nir: Validate jump instructions as an instruction type
[mesa.git] / src / compiler / nir / nir_opt_gcm.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include "nir.h"
29 #include "nir_instr_set.h"
30
31 /*
32 * Implements Global Code Motion. A description of GCM can be found in
33 * "Global Code Motion; Global Value Numbering" by Cliff Click.
34 * Unfortunately, the algorithm presented in the paper is broken in a
35 * number of ways. The algorithm used here differs substantially from the
36 * one in the paper but it is, in my opinion, much easier to read and
37 * verify correcness.
38 */
39
40 struct gcm_block_info {
41 /* Number of loops this block is inside */
42 unsigned loop_depth;
43
44 /* The last instruction inserted into this block. This is used as we
45 * traverse the instructions and insert them back into the program to
46 * put them in the right order.
47 */
48 nir_instr *last_instr;
49 };
50
51 struct gcm_instr_info {
52 nir_block *early_block;
53 };
54
55 /* Flags used in the instr->pass_flags field for various instruction states */
56 enum {
57 GCM_INSTR_PINNED = (1 << 0),
58 GCM_INSTR_SCHEDULE_EARLIER_ONLY = (1 << 1),
59 GCM_INSTR_SCHEDULED_EARLY = (1 << 2),
60 GCM_INSTR_SCHEDULED_LATE = (1 << 3),
61 GCM_INSTR_PLACED = (1 << 4),
62 };
63
64 struct gcm_state {
65 nir_function_impl *impl;
66 nir_instr *instr;
67
68 bool progress;
69
70 /* The list of non-pinned instructions. As we do the late scheduling,
71 * we pull non-pinned instructions out of their blocks and place them in
72 * this list. This saves us from having linked-list problems when we go
73 * to put instructions back in their blocks.
74 */
75 struct exec_list instrs;
76
77 struct gcm_block_info *blocks;
78
79 unsigned num_instrs;
80 struct gcm_instr_info *instr_infos;
81 };
82
83 /* Recursively walks the CFG and builds the block_info structure */
84 static void
85 gcm_build_block_info(struct exec_list *cf_list, struct gcm_state *state,
86 unsigned loop_depth)
87 {
88 foreach_list_typed(nir_cf_node, node, node, cf_list) {
89 switch (node->type) {
90 case nir_cf_node_block: {
91 nir_block *block = nir_cf_node_as_block(node);
92 state->blocks[block->index].loop_depth = loop_depth;
93 break;
94 }
95 case nir_cf_node_if: {
96 nir_if *if_stmt = nir_cf_node_as_if(node);
97 gcm_build_block_info(&if_stmt->then_list, state, loop_depth);
98 gcm_build_block_info(&if_stmt->else_list, state, loop_depth);
99 break;
100 }
101 case nir_cf_node_loop: {
102 nir_loop *loop = nir_cf_node_as_loop(node);
103 gcm_build_block_info(&loop->body, state, loop_depth + 1);
104 break;
105 }
106 default:
107 unreachable("Invalid CF node type");
108 }
109 }
110 }
111
112 static bool
113 is_src_scalarizable(nir_src *src)
114 {
115 assert(src->is_ssa);
116
117 nir_instr *src_instr = src->ssa->parent_instr;
118 switch (src_instr->type) {
119 case nir_instr_type_alu: {
120 nir_alu_instr *src_alu = nir_instr_as_alu(src_instr);
121
122 /* ALU operations with output_size == 0 should be scalarized. We
123 * will also see a bunch of vecN operations from scalarizing ALU
124 * operations and, since they can easily be copy-propagated, they
125 * are ok too.
126 */
127 return nir_op_infos[src_alu->op].output_size == 0 ||
128 src_alu->op == nir_op_vec2 ||
129 src_alu->op == nir_op_vec3 ||
130 src_alu->op == nir_op_vec4;
131 }
132
133 case nir_instr_type_load_const:
134 /* These are trivially scalarizable */
135 return true;
136
137 case nir_instr_type_ssa_undef:
138 return true;
139
140 case nir_instr_type_intrinsic: {
141 nir_intrinsic_instr *src_intrin = nir_instr_as_intrinsic(src_instr);
142
143 switch (src_intrin->intrinsic) {
144 case nir_intrinsic_load_deref: {
145 nir_deref_instr *deref = nir_src_as_deref(src_intrin->src[0]);
146 return deref->mode == nir_var_shader_in ||
147 deref->mode == nir_var_uniform ||
148 deref->mode == nir_var_mem_ubo ||
149 deref->mode == nir_var_mem_ssbo ||
150 deref->mode == nir_var_mem_global;
151 }
152
153 case nir_intrinsic_interp_deref_at_centroid:
154 case nir_intrinsic_interp_deref_at_sample:
155 case nir_intrinsic_interp_deref_at_offset:
156 case nir_intrinsic_load_uniform:
157 case nir_intrinsic_load_ubo:
158 case nir_intrinsic_load_ssbo:
159 case nir_intrinsic_load_global:
160 case nir_intrinsic_load_input:
161 return true;
162 default:
163 break;
164 }
165 }
166
167 default:
168 /* We can't scalarize this type of instruction */
169 return false;
170 }
171 }
172
173 /* Walks the instruction list and marks immovable instructions as pinned
174 *
175 * This function also serves to initialize the instr->pass_flags field.
