nir/algebraic: support for power-of-two optimizations
[mesa.git] / src / compiler / nir / nir_opt_algebraic.py
1 #! /usr/bin/env python
2 #
3 # Copyright (C) 2014 Intel Corporation
4 #
5 # Permission is hereby granted, free of charge, to any person obtaining a
6 # copy of this software and associated documentation files (the "Software"),
7 # to deal in the Software without restriction, including without limitation
8 # the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 # and/or sell copies of the Software, and to permit persons to whom the
10 # Software is furnished to do so, subject to the following conditions:
11 #
12 # The above copyright notice and this permission notice (including the next
13 # paragraph) shall be included in all copies or substantial portions of the
14 # Software.
15 #
16 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 # IN THE SOFTWARE.
23 #
24 # Authors:
25 # Jason Ekstrand (jason@jlekstrand.net)
26
27 import nir_algebraic
28
29 # Convenience variables
30 a = 'a'
31 b = 'b'
32 c = 'c'
33 d = 'd'
34
35 # Written in the form (<search>, <replace>) where <search> is an expression
36 # and <replace> is either an expression or a value. An expression is
37 # defined as a tuple of the form ([~]<op>, <src0>, <src1>, <src2>, <src3>)
38 # where each source is either an expression or a value. A value can be
39 # either a numeric constant or a string representing a variable name.
40 #
41 # If the opcode in a search expression is prefixed by a '~' character, this
42 # indicates that the operation is inexact. Such operations will only get
43 # applied to SSA values that do not have the exact bit set. This should be
44 # used by by any optimizations that are not bit-for-bit exact. It should not,
45 # however, be used for backend-requested lowering operations as those need to
46 # happen regardless of precision.
47 #
48 # Variable names are specified as "[#]name[@type][(cond)]" where "#" inicates
49 # that the given variable will only match constants and the type indicates that
50 # the given variable will only match values from ALU instructions with the
51 # given output type, and (cond) specifies an additional condition function
52 # (see nir_search_helpers.h).
53 #
54 # For constants, you have to be careful to make sure that it is the right
55 # type because python is unaware of the source and destination types of the
56 # opcodes.
57 #
58 # All expression types can have a bit-size specified. For opcodes, this
59 # looks like "op@32", for variables it is "a@32" or "a@uint32" to specify a
60 # type and size, and for literals, you can write "2.0@32". In the search half
61 # of the expression this indicates that it should only match that particular
62 # bit-size. In the replace half of the expression this indicates that the
63 # constructed value should have that bit-size.
64
65 optimizations = [
66
67 (('imul', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b))),
68 (('imul', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b))))),
69 (('udiv', a, '#b@32(is_pos_power_of_two)'), ('ushr', a, ('find_lsb', b))),
