fge', 0.0, a)),
322 (('flt', 0.0, ('fsat(is_used_once)', a)), ('flt', 0.0, a)),
323
324 # 0.0 >= b2f(a)
325 # b2f(a) <= 0.0
326 # b2f(a) == 0.0 because b2f(a) can only be 0 or 1
327 # inot(a)
328 (('fge', 0.0, ('b2f', 'a@1')), ('inot', a)),
329
330 (('fge', ('fneg', ('b2f', 'a@1')), 0.0), ('inot', a)),
331
332 (('fne', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
333 (('fne', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
334 (('fne', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('ior', a, b)),
335 (('fne', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('ior', a, b)),
336 (('fne', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
337 (('fne', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
338 (('fne', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('iand', a, b)),
339 (('fne', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ixor', a, b)),
340 (('fne', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ixor', a, b)),
341 (('fne', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ixor', a, b)),
342 (('feq', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
343 (('feq', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
344 (('feq', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('inot', ('ior', a, b))),
345 (('feq', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
346 (('feq', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
347 (('feq', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
348 (('feq', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('inot', ('iand', a, b))),
349 (('feq', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ieq', a, b)),
350 (('feq', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ieq', a, b)),
351 (('feq', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ieq', a, b)),
352
353 # -(b2f(a) + b2f(b)) < 0
354 # 0 < b2f(a) + b2f(b)
355 # 0 != b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
356 # a || b
357 (('flt', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('ior', a, b)),
358 (('flt', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('ior', a, b)),
359
360 # -(b2f(a) + b2f(b)) >= 0
361 # 0 >= b2f(a) + b2f(b)
362 # 0 == b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
363 # !(a || b)
364 (('fge', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('inot', ('ior', a, b))),
365 (('fge', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
366
367 (('flt', a, ('fneg', a)), ('flt', a, 0.0)),
368 (('fge', a, ('fneg', a)), ('fge', a, 0.0)),
369
370 # Some optimizations (below) convert things like (a < b || c < b) into
371 # (min(a, c) < b). However, this interfers with the previous optimizations
372 # that try to remove comparisons with negated sums of b2f. This just
373 # breaks that apart.
374 (('flt', ('fmin', c, ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')))), 0.0),
375 ('ior', ('flt', c, 0.0), ('ior', a, b))),
376
377 (('~flt', ('fadd', a, b), a), ('flt', b, 0.0)),
378 (('~fge', ('fadd', a, b), a), ('fge', b, 0.0)),
379 (('~feq', ('fadd', a, b), a), ('feq', b, 0.0)),
380 (('~fne', ('fadd', a, b), a), ('fne', b, 0.0)),
381 (('~flt', ('fadd(is_used_once)', a, '#b'), '#c'), ('flt', a, ('fadd', c, ('fneg', b)))),
382 (('~flt', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('flt', ('fneg', ('fadd', c, b)), a)),
383 (('~fge', ('fadd(is_used_once)', a, '#b'), '#c'), ('fge', a, ('fadd', c, ('fneg', b)))),
384 (('~fge', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fge', ('fneg', ('fadd', c, b)), a)),
385 (('~feq', ('fadd(is_used_once)', a, '#b'), '#c'), ('feq', a, ('fadd', c, ('fneg', b)))),
386 (('~feq', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('feq', ('fneg', ('fadd', c, b)), a)),
387 (('~fne', ('fadd(is_used_once)', a, '#b'), '#c'), ('fne', a, ('fadd', c, ('fneg', b)))),
388 (('~fne', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fne', ('fneg', ('fadd', c, b)), a)),
389
390 # Cannot remove the addition from ilt or ige due to overflow.
391 (('ieq', ('iadd', a, b), a), ('ieq', b, 0)),
392 (('ine', ('iadd', a, b), a), ('ine', b, 0)),
393
394 # fmin(-b2f(a), b) >= 0.0
395 # -b2f(a) >= 0.0 && b >= 0.0
396 # -b2f(a) == 0.0 && b >= 0.0 -b2f can only be 0 or -1, never >0
397 # b2f(a) == 0.0 && b >= 0.0
398 # a == False && b >= 0.0
399 # !a && b >= 0.0
400 #
401 # The fge in the second replacement is not a typo. I leave the proof that
402 # "fmin(-b2f(a), b) >= 0 <=> fmin(-b2f(a), b) == 0" as an exercise for the
403 # reader.
404 (('fge', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
405 (('feq', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
406
407 (('feq', ('b2f', 'a@1'), 0.0), ('inot', a)),
408 (('~fne', ('b2f', 'a@1'), 0.0), a),
409 (('ieq', ('b2i', 'a@1'), 0), ('inot', a)),
410 (('ine', ('b2i', 'a@1'), 0), a),
411
412 (('fne', ('u2f', a), 0.0), ('ine', a, 0)),
413 (('feq', ('u2f', a), 0.0), ('ieq', a, 0)),
414 (('fge', ('u2f', a), 0.0), True),
415 (('fge', 0.0, ('u2f', a)), ('uge', 0, a)), # ieq instead?
416 (('flt', ('u2f', a), 0.0), False),
417 (('flt', 0.0, ('u2f', a)), ('ult', 0, a)), # ine instead?
418 (('fne', ('i2f', a), 0.0), ('ine', a, 0)),
419 (('feq', ('i2f', a), 0.0), ('ieq', a, 0)),
420 (('fge', ('i2f', a), 0.0), ('ige', a, 0)),
421 (('fge', 0.0, ('i2f', a)), ('ige', 0, a)),
422 (('flt', ('i2f', a), 0.0), ('ilt', a, 0)),
423 (('flt', 0.0, ('i2f', a)), ('ilt', 0, a)),
424
425 # 0.0 < fabs(a)
426 # fabs(a) > 0.0
427 # fabs(a) != 0.0 because fabs(a) must be >= 0
428 # a != 0.0
429 (('~flt', 0.0, ('fabs', a)), ('fne', a, 0.0)),
430
431 # -fabs(a) < 0.0
432 # fabs(a) > 0.0
433 (('~flt', ('fneg', ('fabs', a)), 0.0), ('fne', a, 0.0)),
434
435 # 0.0 >= fabs(a)
436 # 0.0 == fabs(a) because fabs(a) must be >= 0
437 # 0.0 == a
438 (('fge', 0.0, ('fabs', a)), ('feq', a, 0.0)),
439
440 # -fabs(a) >= 0.0
441 # 0.0 >= fabs(a)
442 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
443
444 # (a >= 0.0) && (a <= 1.0) -> fsat(a) == a
445 (('iand', ('fge', a, 0.0), ('fge', 1.0, a)), ('feq', a, ('fsat', a)), '!options->lower_fsat'),
446
447 # (a < 0.0) || (a > 1.0)
448 # !(!(a < 0.0) && !(a > 1.0))
449 # !((a >= 0.0) && (a <= 1.0))
450 # !(a == fsat(a))
451 # a != fsat(a)
452 (('ior', ('flt', a, 0.0), ('flt', 1.0, a)), ('fne', a, ('fsat', a)), '!options->lower_fsat'),
453
454 (('fmax', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('ior', a, b))),
455 (('fmax', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('ior', a, b)))),
456 (('fmin', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
457 (('fmin', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('iand', a, b)))),
458
459 # fmin(b2f(a), b)
460 # bcsel(a, fmin(b2f(a), b), fmin(b2f(a), b))
461 # bcsel(a, fmin(b2f(True), b), fmin(b2f(False), b))
462 # bcsel(a, fmin(1.0, b), fmin(0.0, b))
463 #
464 # Since b is a constant, constant folding will eliminate the fmin and the
465 # fmax. If b is > 1.0, the bcsel will be replaced with a b2f.
