nir: Add a couple trivial abs optimizations
[mesa.git] / src / compiler / nir / nir_serialize.c
1 /*
2 * Copyright © 2017 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "nir_serialize.h"
25 #include "nir_control_flow.h"
26 #include "util/u_dynarray.h"
27
28 typedef struct {
29 size_t blob_offset;
30 nir_ssa_def *src;
31 nir_block *block;
32 } write_phi_fixup;
33
34 typedef struct {
35 const nir_shader *nir;
36
37 struct blob *blob;
38
39 /* maps pointer to index */
40 struct hash_table *remap_table;
41
42 /* the next index to assign to a NIR in-memory object */
43 uintptr_t next_idx;
44
45 /* Array of write_phi_fixup structs representing phi sources that need to
46 * be resolved in the second pass.
47 */
48 struct util_dynarray phi_fixups;
49 } write_ctx;
50
51 typedef struct {
52 nir_shader *nir;
53
54 struct blob_reader *blob;
55
56 /* the next index to assign to a NIR in-memory object */
57 uintptr_t next_idx;
58
59 /* The length of the index -> object table */
60 uintptr_t idx_table_len;
61
62 /* map from index to deserialized pointer */
63 void **idx_table;
64
65 /* List of phi sources. */
66 struct list_head phi_srcs;
67
68 } read_ctx;
69
70 static void
71 write_add_object(write_ctx *ctx, const void *obj)
72 {
73 uintptr_t index = ctx->next_idx++;
74 _mesa_hash_table_insert(ctx->remap_table, obj, (void *) index);
75 }
76
77 static uintptr_t
78 write_lookup_object(write_ctx *ctx, const void *obj)
79 {
80 struct hash_entry *entry = _mesa_hash_table_search(ctx->remap_table, obj);
81 assert(entry);
82 return (uintptr_t) entry->data;
83 }
84
85 static void
86 write_object(write_ctx *ctx, const void *obj)
87 {
88 blob_write_intptr(ctx->blob, write_lookup_object(ctx, obj));
89 }
90
91 static void
92 read_add_object(read_ctx *ctx, void *obj)
93 {
94 assert(ctx->next_idx < ctx->idx_table_len);
95 ctx->idx_table[ctx->next_idx++] = obj;
96 }
97
98 static void *
99 read_lookup_object(read_ctx *ctx, uintptr_t idx)
100 {
101 assert(idx < ctx->idx_table_len);
102 return ctx->idx_table[idx];
103 }
104
105 static void *
106 read_object(read_ctx *ctx)
107 {
108 return read_lookup_object(ctx, blob_read_intptr(ctx->blob));
109 }
110
111 static void
112 write_constant(write_ctx *ctx, const nir_constant *c)
113 {
114 blob_write_bytes(ctx->blob, c->values, sizeof(c->values));
115 blob_write_uint32(ctx->blob, c->num_elements);
116 for (unsigned i = 0; i < c->num_elements; i++)
117 write_constant(ctx, c->elements[i]);
118 }
119
120 static nir_constant *
121 read_constant(read_ctx *ctx, nir_variable *nvar)
122 {
123 nir_constant *c = ralloc(nvar, nir_constant);
124
125 blob_copy_bytes(ctx->blob, (uint8_t *)c->values, sizeof(c->values));
126 c->num_elements = blob_read_uint32(ctx->blob);
127 c->elements = ralloc_array(ctx->nir, nir_constant *, c->num_elements);
128 for (unsigned i = 0; i < c->num_elements; i++)
129 c->elements[i] = read_constant(ctx, nvar);
130
131 return c;
132 }
133
134 static void
135 write_variable(write_ctx *ctx, const nir_variable *var)
136 {
137 write_add_object(ctx, var);
138 encode_type_to_blob(ctx->blob, var->type);
139 blob_write_uint32(ctx->blob, !!(var->name));
140 if (var->name)
141 blob_write_string(ctx->blob, var->name);
142 blob_write_bytes(ctx->blob, (uint8_t *) &var->data, sizeof(var->data));
143 blob_write_uint32(ctx->blob, var->num_state_slots);
144 blob_write_bytes(ctx->blob, (uint8_t *) var->state_slots,
145 var->num_state_slots * sizeof(nir_state_slot));
146 blob_write_uint32(ctx->blob, !!(var->constant_initializer));
147 if (var->constant_initializer)
148 write_constant(ctx, var->constant_initializer);
149 blob_write_uint32(ctx->blob, !!(var->interface_type));
150 if (var->interface_type)
151 encode_type_to_blob(ctx->blob, var->interface_type);
152 blob_write_uint32(ctx->blob, var->num_members);
153 if (var->num_members > 0) {
154 blob_write_bytes(ctx->blob, (uint8_t *) var->members,
155 var->num_members * sizeof(*var->members));
156 }
157 }
158
159 static nir_variable *
160 read_variable(read_ctx *ctx)
161 {
162 nir_variable *var = rzalloc(ctx->nir, nir_variable);
163 read_add_object(ctx, var);
164