70 (('idiv', a, '#b@32(is_pos_power_of_two)'), ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', b))), 'options->lower_idiv'),
71 (('idiv', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', ('iabs', b))))), 'options->lower_idiv'),
72 (('umod', a, '#b(is_pos_power_of_two)'), ('iand', a, ('isub', b, 1))),
73
74 (('fneg', ('fneg', a)), a),
75 (('ineg', ('ineg', a)), a),
76 (('fabs', ('fabs', a)), ('fabs', a)),
77 (('fabs', ('fneg', a)), ('fabs', a)),
78 (('iabs', ('iabs', a)), ('iabs', a)),
79 (('iabs', ('ineg', a)), ('iabs', a)),
80 (('~fadd', a, 0.0), a),
81 (('iadd', a, 0), a),
82 (('usadd_4x8', a, 0), a),
83 (('usadd_4x8', a, ~0), ~0),
84 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
85 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
86 (('~fadd', ('fneg', a), a), 0.0),
87 (('iadd', ('ineg', a), a), 0),
88 (('iadd', ('ineg', a), ('iadd', a, b)), b),
89 (('iadd', a, ('iadd', ('ineg', a), b)), b),
90 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
91 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
92 (('~fmul', a, 0.0), 0.0),
93 (('imul', a, 0), 0),
94 (('umul_unorm_4x8', a, 0), 0),
95 (('umul_unorm_4x8', a, ~0), a),
96 (('fmul', a, 1.0), a),
97 (('imul', a, 1), a),
98 (('fmul', a, -1.0), ('fneg', a)),
99 (('imul', a, -1), ('ineg', a)),
100 (('~ffma', 0.0, a, b), b),
101 (('~ffma', a, 0.0, b), b),
102 (('~ffma', a, b, 0.0), ('fmul', a, b)),
103 (('ffma', a, 1.0, b), ('fadd', a, b)),
104 (('ffma', 1.0, a, b), ('fadd', a, b)),
105 (('~flrp', a, b, 0.0), a),
106 (('~flrp', a, b, 1.0), b),
107 (('~flrp', a, a, b), a),
108 (('~flrp', 0.0, a, b), ('fmul', a, b)),
109 (('~flrp', a, b, ('b2f', c)), ('bcsel', c, b, a), 'options->lower_flrp32'),
110 (('flrp@32', a, b, c), ('fadd', ('fmul', c, ('fsub', b, a)), a), 'options->lower_flrp32'),
111 (('flrp@64', a, b, c), ('fadd', ('fmul', c, ('fsub', b, a)), a), 'options->lower_flrp64'),
112 (('ffract', a), ('fsub', a, ('ffloor', a)), 'options->lower_ffract'),
113 (('~fadd', ('fmul', a, ('fadd', 1.0, ('fneg', ('b2f', c)))), ('fmul', b, ('b2f', c))), ('bcsel', c, b, a), 'options->lower_flrp32'),
114 (('~fadd@32', ('fmul', a, ('fadd', 1.0, ('fneg', c ))), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp32'),
115 (('~fadd@64', ('fmul', a, ('fadd', 1.0, ('fneg', c ))), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp64'),
116 (('~fadd', a, ('fmul', ('b2f', c), ('fadd', b, ('fneg', a)))), ('bcsel', c, b, a), 'options->lower_flrp32'),
117 (('~fadd@32', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp32'),
118 (('~fadd@64', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp64'),
119 (('ffma', a, b, c), ('fadd', ('fmul', a, b), c), 'options->lower_ffma'),
120 (('~fadd', ('fmul', a, b), c), ('ffma', a, b, c), 'options->fuse_ffma'),
121 # Comparison simplifications
122 (('~inot', ('flt', a, b)), ('fge', a, b)),
123 (('~inot', ('fge', a, b)), ('flt', a, b)),
124 (('~inot', ('feq', a, b)), ('fne', a, b)),
125 (('~inot', ('fne', a, b)), ('feq', a, b)),
126 (('inot', ('ilt', a, b)), ('ige', a, b)),
127 (('inot', ('ige', a, b)), ('ilt', a, b)),