466 (('fmin', ('b2f', 'a@1'), '#b'), ('bcsel', a, ('fmin', b, 1.0), ('fmin', b, 0.0))),
467
468 (('flt', ('fadd(is_used_once)', a, ('fneg', b)), 0.0), ('flt', a, b)),
469
470 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
471 (('~bcsel', ('flt', b, a), b, a), ('fmin', a, b)),
472 (('~bcsel', ('flt', a, b), b, a), ('fmax', a, b)),
473 (('~bcsel', ('fge', a, b), b, a), ('fmin', a, b)),
474 (('~bcsel', ('fge', b, a), b, a), ('fmax', a, b)),
475 (('bcsel', ('i2b', a), b, c), ('bcsel', ('ine', a, 0), b, c)),
476 (('bcsel', ('inot', a), b, c), ('bcsel', a, c, b)),
477 (('bcsel', a, ('bcsel', a, b, c), d), ('bcsel', a, b, d)),
478 (('bcsel', a, b, ('bcsel', a, c, d)), ('bcsel', a, b, d)),
479 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
480 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
481 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
482 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
483 (('bcsel', a, True, b), ('ior', a, b)),
484 (('bcsel', a, a, b), ('ior', a, b)),
485 (('bcsel', a, b, False), ('iand', a, b)),
486 (('bcsel', a, b, a), ('iand', a, b)),
487 (('~fmin', a, a), a),
488 (('~fmax', a, a), a),
489 (('imin', a, a), a),
490 (('imax', a, a), a),
491 (('umin', a, a), a),
492 (('umax', a, a), a),
493 (('fmax', ('fmax', a, b), b), ('fmax', a, b)),
494 (('umax', ('umax', a, b), b), ('umax', a, b)),
495 (('imax', ('imax', a, b), b), ('imax', a, b)),
496 (('fmin', ('fmin', a, b), b), ('fmin', a, b)),
497 (('umin', ('umin', a, b), b), ('umin', a, b)),
498 (('imin', ('imin', a, b), b), ('imin', a, b)),
499 (('iand@32', a, ('inot', ('ishr', a, 31))), ('imax', a, 0)),
500 (('fmin', a, ('fneg', a)), ('fneg', ('fabs', a))),
501 (('imin', a, ('ineg', a)), ('ineg', ('iabs', a))),
502 (('fmin', a, ('fneg', ('fabs', a))), ('fneg', ('fabs', a))),
503 (('imin', a, ('ineg', ('iabs', a))), ('ineg', ('iabs', a))),
504 (('~fmin', a, ('fabs', a)), a),
505 (('imin', a, ('iabs', a)), a),
506 (('~fmax', a, ('fneg', ('fabs', a))), a),
507 (('imax', a, ('ineg', ('iabs', a))), a),
508 (('fmax', a, ('fabs', a)), ('fabs', a)),
509 (('imax', a, ('iabs', a)), ('iabs', a)),
510 (('fmax', a, ('fneg', a)), ('fabs', a)),
511 (('imax', a, ('ineg', a)), ('iabs', a)),
512 (('~fmax', ('fabs', a), 0.0), ('fabs', a)),
513 (('~fmin', ('fmax', a, 0.0), 1.0), ('fsat', a), '!options->lower_fsat'),
514 (('~fmax', ('fmin', a, 1.0), 0.0), ('fsat', a), '!options->lower_fsat'),
515 (('~fmin', ('fmax', a, -1.0), 0.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
516 (('~fmax', ('fmin', a, 0.0), -1.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
517 (('fsat', ('fsign', a)), ('b2f', ('flt', 0.0, a))),
518 (('fsat', ('b2f', a)), ('b2f', a)),
519 (('fsat', a), ('fmin', ('fmax', a, 0.0), 1.0), 'options->lower_fsat'),
520 (('fsat', ('fsat', a)), ('fsat', a)),
521 (('fsat', ('fneg(is_used_once)', ('fadd(is_used_once)', a, b))), ('fsat', ('fadd', ('fneg', a), ('fneg', b))), '!options->lower_fsat'),
522 (('fsat', ('fneg(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fneg', a), b)), '!options->lower_fsat'),
523 (('fsat', ('fabs(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fabs', a), ('fabs', b))), '!options->lower_fsat'),
524 (('fmin', ('fmax', ('fmin', ('fmax', a, b), c), b), c), ('fmin', ('fmax', a, b), c)),
525 (('imin', ('imax', ('imin', ('imax', a, b), c), b), c), ('imin', ('imax', a, b), c)),
526 (('umin', ('umax', ('umin', ('umax', a, b), c), b), c), ('umin', ('umax', a, b), c)),
527 (('fmax', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmax', a, b))),
528 (('fmin', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmin', a, b))),
529 (('extract_u8', ('imin', ('imax', a, 0), 0xff), 0), ('imin', ('imax', a, 0), 0xff)),
530 (('~ior', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmax', b, c))),
531 (('~ior', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmin', a, b), c)),
532 (('~ior', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmin', b, c))),
533 (('~ior', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmax', a, b), c)),
534 (('~ior', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmax', b, c))),
535 (('~ior', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmin', a, b), c)),
536 (('~ior', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmin', b, c))),
537 (('~ior', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmax', a, b), c)),
538 (('~iand', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmin', b, c))),
539 (('~iand', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmax', a, b), c)),
540 (('~iand', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmax', b, c))),
541 (('~iand', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmin', a, b), c)),
542 (('~iand', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmin', b, c))),
543 (('~iand', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmax', a, b), c)),
544 (('~iand', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmax', b, c))),
545 (('~iand', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmin', a, b), c)),
546
547 (('ior', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imax', b, c))),
548 (('ior', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imin', a, b), c)),
549 (('ior', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imin', b, c))),
550 (('ior', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imax', a, b), c)),
551 (('ior', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umax', b, c))),
552 (('ior', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umin', a, b), c)),
553 (('ior', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umin', b, c))),
554 (('ior', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umax', a, b), c)),
555 (('iand', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imin', b, c))),
556 (('iand', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imax', a, b), c)),
557 (('iand', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imax', b, c))),
558 (('iand', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imin', a, b), c)),
559 (('iand', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umin', b, c))),
560 (('iand', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umax', a, b), c)),
561 (('iand', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umax', b, c))),
562 (('iand', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umin', a, b), c)),
563
564 # These derive from the previous patterns with the application of b < 0 <=>
565 # 0 < -b. The transformation should be applied if either comparison is
566 # used once as this ensures that the number of comparisons will not
567 # increase. The sources to the ior and iand are not symmetric, so the
568 # rules have to be duplicated to get this behavior.
569 (('~ior', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
570 (('~ior', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
571 (('~ior', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
572 (('~ior', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
573 (('~iand', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
574 (('~iand', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
575 (('~iand', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
576 (('~iand', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
577
578 # Common pattern like 'if (i == 0 || i == 1 || ...)'
579 (('ior', ('ieq', a, 0), ('ieq', a, 1)), ('uge', 1, a)),
580 (('ior', ('uge', 1, a), ('ieq', a, 2)), ('uge', 2, a)),
581 (('ior', ('uge', 2, a), ('ieq', a, 3)), ('uge', 3, a)),
582
583 # The (i2f32, ...) part is an open-coded fsign. When that is combined with
584 # the bcsel, it's basically copysign(1.0, a). There is no copysign in NIR,
585 # so emit an open-coded version of that.
586 (('bcsel@32', ('feq', a, 0.0), 1.0, ('i2f32', ('iadd', ('b2i32', ('flt', 0.0, 'a@32')), ('ineg', ('b2i32', ('flt', 'a@32', 0.0)))))),
587 ('ior', 0x3f800000, ('iand', a, 0x80000000))),
588
589 (('ior', a, ('ieq', a, False)), True),
590 (('ior', a, ('inot', a)), -1),
591
592 (('ine', ('ineg', ('b2i32', 'a@1')), ('ineg', ('b2i32', 'b@1'))), ('ine', a, b)),
593 (('b2i32', ('ine', 'a@1', 'b@1')), ('b2i32', ('ixor', a, b))),
594
595 (('iand', ('ieq', 'a@32', 0), ('ieq', 'b@32', 0)), ('ieq', ('ior', 'a@32', 'b@32'), 0), '!options->lower_bitops'),
596
597 # These patterns can result when (a < b || a < c) => (a < min(b, c))
598 # transformations occur before constant propagation and loop-unrolling.
599 (('~flt', a, ('fmax', b, a)), ('flt', a, b)),
600 (('~flt', ('fmin', a, b), a), ('flt', b, a)),
601 (('~fge', a, ('fmin', b, a)), True),
602 (('~fge', ('fmax', a, b), a), True),
603 (('~flt', a, ('fmin', b, a)), False),
604 (('~flt', ('fmax', a, b), a), False),
605 (('~fge', a, ('fmax', b, a)), ('fge', a, b)),
606 (('~fge', ('fmin', a, b), a), ('fge', b, a)),
607
608 (('ilt', a, ('imax', b, a)), ('ilt', a, b)),
609 (('ilt', ('imin', a, b), a), ('ilt', b, a)),
610 (('ige', a, ('imin', b, a)), True),
611 (('ige', ('imax', a, b), a), True),
612 (('ult', a, ('umax', b, a)), ('ult', a, b)),
613 (('ult', ('umin', a, b), a), ('ult', b, a)),
614 (('uge', a, ('umin', b, a)), True),
615 (('uge', ('umax', a, b), a), True),
616 (('ilt', a, ('imin', b, a)), False),
617 (('ilt', ('imax', a, b), a), False),
618 (('ige', a, ('imax', b, a)), ('ige', a, b)),
619 (('ige', ('imin', a, b), a), ('ige', b, a)),
620 (('ult', a, ('umin', b, a)), False),
621 (('ult', ('umax', a, b), a), False),
622 (('uge', a, ('umax', b, a)), ('uge', a, b)),
623 (('uge', ('umin', a, b), a), ('uge', b, a)),
624 (('ult', a, ('iand', b, a)), False),
625 (('ult', ('ior', a, b), a), False),
626 (('uge', a, ('iand', b, a)), True),
627 (('uge', ('ior', a, b), a), True),
628
629 (('ilt', '#a', ('imax', '#b', c)), ('ior', ('ilt', a, b), ('ilt', a, c))),
630 (('ilt', ('imin', '#a', b), '#c'), ('ior', ('ilt', a, c), ('ilt', b, c))),
631 (('ige', '#a', ('imin', '#b', c)), ('ior', ('ige', a, b), ('ige', a, c))),
632 (('ige', ('imax', '#a', b), '#c'), ('ior', ('ige', a, c), ('ige', b, c))),
633 (('ult', '#a', ('umax', '#b', c)), ('ior', ('ult', a, b), ('ult', a, c))),
634 (('ult', ('umin', '#a', b), '#c'), ('ior', ('ult', a, c), ('ult', b, c))),
635 (('uge', '#a', ('umin', '#b', c)), ('ior', ('uge', a, b), ('uge', a, c))),
636 (('uge', ('umax', '#a', b), '#c'), ('ior', ('uge', a, c), ('uge', b, c))),
637 (('ilt', '#a', ('imin', '#b', c)), ('iand', ('ilt', a, b), ('ilt', a, c))),
638 (('ilt', ('imax', '#a', b), '#c'), ('iand', ('ilt', a, c), ('ilt', b, c))),
639 (('ige', '#a', ('imax', '#b', c)), ('iand', ('ige', a, b), ('ige', a, c))),
640 (('ige', ('imin', '#a', b), '#c'), ('iand', ('ige', a, c), ('ige', b, c))),
641 (('ult', '#a', ('umin', '#b', c)), ('iand', ('ult', a, b), ('ult', a, c))),
642 (('ult', ('umax', '#a', b), '#c'), ('iand', ('ult', a, c), ('ult', b, c))),
643 (('uge', '#a', ('umax', '#b', c)), ('iand', ('uge', a, b), ('uge', a, c))),
644 (('uge', ('umin', '#a', b), '#c'), ('iand', ('uge', a, c), ('uge', b, c))),
645
646 # Thanks to sign extension, the ishr(a, b) is negative if and only if a is
647 # negative.
