nir: Fix anonymous union initialization with older GCC.
[mesa.git] / src / compiler / nir / nir_opt_copy_prop_vars.c
1 /*
2 * Copyright © 2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "nir.h"
25 #include "nir_builder.h"
26
27 #include "util/bitscan.h"
28
29 /**
30 * Variable-based copy propagation
31 *
32 * Normally, NIR trusts in SSA form for most of its copy-propagation needs.
33 * However, there are cases, especially when dealing with indirects, where SSA
34 * won't help you. This pass is for those times. Specifically, it handles
35 * the following things that the rest of NIR can't:
36 *
37 * 1) Copy-propagation on variables that have indirect access. This includes
38 * propagating from indirect stores into indirect loads.
39 *
40 * 2) Dead code elimination of store_var and copy_var intrinsics based on
41 * killed destination values.
42 *
43 * 3) Removal of redundant load_var intrinsics. We can't trust regular CSE
44 * to do this because it isn't aware of variable writes that may alias the
45 * value and make the former load invalid.
46 *
47 * Unfortunately, properly handling all of those cases makes this path rather
48 * complex. In order to avoid additional complexity, this pass is entirely
49 * block-local. If we tried to make it global, the data-flow analysis would
50 * rapidly get out of hand. Fortunately, for anything that is only ever
51 * accessed directly, we get SSA based copy-propagation which is extremely
52 * powerful so this isn't that great a loss.
53 */
54
55 struct value {
56 bool is_ssa;
57 union {
58 nir_ssa_def *ssa[4];
59 nir_deref_var *deref;
60 };
61 };
62
63 struct copy_entry {
64 struct list_head link;
65
66 nir_instr *store_instr[4];
67
68 unsigned comps_may_be_read;
69 struct value src;
70
71 nir_deref_var *dst;
72 };
73
74 struct copy_prop_var_state {
75 nir_shader *shader;
76
77 void *mem_ctx;
78
79 struct list_head copies;
80
81 /* We're going to be allocating and deleting a lot of copy entries so we'll
82 * keep a free list to avoid thrashing malloc too badly.
83 */
84 struct list_head copy_free_list;
85
86 bool progress;
87 };
88
89 static struct copy_entry *
90 copy_entry_create(struct copy_prop_var_state *state,
91 nir_deref_var *dst_deref)
92 {
93 struct copy_entry *entry;
94 if (!list_empty(&state->copy_free_list)) {
95 struct list_head *item = state->copy_free_list.next;
96 list_del(item);
97 entry = LIST_ENTRY(struct copy_entry, item, link);
98 memset(entry, 0, sizeof(*entry));
99 } else {
100 entry = rzalloc(state->mem_ctx, struct copy_entry);
101 }
102
103 entry->dst = dst_deref;
104 list_add(&entry->link, &state->copies);
105
106 return entry;
107 }
108
109 static void
110 copy_entry_remove(struct copy_prop_var_state *state, struct copy_entry *entry)
111 {
112 list_del(&entry->link);
113 list_add(&entry->link, &state->copy_free_list);
114 }
115
116 enum deref_compare_result {
117 derefs_equal_bit = (1 << 0),
118 derefs_may_alias_bit = (1 << 1),
119 derefs_a_contains_b_bit = (1 << 2),
120 derefs_b_contains_a_bit = (1 << 3),
121 };
122
123 /** Returns true if the storage referrenced to by deref completely contains
124 * the storage referenced by sub.
125 *
126 * NOTE: This is fairly general and could be moved to core NIR if someone else
127 * ever needs it.
128 */
129 static enum deref_compare_result
130 compare_derefs(nir_deref_var *a, nir_deref_var *b)
131 {
132 if (a->var != b->var)
133 return 0;
134
135 /* Start off assuming they fully compare. We ignore equality for now. In
136 * the end, we'll determine that by containment.