128 (('inot', ('ieq', a, b)), ('ine', a, b)),
129 (('inot', ('ine', a, b)), ('ieq', a, b)),
130
131 # 0.0 >= b2f(a)
132 # b2f(a) <= 0.0
133 # b2f(a) == 0.0 because b2f(a) can only be 0 or 1
134 # inot(a)
135 (('fge', 0.0, ('b2f', a)), ('inot', a)),
136
137 # 0.0 < fabs(a)
138 # fabs(a) > 0.0
139 # fabs(a) != 0.0 because fabs(a) must be >= 0
140 # a != 0.0
141 (('flt', 0.0, ('fabs', a)), ('fne', a, 0.0)),
142
143 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
144 (('bcsel', ('flt', b, a), b, a), ('fmin', a, b)),
145 (('bcsel', ('flt', a, b), b, a), ('fmax', a, b)),
146 (('bcsel', ('inot', 'a@bool'), b, c), ('bcsel', a, c, b)),
147 (('bcsel', a, ('bcsel', a, b, c), d), ('bcsel', a, b, d)),
148 (('bcsel', a, True, 'b@bool'), ('ior', a, b)),
149 (('fmin', a, a), a),
150 (('fmax', a, a), a),
151 (('imin', a, a), a),
152 (('imax', a, a), a),
153 (('umin', a, a), a),
154 (('umax', a, a), a),
155 (('~fmin', ('fmax', a, 0.0), 1.0), ('fsat', a), '!options->lower_fsat'),
156 (('~fmax', ('fmin', a, 1.0), 0.0), ('fsat', a), '!options->lower_fsat'),
157 (('fsat', a), ('fmin', ('fmax', a, 0.0), 1.0), 'options->lower_fsat'),
158 (('fsat', ('fsat', a)), ('fsat', a)),
159 (('fmin', ('fmax', ('fmin', ('fmax', a, b), c), b), c), ('fmin', ('fmax', a, b), c)),
160 (('imin', ('imax', ('imin', ('imax', a, b), c), b), c), ('imin', ('imax', a, b), c)),
161 (('umin', ('umax', ('umin', ('umax', a, b), c), b), c), ('umin', ('umax', a, b), c)),
162 (('extract_u8', ('imin', ('imax', a, 0), 0xff), 0), ('imin', ('imax', a, 0), 0xff)),
163 (('~ior', ('flt', a, b), ('flt', a, c)), ('flt', a, ('fmax', b, c))),
164 (('~ior', ('flt', a, c), ('flt', b, c)), ('flt', ('fmin', a, b), c)),
165 (('~ior', ('fge', a, b), ('fge', a, c)), ('fge', a, ('fmin', b, c))),
166 (('~ior', ('fge', a, c), ('fge', b, c)), ('fge', ('fmax', a, b), c)),
167 (('fabs', ('slt', a, b)), ('slt', a, b)),
168 (('fabs', ('sge', a, b)), ('sge', a, b)),
169 (('fabs', ('seq', a, b)), ('seq', a, b)),
170 (('fabs', ('sne', a, b)), ('sne', a, b)),
171 (('slt', a, b), ('b2f', ('flt', a, b)), 'options->lower_scmp'),
172 (('sge', a, b), ('b2f', ('fge', a, b)), 'options->lower_scmp'),
173 (('seq', a, b), ('b2f', ('feq', a, b)), 'options->lower_scmp'),
174 (('sne', a, b), ('b2f', ('fne', a, b)), 'options->lower_scmp'),
175 (('fne', ('fneg', a), a), ('fne', a, 0.0)),
176 (('feq', ('fneg', a), a), ('feq', a, 0.0)),
177 # Emulating booleans
178 (('imul', ('b2i', a), ('b2i', b)), ('b2i', ('iand', a, b))),
179 (('fmul', ('b2f', a), ('b2f', b)), ('b2f', ('iand', a, b))),
180 (('fsat', ('fadd', ('b2f', a), ('b2f', b))), ('b2f', ('ior', a, b))),
181 (('iand', 'a@bool', 1.0), ('b2f', a)),
182 (('flt', ('fneg', ('b2f', a)), 0), a), # Generated by TGSI KILL_IF.
183 (('flt', ('fsub', 0.0, ('b2f', a)), 0), a), # Generated by TGSI KILL_IF.
184 # Comparison with the same args. Note that these are not done for
185 # the float versions because NaN always returns false on float
186 # inequalities.
187 (('ilt', a, a), False),
188 (('ige', a, a), True),
189 (('ieq', a, a), True),
190 (('ine', a, a), False),
191 (('ult', a, a), False),