648 (('bcsel', ('ilt', a, 0), ('ineg', ('ishr', a, b)), ('ishr', a, b)),
649 ('iabs', ('ishr', a, b))),
650 (('iabs', ('ishr', ('iabs', a), b)), ('ishr', ('iabs', a), b)),
651
652 (('fabs', ('slt', a, b)), ('slt', a, b)),
653 (('fabs', ('sge', a, b)), ('sge', a, b)),
654 (('fabs', ('seq', a, b)), ('seq', a, b)),
655 (('fabs', ('sne', a, b)), ('sne', a, b)),
656 (('slt', a, b), ('b2f', ('flt', a, b)), 'options->lower_scmp'),
657 (('sge', a, b), ('b2f', ('fge', a, b)), 'options->lower_scmp'),
658 (('seq', a, b), ('b2f', ('feq', a, b)), 'options->lower_scmp'),
659 (('sne', a, b), ('b2f', ('fne', a, b)), 'options->lower_scmp'),
660 (('seq', ('seq', a, b), 1.0), ('seq', a, b)),
661 (('seq', ('sne', a, b), 1.0), ('sne', a, b)),
662 (('seq', ('slt', a, b), 1.0), ('slt', a, b)),
663 (('seq', ('sge', a, b), 1.0), ('sge', a, b)),
664 (('sne', ('seq', a, b), 0.0), ('seq', a, b)),
665 (('sne', ('sne', a, b), 0.0), ('sne', a, b)),
666 (('sne', ('slt', a, b), 0.0), ('slt', a, b)),
667 (('sne', ('sge', a, b), 0.0), ('sge', a, b)),
668 (('seq', ('seq', a, b), 0.0), ('sne', a, b)),
669 (('seq', ('sne', a, b), 0.0), ('seq', a, b)),
670 (('seq', ('slt', a, b), 0.0), ('sge', a, b)),
671 (('seq', ('sge', a, b), 0.0), ('slt', a, b)),
672 (('sne', ('seq', a, b), 1.0), ('sne', a, b)),
673 (('sne', ('sne', a, b), 1.0), ('seq', a, b)),
674 (('sne', ('slt', a, b), 1.0), ('sge', a, b)),
675 (('sne', ('sge', a, b), 1.0), ('slt', a, b)),
676 (('fall_equal2', a, b), ('fmin', ('seq', 'a.x', 'b.x'), ('seq', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
677 (('fall_equal3', a, b), ('seq', ('fany_nequal3', a, b), 0.0), 'options->lower_vector_cmp'),
678 (('fall_equal4', a, b), ('seq', ('fany_nequal4', a, b), 0.0), 'options->lower_vector_cmp'),
679 (('fany_nequal2', a, b), ('fmax', ('sne', 'a.x', 'b.x'), ('sne', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
680 (('fany_nequal3', a, b), ('fsat', ('fdot3', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
681 (('fany_nequal4', a, b), ('fsat', ('fdot4', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
682 (('fne', ('fneg', a), a), ('fne', a, 0.0)),
683 (('feq', ('fneg', a), a), ('feq', a, 0.0)),
684 # Emulating booleans
685 (('imul', ('b2i', 'a@1'), ('b2i', 'b@1')), ('b2i', ('iand', a, b))),
686 (('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
687 (('fsat', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('b2f', ('ior', a, b))),
688 (('iand', 'a@bool32', 1.0), ('b2f', a)),
689 # True/False are ~0 and 0 in NIR. b2i of True is 1, and -1 is ~0 (True).
690 (('ineg', ('b2i32', 'a@32')), a),
691 (('flt', ('fneg', ('b2f', 'a@1')), 0), a), # Generated by TGSI KILL_IF.
692 # Comparison with the same args. Note that these are not done for
693 # the float versions because NaN always returns false on float
694 # inequalities.
695 (('ilt', a, a), False),
696 (('ige', a, a), True),
697 (('ieq', a, a), True),
698 (('ine', a, a), False),
699 (('ult', a, a), False),
700 (('uge', a, a), True),
701 # Logical and bit operations
702 (('iand', a, a), a),
703 (('iand', a, ~0), a),
704 (('iand', a, 0), 0),
705 (('ior', a, a), a),
706 (('ior', a, 0), a),
707 (('ior', a, True), True),
708 (('ixor', a, a), 0),
709 (('ixor', a, 0), a),
710 (('inot', ('inot', a)), a),
711 (('ior', ('iand', a, b), b), b),
712 (('ior', ('ior', a, b), b), ('ior', a, b)),
713 (('iand', ('ior', a, b), b), b),
714 (('iand', ('iand', a, b), b), ('iand', a, b)),
715 # DeMorgan's Laws
716 (('iand', ('inot', a), ('inot', b)), ('inot', ('ior', a, b))),
717 (('ior', ('inot', a), ('inot', b)), ('inot', ('iand', a, b))),
718 # Shift optimizations
719 (('ishl', 0, a), 0),
720 (('ishl', a, 0), a),
721 (('ishr', 0, a), 0),
722 (('ishr', a, 0), a),
723 (('ushr', 0, a), 0),
724 (('ushr', a, 0), a),
725 (('iand', 0xff, ('ushr@32', a, 24)), ('ushr', a, 24)),
726 (('iand', 0xffff, ('ushr@32', a, 16)), ('ushr', a, 16)),
727 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('iadd', 16, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
728 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('isub', 16, b))), ('urol', a, b), '!options->lower_rotate'),
729 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('iadd', 32, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
730 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('isub', 32, b))), ('urol', a, b), '!options->lower_rotate'),
731 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('iadd', 16, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
732 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('isub', 16, b))), ('uror', a, b), '!options->lower_rotate'),
733 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('iadd', 32, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
734 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('isub', 32, b))), ('uror', a, b), '!options->lower_rotate'),
735 (('urol@16', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 16, b))), 'options->lower_rotate'),
736 (('urol@32', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 32, b))), 'options->lower_rotate'),
737 (('uror@16', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 16, b))), 'options->lower_rotate'),
738 (('uror@32', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 32, b))), 'options->lower_rotate'),
739 # Exponential/logarithmic identities
740 (('~fexp2', ('flog2', a)), a), # 2^lg2(a) = a
741 (('~flog2', ('fexp2', a)), a), # lg2(2^a) = a
742 (('fpow', a, b), ('fexp2', ('fmul', ('flog2', a), b)), 'options->lower_fpow'), # a^b = 2^(lg2(a)*b)
743 (('~fexp2', ('fmul', ('flog2', a), b)), ('fpow', a, b), '!options->lower_fpow'), # 2^(lg2(a)*b) = a^b
744 (('~fexp2', ('fadd', ('fmul', ('flog2', a), b), ('fmul', ('flog2', c), d))),
745 ('~fmul', ('fpow', a, b), ('fpow', c, d)), '!options->lower_fpow'), # 2^(lg2(a) * b + lg2(c) + d) = a^b * c^d
746 (('~fexp2', ('fmul', ('flog2', a), 2.0)), ('fmul', a, a)),
747 (('~fexp2', ('fmul', ('flog2', a), 4.0)), ('fmul', ('fmul', a, a), ('fmul', a, a))),
748 (('~fpow', a, 1.0), a),
749 (('~fpow', a, 2.0), ('fmul', a, a)),
750 (('~fpow', a, 4.0), ('fmul', ('fmul', a, a), ('fmul', a, a))),
751 (('~fpow', 2.0, a), ('fexp2', a)),
752 (('~fpow', ('fpow', a, 2.2), 0.454545), a),
753 (('~fpow', ('fabs', ('fpow', a, 2.2)), 0.454545), ('fabs', a)),
754 (('~fsqrt', ('fexp2', a)), ('fexp2', ('fmul', 0.5, a))),
755 (('~frcp', ('fexp2', a)), ('fexp2', ('fneg', a))),
756 (('~frsq', ('fexp2', a)), ('fexp2', ('fmul', -0.5, a))),
757 (('~flog2', ('fsqrt', a)), ('fmul', 0.5, ('flog2', a))),
758 (('~flog2', ('frcp', a)), ('fneg', ('flog2', a))),
759 (('~flog2', ('frsq', a)), ('fmul', -0.5, ('flog2', a))),
760 (('~flog2', ('fpow', a, b)), ('fmul', b, ('flog2', a))),
761 (('~fmul', ('fexp2(is_used_once)', a), ('fexp2(is_used_once)', b)), ('fexp2', ('fadd', a, b))),
762 (('bcsel', ('flt', a, 0.0), 0.0, ('fsqrt', a)), ('fsqrt', ('fmax', a, 0.0))),
763 (('~fmul', ('fsqrt', a), ('fsqrt', a)), ('fabs',a)),
764 # Division and reciprocal
765 (('~fdiv', 1.0, a), ('frcp', a)),
766 (('fdiv', a, b), ('fmul', a, ('frcp', b)), 'options->lower_fdiv'),
767 (('~frcp', ('frcp', a)), a),
768 (('~frcp', ('fsqrt', a)), ('frsq', a)),
769 (('fsqrt', a), ('frcp', ('frsq', a)), 'options->lower_fsqrt'),
770 (('~frcp', ('frsq', a)), ('fsqrt', a), '!options->lower_fsqrt'),
771 # Trig
772 (('fsin', a), lowered_sincos(0.5), 'options->lower_sincos'),
773 (('fcos', a), lowered_sincos(0.75), 'options->lower_sincos'),
774 # Boolean simplifications
775 (('i2b32(is_used_by_if)', a), ('ine32', a, 0)),
776 (('i2b1(is_used_by_if)', a), ('ine', a, 0)),
777 (('ieq', a, True), a),
778 (('ine(is_not_used_by_if)', a, True), ('inot', a)),
779 (('ine', a, False), a),
780 (('ieq(is_not_used_by_if)', a, False), ('inot', 'a')),
781 (('bcsel', a, True, False), a),
782 (('bcsel', a, False, True), ('inot', a)),
783 (('bcsel@32', a, 1.0, 0.0), ('b2f', a)),
784 (('bcsel@32', a, 0.0, 1.0), ('b2f', ('inot', a))),
785 (('bcsel@32', a, -1.0, -0.0), ('fneg', ('b2f', a))),
786 (('bcsel@32', a, -0.0, -1.0), ('fneg', ('b2f', ('inot', a)))),
787 (('bcsel', True, b, c), b),
788 (('bcsel', False, b, c), c),
789 (('bcsel', a, ('b2f(is_used_once)', 'b@32'), ('b2f', 'c@32')), ('b2f', ('bcsel', a, b, c))),
790
791 (('bcsel', a, b, b), b),
792 (('~fcsel', a, b, b), b),
793
794 # D3D Boolean emulation
795 (('bcsel', a, -1, 0), ('ineg', ('b2i', 'a@1'))),
796 (('bcsel', a, 0, -1), ('ineg', ('b2i', ('inot', a)))),
797 (('iand', ('ineg', ('b2i', 'a@1')), ('ineg', ('b2i', 'b@1'))),
798 ('ineg', ('b2i', ('iand', a, b)))),
799 (('ior', ('ineg', ('b2i','a@1')), ('ineg', ('b2i', 'b@1'))),
800 ('ineg', ('b2i', ('ior', a, b)))),
801 (('ieq', ('ineg', ('b2i', 'a@1')), 0), ('inot', a)),
802 (('ieq', ('ineg', ('b2i', 'a@1')), -1), a),
803 (('ine', ('ineg', ('b2i', 'a@1')), 0), a),
804 (('ine', ('ineg', ('b2i', 'a@1')), -1), ('inot', a)),
805 (('iand', ('ineg', ('b2i', a)), 1.0), ('b2f', a)),
806 (('iand', ('ineg', ('b2i', a)), 1), ('b2i', a)),
807
808 # SM5 32-bit shifts are defined to use the 5 least significant bits
809 (('ishl', 'a@32', ('iand', 31, b)), ('ishl', a, b)),
810 (('ishr', 'a@32', ('iand', 31, b)), ('ishr', a, b)),
811 (('ushr', 'a@32', ('iand', 31, b)), ('ushr', a, b)),
812
813 # Conversions
814 (('i2b32', ('b2i', 'a@32')), a),
815 (('f2i', ('ftrunc', a)), ('f2i', a)),
816 (('f2u', ('ftrunc', a)), ('f2u', a)),
817 (('i2b', ('ineg', a)), ('i2b', a)),
818 (('i2b', ('iabs', a)), ('i2b', a)),
819 (('inot', ('f2b1', a)), ('feq', a, 0.0)),
820
821 # The C spec says, "If the value of the integral part cannot be represented
822 # by the integer type, the behavior is undefined." "Undefined" can mean
823 # "the conversion doesn't happen at all."