165 var->type = decode_type_from_blob(ctx->blob);
166 bool has_name = blob_read_uint32(ctx->blob);
167 if (has_name) {
168 const char *name = blob_read_string(ctx->blob);
169 var->name = ralloc_strdup(var, name);
170 } else {
171 var->name = NULL;
172 }
173 blob_copy_bytes(ctx->blob, (uint8_t *) &var->data, sizeof(var->data));
174 var->num_state_slots = blob_read_uint32(ctx->blob);
175 var->state_slots = ralloc_array(var, nir_state_slot, var->num_state_slots);
176 blob_copy_bytes(ctx->blob, (uint8_t *) var->state_slots,
177 var->num_state_slots * sizeof(nir_state_slot));
178 bool has_const_initializer = blob_read_uint32(ctx->blob);
179 if (has_const_initializer)
180 var->constant_initializer = read_constant(ctx, var);
181 else
182 var->constant_initializer = NULL;
183 bool has_interface_type = blob_read_uint32(ctx->blob);
184 if (has_interface_type)
185 var->interface_type = decode_type_from_blob(ctx->blob);
186 else
187 var->interface_type = NULL;
188 var->num_members = blob_read_uint32(ctx->blob);
189 if (var->num_members > 0) {
190 var->members = ralloc_array(var, struct nir_variable_data,
191 var->num_members);
192 blob_copy_bytes(ctx->blob, (uint8_t *) var->members,
193 var->num_members * sizeof(*var->members));
194 }
195
196 return var;
197 }
198
199 static void
200 write_var_list(write_ctx *ctx, const struct exec_list *src)
201 {
202 blob_write_uint32(ctx->blob, exec_list_length(src));
203 foreach_list_typed(nir_variable, var, node, src) {
204 write_variable(ctx, var);
205 }
206 }
207
208 static void
209 read_var_list(read_ctx *ctx, struct exec_list *dst)
210 {
211 exec_list_make_empty(dst);
212 unsigned num_vars = blob_read_uint32(ctx->blob);
213 for (unsigned i = 0; i < num_vars; i++) {
214 nir_variable *var = read_variable(ctx);
215 exec_list_push_tail(dst, &var->node);
216 }
217 }
218
219 static void
220 write_register(write_ctx *ctx, const nir_register *reg)
221 {
222 write_add_object(ctx, reg);
223 blob_write_uint32(ctx->blob, reg->num_components);
224 blob_write_uint32(ctx->blob, reg->bit_size);
225 blob_write_uint32(ctx->blob, reg->num_array_elems);
226 blob_write_uint32(ctx->blob, reg->index);
227 blob_write_uint32(ctx->blob, !!(reg->name));
228 if (reg->name)
229 blob_write_string(ctx->blob, reg->name);
230 blob_write_uint32(ctx->blob, reg->is_global << 1 | reg->is_packed);
231 }
232
233 static nir_register *
234 read_register(read_ctx *ctx)
235 {
236 nir_register *reg = ralloc(ctx->nir, nir_register);
237 read_add_object(ctx, reg);
238 reg->num_components = blob_read_uint32(ctx->blob);
239 reg->bit_size = blob_read_uint32(ctx->blob);
240 reg->num_array_elems = blob_read_uint32(ctx->blob);
241 reg->index = blob_read_uint32(ctx->blob);
242 bool has_name = blob_read_uint32(ctx->blob);
243 if (has_name) {
244 const char *name = blob_read_string(ctx->blob);
245 reg->name = ralloc_strdup(reg, name);
246 } else {
247 reg->name = NULL;
248 }
249 unsigned flags = blob_read_uint32(ctx->blob);
250 reg->is_global = flags & 0x2;
251 reg->is_packed = flags & 0x1;
252
253 list_inithead(&reg->uses);
254 list_inithead(&reg->defs);
255 list_inithead(&reg->if_uses);
256
257 return reg;
258 }
259
260 static void
261 write_reg_list(write_ctx *ctx, const struct exec_list *src)
262 {
263 blob_write_uint32(ctx->blob, exec_list_length(src));
264 foreach_list_typed(nir_register, reg, node, src)
265 write_register(ctx, reg);
266 }
267
268 static void
269 read_reg_list(read_ctx *ctx, struct exec_list *dst)
270 {
271 exec_list_make_empty(dst);
272 unsigned num_regs = blob_read_uint32(ctx->blob);
273 for (unsigned i = 0; i < num_regs; i++) {
274 nir_register *reg = read_register(ctx);
275 exec_list_push_tail(dst, &reg->node);
276 }
277 }
278
279 static void
280 write_src(write_ctx *ctx, const nir_src *src)
281 {
282 /* Since sources are very frequent, we try to save some space when storing
283 * them. In particular, we store whether the source is a register and
284 * whether the register has an indirect index in the low two bits. We can
285 * assume that the high two bits of the index are zero, since otherwise our
286 * address space would've been exhausted allocating the remap table!