192 (('uge', a, a), True),
193 # Logical and bit operations
194 (('fand', a, 0.0), 0.0),
195 (('iand', a, a), a),
196 (('iand', a, ~0), a),
197 (('iand', a, 0), 0),
198 (('ior', a, a), a),
199 (('ior', a, 0), a),
200 (('fxor', a, a), 0.0),
201 (('ixor', a, a), 0),
202 (('ixor', a, 0), a),
203 (('inot', ('inot', a)), a),
204 # DeMorgan's Laws
205 (('iand', ('inot', a), ('inot', b)), ('inot', ('ior', a, b))),
206 (('ior', ('inot', a), ('inot', b)), ('inot', ('iand', a, b))),
207 # Shift optimizations
208 (('ishl', 0, a), 0),
209 (('ishl', a, 0), a),
210 (('ishr', 0, a), 0),
211 (('ishr', a, 0), a),
212 (('ushr', 0, a), 0),
213 (('ushr', a, 0), a),
214 (('iand', 0xff, ('ushr', a, 24)), ('ushr', a, 24)),
215 (('iand', 0xffff, ('ushr', a, 16)), ('ushr', a, 16)),
216 # Exponential/logarithmic identities
217 (('~fexp2', ('flog2', a)), a), # 2^lg2(a) = a
218 (('~flog2', ('fexp2', a)), a), # lg2(2^a) = a
219 (('fpow', a, b), ('fexp2', ('fmul', ('flog2', a), b)), 'options->lower_fpow'), # a^b = 2^(lg2(a)*b)
220 (('~fexp2', ('fmul', ('flog2', a), b)), ('fpow', a, b), '!options->lower_fpow'), # 2^(lg2(a)*b) = a^b
221 (('~fexp2', ('fadd', ('fmul', ('flog2', a), b), ('fmul', ('flog2', c), d))),
222 ('~fmul', ('fpow', a, b), ('fpow', c, d)), '!options->lower_fpow'), # 2^(lg2(a) * b + lg2(c) + d) = a^b * c^d
223 (('~fpow', a, 1.0), a),
224 (('~fpow', a, 2.0), ('fmul', a, a)),
225 (('~fpow', a, 4.0), ('fmul', ('fmul', a, a), ('fmul', a, a))),
226 (('~fpow', 2.0, a), ('fexp2', a)),
227 (('~fpow', ('fpow', a, 2.2), 0.454545), a),
228 (('~fpow', ('fabs', ('fpow', a, 2.2)), 0.454545), ('fabs', a)),
229 (('~fsqrt', ('fexp2', a)), ('fexp2', ('fmul', 0.5, a))),
230 (('~frcp', ('fexp2', a)), ('fexp2', ('fneg', a))),
231 (('~frsq', ('fexp2', a)), ('fexp2', ('fmul', -0.5, a))),
232 (('~flog2', ('fsqrt', a)), ('fmul', 0.5, ('flog2', a))),
233 (('~flog2', ('frcp', a)), ('fneg', ('flog2', a))),
234 (('~flog2', ('frsq', a)), ('fmul', -0.5, ('flog2', a))),
235 (('~flog2', ('fpow', a, b)), ('fmul', b, ('flog2', a))),
236 (('~fadd', ('flog2', a), ('flog2', b)), ('flog2', ('fmul', a, b))),
237 (('~fadd', ('flog2', a), ('fneg', ('flog2', b))), ('flog2', ('fdiv', a, b))),
238 (('~fmul', ('fexp2', a), ('fexp2', b)), ('fexp2', ('fadd', a, b))),
239 # Division and reciprocal
240 (('~fdiv', 1.0, a), ('frcp', a)),
241 (('fdiv', a, b), ('fmul', a, ('frcp', b)), 'options->lower_fdiv'),
242 (('~frcp', ('frcp', a)), a),
243 (('~frcp', ('fsqrt', a)), ('frsq', a)),
244 (('fsqrt', a), ('frcp', ('frsq', a)), 'options->lower_fsqrt'),
245 (('~frcp', ('frsq', a)), ('fsqrt', a), '!options->lower_fsqrt'),
246 # Boolean simplifications
247 (('ieq', 'a@bool', True), a),
248 (('ine', 'a@bool', True), ('inot', a)),
249 (('ine', 'a@bool', False), a),
250 (('ieq', 'a@bool', False), ('inot', 'a')),
251 (('bcsel', a, True, False), ('ine', a, 0)),
252 (('bcsel', a, False, True), ('ieq', a, 0)),
253 (('bcsel', True, b, c), b),
254 (('bcsel', False, b, c), c),
255 # The result of this should be hit by constant propagation and, in the
256 # next round of opt_algebraic, get picked up by one of the above two.