176 * After this is completed, all instructions' pass_flags fields will be set
177 * to either GCM_INSTR_PINNED or 0.
178 */
179 static void
180 gcm_pin_instructions(nir_function_impl *impl, struct gcm_state *state)
181 {
182 state->num_instrs = 0;
183
184 nir_foreach_block(block, impl) {
185 nir_foreach_instr_safe(instr, block) {
186 /* Index the instructions for use in gcm_state::instrs */
187 instr->index = state->num_instrs++;
188
189 switch (instr->type) {
190 case nir_instr_type_alu:
191 switch (nir_instr_as_alu(instr)->op) {
192 case nir_op_fddx:
193 case nir_op_fddy:
194 case nir_op_fddx_fine:
195 case nir_op_fddy_fine:
196 case nir_op_fddx_coarse:
197 case nir_op_fddy_coarse:
198 /* These can only go in uniform control flow */
199 instr->pass_flags = GCM_INSTR_SCHEDULE_EARLIER_ONLY;
200 break;
201
202 case nir_op_mov:
203 if (!is_src_scalarizable(&(nir_instr_as_alu(instr)->src[0].src))) {
204 instr->pass_flags = GCM_INSTR_PINNED;
205 break;
206 }
207
208 default:
209 instr->pass_flags = 0;
210 break;
211 }
212 break;
213
214 case nir_instr_type_tex:
215 if (nir_tex_instr_has_implicit_derivative(nir_instr_as_tex(instr)))
216 instr->pass_flags = GCM_INSTR_SCHEDULE_EARLIER_ONLY;
217 break;
218
219 case nir_instr_type_deref:
220 case nir_instr_type_load_const:
221 instr->pass_flags = 0;
222 break;
223
224 case nir_instr_type_intrinsic: {
225 if (nir_intrinsic_can_reorder(nir_instr_as_intrinsic(instr))) {
226 instr->pass_flags = 0;
227 } else {
228 instr->pass_flags = GCM_INSTR_PINNED;
229 }
230 break;
231 }
232
233 case nir_instr_type_jump:
234 case nir_instr_type_ssa_undef:
235 case nir_instr_type_phi:
236 instr->pass_flags = GCM_INSTR_PINNED;
237 break;
238
239 default:
240 unreachable("Invalid instruction type in GCM");
241 }
242
243 if (!(instr->pass_flags & GCM_INSTR_PINNED)) {
244 /* If this is an unpinned instruction, go ahead and pull it out of
245 * the program and put it on the instrs list. This has a couple
246 * of benifits. First, it makes the scheduling algorithm more
247 * efficient because we can avoid walking over basic blocks and
248 * pinned instructions. Second, it keeps us from causing linked
249 * list confusion when we're trying to put everything in its
250 * proper place at the end of the pass.
251 *
252 * Note that we don't use nir_instr_remove here because that also
253 * cleans up uses and defs and we want to keep that information.
254 */
255 exec_node_remove(&instr->node);
256 exec_list_push_tail(&state->instrs, &instr->node);
257 }
258 }
259 }
260 }
261
262 static void
263 gcm_schedule_early_instr(nir_instr *instr, struct gcm_state *state);
264
265 /** Update an instructions schedule for the given source
266 *
267 * This function is called iteratively as we walk the sources of an
268 * instruction. It ensures that the given source instruction has been
269 * scheduled and then update this instruction's block if the source
270 * instruction is lower down the tree.
271 */
272 static bool
273 gcm_schedule_early_src(nir_src *src, void *void_state)
274 {
275 struct gcm_state *state = void_state;
276 nir_instr *instr = state->instr;
277
278 assert(src->is_ssa);
279
280 gcm_schedule_early_instr(src->ssa->parent_instr, void_state);
281
282 /* While the index isn't a proper dominance depth, it does have the
283 * property that if A dominates B then A->index <= B->index. Since we
284 * know that this instruction must have been dominated by all of its
285 * sources at some point (even if it's gone through value-numbering),
286 * all of the sources must lie on the same branch of the dominance tree.