824 (('~i2f32', ('f2i32', 'a@32')), ('ftrunc', a)),
825
826 # Ironically, mark these as imprecise because removing the conversions may
827 # preserve more precision than doing the conversions (e.g.,
828 # uint(float(0x81818181u)) == 0x81818200).
829 (('~f2i32', ('i2f', 'a@32')), a),
830 (('~f2i32', ('u2f', 'a@32')), a),
831 (('~f2u32', ('i2f', 'a@32')), a),
832 (('~f2u32', ('u2f', 'a@32')), a),
833
834 # Conversions from float16 to float32 and back can always be removed
835 (('f2f16', ('f2f32', 'a@16')), a),
836 (('f2fmp', ('f2f32', 'a@16')), a),
837 # Conversions to float16 would be lossy so they should only be removed if
838 # the instruction was generated by the precision lowering pass.
839 (('f2f32', ('f2fmp', 'a@32')), a),
840
841 (('ffloor', 'a(is_integral)'), a),
842 (('fceil', 'a(is_integral)'), a),
843 (('ftrunc', 'a(is_integral)'), a),
844 # fract(x) = x - floor(x), so fract(NaN) = NaN
845 (('~ffract', 'a(is_integral)'), 0.0),
846 (('fabs', 'a(is_not_negative)'), a),
847 (('iabs', 'a(is_not_negative)'), a),
848 (('fsat', 'a(is_not_positive)'), 0.0),
849
850 # Section 5.4.1 (Conversion and Scalar Constructors) of the GLSL 4.60 spec
851 # says:
852 #
853 # It is undefined to convert a negative floating-point value to an
854 # uint.
855 #
856 # Assuming that (uint)some_float behaves like (uint)(int)some_float allows
857 # some optimizations in the i965 backend to proceed.
858 (('ige', ('f2u', a), b), ('ige', ('f2i', a), b)),
859 (('ige', b, ('f2u', a)), ('ige', b, ('f2i', a))),
860 (('ilt', ('f2u', a), b), ('ilt', ('f2i', a), b)),
861 (('ilt', b, ('f2u', a)), ('ilt', b, ('f2i', a))),
862
863 (('~fmin', 'a(is_not_negative)', 1.0), ('fsat', a), '!options->lower_fsat'),
864
865 # The result of the multiply must be in [-1, 0], so the result of the ffma
866 # must be in [0, 1].
867 (('flt', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), False),
868 (('flt', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), False),
869 (('fmax', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0)),
870 (('fmax', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0)),
871
872 (('fne', 'a(is_not_zero)', 0.0), True),
873 (('feq', 'a(is_not_zero)', 0.0), False),
874
875 # In this chart, + means value > 0 and - means value < 0.
876 #
877 # + >= + -> unknown 0 >= + -> false - >= + -> false
878 # + >= 0 -> true 0 >= 0 -> true - >= 0 -> false
879 # + >= - -> true 0 >= - -> true - >= - -> unknown
880 #
881 # Using grouping conceptually similar to a Karnaugh map...
882 #
883 # (+ >= 0, + >= -, 0 >= 0, 0 >= -) == (is_not_negative >= is_not_positive) -> true
884 # (0 >= +, - >= +) == (is_not_positive >= gt_zero) -> false
885 # (- >= +, - >= 0) == (lt_zero >= is_not_negative) -> false
886 #
887 # The flt / ilt cases just invert the expected result.
888 #
889 # The results expecting true, must be marked imprecise. The results
890 # expecting false are fine because NaN compared >= or < anything is false.
891
892 (('~fge', 'a(is_not_negative)', 'b(is_not_positive)'), True),
893 (('fge', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
894 (('fge', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
895
896 (('flt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
897 (('~flt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
898 (('~flt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
899
900 (('ine', 'a(is_not_zero)', 0), True),
901 (('ieq', 'a(is_not_zero)', 0), False),
902
903 (('ige', 'a(is_not_negative)', 'b(is_not_positive)'), True),
904 (('ige', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
905 (('ige', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
906
907 (('ilt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
908 (('ilt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
909 (('ilt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
910
911 (('ult', 0, 'a(is_gt_zero)'), True),
912
913 # Packing and then unpacking does nothing
914 (('unpack_64_2x32_split_x', ('pack_64_2x32_split', a, b)), a),
915 (('unpack_64_2x32_split_y', ('pack_64_2x32_split', a, b)), b),
916 (('pack_64_2x32_split', ('unpack_64_2x32_split_x', a),
917 ('unpack_64_2x32_split_y', a)), a),
918
919 # Comparing two halves of an unpack separately. While this optimization
920 # should be correct for non-constant values, it's less obvious that it's
921 # useful in that case. For constant values, the pack will fold and we're
922 # guaranteed to reduce the whole tree to one instruction.
923 (('iand', ('ieq', ('unpack_32_2x16_split_x', a), '#b'),
924 ('ieq', ('unpack_32_2x16_split_y', a), '#c')),
925 ('ieq', a, ('pack_32_2x16_split', b, c))),
926
927 # Byte extraction
928 (('ushr', 'a@16', 8), ('extract_u8', a, 1), '!options->lower_extract_byte'),
929 (('ushr', 'a@32', 24), ('extract_u8', a, 3), '!options->lower_extract_byte'),
930 (('ushr', 'a@64', 56), ('extract_u8', a, 7), '!options->lower_extract_byte'),
931 (('ishr', 'a@16', 8), ('extract_i8', a, 1), '!options->lower_extract_byte'),
932 (('ishr', 'a@32', 24), ('extract_i8', a, 3), '!options->lower_extract_byte'),
933 (('ishr', 'a@64', 56), ('extract_i8', a, 7), '!options->lower_extract_byte'),
934 (('iand', 0xff, a), ('extract_u8', a, 0), '!options->lower_extract_byte'),
935
936 # Useless masking before unpacking
937 (('unpack_half_2x16_split_x', ('iand', a, 0xffff)), ('unpack_half_2x16_split_x', a)),
938 (('unpack_32_2x16_split_x', ('iand', a, 0xffff)), ('unpack_32_2x16_split_x', a)),
939 (('unpack_64_2x32_split_x', ('iand', a, 0xffffffff)), ('unpack_64_2x32_split_x', a)),
940 (('unpack_half_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_half_2x16_split_y', a)),
941 (('unpack_32_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_32_2x16_split_y', a)),
942 (('unpack_64_2x32_split_y', ('iand', a, 0xffffffff00000000)), ('unpack_64_2x32_split_y', a)),
943
944 # Optimize half packing
945 (('ishl', ('pack_half_2x16', ('vec2', a, 0)), 16), ('pack_half_2x16', ('vec2', 0, a))),
946 (('ishr', ('pack_half_2x16', ('vec2', 0, a)), 16), ('pack_half_2x16', ('vec2', a, 0))),
947
948 (('iadd', ('pack_half_2x16', ('vec2', a, 0)), ('pack_half_2x16', ('vec2', 0, b))),
949 ('pack_half_2x16', ('vec2', a, b))),
950 (('ior', ('pack_half_2x16', ('vec2', a, 0)), ('pack_half_2x16', ('vec2', 0, b))),
951 ('pack_half_2x16', ('vec2', a, b))),
952 ])
953
954 # After the ('extract_u8', a, 0) pattern, above, triggers, there will be
955 # patterns like those below.
956 for op in ('ushr', 'ishr'):
957 optimizations.extend([(('extract_u8', (op, 'a@16', 8), 0), ('extract_u8', a, 1))])
958 optimizations.extend([(('extract_u8', (op, 'a@32', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 4)])
959 optimizations.extend([(('extract_u8', (op, 'a@64', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 8)])
960
961 optimizations.extend([(('extract_u8', ('extract_u16', a, 1), 0), ('extract_u8', a, 2))])
962
963 # After the ('extract_[iu]8', a, 3) patterns, above, trigger, there will be
964 # patterns like those below.
965 for op in ('extract_u8', 'extract_i8'):
966 optimizations.extend([((op, ('ishl', 'a@16', 8), 1), (op, a, 0))])
967 optimizations.extend([((op, ('ishl', 'a@32', 24 - 8 * i), 3), (op, a, i)) for i in range(2, -1, -1)])
968 optimizations.extend([((op, ('ishl', 'a@64', 56 - 8 * i), 7), (op, a, i)) for i in range(6, -1, -1)])
969
970 optimizations.extend([
971 # Word extraction
972 (('ushr', ('ishl', 'a@32', 16), 16), ('extract_u16', a, 0), '!options->lower_extract_word'),
973 (('ushr', 'a@32', 16), ('extract_u16', a, 1), '!options->lower_extract_word'),
974 (('ishr', ('ishl', 'a@32', 16), 16), ('extract_i16', a, 0), '!options->lower_extract_word'),
975 (('ishr', 'a@32', 16), ('extract_i16', a, 1), '!options->lower_extract_word'),
976 (('iand', 0xffff, a), ('extract_u16', a, 0), '!options->lower_extract_word'),
977
978 # Subtracts
979 (('ussub_4x8', a, 0), a),
980 (('ussub_4x8', a, ~0), 0),
981 # Lower all Subtractions first - they can get recombined later
982 (('fsub', a, b), ('fadd', a, ('fneg', b))),
983 (('isub', a, b), ('iadd', a, ('ineg', b))),
984 (('uabs_usub', a, b), ('bcsel', ('ult', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
985 # This is correct. We don't need isub_sat because the result type is unsigned, so it cannot overflow.