257 (('bcsel', '#a', b, c), ('bcsel', ('ine', 'a', 0), b, c)),
258
259 (('bcsel', a, b, b), b),
260 (('fcsel', a, b, b), b),
261
262 # Conversions
263 (('i2b', ('b2i', a)), a),
264 (('f2i', ('ftrunc', a)), ('f2i', a)),
265 (('f2u', ('ftrunc', a)), ('f2u', a)),
266 (('i2b', ('ineg', a)), ('i2b', a)),
267 (('i2b', ('iabs', a)), ('i2b', a)),
268 (('fabs', ('b2f', a)), ('b2f', a)),
269 (('iabs', ('b2i', a)), ('b2i', a)),
270
271 # Byte extraction
272 (('ushr', a, 24), ('extract_u8', a, 3), '!options->lower_extract_byte'),
273 (('iand', 0xff, ('ushr', a, 16)), ('extract_u8', a, 2), '!options->lower_extract_byte'),
274 (('iand', 0xff, ('ushr', a, 8)), ('extract_u8', a, 1), '!options->lower_extract_byte'),
275 (('iand', 0xff, a), ('extract_u8', a, 0), '!options->lower_extract_byte'),
276
277 # Word extraction
278 (('ushr', a, 16), ('extract_u16', a, 1), '!options->lower_extract_word'),
279 (('iand', 0xffff, a), ('extract_u16', a, 0), '!options->lower_extract_word'),
280
281 # Subtracts
282 (('~fsub', a, ('fsub', 0.0, b)), ('fadd', a, b)),
283 (('isub', a, ('isub', 0, b)), ('iadd', a, b)),
284 (('ussub_4x8', a, 0), a),
285 (('ussub_4x8', a, ~0), 0),
286 (('fsub', a, b), ('fadd', a, ('fneg', b)), 'options->lower_sub'),
287 (('isub', a, b), ('iadd', a, ('ineg', b)), 'options->lower_sub'),
288 (('fneg', a), ('fsub', 0.0, a), 'options->lower_negate'),
289 (('ineg', a), ('isub', 0, a), 'options->lower_negate'),
290 (('~fadd', a, ('fsub', 0.0, b)), ('fsub', a, b)),
291 (('iadd', a, ('isub', 0, b)), ('isub', a, b)),
292 (('fabs', ('fsub', 0.0, a)), ('fabs', a)),
293 (('iabs', ('isub', 0, a)), ('iabs', a)),
294
295 # Propagate negation up multiplication chains
296 (('fmul', ('fneg', a), b), ('fneg', ('fmul', a, b))),
297 (('imul', ('ineg', a), b), ('ineg', ('imul', a, b))),
298
299 # Reassociate constants in add/mul chains so they can be folded together.
300 # For now, we only handle cases where the constants are separated by
301 # a single non-constant. We could do better eventually.
302 (('~fmul', '#a', ('fmul', b, '#c')), ('fmul', ('fmul', a, c), b)),
303 (('imul', '#a', ('imul', b, '#c')), ('imul', ('imul', a, c), b)),
304 (('~fadd', '#a', ('fadd', b, '#c')), ('fadd', ('fadd', a, c), b)),
305 (('iadd', '#a', ('iadd', b, '#c')), ('iadd', ('iadd', a, c), b)),
306
307 # Misc. lowering
308 (('fmod@32', a, b), ('fsub', a, ('fmul', b, ('ffloor', ('fdiv', a, b)))), 'options->lower_fmod32'),
309 (('fmod@64', a, b), ('fsub', a, ('fmul', b, ('ffloor', ('fdiv', a, b)))), 'options->lower_fmod64'),
310 (('frem', a, b), ('fsub', a, ('fmul', b, ('ftrunc', ('fdiv', a, b)))), 'options->lower_fmod32'),
311 (('uadd_carry@32', a, b), ('b2i', ('ult', ('iadd', a, b), a)), 'options->lower_uadd_carry'),
312 (('usub_borrow@32', a, b), ('b2i', ('ult', a, b)), 'options->lower_usub_borrow'),
313
314 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
315 ('bcsel', ('ilt', 31, 'bits'), 'insert',
316 ('bfi', ('bfm', 'bits', 'offset'), 'insert', 'base')),
317 'options->lower_bitfield_insert'),
318
319 (('ibitfield_extract', 'value', 'offset', 'bits'),
320 ('bcsel', ('ilt', 31, 'bits'), 'value',
321 ('ibfe', 'value', 'offset', 'bits')),
322 'options->lower_bitfield_extract'),
323
324 (('ubitfield_extract', 'value', 'offset', 'bits'),
325 ('bcsel', ('ult', 31, 'bits'), 'value',
326 ('ubfe', 'value', 'offset', 'bits')),
327 'options->lower_bitfield_extract'),