287 * Therefore, we can just go ahead and just compare indices.
288 */
289 struct gcm_instr_info *src_info =
290 &state->instr_infos[src->ssa->parent_instr->index];
291 struct gcm_instr_info *info = &state->instr_infos[instr->index];
292 if (info->early_block->index < src_info->early_block->index)
293 info->early_block = src_info->early_block;
294
295 /* We need to restore the state instruction because it may have been
296 * changed through the gcm_schedule_early_instr call above. Since we
297 * may still be iterating through sources and future calls to
298 * gcm_schedule_early_src for the same instruction will still need it.
299 */
300 state->instr = instr;
301
302 return true;
303 }
304
305 /** Schedules an instruction early
306 *
307 * This function performs a recursive depth-first search starting at the
308 * given instruction and proceeding through the sources to schedule
309 * instructions as early as they can possibly go in the dominance tree.
310 * The instructions are "scheduled" by updating the early_block field of
311 * the corresponding gcm_instr_state entry.
312 */
313 static void
314 gcm_schedule_early_instr(nir_instr *instr, struct gcm_state *state)
315 {
316 if (instr->pass_flags & GCM_INSTR_SCHEDULED_EARLY)
317 return;
318
319 instr->pass_flags |= GCM_INSTR_SCHEDULED_EARLY;
320
321 /* Pinned instructions always get scheduled in their original block so we
322 * don't need to do anything. Also, bailing here keeps us from ever
323 * following the sources of phi nodes which can be back-edges.
324 */
325 if (instr->pass_flags & GCM_INSTR_PINNED) {
326 state->instr_infos[instr->index].early_block = instr->block;
327 return;
328 }
329
330 /* Start with the instruction at the top. As we iterate over the
331 * sources, it will get moved down as needed.
332 */
333 state->instr_infos[instr->index].early_block = nir_start_block(state->impl);
334 state->instr = instr;
335
336 nir_foreach_src(instr, gcm_schedule_early_src, state);
337 }
338
339 static nir_block *
340 gcm_choose_block_for_instr(nir_instr *instr, nir_block *early_block,
341 nir_block *late_block, struct gcm_state *state)
342 {
343 assert(nir_block_dominates(early_block, late_block));
344
345 nir_block *best = late_block;
346 for (nir_block *block = late_block; block != NULL; block = block->imm_dom) {
347 /* Being too aggressive with how we pull instructions out of loops can
348 * result in extra register pressure and spilling. For example its fairly
349 * common for loops in compute shaders to calculate SSBO offsets using
350 * the workgroup id, subgroup id and subgroup invocation, pulling all
351 * these calculations outside the loop causes register pressure.
352 *
353 * To work around these issues for now we only allow constant and texture
354 * instructions to be moved outside their original loops.
355 *
356 * TODO: figure out some heuristics to allow more to be moved out of loops.
357 */
358 if (state->blocks[block->index].loop_depth <
359 state->blocks[best->index].loop_depth &&
360 (nir_block_dominates(instr->block, block) ||
361 instr->type == nir_instr_type_load_const ||
362 instr->type == nir_instr_type_tex))
363 best = block;
364 else if (block == instr->block)
365 best = block;
366
367 if (block == early_block)
368 break;
369 }
370
371 return best;
372 }
373
374 static void
375 gcm_schedule_late_instr(nir_instr *instr, struct gcm_state *state);
376
377 /** Schedules the instruction associated with the given SSA def late
378 *
379 * This function works by first walking all of the uses of the given SSA
380 * definition, ensuring that they are scheduled, and then computing the LCA
381 * (least common ancestor) of its uses. It then schedules this instruction
382 * as close to the LCA as possible while trying to stay out of loops.
383 */
384 static bool
385 gcm_schedule_late_def(nir_ssa_def *def, void *void_state)
386 {
387 struct gcm_state *state = void_state;
388
389 nir_block *lca = NULL;
390
391 nir_foreach_use(use_src, def) {
392 nir_instr *use_instr = use_src->parent_instr;
393
394 gcm_schedule_late_instr(use_instr, state);
395
396 /* Phi instructions are a bit special. SSA definitions don't have to
397 * dominate the sources of the phi nodes that use them; instead, they
398 * have to dominate the predecessor block corresponding to the phi
399 * source. We handle this by looking through the sources, finding
400 * any that are usingg this SSA def, and using those blocks instead
401 * of the one the phi lives in.