986 (('uabs_isub', a, b), ('bcsel', ('ilt', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
987
988 # Propagate negation up multiplication chains
989 (('fmul(is_used_by_non_fsat)', ('fneg', a), b), ('fneg', ('fmul', a, b))),
990 (('imul', ('ineg', a), b), ('ineg', ('imul', a, b))),
991
992 # Propagate constants up multiplication chains
993 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fmul', ('fmul', a, c), b)),
994 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('imul', ('imul', a, c), b)),
995 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fadd', ('fadd', a, c), b)),
996 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('iadd', ('iadd', a, c), b)),
997
998 # Reassociate constants in add/mul chains so they can be folded together.
999 # For now, we mostly only handle cases where the constants are separated by
1000 # a single non-constant. We could do better eventually.
1001 (('~fmul', '#a', ('fmul', 'b(is_not_const)', '#c')), ('fmul', ('fmul', a, c), b)),
1002 (('imul', '#a', ('imul', 'b(is_not_const)', '#c')), ('imul', ('imul', a, c), b)),
1003 (('~fadd', '#a', ('fadd', 'b(is_not_const)', '#c')), ('fadd', ('fadd', a, c), b)),
1004 (('~fadd', '#a', ('fneg', ('fadd', 'b(is_not_const)', '#c'))), ('fadd', ('fadd', a, ('fneg', c)), ('fneg', b))),
1005 (('iadd', '#a', ('iadd', 'b(is_not_const)', '#c')), ('iadd', ('iadd', a, c), b)),
1006
1007 # Drop mul-div by the same value when there's no wrapping.
1008 (('idiv', ('imul(no_signed_wrap)', a, b), b), a),
1009
1010 # By definition...
1011 (('bcsel', ('ige', ('find_lsb', a), 0), ('find_lsb', a), -1), ('find_lsb', a)),
1012 (('bcsel', ('ige', ('ifind_msb', a), 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
1013 (('bcsel', ('ige', ('ufind_msb', a), 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
1014
1015 (('bcsel', ('ine', a, 0), ('find_lsb', a), -1), ('find_lsb', a)),
1016 (('bcsel', ('ine', a, 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
1017 (('bcsel', ('ine', a, 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
1018
1019 (('bcsel', ('ine', a, -1), ('ifind_msb', a), -1), ('ifind_msb', a)),
1020
1021 # Misc. lowering
1022 (('fmod', a, b), ('fsub', a, ('fmul', b, ('ffloor', ('fdiv', a, b)))), 'options->lower_fmod'),
1023 (('frem', a, b), ('fsub', a, ('fmul', b, ('ftrunc', ('fdiv', a, b)))), 'options->lower_fmod'),
1024 (('uadd_carry@32', a, b), ('b2i', ('ult', ('iadd', a, b), a)), 'options->lower_uadd_carry'),
1025 (('usub_borrow@32', a, b), ('b2i', ('ult', a, b)), 'options->lower_usub_borrow'),
1026
1027 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1028 ('bcsel', ('ult', 31, 'bits'), 'insert',
1029 ('bfi', ('bfm', 'bits', 'offset'), 'insert', 'base')),
1030 'options->lower_bitfield_insert'),
1031 (('ihadd', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1032 (('uhadd', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1033 (('irhadd', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1034 (('urhadd', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1035 (('ihadd@64', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1036 (('uhadd@64', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1037 (('irhadd@64', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1038 (('urhadd@64', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1039
1040 (('uadd_sat@64', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_add_sat || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1041 (('uadd_sat', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_add_sat'),
1042 (('usub_sat', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_add_sat'),
1043 (('usub_sat@64', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_usub_sat64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1044
1045 # int64_t sum = a + b;
1046 #
1047 # if (a < 0 && b < 0 && a < sum)
1048 # sum = INT64_MIN;
1049 # } else if (a >= 0 && b >= 0 && sum < a)
1050 # sum = INT64_MAX;
1051 # }
1052 #
1053 # A couple optimizations are applied.
1054 #
1055 # 1. a < sum => sum >= 0. This replacement works because it is known that
1056 # a < 0 and b < 0, so sum should also be < 0 unless there was
1057 # underflow.
1058 #
1059 # 2. sum < a => sum < 0. This replacement works because it is known that
1060 # a >= 0 and b >= 0, so sum should also be >= 0 unless there was
1061 # overflow.
1062 #
1063 # 3. Invert the second if-condition and swap the order of parameters for
1064 # the bcsel. !(a >= 0 && b >= 0 && sum < 0) becomes !(a >= 0) || !(b >=
1065 # 0) || !(sum < 0), and that becomes (a < 0) || (b < 0) || (sum >= 0)
1066 #
1067 # On Intel Gen11, this saves ~11 instructions.
1068 (('iadd_sat@64', a, b), ('bcsel',
1069 ('iand', ('iand', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)),
1070 0x8000000000000000,
1071 ('bcsel',
1072 ('ior', ('ior', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)),
1073 ('iadd', a, b),
1074 0x7fffffffffffffff)),
1075 '(options->lower_int64_options & nir_lower_iadd64) != 0'),
1076
1077 # int64_t sum = a - b;
1078 #
1079 # if (a < 0 && b >= 0 && a < sum)
1080 # sum = INT64_MIN;
1081 # } else if (a >= 0 && b < 0 && a >= sum)
1082 # sum = INT64_MAX;
1083 # }
1084 #
1085 # Optimizations similar to the iadd_sat case are applied here.
1086 (('isub_sat@64', a, b), ('bcsel',
1087 ('iand', ('iand', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)),
1088 0x8000000000000000,
1089 ('bcsel',
1090 ('ior', ('ior', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)),
1091 ('isub', a, b),
1092 0x7fffffffffffffff)),
1093 '(options->lower_int64_options & nir_lower_iadd64) != 0'),
1094
1095 # These are done here instead of in the backend because the int64 lowering
1096 # pass will make a mess of the patterns. The first patterns are
1097 # conditioned on nir_lower_minmax64 because it was not clear that it was
1098 # always an improvement on platforms that have real int64 support. No
1099 # shaders in shader-db hit this, so it was hard to say one way or the
1100 # other.
1101 (('ilt', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1102 (('ilt', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1103 (('ige', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1104 (('ige', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1105 (('ilt', 'a@64', 0), ('ilt', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1106 (('ige', 'a@64', 0), ('ige', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1107
1108 (('ine', 'a@64', 0), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1109 (('ieq', 'a@64', 0), ('ieq', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1110 # 0u < uint(a) <=> uint(a) != 0u
1111 (('ult', 0, 'a@64'), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1112
1113 # Alternative lowering that doesn't rely on bfi.
1114 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1115 ('bcsel', ('ult', 31, 'bits'),
1116 'insert',
1117 (('ior',
1118 ('iand', 'base', ('inot', ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))),
1119 ('iand', ('ishl', 'insert', 'offset'), ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))))),
1120 'options->lower_bitfield_insert_to_shifts'),
1121
1122 # Alternative lowering that uses bitfield_select.
1123 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1124 ('bcsel', ('ult', 31, 'bits'), 'insert',
1125 ('bitfield_select', ('bfm', 'bits', 'offset'), ('ishl', 'insert', 'offset'), 'base')),
1126 'options->lower_bitfield_insert_to_bitfield_select'),
1127
1128 (('ibitfield_extract', 'value', 'offset', 'bits'),
1129 ('bcsel', ('ult', 31, 'bits'), 'value',
1130 ('ibfe', 'value', 'offset', 'bits')),
1131 'options->lower_bitfield_extract'),
1132
1133 (('ubitfield_extract', 'value', 'offset', 'bits'),
1134 ('bcsel', ('ult', 31, 'bits'), 'value',
1135 ('ubfe', 'value', 'offset', 'bits')),
1136 'options->lower_bitfield_extract'),
1137
1138 # Note that these opcodes are defined to only use the five least significant bits of 'offset' and 'bits'
1139 (('ubfe', 'value', 'offset', ('iand', 31, 'bits')), ('ubfe', 'value', 'offset', 'bits')),
1140 (('ubfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ubfe', 'value', 'offset', 'bits')),
1141 (('ibfe', 'value', 'offset', ('iand', 31, 'bits')), ('ibfe', 'value', 'offset', 'bits')),
1142 (('ibfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ibfe', 'value', 'offset', 'bits')),
1143 (('bfm', 'bits', ('iand', 31, 'offset')), ('bfm', 'bits', 'offset')),
1144 (('bfm', ('iand', 31, 'bits'), 'offset'), ('bfm', 'bits', 'offset')),
1145
1146 (('ibitfield_extract', 'value', 'offset', 'bits'),
1147 ('bcsel', ('ieq', 0, 'bits'),
1148 0,
1149 ('ishr',
1150 ('ishl', 'value', ('isub', ('isub', 32, 'bits'), 'offset')),
1151 ('isub', 32, 'bits'))),
1152 'options->lower_bitfield_extract_to_shifts'),
1153
1154 (('ubitfield_extract', 'value', 'offset', 'bits'),
1155 ('iand',
1156 ('ushr', 'value', 'offset'),
1157 ('bcsel', ('ieq', 'bits', 32),
1158 0xffffffff,
1159 ('isub', ('ishl', 1, 'bits'), 1))),