328
329 (('extract_i8', a, b),
330 ('ishr', ('ishl', a, ('imul', ('isub', 3, b), 8)), 24),
331 'options->lower_extract_byte'),
332
333 (('extract_u8', a, b),
334 ('iand', ('ushr', a, ('imul', b, 8)), 0xff),
335 'options->lower_extract_byte'),
336
337 (('extract_i16', a, b),
338 ('ishr', ('ishl', a, ('imul', ('isub', 1, b), 16)), 16),
339 'options->lower_extract_word'),
340
341 (('extract_u16', a, b),
342 ('iand', ('ushr', a, ('imul', b, 16)), 0xffff),
343 'options->lower_extract_word'),
344
345 (('pack_unorm_2x16', 'v'),
346 ('pack_uvec2_to_uint',
347 ('f2u', ('fround_even', ('fmul', ('fsat', 'v'), 65535.0)))),
348 'options->lower_pack_unorm_2x16'),
349
350 (('pack_unorm_4x8', 'v'),
351 ('pack_uvec4_to_uint',
352 ('f2u', ('fround_even', ('fmul', ('fsat', 'v'), 255.0)))),
353 'options->lower_pack_unorm_4x8'),
354
355 (('pack_snorm_2x16', 'v'),
356 ('pack_uvec2_to_uint',
357 ('f2i', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 32767.0)))),
358 'options->lower_pack_snorm_2x16'),
359
360 (('pack_snorm_4x8', 'v'),
361 ('pack_uvec4_to_uint',
362 ('f2i', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 127.0)))),
363 'options->lower_pack_snorm_4x8'),
364
365 (('unpack_unorm_2x16', 'v'),
366 ('fdiv', ('u2f', ('vec2', ('extract_u16', 'v', 0),
367 ('extract_u16', 'v', 1))),
368 65535.0),
369 'options->lower_unpack_unorm_2x16'),
370
371 (('unpack_unorm_4x8', 'v'),
372 ('fdiv', ('u2f', ('vec4', ('extract_u8', 'v', 0),
373 ('extract_u8', 'v', 1),
374 ('extract_u8', 'v', 2),
375 ('extract_u8', 'v', 3))),
376 255.0),
377 'options->lower_unpack_unorm_4x8'),
378
379 (('unpack_snorm_2x16', 'v'),
380 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec2', ('extract_i16', 'v', 0),
381 ('extract_i16', 'v', 1))),
382 32767.0))),
383 'options->lower_unpack_snorm_2x16'),
384
385 (('unpack_snorm_4x8', 'v'),
386 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec4', ('extract_i8', 'v', 0),
387 ('extract_i8', 'v', 1),
388 ('extract_i8', 'v', 2),
389 ('extract_i8', 'v', 3))),
390 127.0))),
391 'options->lower_unpack_snorm_4x8'),
392 ]
393
394 def fexp2i(exp, bits):
395 # We assume that exp is already in the right range.
396 if bits == 32:
397 return ('ishl', ('iadd', exp, 127), 23)
398 elif bits == 64:
399 return ('pack_double_2x32_split', 0, ('ishl', ('iadd', exp, 1023), 20))
400 else:
401 assert False
402
403 def ldexp(f, exp, bits):
404 # First, we clamp exp to a reasonable range. The maximum possible range
405 # for a normal exponent is [-126, 127] and, throwing in denormals, you get
406 # a maximum range of [-149, 127]. This means that we can potentially have
407 # a swing of +-276. If you start with FLT_MAX, you actually have to do
408 # ldexp(FLT_MAX, -278) to get it to flush all the way to zero. The GLSL
409 # spec, on the other hand, only requires that we handle an exponent value
410 # in the range [-126, 128]. This implementation is *mostly* correct; it
411 # handles a range on exp of [-252, 254] which allows you to create any
412 # value (including denorms if the hardware supports it) and to adjust the
413 # exponent of any normal value to anything you want.
414 if bits == 32:
415 exp = ('imin', ('imax', exp, -252), 254)
416 elif bits == 64:
417 exp = ('imin', ('imax', exp, -2044), 2046)
418 else:
419 assert False
420
421 # Now we compute two powers of 2, one for exp/2 and one for exp-exp/2.
