nir/search: Only allow matching SSA values
[mesa.git] / src / compiler / nir / nir_search.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include <inttypes.h>
29 #include "nir_search.h"
30
31 struct match_state {
32 bool inexact_match;
33 bool has_exact_alu;
34 unsigned variables_seen;
35 nir_alu_src variables[NIR_SEARCH_MAX_VARIABLES];
36 };
37
38 static bool
39 match_expression(const nir_search_expression *expr, nir_alu_instr *instr,
40 unsigned num_components, const uint8_t *swizzle,
41 struct match_state *state);
42
43 static const uint8_t identity_swizzle[] = { 0, 1, 2, 3 };
44
45 /**
46 * Check if a source produces a value of the given type.
47 *
48 * Used for satisfying 'a@type' constraints.
49 */
50 static bool
51 src_is_type(nir_src src, nir_alu_type type)
52 {
53 assert(type != nir_type_invalid);
54
55 if (!src.is_ssa)
56 return false;
57
58 /* Turn nir_type_bool32 into nir_type_bool...they're the same thing. */
59 if (nir_alu_type_get_base_type(type) == nir_type_bool)
60 type = nir_type_bool;
61
62 if (src.ssa->parent_instr->type == nir_instr_type_alu) {
63 nir_alu_instr *src_alu = nir_instr_as_alu(src.ssa->parent_instr);
64 nir_alu_type output_type = nir_op_infos[src_alu->op].output_type;
65
66 if (type == nir_type_bool) {
67 switch (src_alu->op) {
68 case nir_op_iand:
69 case nir_op_ior:
70 case nir_op_ixor:
71 return src_is_type(src_alu->src[0].src, nir_type_bool) &&
72 src_is_type(src_alu->src[1].src, nir_type_bool);
73 case nir_op_inot:
74 return src_is_type(src_alu->src[0].src, nir_type_bool);
75 default:
76 break;
77 }
78 }
79
80 return nir_alu_type_get_base_type(output_type) == type;
81 } else if (src.ssa->parent_instr->type == nir_instr_type_intrinsic) {
82 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(src.ssa->parent_instr);
83
84 if (type == nir_type_bool) {
85 return intr->intrinsic == nir_intrinsic_load_front_face ||
86 intr->intrinsic == nir_intrinsic_load_helper_invocation;
87 }
88 }
89
90 /* don't know */
91 return false;
92 }
93
94 static bool
95 match_value(const nir_search_value *value, nir_alu_instr *instr, unsigned src,
96 unsigned num_components, const uint8_t *swizzle,
97 struct match_state *state)
98 {
99 uint8_t new_swizzle[4];
100
101 /* Searching only works on SSA values because, if it's not SSA, we can't
102 * know if the value changed between one instance of that value in the
103 * expression and another. Also, the replace operation will place reads of
104 * that value right before the last instruction in the expression we're
105 * replacing so those reads will happen after the original reads and may
106 * not be valid if they're register reads.
107 */
108 if (!instr->src[src].src.is_ssa)
109 return false;
110
111 /* If the source is an explicitly sized source, then we need to reset
112 * both the number of components and the swizzle.