137 */
138 enum deref_compare_result result = derefs_may_alias_bit |
139 derefs_a_contains_b_bit |
140 derefs_b_contains_a_bit;
141
142 nir_deref *a_tail = &a->deref;
143 nir_deref *b_tail = &b->deref;
144 while (a_tail->child && b_tail->child) {
145 a_tail = a_tail->child;
146 b_tail = b_tail->child;
147
148 assert(a_tail->deref_type == b_tail->deref_type);
149 switch (a_tail->deref_type) {
150 case nir_deref_type_array: {
151 nir_deref_array *a_arr = nir_deref_as_array(a_tail);
152 nir_deref_array *b_arr = nir_deref_as_array(b_tail);
153
154 if (a_arr->deref_array_type == nir_deref_array_type_direct &&
155 b_arr->deref_array_type == nir_deref_array_type_direct) {
156 /* If they're both direct and have different offsets, they
157 * don't even alias much less anything else.
158 */
159 if (a_arr->base_offset != b_arr->base_offset)
160 return 0;
161 } else if (a_arr->deref_array_type == nir_deref_array_type_wildcard) {
162 if (b_arr->deref_array_type != nir_deref_array_type_wildcard)
163 result &= ~derefs_b_contains_a_bit;
164 } else if (b_arr->deref_array_type == nir_deref_array_type_wildcard) {
165 if (a_arr->deref_array_type != nir_deref_array_type_wildcard)
166 result &= ~derefs_a_contains_b_bit;
167 } else if (a_arr->deref_array_type == nir_deref_array_type_indirect &&
168 b_arr->deref_array_type == nir_deref_array_type_indirect) {
169 assert(a_arr->indirect.is_ssa && b_arr->indirect.is_ssa);
170 if (a_arr->indirect.ssa == b_arr->indirect.ssa) {
171 /* If they're different constant offsets from the same indirect
172 * then they don't alias at all.
173 */
174 if (a_arr->base_offset != b_arr->base_offset)
175 return 0;
176 /* Otherwise the indirect and base both match */
177 } else {
178 /* If they're have different indirect offsets then we can't
179 * prove anything about containment.
180 */
181 result &= ~(derefs_a_contains_b_bit | derefs_b_contains_a_bit);
182 }
183 } else {
184 /* In this case, one is indirect and the other direct so we can't
185 * prove anything about containment.
186 */
187 result &= ~(derefs_a_contains_b_bit | derefs_b_contains_a_bit);
188 }
189 break;
190 }
191
192 case nir_deref_type_struct: {
193 nir_deref_struct *a_struct = nir_deref_as_struct(a_tail);
194 nir_deref_struct *b_struct = nir_deref_as_struct(b_tail);
195
196 /* If they're different struct members, they don't even alias */
197 if (a_struct->index != b_struct->index)
198 return 0;
199 break;
200 }
201
202 default:
203 unreachable("Invalid deref type");
204 }
205 }
206
207 /* If a is longer than b, then it can't contain b */
208 if (a_tail->child)
209 result &= ~derefs_a_contains_b_bit;
210 if (b_tail->child)
211 result &= ~derefs_b_contains_a_bit;
212
213 /* If a contains b and b contains a they must be equal. */
214 if ((result & derefs_a_contains_b_bit) && (result & derefs_b_contains_a_bit))
215 result |= derefs_equal_bit;
216
217 return result;
218 }
219
220 static void
221 remove_dead_writes(struct copy_prop_var_state *state,
222 struct copy_entry *entry, unsigned write_mask)
223 {
224 /* We're overwriting another entry. Some of it's components may not
225 * have been read yet and, if that's the case, we may be able to delete
226 * some instructions but we have to be careful.