422 # (We use ishr which isn't the same for -1, but the -1 case still works
423 # since we use exp-exp/2 as the second exponent.) While the spec
424 # technically defines ldexp as f * 2.0^exp, simply multiplying once doesn't
425 # work with denormals and doesn't allow for the full swing in exponents
426 # that you can get with normalized values. Instead, we create two powers
427 # of two and multiply by them each in turn. That way the effective range
428 # of our exponent is doubled.
429 pow2_1 = fexp2i(('ishr', exp, 1), bits)
430 pow2_2 = fexp2i(('isub', exp, ('ishr', exp, 1)), bits)
431 return ('fmul', ('fmul', f, pow2_1), pow2_2)
432
433 optimizations += [
434 (('ldexp@32', 'x', 'exp'), ldexp('x', 'exp', 32)),
435 (('ldexp@64', 'x', 'exp'), ldexp('x', 'exp', 64)),
436 ]
437
438 # Unreal Engine 4 demo applications open-codes bitfieldReverse()
439 def bitfield_reverse(u):
440 step1 = ('ior', ('ishl', u, 16), ('ushr', u, 16))
441 step2 = ('ior', ('ishl', ('iand', step1, 0x00ff00ff), 8), ('ushr', ('iand', step1, 0xff00ff00), 8))
442 step3 = ('ior', ('ishl', ('iand', step2, 0x0f0f0f0f), 4), ('ushr', ('iand', step2, 0xf0f0f0f0), 4))
443 step4 = ('ior', ('ishl', ('iand', step3, 0x33333333), 2), ('ushr', ('iand', step3, 0xcccccccc), 2))
444 step5 = ('ior', ('ishl', ('iand', step4, 0x55555555), 1), ('ushr', ('iand', step4, 0xaaaaaaaa), 1))
445
446 return step5
447
448 optimizations += [(bitfield_reverse('x@32'), ('bitfield_reverse', 'x'))]
449
450
451 # Add optimizations to handle the case where the result of a ternary is
452 # compared to a constant. This way we can take things like
453 #
454 # (a ? 0 : 1) > 0
455 #
456 # and turn it into
457 #
458 # a ? (0 > 0) : (1 > 0)
459 #
460 # which constant folding will eat for lunch. The resulting ternary will
461 # further get cleaned up by the boolean reductions above and we will be
462 # left with just the original variable "a".
463 for op in ['flt', 'fge', 'feq', 'fne',
464 'ilt', 'ige', 'ieq', 'ine', 'ult', 'uge']:
465 optimizations += [
466 ((op, ('bcsel', 'a', '#b', '#c'), '#d'),
467 ('bcsel', 'a', (op, 'b', 'd'), (op, 'c', 'd'))),
468 ((op, '#d', ('bcsel', a, '#b', '#c')),
469 ('bcsel', 'a', (op, 'd', 'b'), (op, 'd', 'c'))),
470 ]
471
472 # This section contains "late" optimizations that should be run after the
473 # regular optimizations have finished. Optimizations should go here if
474 # they help code generation but do not necessarily produce code that is
475 # more easily optimizable.
476 late_optimizations = [
477 # Most of these optimizations aren't quite safe when you get infinity or
478 # Nan involved but the first one should be fine.
479 (('flt', ('fadd', a, b), 0.0), ('flt', a, ('fneg', b))),
480 (('~fge', ('fadd', a, b), 0.0), ('fge', a, ('fneg', b))),
481 (('~feq', ('fadd', a, b), 0.0), ('feq', a, ('fneg', b))),
482 (('~fne', ('fadd', a, b), 0.0), ('fne', a, ('fneg', b))),
483
484 (('fdot2', a, b), ('fdot_replicated2', a, b), 'options->fdot_replicates'),
485 (('fdot3', a, b), ('fdot_replicated3', a, b), 'options->fdot_replicates'),
486 (('fdot4', a, b), ('fdot_replicated4', a, b), 'options->fdot_replicates'),
487 (('fdph', a, b), ('fdph_replicated', a, b), 'options->fdot_replicates'),
488 ]
489
490 print nir_algebraic.AlgebraicPass("nir_opt_algebraic", optimizations).render()
491 print nir_algebraic.AlgebraicPass("nir_opt_algebraic_late",
492 late_optimizations).render()