113 */
114 if (nir_op_infos[instr->op].input_sizes[src] != 0) {
115 num_components = nir_op_infos[instr->op].input_sizes[src];
116 swizzle = identity_swizzle;
117 }
118
119 for (unsigned i = 0; i < num_components; ++i)
120 new_swizzle[i] = instr->src[src].swizzle[swizzle[i]];
121
122 /* If the value has a specific bit size and it doesn't match, bail */
123 if (value->bit_size &&
124 nir_src_bit_size(instr->src[src].src) != value->bit_size)
125 return false;
126
127 switch (value->type) {
128 case nir_search_value_expression:
129 if (instr->src[src].src.ssa->parent_instr->type != nir_instr_type_alu)
130 return false;
131
132 return match_expression(nir_search_value_as_expression(value),
133 nir_instr_as_alu(instr->src[src].src.ssa->parent_instr),
134 num_components, new_swizzle, state);
135
136 case nir_search_value_variable: {
137 nir_search_variable *var = nir_search_value_as_variable(value);
138 assert(var->variable < NIR_SEARCH_MAX_VARIABLES);
139
140 if (state->variables_seen & (1 << var->variable)) {
141 if (state->variables[var->variable].src.ssa != instr->src[src].src.ssa)
142 return false;
143
144 assert(!instr->src[src].abs && !instr->src[src].negate);
145
146 for (unsigned i = 0; i < num_components; ++i) {
147 if (state->variables[var->variable].swizzle[i] != new_swizzle[i])
148 return false;
149 }
150
151 return true;
152 } else {
153 if (var->is_constant &&
154 instr->src[src].src.ssa->parent_instr->type != nir_instr_type_load_const)
155 return false;
156
157 if (var->cond && !var->cond(instr, src, num_components, new_swizzle))
158 return false;
159
160 if (var->type != nir_type_invalid &&
161 !src_is_type(instr->src[src].src, var->type))
162 return false;
163
164 state->variables_seen |= (1 << var->variable);
165 state->variables[var->variable].src = instr->src[src].src;
166 state->variables[var->variable].abs = false;
167 state->variables[var->variable].negate = false;
168
169 for (unsigned i = 0; i < 4; ++i) {
170 if (i < num_components)
171 state->variables[var->variable].swizzle[i] = new_swizzle[i];
172 else
173 state->variables[var->variable].swizzle[i] = 0;
174 }
175
176 return true;
177 }
178 }
179
180 case nir_search_value_constant: {
181 nir_search_constant *const_val = nir_search_value_as_constant(value);
182
183 if (!instr->src[src].src.is_ssa)
184 return false;
185
186 if (instr->src[src].src.ssa->parent_instr->type != nir_instr_type_load_const)
187 return false;
188
189 nir_load_const_instr *load =
190 nir_instr_as_load_const(instr->src[src].src.ssa->parent_instr);
191
192 switch (const_val->type) {
193 case nir_type_float:
194 for (unsigned i = 0; i < num_components; ++i) {
195 double val;
196 switch (load->def.bit_size) {
197 case 32:
198 val = load->value.f32[new_swizzle[i]];
199 break;
200 case 64:
201 val = load->value.f64[new_swizzle[i]];
202 break;
203 default:
204 unreachable("unknown bit size");
205 }
206
207 if (val != const_val->data.d)
208 return false;
209 }
210 return true;
211
212 case nir_type_int:
213 for (unsigned i = 0; i < num_components; ++i) {
214 int64_t val;
215 switch (load->def.bit_size) {
216 case 32:
217 val = load->value.i32[new_swizzle[i]];
218 break;
219 case 64:
220 val = load->value.i64[new_swizzle[i]];
221 break;
222 default:
223 unreachable("unknown bit size");
224 }
225
226 if (val != const_val->data.i)
227 return false;
228 }
229 return true;
230
231 case nir_type_uint:
232 case nir_type_bool32:
233 for (unsigned i = 0; i < num_components; ++i) {
234 uint64_t val;
235 switch (load->def.bit_size) {
236 case 32:
237 val = load->value.u32[new_swizzle[i]];
238 break;
239 case 64:
240 val = load->value.u64[new_swizzle[i]];
241 break;
242 default:
243 unreachable("unknown bit size");
244 }
245
246 if (val != const_val->data.u)
247 return false;
248 }
249 return true;
250
251 default:
252 unreachable("Invalid alu source type");
253 }
254 }
255
256 default:
257 unreachable("Invalid search value type");
258 }
259 }
260
261 static bool
262 match_expression(const nir_search_expression *expr, nir_alu_instr *instr,
263 unsigned num_components, const uint8_t *swizzle,
264 struct match_state *state)
265 {
266 if (instr->op != expr->opcode)
267 return false;
268
269 assert(instr->dest.dest.is_ssa);
270
271 if (expr->value.bit_size &&
272 instr->dest.dest.ssa.bit_size != expr->value.bit_size)
273 return false;
274
275 state->inexact_match = expr->inexact || state->inexact_match;
276 state->has_exact_alu = instr->exact || state->has_exact_alu;
277 if (state->inexact_match && state->has_exact_alu)
278 return false;
279
280 assert(!instr->dest.saturate);
281 assert(nir_op_infos[instr->op].num_inputs > 0);
282
283 /* If we have an explicitly sized destination, we can only handle the
284 * identity swizzle. While dot(vec3(a, b, c).zxy) is a valid
285 * expression, we don't have the information right now to propagate that
286 * swizzle through. We can only properly propagate swizzles if the
287 * instruction is vectorized.