287 */
288 if (src->is_ssa) {
289 uintptr_t idx = write_lookup_object(ctx, src->ssa) << 2;
290 idx |= 1;
291 blob_write_intptr(ctx->blob, idx);
292 } else {
293 uintptr_t idx = write_lookup_object(ctx, src->reg.reg) << 2;
294 if (src->reg.indirect)
295 idx |= 2;
296 blob_write_intptr(ctx->blob, idx);
297 blob_write_uint32(ctx->blob, src->reg.base_offset);
298 if (src->reg.indirect) {
299 write_src(ctx, src->reg.indirect);
300 }
301 }
302 }
303
304 static void
305 read_src(read_ctx *ctx, nir_src *src, void *mem_ctx)
306 {
307 uintptr_t val = blob_read_intptr(ctx->blob);
308 uintptr_t idx = val >> 2;
309 src->is_ssa = val & 0x1;
310 if (src->is_ssa) {
311 src->ssa = read_lookup_object(ctx, idx);
312 } else {
313 bool is_indirect = val & 0x2;
314 src->reg.reg = read_lookup_object(ctx, idx);
315 src->reg.base_offset = blob_read_uint32(ctx->blob);
316 if (is_indirect) {
317 src->reg.indirect = ralloc(mem_ctx, nir_src);
318 read_src(ctx, src->reg.indirect, mem_ctx);
319 } else {
320 src->reg.indirect = NULL;
321 }
322 }
323 }
324
325 static void
326 write_dest(write_ctx *ctx, const nir_dest *dst)
327 {
328 uint32_t val = dst->is_ssa;
329 if (dst->is_ssa) {
330 val |= !!(dst->ssa.name) << 1;
331 val |= dst->ssa.num_components << 2;
332 val |= dst->ssa.bit_size << 5;
333 } else {
334 val |= !!(dst->reg.indirect) << 1;
335 }
336 blob_write_uint32(ctx->blob, val);
337 if (dst->is_ssa) {
338 write_add_object(ctx, &dst->ssa);
339 if (dst->ssa.name)
340 blob_write_string(ctx->blob, dst->ssa.name);
341 } else {
342 blob_write_intptr(ctx->blob, write_lookup_object(ctx, dst->reg.reg));
343 blob_write_uint32(ctx->blob, dst->reg.base_offset);
344 if (dst->reg.indirect)
345 write_src(ctx, dst->reg.indirect);
346 }
347 }
348
349 static void
350 read_dest(read_ctx *ctx, nir_dest *dst, nir_instr *instr)
351 {
352 uint32_t val = blob_read_uint32(ctx->blob);
353 bool is_ssa = val & 0x1;
354 if (is_ssa) {
355 bool has_name = val & 0x2;
356 unsigned num_components = (val >> 2) & 0x7;
357 unsigned bit_size = val >> 5;
358 char *name = has_name ? blob_read_string(ctx->blob) : NULL;
359 nir_ssa_dest_init(instr, dst, num_components, bit_size, name);
360 read_add_object(ctx, &dst->ssa);
361 } else {
362 bool is_indirect = val & 0x2;
363 dst->reg.reg = read_object(ctx);
364 dst->reg.base_offset = blob_read_uint32(ctx->blob);
365 if (is_indirect) {
366 dst->reg.indirect = ralloc(instr, nir_src);
367 read_src(ctx, dst->reg.indirect, instr);
368 }
369 }
370 }
371
372 static void
373 write_alu(write_ctx *ctx, const nir_alu_instr *alu)
374 {
375 blob_write_uint32(ctx->blob, alu->op);
376 uint32_t flags = alu->exact;
377 flags |= alu->dest.saturate << 1;
378 flags |= alu->dest.write_mask << 2;
379 blob_write_uint32(ctx->blob, flags);
380
381 write_dest(ctx, &alu->dest.dest);
382
383 for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
384 write_src(ctx, &alu->src[i].src);
385 flags = alu->src[i].negate;
386 flags |= alu->src[i].abs << 1;
387 for (unsigned j = 0; j < 4; j++)
388 flags |= alu->src[i].swizzle[j] << (2 + 2 * j);
389 blob_write_uint32(ctx->blob, flags);
390 }
391 }
392
393 static nir_alu_instr *
394 read_alu(read_ctx *ctx)
395 {
396 nir_op op = blob_read_uint32(ctx->blob);
397 nir_alu_instr *alu = nir_alu_instr_create(ctx->nir, op);
398
399 uint32_t flags = blob_read_uint32(ctx->blob);
400 alu->exact = flags & 1;
401 alu->dest.saturate = flags & 2;
402 alu->dest.write_mask = flags >> 2;
403
404 read_dest(ctx, &alu->dest.dest, &alu->instr);
405
406 for (unsigned i = 0; i < nir_op_infos[op].num_inputs; i++) {
407 read_src(ctx, &alu->src[i].src, &alu->instr);
408 flags = blob_read_uint32(ctx->blob);
409 alu->src[i].negate = flags & 1;
410 alu->src[i].abs = flags & 2;
411 for (unsigned j = 0; j < 4; j++)
412 alu->src[i].swizzle[j] = (flags >> (2 * j + 2)) & 3;
413 }
414
415 return alu;
416 }
417
418 static void
419 write_deref(write_ctx *ctx, const nir_deref_instr *deref)
420 {
421 blob_write_uint32(ctx->blob, deref->deref_type);
422
423 blob_write_uint32(ctx->blob, deref->mode);
424 encode_type_to_blob(ctx->blob, deref->type);
425
426 write_dest(ctx, &deref->dest);
427
428 if (deref->deref_type == nir_deref_type_var) {
429 write_object(ctx, deref->var);
430 return;
431 }
432
433 write_src(ctx, &deref->parent);
434
435 switch (deref->deref_type) {
436 case nir_deref_type_struct:
437 blob_write_uint32(ctx->blob, deref->strct.index);
438 break;
439
440 case nir_deref_type_array:
441 write_src(ctx, &deref->arr.index);
442 break;
443
444 case nir_deref_type_array_wildcard:
445 case nir_deref_type_cast:
446 /* Nothing to do */
447 break;
448
449 default:
450 unreachable("Invalid deref type");
451 }
452 }
453
454 static nir_deref_instr *
455 read_deref(read_ctx *ctx)
456 {
457 nir_deref_type deref_type = blob_read_uint32(ctx->blob);
458 nir_deref_instr *deref = nir_deref_instr_create(ctx->nir, deref_type);
459
460 deref->mode = blob_read_uint32(ctx->blob);
461 deref->type = decode_type_from_blob(ctx->blob);
462
463 read_dest(ctx, &deref->dest, &deref->instr);
464
465 if (deref_type == nir_deref_type_var) {
466 deref->var = read_object(ctx);
467 return deref;
468 }
469
470 read_src(ctx, &deref->parent, &deref->instr);
471
472 switch (deref->deref_type) {
473 case nir_deref_type_struct:
474 deref->strct.index = blob_read_uint32(ctx->blob);
475 break;
476
477 case nir_deref_type_array:
478 read_src(ctx, &deref->arr.index, &deref->instr);
479 break;
480
481 case nir_deref_type_array_wildcard:
482 case nir_deref_type_cast:
483 /* Nothing to do */
484 break;
485
486 default:
487 unreachable("Invalid deref type");
488 }
489
490 return deref;
491 }
492
493 static void
494 write_intrinsic(write_ctx *ctx, const nir_intrinsic_instr *intrin)
495 {
496 blob_write_uint32(ctx->blob, intrin->intrinsic);
497
498 unsigned num_srcs = nir_intrinsic_infos[intrin->intrinsic].num_srcs;
499 unsigned num_indices = nir_intrinsic_infos[intrin->intrinsic].num_indices;
500
501 blob_write_uint32(ctx->blob, intrin->num_components);
502
503 if (nir_intrinsic_infos[intrin->intrinsic].has_dest)
504 write_dest(ctx, &intrin->dest);
505
506 for (unsigned i = 0; i < num_srcs; i++)
507 write_src(ctx, &intrin->src[i]);
508
509 for (unsigned i = 0; i < num_indices; i++)
510 blob_write_uint32(ctx->blob, intrin->const_index[i]);
511 }
512
513 static nir_intrinsic_instr *
514 read_intrinsic(read_ctx *ctx)
515 {
516 nir_intrinsic_op op = blob_read_uint32(ctx->blob);
517
518 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(ctx->nir, op);
519
520 unsigned num_srcs = nir_intrinsic_infos[op].num_srcs;
521 unsigned num_indices = nir_intrinsic_infos[op].num_indices;
522
523 intrin->num_components = blob_read_uint32(ctx->blob);
524
525 if (nir_intrinsic_infos[op].has_dest)
526 read_dest(ctx, &intrin->dest, &intrin->instr);
527
528 for (unsigned i = 0; i < num_srcs; i++)
529 read_src(ctx, &intrin->src[i], &intrin->instr);
530
531 for (unsigned i = 0; i < num_indices; i++)
532 intrin->const_index[i] = blob_read_uint32(ctx->blob);
533
534 return intrin;
535 }
536
537 static void
538 write_load_const(write_ctx *ctx, const nir_load_const_instr *lc)
539 {
540 uint32_t val = lc->def.num_components;
541 val |= lc->def.bit_size << 3;
542 blob_write_uint32(ctx->blob, val);
543 blob_write_bytes(ctx->blob, (uint8_t *) &lc->value, sizeof(lc->value));
544 write_add_object(ctx, &lc->def);
545 }
546
547 static nir_load_const_instr *
548 read_load_const(read_ctx *ctx)
549 {
550 uint32_t val = blob_read_uint32(ctx->blob);
551
552 nir_load_const_instr *lc =
553 nir_load_const_instr_create(ctx->nir, val & 0x7, val >> 3);
554
555 blob_copy_bytes(ctx->blob, (uint8_t *) &lc->value, sizeof(lc->value));
556 read_add_object(ctx, &lc->def);
557 return lc;
558 }
559
560 static void
561 write_ssa_undef(write_ctx *ctx, const nir_ssa_undef_instr *undef)
562 {
563 uint32_t val = undef->def.num_components;
564 val |= undef->def.bit_size << 3;
565 blob_write_uint32(ctx->blob, val);
566 write_add_object(ctx, &undef->def);
567 }
568
569 static nir_ssa_undef_instr *
570 read_ssa_undef(read_ctx *ctx)
571 {
572 uint32_t val = blob_read_uint32(ctx->blob);
573
574 nir_ssa_undef_instr *undef =
575 nir_ssa_undef_instr_create(ctx->nir, val & 0x7, val >> 3);
576
577 read_add_object(ctx, &undef->def);
578 return undef;
579 }
580
581 union packed_tex_data {
582 uint32_t u32;
583 struct {
584 enum glsl_sampler_dim sampler_dim:4;
585 nir_alu_type dest_type:8;
586 unsigned coord_components:3;
587 unsigned is_array:1;
588 unsigned is_shadow:1;
589 unsigned is_new_style_shadow:1;
590 unsigned component:2;
591 unsigned unused:10; /* Mark unused for valgrind. */
592 } u;
593 };
594
595 static void
596 write_tex(write_ctx *ctx, const nir_tex_instr *tex)
597 {
598 blob_write_uint32(ctx->blob, tex->num_srcs);
599 blob_write_uint32(ctx->blob, tex->op);
600 blob_write_uint32(ctx->blob, tex->texture_index);