1160 'options->lower_bitfield_extract_to_shifts'),
1161
1162 (('ifind_msb', 'value'),
1163 ('ufind_msb', ('bcsel', ('ilt', 'value', 0), ('inot', 'value'), 'value')),
1164 'options->lower_ifind_msb'),
1165
1166 (('find_lsb', 'value'),
1167 ('ufind_msb', ('iand', 'value', ('ineg', 'value'))),
1168 'options->lower_find_lsb'),
1169
1170 (('extract_i8', a, 'b@32'),
1171 ('ishr', ('ishl', a, ('imul', ('isub', 3, b), 8)), 24),
1172 'options->lower_extract_byte'),
1173
1174 (('extract_u8', a, 'b@32'),
1175 ('iand', ('ushr', a, ('imul', b, 8)), 0xff),
1176 'options->lower_extract_byte'),
1177
1178 (('extract_i16', a, 'b@32'),
1179 ('ishr', ('ishl', a, ('imul', ('isub', 1, b), 16)), 16),
1180 'options->lower_extract_word'),
1181
1182 (('extract_u16', a, 'b@32'),
1183 ('iand', ('ushr', a, ('imul', b, 16)), 0xffff),
1184 'options->lower_extract_word'),
1185
1186 (('pack_unorm_2x16', 'v'),
1187 ('pack_uvec2_to_uint',
1188 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 65535.0)))),
1189 'options->lower_pack_unorm_2x16'),
1190
1191 (('pack_unorm_4x8', 'v'),
1192 ('pack_uvec4_to_uint',
1193 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 255.0)))),
1194 'options->lower_pack_unorm_4x8'),
1195
1196 (('pack_snorm_2x16', 'v'),
1197 ('pack_uvec2_to_uint',
1198 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 32767.0)))),
1199 'options->lower_pack_snorm_2x16'),
1200
1201 (('pack_snorm_4x8', 'v'),
1202 ('pack_uvec4_to_uint',
1203 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 127.0)))),
1204 'options->lower_pack_snorm_4x8'),
1205
1206 (('unpack_unorm_2x16', 'v'),
1207 ('fdiv', ('u2f32', ('vec2', ('extract_u16', 'v', 0),
1208 ('extract_u16', 'v', 1))),
1209 65535.0),
1210 'options->lower_unpack_unorm_2x16'),
1211
1212 (('unpack_unorm_4x8', 'v'),
1213 ('fdiv', ('u2f32', ('vec4', ('extract_u8', 'v', 0),
1214 ('extract_u8', 'v', 1),
1215 ('extract_u8', 'v', 2),
1216 ('extract_u8', 'v', 3))),
1217 255.0),
1218 'options->lower_unpack_unorm_4x8'),
1219
1220 (('unpack_snorm_2x16', 'v'),
1221 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec2', ('extract_i16', 'v', 0),
1222 ('extract_i16', 'v', 1))),
1223 32767.0))),
1224 'options->lower_unpack_snorm_2x16'),
1225
1226 (('unpack_snorm_4x8', 'v'),
1227 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec4', ('extract_i8', 'v', 0),
1228 ('extract_i8', 'v', 1),
1229 ('extract_i8', 'v', 2),
1230 ('extract_i8', 'v', 3))),
1231 127.0))),
1232 'options->lower_unpack_snorm_4x8'),
1233
1234 (('pack_half_2x16_split', 'a@32', 'b@32'),
1235 ('ior', ('ishl', ('u2u32', ('f2f16', b)), 16), ('u2u32', ('f2f16', a))),
1236 'options->lower_pack_half_2x16_split'),
1237
1238 (('unpack_half_2x16_split_x', 'a@32'),
1239 ('f2f32', ('u2u16', a)),
1240 'options->lower_unpack_half_2x16_split'),
1241
1242 (('unpack_half_2x16_split_y', 'a@32'),
1243 ('f2f32', ('u2u16', ('ushr', a, 16))),
1244 'options->lower_unpack_half_2x16_split'),
1245
1246 (('isign', a), ('imin', ('imax', a, -1), 1), 'options->lower_isign'),
1247 (('fsign', a), ('fsub', ('b2f', ('flt', 0.0, a)), ('b2f', ('flt', a, 0.0))), 'options->lower_fsign'),
1248
1249 # Address/offset calculations:
1250 # Drivers supporting imul24 should use the nir_lower_amul() pass, this
1251 # rule converts everyone else to imul:
1252 (('amul', a, b), ('imul', a, b), '!options->has_imul24'),
1253
1254 (('imad24_ir3', a, b, 0), ('imul24', a, b)),
1255 (('imad24_ir3', a, 0, c), (c)),
1256 (('imad24_ir3', a, 1, c), ('iadd', a, c)),
1257
1258 # if first two srcs are const, crack apart the imad so constant folding
1259 # can clean up the imul:
1260 # TODO ffma should probably get a similar rule:
1261 (('imad24_ir3', '#a', '#b', c), ('iadd', ('imul', a, b), c)),
1262
1263 # These will turn 24b address/offset calc back into 32b shifts, but
1264 # it should be safe to get back some of the bits of precision that we
1265 # already decided were no necessary:
1266 (('imul24', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
1267 (('imul24', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
1268 (('imul24', a, 0), (0)),
1269 ])
1270
1271 # bit_size dependent lowerings
1272 for bit_size in [8, 16, 32, 64]:
1273 # convenience constants
1274 intmax = (1 << (bit_size - 1)) - 1
1275 intmin = 1 << (bit_size - 1)
1276
1277 optimizations += [
1278 (('iadd_sat@' + str(bit_size), a, b),
1279 ('bcsel', ('ige', b, 1), ('bcsel', ('ilt', ('iadd', a, b), a), intmax, ('iadd', a, b)),
1280 ('bcsel', ('ilt', a, ('iadd', a, b)), intmin, ('iadd', a, b))), 'options->lower_add_sat'),
1281 (('isub_sat@' + str(bit_size), a, b),
1282 ('bcsel', ('ilt', b, 0), ('bcsel', ('ilt', ('isub', a, b), a), intmax, ('isub', a, b)),
1283 ('bcsel', ('ilt', a, ('isub', a, b)), intmin, ('isub', a, b))), 'options->lower_add_sat'),
1284 ]
1285
1286 invert = OrderedDict([('feq', 'fne'), ('fne', 'feq')])
1287
1288 for left, right in itertools.combinations_with_replacement(invert.keys(), 2):
1289 optimizations.append((('inot', ('ior(is_used_once)', (left, a, b), (right, c, d))),
1290 ('iand', (invert[left], a, b), (invert[right], c, d))))
1291 optimizations.append((('inot', ('iand(is_used_once)', (left, a, b), (right, c, d))),
1292 ('ior', (invert[left], a, b), (invert[right], c, d))))
1293
1294 # Optimize x2bN(b2x(x)) -> x
1295 for size in type_sizes('bool'):
1296 aN = 'a@' + str(size)
1297 f2bN = 'f2b' + str(size)
1298 i2bN = 'i2b' + str(size)
1299 optimizations.append(((f2bN, ('b2f', aN)), a))
1300 optimizations.append(((i2bN, ('b2i', aN)), a))
1301
1302 # Optimize x2yN(b2x(x)) -> b2y
1303 for x, y in itertools.product(['f', 'u', 'i'], ['f', 'u', 'i']):
1304 if x != 'f' and y != 'f' and x != y:
1305 continue
1306
1307 b2x = 'b2f' if x == 'f' else 'b2i'
1308 b2y = 'b2f' if y == 'f' else 'b2i'
1309 x2yN = '{}2{}'.format(x, y)
1310 optimizations.append(((x2yN, (b2x, a)), (b2y, a)))
1311
1312 # Optimize away x2xN(a@N)
1313 for t in ['int', 'uint', 'float']:
1314 for N in type_sizes(t):
1315 x2xN = '{0}2{0}{1}'.format(t[0], N)
1316 aN = 'a@{0}'.format(N)
1317 optimizations.append(((x2xN, aN), a))
1318
1319 # Optimize x2xN(y2yM(a@P)) -> y2yN(a) for integers
1320 # In particular, we can optimize away everything except upcast of downcast and
1321 # upcasts where the type differs from the other cast
1322 for N, M in itertools.product(type_sizes('uint'), type_sizes('uint')):
1323 if N < M:
1324 # The outer cast is a down-cast. It doesn't matter what the size of the
1325 # argument of the inner cast is because we'll never been in the upcast
1326 # of downcast case. Regardless of types, we'll always end up with y2yN
1327 # in the end.
1328 for x, y in itertools.product(['i', 'u'], ['i', 'u']):
1329 x2xN = '{0}2{0}{1}'.format(x, N)
1330 y2yM = '{0}2{0}{1}'.format(y, M)
1331 y2yN = '{0}2{0}{1}'.format(y, N)
1332 optimizations.append(((x2xN, (y2yM, a)), (y2yN, a)))
1333 elif N > M:
1334 # If the outer cast is an up-cast, we have to be more careful about the
1335 # size of the argument of the inner cast and with types. In this case,
1336 # the type is always the type of type up-cast which is given by the
1337 # outer cast.
1338 for P in type_sizes('uint'):
1339 # We can't optimize away up-cast of down-cast.
1340 if M < P:
1341 continue
1342
1343 # Because we're doing down-cast of down-cast, the types always have
1344 # to match between the two casts
1345 for x in ['i', 'u']:
1346 x2xN = '{0}2{0}{1}'.format(x, N)
1347 x2xM = '{0}2{0}{1}'.format(x, M)
1348 aP = 'a@{0}'.format(P)
1349 optimizations.append(((x2xN, (x2xM, aP)), (x2xN, a)))
1350 else:
1351 # The N == M case is handled by other optimizations
1352 pass
1353
1354 # Optimize comparisons with up-casts
1355 for t in ['int', 'uint', 'float']:
1356 for N, M in itertools.product(type_sizes(t), repeat=2):
1357 if N == 1 or N >= M:
1358 continue
1359
1360 x2xM = '{0}2{0}{1}'.format(t[0], M)
1361 x2xN = '{0}2{0}{1}'.format(t[0], N)
1362 aN = 'a@' + str(N)
1363 bN = 'b@' + str(N)
1364 xeq = 'feq' if t == 'float' else 'ieq'
1365 xne = 'fne' if t == 'float' else 'ine'
1366 xge = '{0}ge'.format(t[0])
1367 xlt = '{0}lt'.format(t[0])
1368
1369 # Up-casts are lossless so for correctly signed comparisons of
1370 # up-casted values we can do the comparison at the largest of the two
1371 # original sizes and drop one or both of the casts. (We have
1372 # optimizations to drop the no-op casts which this may generate.)
1373 for P in type_sizes(t):
1374 if P == 1 or P > N:
1375 continue
1376
1377 bP = 'b@' + str(P)
1378 optimizations += [
1379 ((xeq, (x2xM, aN), (x2xM, bP)), (xeq, a, (x2xN, b))),
1380 ((xne, (x2xM, aN), (x2xM, bP)), (xne, a, (x2xN, b))),
1381 ((xge, (x2xM, aN), (x2xM, bP)), (xge, a, (x2xN, b))),
1382 ((xlt, (x2xM, aN), (x2xM, bP)), (xlt, a, (x2xN, b))),
1383 ((xge, (x2xM, bP), (x2xM, aN)), (xge, (x2xN, b), a)),
1384 ((xlt, (x2xM, bP), (x2xM, aN)), (xlt, (x2xN, b), a)),
1385 ]
1386
1387 # The next bit doesn't work on floats because the range checks would
1388 # get way too complicated.