288 */
289 if (nir_op_infos[instr->op].output_size != 0) {
290 for (unsigned i = 0; i < num_components; i++) {
291 if (swizzle[i] != i)
292 return false;
293 }
294 }
295
296 /* Stash off the current variables_seen bitmask. This way we can
297 * restore it prior to matching in the commutative case below.
298 */
299 unsigned variables_seen_stash = state->variables_seen;
300
301 bool matched = true;
302 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
303 if (!match_value(expr->srcs[i], instr, i, num_components,
304 swizzle, state)) {
305 matched = false;
306 break;
307 }
308 }
309
310 if (matched)
311 return true;
312
313 if (nir_op_infos[instr->op].algebraic_properties & NIR_OP_IS_COMMUTATIVE) {
314 assert(nir_op_infos[instr->op].num_inputs == 2);
315
316 /* Restore the variables_seen bitmask. If we don't do this, then we
317 * could end up with an erroneous failure due to variables found in the
318 * first match attempt above not matching those in the second.
319 */
320 state->variables_seen = variables_seen_stash;
321
322 if (!match_value(expr->srcs[0], instr, 1, num_components,
323 swizzle, state))
324 return false;
325
326 return match_value(expr->srcs[1], instr, 0, num_components,
327 swizzle, state);
328 } else {
329 return false;
330 }
331 }
332
333 typedef struct bitsize_tree {
334 unsigned num_srcs;
335 struct bitsize_tree *srcs[4];
336
337 unsigned common_size;
338 bool is_src_sized[4];
339 bool is_dest_sized;
340
341 unsigned dest_size;
342 unsigned src_size[4];
343 } bitsize_tree;
344
345 static bitsize_tree *
346 build_bitsize_tree(void *mem_ctx, struct match_state *state,
347 const nir_search_value *value)
348 {
349 bitsize_tree *tree = rzalloc(mem_ctx, bitsize_tree);
350
351 switch (value->type) {
352 case nir_search_value_expression: {
353 nir_search_expression *expr = nir_search_value_as_expression(value);
354 nir_op_info info = nir_op_infos[expr->opcode];
355 tree->num_srcs = info.num_inputs;
356 tree->common_size = 0;
357 for (unsigned i = 0; i < info.num_inputs; i++) {
358 tree->is_src_sized[i] = !!nir_alu_type_get_type_size(info.input_types[i]);
359 if (tree->is_src_sized[i])
360 tree->src_size[i] = nir_alu_type_get_type_size(info.input_types[i]);
361 tree->srcs[i] = build_bitsize_tree(mem_ctx, state, expr->srcs[i]);
362 }
363 tree->is_dest_sized = !!nir_alu_type_get_type_size(info.output_type);
364 if (tree->is_dest_sized)
365 tree->dest_size = nir_alu_type_get_type_size(info.output_type);
366 break;
367 }
368
369 case nir_search_value_variable: {
370 nir_search_variable *var = nir_search_value_as_variable(value);
371 tree->num_srcs = 0;
372 tree->is_dest_sized = true;
373 tree->dest_size = nir_src_bit_size(state->variables[var->variable].src);
374 break;
375 }
376
377 case nir_search_value_constant: {
378 tree->num_srcs = 0;
379 tree->is_dest_sized = false;
380 tree->common_size = 0;
381 break;
382 }