601 blob_write_uint32(ctx->blob, tex->texture_array_size);
602 blob_write_uint32(ctx->blob, tex->sampler_index);
603
604 STATIC_ASSERT(sizeof(union packed_tex_data) == sizeof(uint32_t));
605 union packed_tex_data packed = {
606 .u.sampler_dim = tex->sampler_dim,
607 .u.dest_type = tex->dest_type,
608 .u.coord_components = tex->coord_components,
609 .u.is_array = tex->is_array,
610 .u.is_shadow = tex->is_shadow,
611 .u.is_new_style_shadow = tex->is_new_style_shadow,
612 .u.component = tex->component,
613 };
614 blob_write_uint32(ctx->blob, packed.u32);
615
616 write_dest(ctx, &tex->dest);
617 for (unsigned i = 0; i < tex->num_srcs; i++) {
618 blob_write_uint32(ctx->blob, tex->src[i].src_type);
619 write_src(ctx, &tex->src[i].src);
620 }
621 }
622
623 static nir_tex_instr *
624 read_tex(read_ctx *ctx)
625 {
626 unsigned num_srcs = blob_read_uint32(ctx->blob);
627 nir_tex_instr *tex = nir_tex_instr_create(ctx->nir, num_srcs);
628
629 tex->op = blob_read_uint32(ctx->blob);
630 tex->texture_index = blob_read_uint32(ctx->blob);
631 tex->texture_array_size = blob_read_uint32(ctx->blob);
632 tex->sampler_index = blob_read_uint32(ctx->blob);
633
634 union packed_tex_data packed;
635 packed.u32 = blob_read_uint32(ctx->blob);
636 tex->sampler_dim = packed.u.sampler_dim;
637 tex->dest_type = packed.u.dest_type;
638 tex->coord_components = packed.u.coord_components;
639 tex->is_array = packed.u.is_array;
640 tex->is_shadow = packed.u.is_shadow;
641 tex->is_new_style_shadow = packed.u.is_new_style_shadow;
642 tex->component = packed.u.component;
643
644 read_dest(ctx, &tex->dest, &tex->instr);
645 for (unsigned i = 0; i < tex->num_srcs; i++) {
646 tex->src[i].src_type = blob_read_uint32(ctx->blob);
647 read_src(ctx, &tex->src[i].src, &tex->instr);
648 }
649
650 return tex;
651 }
652
653 static void
654 write_phi(write_ctx *ctx, const nir_phi_instr *phi)
655 {
656 /* Phi nodes are special, since they may reference SSA definitions and
657 * basic blocks that don't exist yet. We leave two empty uintptr_t's here,
658 * and then store enough information so that a later fixup pass can fill
659 * them in correctly.
660 */
661 write_dest(ctx, &phi->dest);
662
663 blob_write_uint32(ctx->blob, exec_list_length(&phi->srcs));
664
665 nir_foreach_phi_src(src, phi) {
666 assert(src->src.is_ssa);
667 size_t blob_offset = blob_reserve_intptr(ctx->blob);
668 MAYBE_UNUSED size_t blob_offset2 = blob_reserve_intptr(ctx->blob);
669 assert(blob_offset + sizeof(uintptr_t) == blob_offset2);
670 write_phi_fixup fixup = {
671 .blob_offset = blob_offset,
672 .src = src->src.ssa,
673 .block = src->pred,
674 };
675 util_dynarray_append(&ctx->phi_fixups, write_phi_fixup, fixup);
676 }
677 }
678
679 static void
680 write_fixup_phis(write_ctx *ctx)
681 {
682 util_dynarray_foreach(&ctx->phi_fixups, write_phi_fixup, fixup) {
683 uintptr_t *blob_ptr = (uintptr_t *)(ctx->blob->data + fixup->blob_offset);
684 blob_ptr[0] = write_lookup_object(ctx, fixup->src);
685 blob_ptr[1] = write_lookup_object(ctx, fixup->block);
686 }
687
688 util_dynarray_clear(&ctx->phi_fixups);
689 }
690
691 static nir_phi_instr *
692 read_phi(read_ctx *ctx, nir_block *blk)
693 {
694 nir_phi_instr *phi = nir_phi_instr_create(ctx->nir);
695
696 read_dest(ctx, &phi->dest, &phi->instr);
697
698 unsigned num_srcs = blob_read_uint32(ctx->blob);
699
700 /* For similar reasons as before, we just store the index directly into the
701 * pointer, and let a later pass resolve the phi sources.
702 *
703 * In order to ensure that the copied sources (which are just the indices
704 * from the blob for now) don't get inserted into the old shader's use-def
705 * lists, we have to add the phi instruction *before* we set up its
706 * sources.
707 */
708 nir_instr_insert_after_block(blk, &phi->instr);
709
710 for (unsigned i = 0; i < num_srcs; i++) {
711 nir_phi_src *src = ralloc(phi, nir_phi_src);
712
713 src->src.is_ssa = true;
714 src->src.ssa = (nir_ssa_def *) blob_read_intptr(ctx->blob);
715 src->pred = (nir_block *) blob_read_intptr(ctx->blob);
716
717 /* Since we're not letting nir_insert_instr handle use/def stuff for us,
718 * we have to set the parent_instr manually. It doesn't really matter
719 * when we do it, so we might as well do it here.
720 */
721 src->src.parent_instr = &phi->instr;
722
723 /* Stash it in the list of phi sources. We'll walk this list and fix up
724 * sources at the very end of read_function_impl.