402 */
403 if (use_instr->type == nir_instr_type_phi) {
404 nir_phi_instr *phi = nir_instr_as_phi(use_instr);
405
406 nir_foreach_phi_src(phi_src, phi) {
407 if (phi_src->src.ssa == def)
408 lca = nir_dominance_lca(lca, phi_src->pred);
409 }
410 } else {
411 lca = nir_dominance_lca(lca, use_instr->block);
412 }
413 }
414
415 nir_foreach_if_use(use_src, def) {
416 nir_if *if_stmt = use_src->parent_if;
417
418 /* For if statements, we consider the block to be the one immediately
419 * preceding the if CF node.
420 */
421 nir_block *pred_block =
422 nir_cf_node_as_block(nir_cf_node_prev(&if_stmt->cf_node));
423
424 lca = nir_dominance_lca(lca, pred_block);
425 }
426
427 nir_block *early_block =
428 state->instr_infos[def->parent_instr->index].early_block;
429
430 /* Some instructions may never be used. Flag them and the instruction
431 * placement code will get rid of them for us.
432 */
433 if (lca == NULL) {
434 def->parent_instr->block = NULL;
435 return true;
436 }
437
438 if (def->parent_instr->pass_flags & GCM_INSTR_SCHEDULE_EARLIER_ONLY &&
439 lca != def->parent_instr->block &&
440 nir_block_dominates(def->parent_instr->block, lca)) {
441 lca = def->parent_instr->block;
442 }
443
444 /* We now have the LCA of all of the uses. If our invariants hold,
445 * this is dominated by the block that we chose when scheduling early.
446 * We now walk up the dominance tree and pick the lowest block that is
447 * as far outside loops as we can get.
448 */
449 nir_block *best_block =
450 gcm_choose_block_for_instr(def->parent_instr, early_block, lca, state);
451
452 if (def->parent_instr->block != best_block)
453 state->progress = true;
454
455 def->parent_instr->block = best_block;
456
457 return true;
458 }
459
460 /** Schedules an instruction late
461 *
462 * This function performs a depth-first search starting at the given
463 * instruction and proceeding through its uses to schedule instructions as
464 * late as they can reasonably go in the dominance tree. The instructions
465 * are "scheduled" by updating their instr->block field.
466 *
467 * The name of this function is actually a bit of a misnomer as it doesn't
468 * schedule them "as late as possible" as the paper implies. Instead, it
469 * first finds the lates possible place it can schedule the instruction and
470 * then possibly schedules it earlier than that. The actual location is as
471 * far down the tree as we can go while trying to stay out of loops.
472 */
473 static void
474 gcm_schedule_late_instr(nir_instr *instr, struct gcm_state *state)
475 {
476 if (instr->pass_flags & GCM_INSTR_SCHEDULED_LATE)
477 return;
478
479 instr->pass_flags |= GCM_INSTR_SCHEDULED_LATE;
480
481 /* Pinned instructions are already scheduled so we don't need to do
482 * anything. Also, bailing here keeps us from ever following phi nodes
483 * which can be back-edges.
484 */
485 if (instr->pass_flags & GCM_INSTR_PINNED)
486 return;
487
488 nir_foreach_ssa_def(instr, gcm_schedule_late_def, state);
489 }
490
491 static void
492 gcm_place_instr(nir_instr *instr, struct gcm_state *state);
493
494 static bool
495 gcm_place_instr_def(nir_ssa_def *def, void *state)
496 {
497 nir_foreach_use(use_src, def)
498 gcm_place_instr(use_src->parent_instr, state);
499
500 return false;
501 }
502
503 static bool
504 gcm_replace_def_with_undef(nir_ssa_def *def, void *void_state)
505 {
506 struct gcm_state *state = void_state;
507
508 if (list_is_empty(&def->uses) && list_is_empty(&def->if_uses))
509 return true;
510
511 nir_ssa_undef_instr *undef =
512 nir_ssa_undef_instr_create(state->impl->function->shader,
513 def->num_components, def->bit_size);
514 nir_instr_insert(nir_before_cf_list(&state->impl->body), &undef->instr);
515 nir_ssa_def_rewrite_uses(def, nir_src_for_ssa(&undef->def));
516
517 return true;
518 }
519
520 /** Places an instrution back into the program
521 *
522 * The earlier passes of GCM simply choose blocks for each instruction and
523 * otherwise leave them alone. This pass actually places the instructions
524 * into their chosen blocks.
525 *
526 * To do so, we use a standard post-order depth-first search linearization
527 * algorithm. We walk over the uses of the given instruction and ensure
528 * that they are placed and then place this instruction. Because we are
529 * working on multiple blocks at a time, we keep track of the last inserted
530 * instruction per-block in the state structure's block_info array. When
531 * we insert an instruction in a block we insert it before the last
532 * instruction inserted in that block rather than the last instruction
533 * inserted globally.