1389 if t in ['int', 'uint']:
1390 if t == 'int':
1391 xN_min = -(1 << (N - 1))
1392 xN_max = (1 << (N - 1)) - 1
1393 elif t == 'uint':
1394 xN_min = 0
1395 xN_max = (1 << N) - 1
1396 else:
1397 assert False
1398
1399 # If we're up-casting and comparing to a constant, we can unfold
1400 # the comparison into a comparison with the shrunk down constant
1401 # and a check that the constant fits in the smaller bit size.
1402 optimizations += [
1403 ((xeq, (x2xM, aN), '#b'),
1404 ('iand', (xeq, a, (x2xN, b)), (xeq, (x2xM, (x2xN, b)), b))),
1405 ((xne, (x2xM, aN), '#b'),
1406 ('ior', (xne, a, (x2xN, b)), (xne, (x2xM, (x2xN, b)), b))),
1407 ((xlt, (x2xM, aN), '#b'),
1408 ('iand', (xlt, xN_min, b),
1409 ('ior', (xlt, xN_max, b), (xlt, a, (x2xN, b))))),
1410 ((xlt, '#a', (x2xM, bN)),
1411 ('iand', (xlt, a, xN_max),
1412 ('ior', (xlt, a, xN_min), (xlt, (x2xN, a), b)))),
1413 ((xge, (x2xM, aN), '#b'),
1414 ('iand', (xge, xN_max, b),
1415 ('ior', (xge, xN_min, b), (xge, a, (x2xN, b))))),
1416 ((xge, '#a', (x2xM, bN)),
1417 ('iand', (xge, a, xN_min),
1418 ('ior', (xge, a, xN_max), (xge, (x2xN, a), b)))),
1419 ]
1420
1421 def fexp2i(exp, bits):
1422 # Generate an expression which constructs value 2.0^exp or 0.0.
1423 #
1424 # We assume that exp is already in a valid range:
1425 #
1426 # * [-15, 15] for 16-bit float
1427 # * [-127, 127] for 32-bit float
1428 # * [-1023, 1023] for 16-bit float
1429 #
1430 # If exp is the lowest value in the valid range, a value of 0.0 is
1431 # constructed. Otherwise, the value 2.0^exp is constructed.
1432 if bits == 16:
1433 return ('i2i16', ('ishl', ('iadd', exp, 15), 10))
1434 elif bits == 32:
1435 return ('ishl', ('iadd', exp, 127), 23)
1436 elif bits == 64:
1437 return ('pack_64_2x32_split', 0, ('ishl', ('iadd', exp, 1023), 20))
1438 else:
1439 assert False
1440
1441 def ldexp(f, exp, bits):
1442 # The maximum possible range for a normal exponent is [-126, 127] and,
1443 # throwing in denormals, you get a maximum range of [-149, 127]. This
1444 # means that we can potentially have a swing of +-276. If you start with
1445 # FLT_MAX, you actually have to do ldexp(FLT_MAX, -278) to get it to flush
1446 # all the way to zero. The GLSL spec only requires that we handle a subset
1447 # of this range. From version 4.60 of the spec:
1448 #
1449 # "If exp is greater than +128 (single-precision) or +1024
1450 # (double-precision), the value returned is undefined. If exp is less
1451 # than -126 (single-precision) or -1022 (double-precision), the value
1452 # returned may be flushed to zero. Additionally, splitting the value
1453 # into a significand and exponent using frexp() and then reconstructing
1454 # a floating-point value using ldexp() should yield the original input
1455 # for zero and all finite non-denormalized values."
1456 #
1457 # The SPIR-V spec has similar language.
1458 #
1459 # In order to handle the maximum value +128 using the fexp2i() helper
1460 # above, we have to split the exponent in half and do two multiply
1461 # operations.
1462 #
1463 # First, we clamp exp to a reasonable range. Specifically, we clamp to
1464 # twice the full range that is valid for the fexp2i() function above. If
1465 # exp/2 is the bottom value of that range, the fexp2i() expression will
1466 # yield 0.0f which, when multiplied by f, will flush it to zero which is
1467 # allowed by the GLSL and SPIR-V specs for low exponent values. If the
1468 # value is clamped from above, then it must have been above the supported
1469 # range of the GLSL built-in and therefore any return value is acceptable.
1470 if bits == 16:
1471 exp = ('imin', ('imax', exp, -30), 30)
1472 elif bits == 32:
1473 exp = ('imin', ('imax', exp, -254), 254)
1474 elif bits == 64:
1475 exp = ('imin', ('imax', exp, -2046), 2046)
1476 else:
1477 assert False
1478
1479 # Now we compute two powers of 2, one for exp/2 and one for exp-exp/2.
1480 # (We use ishr which isn't the same for -1, but the -1 case still works
1481 # since we use exp-exp/2 as the second exponent.) While the spec
1482 # technically defines ldexp as f * 2.0^exp, simply multiplying once doesn't
1483 # work with denormals and doesn't allow for the full swing in exponents
1484 # that you can get with normalized values. Instead, we create two powers
1485 # of two and multiply by them each in turn. That way the effective range
1486 # of our exponent is doubled.
1487 pow2_1 = fexp2i(('ishr', exp, 1), bits)
1488 pow2_2 = fexp2i(('isub', exp, ('ishr', exp, 1)), bits)
1489 return ('fmul', ('fmul', f, pow2_1), pow2_2)
1490
1491 optimizations += [
1492 (('ldexp@16', 'x', 'exp'), ldexp('x', 'exp', 16), 'options->lower_ldexp'),
1493 (('ldexp@32', 'x', 'exp'), ldexp('x', 'exp', 32), 'options->lower_ldexp'),
1494 (('ldexp@64', 'x', 'exp'), ldexp('x', 'exp', 64), 'options->lower_ldexp'),
1495 ]
1496
1497 # Unreal Engine 4 demo applications open-codes bitfieldReverse()
1498 def bitfield_reverse(u):
1499 step1 = ('ior', ('ishl', u, 16), ('ushr', u, 16))
1500 step2 = ('ior', ('ishl', ('iand', step1, 0x00ff00ff), 8), ('ushr', ('iand', step1, 0xff00ff00), 8))
1501 step3 = ('ior', ('ishl', ('iand', step2, 0x0f0f0f0f), 4), ('ushr', ('iand', step2, 0xf0f0f0f0), 4))
1502 step4 = ('ior', ('ishl', ('iand', step3, 0x33333333), 2), ('ushr', ('iand', step3, 0xcccccccc), 2))
1503 step5 = ('ior(many-comm-expr)', ('ishl', ('iand', step4, 0x55555555), 1), ('ushr', ('iand', step4, 0xaaaaaaaa), 1))
1504
1505 return step5
1506
1507 optimizations += [(bitfield_reverse('x@32'), ('bitfield_reverse', 'x'), '!options->lower_bitfield_reverse')]
1508
1509 # For any float comparison operation, "cmp", if you have "a == a && a cmp b"
1510 # then the "a == a" is redundant because it's equivalent to "a is not NaN"
1511 # and, if a is a NaN then the second comparison will fail anyway.
1512 for op in ['flt', 'fge', 'feq']:
1513 optimizations += [
1514 (('iand', ('feq', a, a), (op, a, b)), ('!' + op, a, b)),
1515 (('iand', ('feq', a, a), (op, b, a)), ('!' + op, b, a)),
1516 ]
1517
1518 # Add optimizations to handle the case where the result of a ternary is
1519 # compared to a constant. This way we can take things like
1520 #
1521 # (a ? 0 : 1) > 0
1522 #
1523 # and turn it into
1524 #
1525 # a ? (0 > 0) : (1 > 0)
1526 #
1527 # which constant folding will eat for lunch. The resulting ternary will
1528 # further get cleaned up by the boolean reductions above and we will be
1529 # left with just the original variable "a".
1530 for op in ['flt', 'fge', 'feq', 'fne',
1531 'ilt', 'ige', 'ieq', 'ine', 'ult', 'uge']:
1532 optimizations += [
1533 ((op, ('bcsel', 'a', '#b', '#c'), '#d'),
1534 ('bcsel', 'a', (op, 'b', 'd'), (op, 'c', 'd'))),
1535 ((op, '#d', ('bcsel', a, '#b', '#c')),
1536 ('bcsel', 'a', (op, 'd', 'b'), (op, 'd', 'c'))),
1537 ]
1538
1539
1540 # For example, this converts things like
1541 #
1542 # 1 + mix(0, a - 1, condition)
1543 #
1544 # into
1545 #
1546 # mix(1, (a-1)+1, condition)
1547 #
1548 # Other optimizations will rearrange the constants.
1549 for op in ['fadd', 'fmul', 'iadd', 'imul']:
1550 optimizations += [
1551 ((op, ('bcsel(is_used_once)', a, '#b', c), '#d'), ('bcsel', a, (op, b, d), (op, c, d)))
1552 ]
1553
1554 # For derivatives in compute shaders, GLSL_NV_compute_shader_derivatives
1555 # states:
1556 #
1557 # If neither layout qualifier is specified, derivatives in compute shaders
1558 # return zero, which is consistent with the handling of built-in texture
1559 # functions like texture() in GLSL 4.50 compute shaders.
1560 for op in ['fddx', 'fddx_fine', 'fddx_coarse',
1561 'fddy', 'fddy_fine', 'fddy_coarse']:
1562 optimizations += [
1563 ((op, 'a'), 0.0, 'info->stage == MESA_SHADER_COMPUTE && info->cs.derivative_group == DERIVATIVE_GROUP_NONE')
1564 ]
1565
1566 # Some optimizations for ir3-specific instructions.
1567 optimizations += [
1568 # 'al * bl': If either 'al' or 'bl' is zero, return zero.
1569 (('umul_low', '#a(is_lower_half_zero)', 'b'), (0)),
1570 # '(ah * bl) << 16 + c': If either 'ah' or 'bl' is zero, return 'c'.
1571 (('imadsh_mix16', '#a@32(is_lower_half_zero)', 'b@32', 'c@32'), ('c')),
1572 (('imadsh_mix16', 'a@32', '#b@32(is_upper_half_zero)', 'c@32'), ('c')),
1573 ]
1574
1575 # These kinds of sequences can occur after nir_opt_peephole_select.
1576 #
1577 # NOTE: fadd is not handled here because that gets in the way of ffma
1578 # generation in the i965 driver. Instead, fadd and ffma are handled in
1579 # late_optimizations.