227 */
228 unsigned dead_comps = write_mask & ~entry->comps_may_be_read;
229
230 for (unsigned mask = dead_comps; mask;) {
231 unsigned i = u_bit_scan(&mask);
232
233 nir_instr *instr = entry->store_instr[i];
234
235 /* We may have already deleted it on a previous iteration */
236 if (!instr)
237 continue;
238
239 /* See if this instr is used anywhere that it's not dead */
240 bool keep = false;
241 for (unsigned j = 0; j < 4; j++) {
242 if (entry->store_instr[j] == instr) {
243 if (dead_comps & (1 << j)) {
244 entry->store_instr[j] = NULL;
245 } else {
246 keep = true;
247 }
248 }
249 }
250
251 if (!keep) {
252 nir_instr_remove(instr);
253 state->progress = true;
254 }
255 }
256 }
257
258 static struct copy_entry *
259 lookup_entry_for_deref(struct copy_prop_var_state *state,
260 nir_deref_var *deref,
261 enum deref_compare_result allowed_comparisons)
262 {
263 list_for_each_entry(struct copy_entry, iter, &state->copies, link) {
264 if (compare_derefs(iter->dst, deref) & allowed_comparisons)
265 return iter;
266 }
267
268 return NULL;
269 }
270
271 static void
272 mark_aliased_entries_as_read(struct copy_prop_var_state *state,
273 nir_deref_var *deref, unsigned components)
274 {
275 list_for_each_entry(struct copy_entry, iter, &state->copies, link) {
276 if (compare_derefs(iter->dst, deref) & derefs_may_alias_bit)
277 iter->comps_may_be_read |= components;
278 }
279 }
280
281 static struct copy_entry *
282 get_entry_and_kill_aliases(struct copy_prop_var_state *state,
283 nir_deref_var *deref,
284 unsigned write_mask)
285 {
286 struct copy_entry *entry = NULL;
287 list_for_each_entry_safe(struct copy_entry, iter, &state->copies, link) {
288 if (!iter->src.is_ssa) {
289 /* If this write aliases the source of some entry, get rid of it */
290 if (compare_derefs(iter->src.deref, deref) & derefs_may_alias_bit) {
291 copy_entry_remove(state, iter);
292 continue;
293 }
294 }
295
296 enum deref_compare_result comp = compare_derefs(iter->dst, deref);
297 /* This is a store operation. If we completely overwrite some value, we
298 * want to delete any dead writes that may be present.
299 */
300 if (comp & derefs_b_contains_a_bit)
301 remove_dead_writes(state, iter, write_mask);
302
303 if (comp & derefs_equal_bit) {
304 assert(entry == NULL);
305 entry = iter;
306 } else if (comp & derefs_may_alias_bit) {
307 copy_entry_remove(state, iter);
308 }
309 }
310
311 if (entry == NULL)
312 entry = copy_entry_create(state, deref);
313
314 return entry;
315 }
316
317 static void
318 apply_barrier_for_modes(struct copy_prop_var_state *state,
319 nir_variable_mode modes)
320 {
321 list_for_each_entry_safe(struct copy_entry, iter, &state->copies, link) {
322 if ((iter->dst->var->data.mode & modes) ||
323 (!iter->src.is_ssa && (iter->src.deref->var->data.mode & modes)))
324 copy_entry_remove(state, iter);
325 }
326 }
327
328 static void
329 store_to_entry(struct copy_prop_var_state *state, struct copy_entry *entry,
330 const struct value *value, unsigned write_mask,
331 nir_instr *store_instr)
332 {
333 entry->comps_may_be_read &= ~write_mask;
334 if (value->is_ssa) {
335 entry->src.is_ssa = true;
336 /* Only overwrite the written components */
337 for (unsigned i = 0; i < 4; i++) {
338 if (write_mask & (1 << i)) {
339 entry->store_instr[i] = store_instr;
340 entry->src.ssa[i] = value->ssa[i];
341 }
342 }
343 } else {
344 /* Non-ssa stores always write everything */
345 entry->src.is_ssa = false;
346 entry->src.deref = value->deref;
347 for (unsigned i = 0; i < 4; i++)
348 entry->store_instr[i] = store_instr;
349 }
350 }
351
352 /* Remove an instruction and return a cursor pointing to where it was */
353 static nir_cursor
354 instr_remove_cursor(nir_instr *instr)
355 {
356 nir_cursor cursor;
357 nir_instr *prev = nir_instr_prev(instr);
358 if (prev) {
359 cursor = nir_after_instr(prev);
360 } else {
361 cursor = nir_before_block(instr->block);
362 }
363 nir_instr_remove(instr);
364 return cursor;
365 }
366
367 /* Do a "load" from an SSA-based entry return it in "value" as a value with a
368 * single SSA def. Because an entry could reference up to 4 different SSA
369 * defs, a vecN operation may be inserted to combine them into a single SSA
370 * def before handing it back to the caller. If the load instruction is no
371 * longer needed, it is removed and nir_instr::block is set to NULL. (It is
372 * possible, in some cases, for the load to be used in the vecN operation in
373 * which case it isn't deleted.)