725 */
726 list_add(&src->src.use_link, &ctx->phi_srcs);
727
728 exec_list_push_tail(&phi->srcs, &src->node);
729 }
730
731 return phi;
732 }
733
734 static void
735 read_fixup_phis(read_ctx *ctx)
736 {
737 list_for_each_entry_safe(nir_phi_src, src, &ctx->phi_srcs, src.use_link) {
738 src->pred = read_lookup_object(ctx, (uintptr_t)src->pred);
739 src->src.ssa = read_lookup_object(ctx, (uintptr_t)src->src.ssa);
740
741 /* Remove from this list */
742 list_del(&src->src.use_link);
743
744 list_addtail(&src->src.use_link, &src->src.ssa->uses);
745 }
746 assert(list_empty(&ctx->phi_srcs));
747 }
748
749 static void
750 write_jump(write_ctx *ctx, const nir_jump_instr *jmp)
751 {
752 blob_write_uint32(ctx->blob, jmp->type);
753 }
754
755 static nir_jump_instr *
756 read_jump(read_ctx *ctx)
757 {
758 nir_jump_type type = blob_read_uint32(ctx->blob);
759 nir_jump_instr *jmp = nir_jump_instr_create(ctx->nir, type);
760 return jmp;
761 }
762
763 static void
764 write_call(write_ctx *ctx, const nir_call_instr *call)
765 {
766 blob_write_intptr(ctx->blob, write_lookup_object(ctx, call->callee));
767
768 for (unsigned i = 0; i < call->num_params; i++)
769 write_src(ctx, &call->params[i]);
770 }
771
772 static nir_call_instr *
773 read_call(read_ctx *ctx)
774 {
775 nir_function *callee = read_object(ctx);
776 nir_call_instr *call = nir_call_instr_create(ctx->nir, callee);
777
778 for (unsigned i = 0; i < call->num_params; i++)
779 read_src(ctx, &call->params[i], call);
780
781 return call;
782 }
783
784 static void
785 write_instr(write_ctx *ctx, const nir_instr *instr)
786 {
787 blob_write_uint32(ctx->blob, instr->type);
788 switch (instr->type) {
789 case nir_instr_type_alu:
790 write_alu(ctx, nir_instr_as_alu(instr));
791 break;
792 case nir_instr_type_deref:
793 write_deref(ctx, nir_instr_as_deref(instr));
794 break;
795 case nir_instr_type_intrinsic:
796 write_intrinsic(ctx, nir_instr_as_intrinsic(instr));
797 break;
798 case nir_instr_type_load_const:
799 write_load_const(ctx, nir_instr_as_load_const(instr));
800 break;
801 case nir_instr_type_ssa_undef:
802 write_ssa_undef(ctx, nir_instr_as_ssa_undef(instr));
803 break;
804 case nir_instr_type_tex:
805 write_tex(ctx, nir_instr_as_tex(instr));
806 break;
807 case nir_instr_type_phi:
808 write_phi(ctx, nir_instr_as_phi(instr));
809 break;
810 case nir_instr_type_jump:
811 write_jump(ctx, nir_instr_as_jump(instr));
812 break;
813 case nir_instr_type_call:
814 write_call(ctx, nir_instr_as_call(instr));
815 break;
816 case nir_instr_type_parallel_copy:
817 unreachable("Cannot write parallel copies");
818 default:
819 unreachable("bad instr type");
820 }
821 }
822
823 static void
824 read_instr(read_ctx *ctx, nir_block *block)
825 {
826 nir_instr_type type = blob_read_uint32(ctx->blob);
827 nir_instr *instr;
828 switch (type) {
829 case nir_instr_type_alu:
830 instr = &read_alu(ctx)->instr;
831 break;
832 case nir_instr_type_deref:
833 instr = &read_deref(ctx)->instr;
834 break;
835 case nir_instr_type_intrinsic:
836 instr = &read_intrinsic(ctx)->instr;
837 break;
838 case nir_instr_type_load_const:
839 instr = &read_load_const(ctx)->instr;
840 break;
841 case nir_instr_type_ssa_undef:
842 instr = &read_ssa_undef(ctx)->instr;
843 break;
844 case nir_instr_type_tex:
845 instr = &read_tex(ctx)->instr;
846 break;
847 case nir_instr_type_phi:
848 /* Phi instructions are a bit of a special case when reading because we
849 * don't want inserting the instruction to automatically handle use/defs
850 * for us. Instead, we need to wait until all the blocks/instructions
851 * are read so that we can set their sources up.
852 */
853 read_phi(ctx, block);
854 return;
855 case nir_instr_type_jump:
856 instr = &read_jump(ctx)->instr;
857 break;
858 case nir_instr_type_call:
859 instr = &read_call(ctx)->instr;
860 break;
861 case nir_instr_type_parallel_copy:
862 unreachable("Cannot read parallel copies");
863 default:
864 unreachable("bad instr type");
865 }
866
867 nir_instr_insert_after_block(block, instr);
868 }
869
870 static void
871 write_block(write_ctx *ctx, const nir_block *block)
872 {
873 write_add_object(ctx, block);
874 blob_write_uint32(ctx->blob, exec_list_length(&block->instr_list));
875 nir_foreach_instr(instr, block)
876 write_instr(ctx, instr);
877 }
878
879 static void
880 read_block(read_ctx *ctx, struct exec_list *cf_list)
881 {
882 /* Don't actually create a new block. Just use the one from the tail of
883 * the list. NIR guarantees that the tail of the list is a block and that
884 * no two blocks are side-by-side in the IR; It should be empty.