383 }
384
385 if (value->bit_size) {
386 assert(!tree->is_dest_sized || tree->dest_size == value->bit_size);
387 tree->common_size = value->bit_size;
388 }
389
390 return tree;
391 }
392
393 static unsigned
394 bitsize_tree_filter_up(bitsize_tree *tree)
395 {
396 for (unsigned i = 0; i < tree->num_srcs; i++) {
397 unsigned src_size = bitsize_tree_filter_up(tree->srcs[i]);
398 if (src_size == 0)
399 continue;
400
401 if (tree->is_src_sized[i]) {
402 assert(src_size == tree->src_size[i]);
403 } else if (tree->common_size != 0) {
404 assert(src_size == tree->common_size);
405 tree->src_size[i] = src_size;
406 } else {
407 tree->common_size = src_size;
408 tree->src_size[i] = src_size;
409 }
410 }
411
412 if (tree->num_srcs && tree->common_size) {
413 if (tree->dest_size == 0)
414 tree->dest_size = tree->common_size;
415 else if (!tree->is_dest_sized)
416 assert(tree->dest_size == tree->common_size);
417
418 for (unsigned i = 0; i < tree->num_srcs; i++) {
419 if (!tree->src_size[i])
420 tree->src_size[i] = tree->common_size;
421 }
422 }
423
424 return tree->dest_size;
425 }
426
427 static void
428 bitsize_tree_filter_down(bitsize_tree *tree, unsigned size)
429 {
430 if (tree->dest_size)
431 assert(tree->dest_size == size);
432 else
433 tree->dest_size = size;
434
435 if (!tree->is_dest_sized) {
436 if (tree->common_size)
437 assert(tree->common_size == size);
438 else
439 tree->common_size = size;
440 }
441
442 for (unsigned i = 0; i < tree->num_srcs; i++) {
443 if (!tree->src_size[i]) {
444 assert(tree->common_size);
445 tree->src_size[i] = tree->common_size;
446 }
447 bitsize_tree_filter_down(tree->srcs[i], tree->src_size[i]);
448 }
449 }
450
451 static nir_alu_src
452 construct_value(const nir_search_value *value,
453 unsigned num_components, bitsize_tree *bitsize,
454 struct match_state *state,
455 nir_instr *instr, void *mem_ctx)
456 {
457 switch (value->type) {
458 case nir_search_value_expression: {
459 const nir_search_expression *expr = nir_search_value_as_expression(value);
460
461 if (nir_op_infos[expr->opcode].output_size != 0)
462 num_components = nir_op_infos[expr->opcode].output_size;
463
464 nir_alu_instr *alu = nir_alu_instr_create(mem_ctx, expr->opcode);
465 nir_ssa_dest_init(&alu->instr, &alu->dest.dest, num_components,
466 bitsize->dest_size, NULL);
467 alu->dest.write_mask = (1 << num_components) - 1;
468 alu->dest.saturate = false;
469
470 /* We have no way of knowing what values in a given search expression
471 * map to a particular replacement value. Therefore, if the
472 * expression we are replacing has any exact values, the entire
473 * replacement should be exact.
474 */
475 alu->exact = state->has_exact_alu;
476
477 for (unsigned i = 0; i < nir_op_infos[expr->opcode].num_inputs; i++) {
478 /* If the source is an explicitly sized source, then we need to reset
479 * the number of components to match.