534 */
535 static void
536 gcm_place_instr(nir_instr *instr, struct gcm_state *state)
537 {
538 if (instr->pass_flags & GCM_INSTR_PLACED)
539 return;
540
541 instr->pass_flags |= GCM_INSTR_PLACED;
542
543 if (instr->block == NULL) {
544 nir_foreach_ssa_def(instr, gcm_replace_def_with_undef, state);
545 nir_instr_remove(instr);
546 return;
547 }
548
549 /* Phi nodes are our once source of back-edges. Since right now we are
550 * only doing scheduling within blocks, we don't need to worry about
551 * them since they are always at the top. Just skip them completely.
552 */
553 if (instr->type == nir_instr_type_phi) {
554 assert(instr->pass_flags & GCM_INSTR_PINNED);
555 return;
556 }
557
558 nir_foreach_ssa_def(instr, gcm_place_instr_def, state);
559
560 if (instr->pass_flags & GCM_INSTR_PINNED) {
561 /* Pinned instructions have an implicit dependence on the pinned
562 * instructions that come after them in the block. Since the pinned
563 * instructions will naturally "chain" together, we only need to
564 * explicitly visit one of them.
565 */
566 for (nir_instr *after = nir_instr_next(instr);
567 after;
568 after = nir_instr_next(after)) {
569 if (after->pass_flags & GCM_INSTR_PINNED) {
570 gcm_place_instr(after, state);
571 break;
572 }
573 }
574 }
575
576 struct gcm_block_info *block_info = &state->blocks[instr->block->index];
577 if (!(instr->pass_flags & GCM_INSTR_PINNED)) {
578 exec_node_remove(&instr->node);
579
580 if (block_info->last_instr) {
581 exec_node_insert_node_before(&block_info->last_instr->node,
582 &instr->node);
583 } else {
584 /* Schedule it at the end of the block */
585 nir_instr *jump_instr = nir_block_last_instr(instr->block);
586 if (jump_instr && jump_instr->type == nir_instr_type_jump) {
587 exec_node_insert_node_before(&jump_instr->node, &instr->node);
588 } else {
589 exec_list_push_tail(&instr->block->instr_list, &instr->node);
590 }
591 }
592 }
593
594 block_info->last_instr = instr;
595 }
596
597 static bool
598 opt_gcm_impl(nir_function_impl *impl, bool value_number)
599 {
600 nir_metadata_require(impl, nir_metadata_block_index |
601 nir_metadata_dominance);
602
603 struct gcm_state state;
604
605 state.impl = impl;
606 state.instr = NULL;
607 state.progress = false;
608 exec_list_make_empty(&state.instrs);
609 state.blocks = rzalloc_array(NULL, struct gcm_block_info, impl->num_blocks);
610
611 gcm_build_block_info(&impl->body, &state, 0);
612
613 gcm_pin_instructions(impl, &state);
614
615 state.instr_infos =
616 rzalloc_array(NULL, struct gcm_instr_info, state.num_instrs);
617
618 if (value_number) {
619 struct set *gvn_set = nir_instr_set_create(NULL);
620 foreach_list_typed_safe(nir_instr, instr, node, &state.instrs) {
621 if (nir_instr_set_add_or_rewrite(gvn_set, instr)) {
622 nir_instr_remove(instr);
623 state.progress = true;
624 }
625 }
626 nir_instr_set_destroy(gvn_set);
627 }
628
629 foreach_list_typed(nir_instr, instr, node, &state.instrs)
630 gcm_schedule_early_instr(instr, &state);
631
632 foreach_list_typed(nir_instr, instr, node, &state.instrs)
633 gcm_schedule_late_instr(instr, &state);
634
635 while (!exec_list_is_empty(&state.instrs)) {
636 nir_instr *instr = exec_node_data(nir_instr,
637 state.instrs.tail_sentinel.prev, node);
638 gcm_place_instr(instr, &state);
639 }
640
641 ralloc_free(state.blocks);
642 ralloc_free(state.instr_infos);
643
644 nir_metadata_preserve(impl, nir_metadata_block_index |
645 nir_metadata_dominance);
646
647 return state.progress;
648 }
649
650 bool
651 nir_opt_gcm(nir_shader *shader, bool value_number)
652 {
653 bool progress = false;
654
655 nir_foreach_function(function, shader) {
656 if (function->impl)
657 progress |= opt_gcm_impl(function->impl, value_number);
658 }
659
660 return progress;
661 }