885 */
886 nir_block *block =
887 exec_node_data(nir_block, exec_list_get_tail(cf_list), cf_node.node);
888
889 read_add_object(ctx, block);
890 unsigned num_instrs = blob_read_uint32(ctx->blob);
891 for (unsigned i = 0; i < num_instrs; i++) {
892 read_instr(ctx, block);
893 }
894 }
895
896 static void
897 write_cf_list(write_ctx *ctx, const struct exec_list *cf_list);
898
899 static void
900 read_cf_list(read_ctx *ctx, struct exec_list *cf_list);
901
902 static void
903 write_if(write_ctx *ctx, nir_if *nif)
904 {
905 write_src(ctx, &nif->condition);
906
907 write_cf_list(ctx, &nif->then_list);
908 write_cf_list(ctx, &nif->else_list);
909 }
910
911 static void
912 read_if(read_ctx *ctx, struct exec_list *cf_list)
913 {
914 nir_if *nif = nir_if_create(ctx->nir);
915
916 read_src(ctx, &nif->condition, nif);
917
918 nir_cf_node_insert_end(cf_list, &nif->cf_node);
919
920 read_cf_list(ctx, &nif->then_list);
921 read_cf_list(ctx, &nif->else_list);
922 }
923
924 static void
925 write_loop(write_ctx *ctx, nir_loop *loop)
926 {
927 write_cf_list(ctx, &loop->body);
928 }
929
930 static void
931 read_loop(read_ctx *ctx, struct exec_list *cf_list)
932 {
933 nir_loop *loop = nir_loop_create(ctx->nir);
934
935 nir_cf_node_insert_end(cf_list, &loop->cf_node);
936
937 read_cf_list(ctx, &loop->body);
938 }
939
940 static void
941 write_cf_node(write_ctx *ctx, nir_cf_node *cf)
942 {
943 blob_write_uint32(ctx->blob, cf->type);
944
945 switch (cf->type) {
946 case nir_cf_node_block:
947 write_block(ctx, nir_cf_node_as_block(cf));
948 break;
949 case nir_cf_node_if:
950 write_if(ctx, nir_cf_node_as_if(cf));
951 break;
952 case nir_cf_node_loop:
953 write_loop(ctx, nir_cf_node_as_loop(cf));
954 break;
955 default:
956 unreachable("bad cf type");
957 }
958 }
959
960 static void
961 read_cf_node(read_ctx *ctx, struct exec_list *list)
962 {
963 nir_cf_node_type type = blob_read_uint32(ctx->blob);
964
965 switch (type) {
966 case nir_cf_node_block:
967 read_block(ctx, list);
968 break;
969 case nir_cf_node_if:
970 read_if(ctx, list);
971 break;
972 case nir_cf_node_loop:
973 read_loop(ctx, list);
974 break;
975 default:
976 unreachable("bad cf type");
977 }
978 }
979
980 static void
981 write_cf_list(write_ctx *ctx, const struct exec_list *cf_list)
982 {
983 blob_write_uint32(ctx->blob, exec_list_length(cf_list));
984 foreach_list_typed(nir_cf_node, cf, node, cf_list) {
985 write_cf_node(ctx, cf);
986 }
987 }
988
989 static void
990 read_cf_list(read_ctx *ctx, struct exec_list *cf_list)
991 {
992 uint32_t num_cf_nodes = blob_read_uint32(ctx->blob);
993 for (unsigned i = 0; i < num_cf_nodes; i++)
994 read_cf_node(ctx, cf_list);
995 }
996
997 static void
998 write_function_impl(write_ctx *ctx, const nir_function_impl *fi)
999 {
1000 write_var_list(ctx, &fi->locals);
1001 write_reg_list(ctx, &fi->registers);
1002 blob_write_uint32(ctx->blob, fi->reg_alloc);
1003
1004 write_cf_list(ctx, &fi->body);
1005 write_fixup_phis(ctx);
1006 }
1007
1008 static nir_function_impl *
1009 read_function_impl(read_ctx *ctx, nir_function *fxn)
1010 {
1011 nir_function_impl *fi = nir_function_impl_create_bare(ctx->nir);
1012 fi->function = fxn;
1013
1014 read_var_list(ctx, &fi->locals);
1015 read_reg_list(ctx, &fi->registers);
1016 fi->reg_alloc = blob_read_uint32(ctx->blob);
1017
1018 read_cf_list(ctx, &fi->body);
1019 read_fixup_phis(ctx);
1020
1021 fi->valid_metadata = 0;
1022
1023 return fi;
1024 }
1025
1026 static void
1027 write_function(write_ctx *ctx, const nir_function *fxn)
1028 {
1029 blob_write_uint32(ctx->blob, !!(fxn->name));
1030 if (fxn->name)
1031 blob_write_string(ctx->blob, fxn->name);
1032
1033 write_add_object(ctx, fxn);
1034
1035 blob_write_uint32(ctx->blob, fxn->num_params);
1036 for (unsigned i = 0; i < fxn->num_params; i++) {
1037 uint32_t val =
1038 ((uint32_t)fxn->params[i].num_components) |
1039 ((uint32_t)fxn->params[i].bit_size) << 8;
1040 blob_write_uint32(ctx->blob, val);
1041 }
1042
1043 /* At first glance, it looks like we should write the function_impl here.
1044 * However, call instructions need to be able to reference at least the
1045 * function and those will get processed as we write the function_impls.
1046 * We stop here and write function_impls as a second pass.