480 */
481 if (nir_op_infos[alu->op].input_sizes[i] != 0)
482 num_components = nir_op_infos[alu->op].input_sizes[i];
483
484 alu->src[i] = construct_value(expr->srcs[i],
485 num_components, bitsize->srcs[i],
486 state, instr, mem_ctx);
487 }
488
489 nir_instr_insert_before(instr, &alu->instr);
490
491 nir_alu_src val;
492 val.src = nir_src_for_ssa(&alu->dest.dest.ssa);
493 val.negate = false;
494 val.abs = false,
495 memcpy(val.swizzle, identity_swizzle, sizeof val.swizzle);
496
497 return val;
498 }
499
500 case nir_search_value_variable: {
501 const nir_search_variable *var = nir_search_value_as_variable(value);
502 assert(state->variables_seen & (1 << var->variable));
503
504 nir_alu_src val = { NIR_SRC_INIT };
505 nir_alu_src_copy(&val, &state->variables[var->variable], mem_ctx);
506
507 assert(!var->is_constant);
508
509 return val;
510 }
511
512 case nir_search_value_constant: {
513 const nir_search_constant *c = nir_search_value_as_constant(value);
514 nir_load_const_instr *load =
515 nir_load_const_instr_create(mem_ctx, 1, bitsize->dest_size);
516
517 switch (c->type) {
518 case nir_type_float:
519 load->def.name = ralloc_asprintf(load, "%f", c->data.d);
520 switch (bitsize->dest_size) {
521 case 32:
522 load->value.f32[0] = c->data.d;
523 break;
524 case 64:
525 load->value.f64[0] = c->data.d;
526 break;
527 default:
528 unreachable("unknown bit size");
529 }
530 break;
531
532 case nir_type_int:
533 load->def.name = ralloc_asprintf(load, "%" PRIi64, c->data.i);
534 switch (bitsize->dest_size) {
535 case 32:
536 load->value.i32[0] = c->data.i;
537 break;
538 case 64:
539 load->value.i64[0] = c->data.i;
540 break;
541 default:
542 unreachable("unknown bit size");
543 }
544 break;
545
546 case nir_type_uint:
547 load->def.name = ralloc_asprintf(load, "%" PRIu64, c->data.u);
548 switch (bitsize->dest_size) {
549 case 32:
550 load->value.u32[0] = c->data.u;
551 break;
552 case 64:
553 load->value.u64[0] = c->data.u;
554 break;
555 default:
556 unreachable("unknown bit size");
557 }
558 break;
559
560 case nir_type_bool32:
561 load->value.u32[0] = c->data.u;
562 break;
563 default:
564 unreachable("Invalid alu source type");
565 }
566
567 nir_instr_insert_before(instr, &load->instr);
568
569 nir_alu_src val;
570 val.src = nir_src_for_ssa(&load->def);
571 val.negate = false;
572 val.abs = false,
573 memset(val.swizzle, 0, sizeof val.swizzle);
574
575 return val;
576 }
577
578 default:
579 unreachable("Invalid search value type");
580 }
581 }
582
583 nir_alu_instr *
584 nir_replace_instr(nir_alu_instr *instr, const nir_search_expression *search,
585 const nir_search_value *replace, void *mem_ctx)
586 {
587 uint8_t swizzle[4] = { 0, 0, 0, 0 };
588
589 for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; ++i)
590 swizzle[i] = i;
591
592 assert(instr->dest.dest.is_ssa);
593
594 struct match_state state;
595 state.inexact_match = false;
596 state.has_exact_alu = false;
597 state.variables_seen = 0;
598
599 if (!match_expression(search, instr, instr->dest.dest.ssa.num_components,
600 swizzle, &state))
601 return NULL;
602
603 void *bitsize_ctx = ralloc_context(NULL);
604 bitsize_tree *tree = build_bitsize_tree(bitsize_ctx, &state, replace);
605 bitsize_tree_filter_up(tree);
606 bitsize_tree_filter_down(tree, instr->dest.dest.ssa.bit_size);
607
608 /* Inserting a mov may be unnecessary. However, it's much easier to
609 * simply let copy propagation clean this up than to try to go through
610 * and rewrite swizzles ourselves.
611 */
612 nir_alu_instr *mov = nir_alu_instr_create(mem_ctx, nir_op_imov);
613 mov->dest.write_mask = instr->dest.write_mask;
614 nir_ssa_dest_init(&mov->instr, &mov->dest.dest,
615 instr->dest.dest.ssa.num_components,
616 instr->dest.dest.ssa.bit_size, NULL);
617
618 mov->src[0] = construct_value(replace,
619 instr->dest.dest.ssa.num_components, tree,
620 &state, &instr->instr, mem_ctx);
621 nir_instr_insert_before(&instr->instr, &mov->instr);
622
623 nir_ssa_def_rewrite_uses(&instr->dest.dest.ssa,
624 nir_src_for_ssa(&mov->dest.dest.ssa));
625
626 /* We know this one has no more uses because we just rewrote them all,
627 * so we can remove it. The rest of the matched expression, however, we
628 * don't know so much about. We'll just let dead code clean them up.
629 */
630 nir_instr_remove(&instr->instr);
631
632 ralloc_free(bitsize_ctx);
633
634 return mov;
635 }