374 */
375 static bool
376 load_from_ssa_entry_value(struct copy_prop_var_state *state,
377 struct copy_entry *entry,
378 nir_builder *b, nir_intrinsic_instr *intrin,
379 struct value *value)
380 {
381 *value = entry->src;
382 assert(value->is_ssa);
383
384 const struct glsl_type *type = nir_deref_tail(&entry->dst->deref)->type;
385 unsigned num_components = glsl_get_vector_elements(type);
386
387 uint8_t available = 0;
388 bool all_same = true;
389 for (unsigned i = 0; i < num_components; i++) {
390 if (value->ssa[i])
391 available |= (1 << i);
392
393 if (value->ssa[i] != value->ssa[0])
394 all_same = false;
395 }
396
397 if (all_same) {
398 /* Our work here is done */
399 b->cursor = instr_remove_cursor(&intrin->instr);
400 intrin->instr.block = NULL;
401 return true;
402 }
403
404 if (available != (1 << num_components) - 1 &&
405 intrin->intrinsic == nir_intrinsic_load_var &&
406 (available & nir_ssa_def_components_read(&intrin->dest.ssa)) == 0) {
407 /* If none of the components read are available as SSA values, then we
408 * should just bail. Otherwise, we would end up replacing the uses of
409 * the load_var a vecN() that just gathers up its components.
410 */
411 return false;
412 }
413
414 b->cursor = nir_after_instr(&intrin->instr);
415
416 nir_ssa_def *load_def =
417 intrin->intrinsic == nir_intrinsic_load_var ? &intrin->dest.ssa : NULL;
418
419 bool keep_intrin = false;
420 nir_ssa_def *comps[4];
421 for (unsigned i = 0; i < num_components; i++) {
422 if (value->ssa[i]) {
423 comps[i] = nir_channel(b, value->ssa[i], i);
424 } else {
425 /* We don't have anything for this component in our
426 * list. Just re-use a channel from the load.
427 */
428 if (load_def == NULL)
429 load_def = nir_load_deref_var(b, entry->dst);
430
431 if (load_def->parent_instr == &intrin->instr)
432 keep_intrin = true;
433
434 comps[i] = nir_channel(b, load_def, i);
435 }
436 }
437
438 nir_ssa_def *vec = nir_vec(b, comps, num_components);
439 for (unsigned i = 0; i < num_components; i++)
440 value->ssa[i] = vec;
441
442 if (!keep_intrin) {
443 /* Removing this instruction should not touch the cursor because we
444 * created the cursor after the intrinsic and have added at least one
445 * instruction (the vec) since then.
446 */
447 assert(b->cursor.instr != &intrin->instr);
448 nir_instr_remove(&intrin->instr);
449 intrin->instr.block = NULL;
450 }
451
452 return true;
453 }
454
455 /**
456 * Specialize the wildcards in a deref chain
457 *
458 * This function returns a deref chain identical to \param deref except that
459 * some of its wildcards are replaced with indices from \param specific. The
460 * process is guided by \param guide which references the same type as \param
461 * specific but has the same wildcard array lengths as \param deref.