1580
1581 for op in ['flrp']:
1582 optimizations += [
1583 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1584 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1585 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1586 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1587 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1588 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1589 ]
1590
1591 for op in ['fmul', 'iadd', 'imul', 'iand', 'ior', 'ixor', 'fmin', 'fmax', 'imin', 'imax', 'umin', 'umax']:
1592 optimizations += [
1593 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1594 (('bcsel', a, (op + '(is_used_once)', b, 'c(is_not_const)'), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1595 (('bcsel', a, (op, b, 'c(is_not_const)'), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1596 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1597 ]
1598
1599 for op in ['fpow']:
1600 optimizations += [
1601 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1602 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1603 (('bcsel', a, (op + '(is_used_once)', b, c), (op, d, c)), (op, ('bcsel', a, b, d), c)),
1604 (('bcsel', a, (op, b, c), (op + '(is_used_once)', d, c)), (op, ('bcsel', a, b, d), c)),
1605 ]
1606
1607 for op in ['frcp', 'frsq', 'fsqrt', 'fexp2', 'flog2', 'fsign', 'fsin', 'fcos']:
1608 optimizations += [
1609 (('bcsel', a, (op + '(is_used_once)', b), (op, c)), (op, ('bcsel', a, b, c))),
1610 (('bcsel', a, (op, b), (op + '(is_used_once)', c)), (op, ('bcsel', a, b, c))),
1611 ]
1612
1613 # This section contains "late" optimizations that should be run before
1614 # creating ffmas and calling regular optimizations for the final time.
1615 # Optimizations should go here if they help code generation and conflict
1616 # with the regular optimizations.
1617 before_ffma_optimizations = [
1618 # Propagate constants down multiplication chains
1619 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fmul', ('fmul', a, c), b)),
1620 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('imul', ('imul', a, c), b)),
1621 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fadd', ('fadd', a, c), b)),
1622 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('iadd', ('iadd', a, c), b)),
1623
1624 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
1625 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
1626 (('~fadd', ('fneg', a), a), 0.0),
1627 (('iadd', ('ineg', a), a), 0),
1628 (('iadd', ('ineg', a), ('iadd', a, b)), b),
1629 (('iadd', a, ('iadd', ('ineg', a), b)), b),
1630 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
1631 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
1632
1633 (('~flrp@32', ('fadd(is_used_once)', a, -1.0), ('fadd(is_used_once)', a, 1.0), d), ('fadd', ('flrp', -1.0, 1.0, d), a)),
1634 (('~flrp@32', ('fadd(is_used_once)', a, 1.0), ('fadd(is_used_once)', a, -1.0), d), ('fadd', ('flrp', 1.0, -1.0, d), a)),
1635 (('~flrp@32', ('fadd(is_used_once)', a, '#b'), ('fadd(is_used_once)', a, '#c'), d), ('fadd', ('fmul', d, ('fadd', c, ('fneg', b))), ('fadd', a, b))),
1636 ]
1637
1638 # This section contains "late" optimizations that should be run after the
1639 # regular optimizations have finished. Optimizations should go here if
1640 # they help code generation but do not necessarily produce code that is
1641 # more easily optimizable.
1642 late_optimizations = [
1643 # Most of these optimizations aren't quite safe when you get infinity or
1644 # Nan involved but the first one should be fine.
1645 (('flt', ('fadd', a, b), 0.0), ('flt', a, ('fneg', b))),
1646 (('flt', ('fneg', ('fadd', a, b)), 0.0), ('flt', ('fneg', a), b)),
1647 (('~fge', ('fadd', a, b), 0.0), ('fge', a, ('fneg', b))),
1648 (('~fge', ('fneg', ('fadd', a, b)), 0.0), ('fge', ('fneg', a), b)),
1649 (('~feq', ('fadd', a, b), 0.0), ('feq', a, ('fneg', b))),
1650 (('~fne', ('fadd', a, b), 0.0), ('fne', a, ('fneg', b))),
1651
1652 # nir_lower_to_source_mods will collapse this, but its existence during the
1653 # optimization loop can prevent other optimizations.
1654 (('fneg', ('fneg', a)), a),
1655
1656 # Subtractions get lowered during optimization, so we need to recombine them
1657 (('fadd', 'a', ('fneg', 'b')), ('fsub', 'a', 'b'), '!options->lower_sub'),
1658 (('iadd', 'a', ('ineg', 'b')), ('isub', 'a', 'b'), '!options->lower_sub'),
1659 (('fneg', a), ('fsub', 0.0, a), 'options->lower_negate'),
1660 (('ineg', a), ('isub', 0, a), 'options->lower_negate'),
1661
1662 # These are duplicated from the main optimizations table. The late
1663 # patterns that rearrange expressions like x - .5 < 0 to x < .5 can create
1664 # new patterns like these. The patterns that compare with zero are removed
1665 # because they are unlikely to be created in by anything in
1666 # late_optimizations.
1667 (('flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
1668 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
1669 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
1670 (('fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
1671 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
1672 (('fne', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fne', a, b)),
1673
1674 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
1675 (('flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
1676
1677 (('~fge', ('fmin(is_used_once)', ('fadd(is_used_once)', a, b), ('fadd', c, d)), 0.0), ('iand', ('fge', a, ('fneg', b)), ('fge', c, ('fneg', d)))),
1678
1679 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
1680 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
1681 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
1682 (('fne', ('fneg', a), ('fneg', b)), ('fne', b, a)),
1683 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
1684 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
1685 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
1686 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
1687 (('fne', ('fneg', a), -1.0), ('fne', 1.0, a)),
1688 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
1689
1690 (('ior', a, a), a),
1691 (('iand', a, a), a),
1692
1693 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
1694
1695 (('fdot2', a, b), ('fdot_replicated2', a, b), 'options->fdot_replicates'),
1696 (('fdot3', a, b), ('fdot_replicated3', a, b), 'options->fdot_replicates'),
1697 (('fdot4', a, b), ('fdot_replicated4', a, b), 'options->fdot_replicates'),
1698 (('fdph', a, b), ('fdph_replicated', a, b), 'options->fdot_replicates'),
1699
1700 (('~flrp@32', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
1701 (('~flrp@64', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
1702
1703 (('~fadd@32', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp32'),
1704 (('~fadd@64', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp64'),
1705
1706 # A similar operation could apply to any ffma(#a, b, #(-a/2)), but this
1707 # particular operation is common for expanding values stored in a texture
1708 # from [0,1] to [-1,1].
1709 (('~ffma@32', a, 2.0, -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1710 (('~ffma@32', a, -2.0, -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1711 (('~ffma@32', a, -2.0, 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1712 (('~ffma@32', a, 2.0, 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1713 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1714 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1715 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1716 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1717
1718 # flrp(a, b, a)
1719 # a*(1-a) + b*a
1720 # a + -a*a + a*b (1)
1721 # a + a*(b - a)
1722 # Option 1: ffma(a, (b-a), a)
1723 #
1724 # Alternately, after (1):
1725 # a*(1+b) + -a*a
1726 # a*((1+b) + -a)
1727 #
1728 # Let b=1
1729 #
1730 # Option 2: ffma(a, 2, -(a*a))
1731 # Option 3: ffma(a, 2, (-a)*a)
1732 # Option 4: ffma(a, -a, (2*a)
1733 # Option 5: a * (2 - a)
1734 #
1735 # There are a lot of other possible combinations.
1736 (('~ffma@32', ('fadd', b, ('fneg', a)), a, a), ('flrp', a, b, a), '!options->lower_flrp32'),
1737 (('~ffma@32', a, 2.0, ('fneg', ('fmul', a, a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1738 (('~ffma@32', a, 2.0, ('fmul', ('fneg', a), a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1739 (('~ffma@32', a, ('fneg', a), ('fmul', 2.0, a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1740 (('~fmul@32', a, ('fadd', 2.0, ('fneg', a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1741
1742 # we do these late so that we don't get in the way of creating ffmas
1743 (('fmin', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmin', a, b))),
1744 (('fmax', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmax', a, b))),
1745
1746 (('bcsel', a, 0, ('b2f32', ('inot', 'b@bool'))), ('b2f32', ('inot', ('ior', a, b)))),
1747
1748 # Putting this in 'optimizations' interferes with the bcsel(a, op(b, c),
1749 # op(b, d)) => op(b, bcsel(a, c, d)) transformations. I do not know why.
1750 (('bcsel', ('feq', ('fsqrt', 'a(is_not_negative)'), 0.0), intBitsToFloat(0x7f7fffff), ('frsq', a)),
1751 ('fmin', ('frsq', a), intBitsToFloat(0x7f7fffff))),
1752
1753 # Things that look like DPH in the source shader may get expanded to
1754 # something that looks like dot(v1.xyz, v2.xyz) + v1.w by the time it gets
1755 # to NIR. After FFMA is generated, this can look like:
1756 #
1757 # fadd(ffma(v1.z, v2.z, ffma(v1.y, v2.y, fmul(v1.x, v2.x))), v1.w)
1758 #
1759 # Reassociate the last addition into the first multiplication.
1760 #
1761 # Some shaders do not use 'invariant' in vertex and (possibly) geometry
1762 # shader stages on some outputs that are intended to be invariant. For
1763 # various reasons, this optimization may not be fully applied in all
1764 # shaders used for different rendering passes of the same geometry. This
1765 # can result in Z-fighting artifacts (at best). For now, disable this
1766 # optimization in these stages. See bugzilla #111490. In tessellation
1767 # stages applications seem to use 'precise' when necessary, so allow the
1768 # optimization in those stages.
1769 (('~fadd', ('ffma(is_used_once)', a, b, ('ffma', c, d, ('fmul', 'e(is_not_const_and_not_fsign)', 'f(is_not_const_and_not_fsign)'))), 'g(is_not_const)'),
1770 ('ffma', a, b, ('ffma', c, d, ('ffma', e, 'f', 'g'))), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
1771 (('~fadd', ('ffma(is_used_once)', a, b, ('fmul', 'c(is_not_const_and_not_fsign)', 'd(is_not_const_and_not_fsign)') ), 'e(is_not_const)'),
1772 ('ffma', a, b, ('ffma', c, d, e)), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
1773
1774 # Convert f2fmp instructions to concrete f2f16 instructions. At this point
1775 # any conversions that could have been removed will have been removed in
1776 # nir_opt_algebraic so any remaining ones are required.
1777 (('f2fmp', a), ('f2f16', a)),
1778 ]
1779
1780 for op in ['fadd']:
1781 late_optimizations += [
1782 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1783 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1784 ]
1785
1786 for op in ['ffma']:
1787 late_optimizations += [
1788 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1789 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1790
1791 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1792 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1793 ]
1794
1795 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic", optimizations).render())
1796 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_before_ffma",
1797 before_ffma_optimizations).render())
1798 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_late",
1799 late_optimizations).render())