1047 */
1048 }
1049
1050 static void
1051 read_function(read_ctx *ctx)
1052 {
1053 bool has_name = blob_read_uint32(ctx->blob);
1054 char *name = has_name ? blob_read_string(ctx->blob) : NULL;
1055
1056 nir_function *fxn = nir_function_create(ctx->nir, name);
1057
1058 read_add_object(ctx, fxn);
1059
1060 fxn->num_params = blob_read_uint32(ctx->blob);
1061 fxn->params = ralloc_array(fxn, nir_parameter, fxn->num_params);
1062 for (unsigned i = 0; i < fxn->num_params; i++) {
1063 uint32_t val = blob_read_uint32(ctx->blob);
1064 fxn->params[i].num_components = val & 0xff;
1065 fxn->params[i].bit_size = (val >> 8) & 0xff;
1066 }
1067 }
1068
1069 void
1070 nir_serialize(struct blob *blob, const nir_shader *nir)
1071 {
1072 write_ctx ctx;
1073 ctx.remap_table = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
1074 _mesa_key_pointer_equal);
1075 ctx.next_idx = 0;
1076 ctx.blob = blob;
1077 ctx.nir = nir;
1078 util_dynarray_init(&ctx.phi_fixups, NULL);
1079
1080 size_t idx_size_offset = blob_reserve_intptr(blob);
1081
1082 struct shader_info info = nir->info;
1083 uint32_t strings = 0;
1084 if (info.name)
1085 strings |= 0x1;
1086 if (info.label)
1087 strings |= 0x2;
1088 blob_write_uint32(blob, strings);
1089 if (info.name)
1090 blob_write_string(blob, info.name);
1091 if (info.label)
1092 blob_write_string(blob, info.label);
1093 info.name = info.label = NULL;
1094 blob_write_bytes(blob, (uint8_t *) &info, sizeof(info));
1095
1096 write_var_list(&ctx, &nir->uniforms);
1097 write_var_list(&ctx, &nir->inputs);
1098 write_var_list(&ctx, &nir->outputs);
1099 write_var_list(&ctx, &nir->shared);
1100 write_var_list(&ctx, &nir->globals);
1101 write_var_list(&ctx, &nir->system_values);
1102
1103 write_reg_list(&ctx, &nir->registers);
1104 blob_write_uint32(blob, nir->reg_alloc);
1105 blob_write_uint32(blob, nir->num_inputs);
1106 blob_write_uint32(blob, nir->num_uniforms);
1107 blob_write_uint32(blob, nir->num_outputs);
1108 blob_write_uint32(blob, nir->num_shared);
1109
1110 blob_write_uint32(blob, exec_list_length(&nir->functions));
1111 nir_foreach_function(fxn, nir) {
1112 write_function(&ctx, fxn);
1113 }
1114
1115 nir_foreach_function(fxn, nir) {
1116 write_function_impl(&ctx, fxn->impl);
1117 }
1118
1119 blob_write_uint32(blob, nir->constant_data_size);
1120 if (nir->constant_data_size > 0)
1121 blob_write_bytes(blob, nir->constant_data, nir->constant_data_size);
1122
1123 *(uintptr_t *)(blob->data + idx_size_offset) = ctx.next_idx;
1124
1125 _mesa_hash_table_destroy(ctx.remap_table, NULL);
1126 util_dynarray_fini(&ctx.phi_fixups);
1127 }
1128
1129 nir_shader *
1130 nir_deserialize(void *mem_ctx,
1131 const struct nir_shader_compiler_options *options,
1132 struct blob_reader *blob)
1133 {
1134 read_ctx ctx;
1135 ctx.blob = blob;
1136 list_inithead(&ctx.phi_srcs);
1137 ctx.idx_table_len = blob_read_intptr(blob);
1138 ctx.idx_table = calloc(ctx.idx_table_len, sizeof(uintptr_t));
1139 ctx.next_idx = 0;
1140
1141 uint32_t strings = blob_read_uint32(blob);
1142 char *name = (strings & 0x1) ? blob_read_string(blob) : NULL;
1143 char *label = (strings & 0x2) ? blob_read_string(blob) : NULL;
1144
1145 struct shader_info info;
1146 blob_copy_bytes(blob, (uint8_t *) &info, sizeof(info));
1147
1148 ctx.nir = nir_shader_create(mem_ctx, info.stage, options, NULL);
1149
1150 info.name = name ? ralloc_strdup(ctx.nir, name) : NULL;
1151 info.label = label ? ralloc_strdup(ctx.nir, label) : NULL;
1152
1153 ctx.nir->info = info;
1154
1155 read_var_list(&ctx, &ctx.nir->uniforms);
1156 read_var_list(&ctx, &ctx.nir->inputs);
1157 read_var_list(&ctx, &ctx.nir->outputs);
1158 read_var_list(&ctx, &ctx.nir->shared);
1159 read_var_list(&ctx, &ctx.nir->globals);
1160 read_var_list(&ctx, &ctx.nir->system_values);
1161
1162 read_reg_list(&ctx, &ctx.nir->registers);
1163 ctx.nir->reg_alloc = blob_read_uint32(blob);
1164 ctx.nir->num_inputs = blob_read_uint32(blob);
1165 ctx.nir->num_uniforms = blob_read_uint32(blob);
1166 ctx.nir->num_outputs = blob_read_uint32(blob);
1167 ctx.nir->num_shared = blob_read_uint32(blob);
1168
1169 unsigned num_functions = blob_read_uint32(blob);
1170 for (unsigned i = 0; i < num_functions; i++)
1171 read_function(&ctx);
1172
1173 nir_foreach_function(fxn, ctx.nir)
1174 fxn->impl = read_function_impl(&ctx, fxn);
1175
1176 ctx.nir->constant_data_size = blob_read_uint32(blob);
1177 if (ctx.nir->constant_data_size > 0) {
1178 ctx.nir->constant_data =
1179 ralloc_size(ctx.nir, ctx.nir->constant_data_size);
1180 blob_copy_bytes(blob, ctx.nir->constant_data,
1181 ctx.nir->constant_data_size);
1182 }
1183
1184 free(ctx.idx_table);
1185
1186 return ctx.nir;
1187 }
1188
1189 nir_shader *
1190 nir_shader_serialize_deserialize(void *mem_ctx, nir_shader *s)
1191 {
1192 const struct nir_shader_compiler_options *options = s->options;
1193
1194 struct blob writer;
1195 blob_init(&writer);
1196 nir_serialize(&writer, s);
1197 ralloc_free(s);
1198
1199 struct blob_reader reader;
1200 blob_reader_init(&reader, writer.data, writer.size);
1201 nir_shader *ns = nir_deserialize(mem_ctx, options, &reader);
1202
1203 blob_finish(&writer);
1204
1205 return ns;
1206 }