462 */
463 static nir_deref_var *
464 specialize_wildcards(nir_deref_var *deref,
465 nir_deref_var *guide,
466 nir_deref_var *specific,
467 void *mem_ctx)
468 {
469 nir_deref_var *ret = nir_deref_var_create(mem_ctx, deref->var);
470
471 nir_deref *deref_tail = deref->deref.child;
472 nir_deref *guide_tail = guide->deref.child;
473 nir_deref *spec_tail = specific->deref.child;
474 nir_deref *ret_tail = &ret->deref;
475 while (deref_tail) {
476 switch (deref_tail->deref_type) {
477 case nir_deref_type_array: {
478 nir_deref_array *deref_arr = nir_deref_as_array(deref_tail);
479
480 nir_deref_array *ret_arr = nir_deref_array_create(ret_tail);
481 ret_arr->deref.type = deref_arr->deref.type;
482 ret_arr->deref_array_type = deref_arr->deref_array_type;
483
484 switch (deref_arr->deref_array_type) {
485 case nir_deref_array_type_direct:
486 ret_arr->base_offset = deref_arr->base_offset;
487 break;
488 case nir_deref_array_type_indirect:
489 ret_arr->base_offset = deref_arr->base_offset;
490 assert(deref_arr->indirect.is_ssa);
491 ret_arr->indirect = deref_arr->indirect;
492 break;
493 case nir_deref_array_type_wildcard:
494 /* This is where things get tricky. We have to search through
495 * the entry deref to find its corresponding wildcard and fill
496 * this slot in with the value from the src.
497 */
498 while (guide_tail) {
499 if (guide_tail->deref_type == nir_deref_type_array &&
500 nir_deref_as_array(guide_tail)->deref_array_type ==
501 nir_deref_array_type_wildcard)
502 break;
503
504 guide_tail = guide_tail->child;
505 spec_tail = spec_tail->child;
506 }
507
508 nir_deref_array *spec_arr = nir_deref_as_array(spec_tail);
509 ret_arr->deref_array_type = spec_arr->deref_array_type;
510 ret_arr->base_offset = spec_arr->base_offset;
511 ret_arr->indirect = spec_arr->indirect;
512 }
513
514 ret_tail->child = &ret_arr->deref;
515 break;
516 }
517 case nir_deref_type_struct: {
518 nir_deref_struct *deref_struct = nir_deref_as_struct(deref_tail);
519
520 nir_deref_struct *ret_struct =
521 nir_deref_struct_create(ret_tail, deref_struct->index);
522 ret_struct->deref.type = deref_struct->deref.type;
523
524 ret_tail->child = &ret_struct->deref;
525 break;
526 }
527 case nir_deref_type_var:
528 unreachable("Invalid deref type");
529 }
530
531 deref_tail = deref_tail->child;
532 ret_tail = ret_tail->child;
533 }
534
535 return ret;
536 }
537
538 /* Do a "load" from an deref-based entry return it in "value" as a value. The
539 * deref returned in "value" will always be a fresh copy so the caller can
540 * steal it and assign it to the instruction directly without copying it
541 * again.
542 */
543 static bool
544 load_from_deref_entry_value(struct copy_prop_var_state *state,
545 struct copy_entry *entry,
546 nir_builder *b, nir_intrinsic_instr *intrin,
547 nir_deref_var *src, struct value *value)
548 {
549 *value = entry->src;
550
551 /* Walk the deref to get the two tails and also figure out if we need to
552 * specialize any wildcards.
553 */
554 bool need_to_specialize_wildcards = false;
555 nir_deref *entry_tail = &entry->dst->deref;
556 nir_deref *src_tail = &src->deref;
557 while (entry_tail->child && src_tail->child) {
558 assert(src_tail->child->deref_type == entry_tail->child->deref_type);
559 if (src_tail->child->deref_type == nir_deref_type_array) {
560 nir_deref_array *entry_arr = nir_deref_as_array(entry_tail->child);
561 nir_deref_array *src_arr = nir_deref_as_array(src_tail->child);
562
563 if (src_arr->deref_array_type != nir_deref_array_type_wildcard &&
564 entry_arr->deref_array_type == nir_deref_array_type_wildcard)
565 need_to_specialize_wildcards = true;
566 }
567
568 entry_tail = entry_tail->child;
569 src_tail = src_tail->child;
570 }
571
572 /* If the entry deref is longer than the source deref then it refers to a
573 * smaller type and we can't source from it.
574 */
575 assert(entry_tail->child == NULL);
576
577 if (need_to_specialize_wildcards) {
578 /* The entry has some wildcards that are not in src. This means we need
579 * to construct a new deref based on the entry but using the wildcards
580 * from the source and guided by the entry dst. Oof.
581 */
582 value->deref = specialize_wildcards(entry->src.deref, entry->dst, src,
583 state->mem_ctx);
584 } else {
585 /* We're going to need to make a copy in case we modify it below */
586 value->deref = nir_deref_var_clone(value->deref, state->mem_ctx);
587 }
588
589 if (src_tail->child) {
590 /* If our source deref is longer than the entry deref, that's ok because
591 * it just means the entry deref needs to be extended a bit.
592 */
593 nir_deref *value_tail = nir_deref_tail(&value->deref->deref);
594 value_tail->child = nir_deref_clone(src_tail->child, value_tail);
595 }
596
597 b->cursor = instr_remove_cursor(&intrin->instr);
598
599 return true;
600 }
601
602 static bool
603 try_load_from_entry(struct copy_prop_var_state *state, struct copy_entry *entry,
604 nir_builder *b, nir_intrinsic_instr *intrin,
605 nir_deref_var *src, struct value *value)
606 {
607 if (entry == NULL)
608 return false;
609
610 if (entry->src.is_ssa) {
611 return load_from_ssa_entry_value(state, entry, b, intrin, value);
612 } else {
613 return load_from_deref_entry_value(state, entry, b, intrin, src, value);
614 }
615 }
616
617 static void
618 copy_prop_vars_block(struct copy_prop_var_state *state,
619 nir_builder *b, nir_block *block)
620 {
621 /* Start each block with a blank slate */
622 list_for_each_entry_safe(struct copy_entry, iter, &state->copies, link)
623 copy_entry_remove(state, iter);
624
625 nir_foreach_instr_safe(instr, block) {
626 if (instr->type != nir_instr_type_intrinsic)
627 continue;
628
629 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
630 switch (intrin->intrinsic) {
631 case nir_intrinsic_barrier:
632 case nir_intrinsic_memory_barrier:
633 /* If we hit a barrier, we need to trash everything that may possibly
634 * be accessible to another thread. Locals, globals, and things of
635 * the like are safe, however.
636 */
637 apply_barrier_for_modes(state, ~(nir_var_local | nir_var_global |
638 nir_var_shader_in | nir_var_uniform));
639 break;
640
641 case nir_intrinsic_emit_vertex:
642 case nir_intrinsic_emit_vertex_with_counter:
643 apply_barrier_for_modes(state, nir_var_shader_out);
644 break;
645
646 case nir_intrinsic_load_var: {
647 nir_deref_var *src = intrin->variables[0];
648
649 uint8_t comps_read = nir_ssa_def_components_read(&intrin->dest.ssa);
650 mark_aliased_entries_as_read(state, src, comps_read);
651
652 struct copy_entry *src_entry =
653 lookup_entry_for_deref(state, src, derefs_a_contains_b_bit);
654 struct value value;
655 if (try_load_from_entry(state, src_entry, b, intrin, src, &value)) {
656 if (value.is_ssa) {
657 /* lookup_load has already ensured that we get a single SSA
658 * value that has all of the channels. We just have to do the
659 * rewrite operation.
660 */
661 if (intrin->instr.block) {
662 /* The lookup left our instruction in-place. This means it
663 * must have used it to vec up a bunch of different sources.
664 * We need to be careful when rewriting uses so we don't
665 * rewrite the vecN itself.
666 */
667 nir_ssa_def_rewrite_uses_after(&intrin->dest.ssa,
668 nir_src_for_ssa(value.ssa[0]),
669 value.ssa[0]->parent_instr);
670 } else {
671 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
672 nir_src_for_ssa(value.ssa[0]));
673 }
674 } else {
675 /* We're turning it into a load of a different variable */
676 ralloc_steal(intrin, value.deref);
677 intrin->variables[0] = value.deref;
678
679 /* Put it back in again. */
680 nir_builder_instr_insert(b, instr);
681
682 value.is_ssa = true;
683 for (unsigned i = 0; i < intrin->num_components; i++)
684 value.ssa[i] = &intrin->dest.ssa;
685 }
686 state->progress = true;
687 } else {
688 value.is_ssa = true;
689 for (unsigned i = 0; i < intrin->num_components; i++)
690 value.ssa[i] = &intrin->dest.ssa;
691 }
692
693 /* Now that we have a value, we're going to store it back so that we
694 * have the right value next time we come looking for it. In order
695 * to do this, we need an exact match, not just something that
696 * contains what we're looking for.
697 */
698 struct copy_entry *store_entry =
699 lookup_entry_for_deref(state, src, derefs_equal_bit);
700 if (!store_entry)
701 store_entry = copy_entry_create(state, src);
702
703 /* Set up a store to this entry with the value of the load. This way
704 * we can potentially remove subsequent loads. However, we use a
705 * NULL instruction so we don't try and delete the load on a
706 * subsequent store.
707 */
708 store_to_entry(state, store_entry, &value,
709 ((1 << intrin->num_components) - 1), NULL);
710 break;
711 }
712
713 case nir_intrinsic_store_var: {
714 struct value value = {
715 .is_ssa = true
716 };
717
718 for (unsigned i = 0; i < intrin->num_components; i++)
719 value.ssa[i] = intrin->src[0].ssa;
720
721 nir_deref_var *dst = intrin->variables[0];
722 unsigned wrmask = nir_intrinsic_write_mask(intrin);
723 struct copy_entry *entry =
724 get_entry_and_kill_aliases(state, dst, wrmask);
725 store_to_entry(state, entry, &value, wrmask, &intrin->instr);
726 break;
727 }
728
729 case nir_intrinsic_copy_var: {
730 nir_deref_var *dst = intrin->variables[0];
731 nir_deref_var *src = intrin->variables[1];
732
733 if (compare_derefs(src, dst) & derefs_equal_bit) {
734 /* This is a no-op self-copy. Get rid of it */
735 nir_instr_remove(instr);
736 continue;
737 }
738
739 mark_aliased_entries_as_read(state, src, 0xf);
740
741 struct copy_entry *src_entry =
742 lookup_entry_for_deref(state, src, derefs_a_contains_b_bit);
743 struct value value;
744 if (try_load_from_entry(state, src_entry, b, intrin, src, &value)) {
745 if (value.is_ssa) {
746 nir_store_deref_var(b, dst, value.ssa[0], 0xf);
747 intrin = nir_instr_as_intrinsic(nir_builder_last_instr(b));
748 } else {
749 /* If this would be a no-op self-copy, don't bother. */
750 if (compare_derefs(value.deref, dst) & derefs_equal_bit)
751 continue;
752
753 /* Just turn it into a copy of a different deref */
754 ralloc_steal(intrin, value.deref);
755 intrin->variables[1] = value.deref;
756
757 /* Put it back in again. */
758 nir_builder_instr_insert(b, instr);
759 }
760
761 state->progress = true;
762 } else {
763 value = (struct value) {
764 .is_ssa = false,
765 { .deref = src },
766 };
767 }
768
769 struct copy_entry *dst_entry =
770 get_entry_and_kill_aliases(state, dst, 0xf);
771 store_to_entry(state, dst_entry, &value, 0xf, &intrin->instr);
772 break;
773 }
774
775 default:
776 break;
777 }
778 }
779 }
780
781 bool
782 nir_opt_copy_prop_vars(nir_shader *shader)
783 {
784 struct copy_prop_var_state state;
785
786 state.shader = shader;
787 state.mem_ctx = ralloc_context(NULL);
788 list_inithead(&state.copies);
789 list_inithead(&state.copy_free_list);
790
791 bool global_progress = false;
792 nir_foreach_function(function, shader) {
793 if (!function->impl)
794 continue;
795
796 nir_builder b;
797 nir_builder_init(&b, function->impl);
798
799 state.progress = false;
800 nir_foreach_block(block, function->impl)
801 copy_prop_vars_block(&state, &b, block);
802
803 if (state.progress) {
804 nir_metadata_preserve(function->impl, nir_metadata_block_index |
805 nir_metadata_dominance);
806 global_progress = true;
807 }
808 }
809
810 ralloc_free(state.mem_ctx);
811
812 return global_progress;
813 }