nir: Don't replace the nir_shader when NIR_TEST_SERIALIZE=1
[mesa.git] / src / compiler / nir / nir_serialize.c
1 /*
2 * Copyright © 2017 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "nir_serialize.h"
25 #include "nir_control_flow.h"
26 #include "util/u_dynarray.h"
27
28 typedef struct {
29 size_t blob_offset;
30 nir_ssa_def *src;
31 nir_block *block;
32 } write_phi_fixup;
33
34 typedef struct {
35 const nir_shader *nir;
36
37 struct blob *blob;
38
39 /* maps pointer to index */
40 struct hash_table *remap_table;
41
42 /* the next index to assign to a NIR in-memory object */
43 uintptr_t next_idx;
44
45 /* Array of write_phi_fixup structs representing phi sources that need to
46 * be resolved in the second pass.
47 */
48 struct util_dynarray phi_fixups;
49 } write_ctx;
50
51 typedef struct {
52 nir_shader *nir;
53
54 struct blob_reader *blob;
55
56 /* the next index to assign to a NIR in-memory object */
57 uintptr_t next_idx;
58
59 /* The length of the index -> object table */
60 uintptr_t idx_table_len;
61
62 /* map from index to deserialized pointer */
63 void **idx_table;
64
65 /* List of phi sources. */
66 struct list_head phi_srcs;
67
68 } read_ctx;
69
70 static void
71 write_add_object(write_ctx *ctx, const void *obj)
72 {
73 uintptr_t index = ctx->next_idx++;
74 _mesa_hash_table_insert(ctx->remap_table, obj, (void *) index);
75 }
76
77 static uintptr_t
78 write_lookup_object(write_ctx *ctx, const void *obj)
79 {
80 struct hash_entry *entry = _mesa_hash_table_search(ctx->remap_table, obj);
81 assert(entry);
82 return (uintptr_t) entry->data;
83 }
84
85 static void
86 write_object(write_ctx *ctx, const void *obj)
87 {
88 blob_write_intptr(ctx->blob, write_lookup_object(ctx, obj));
89 }
90
91 static void
92 read_add_object(read_ctx *ctx, void *obj)
93 {
94 assert(ctx->next_idx < ctx->idx_table_len);
95 ctx->idx_table[ctx->next_idx++] = obj;
96 }
97
98 static void *
99 read_lookup_object(read_ctx *ctx, uintptr_t idx)
100 {
101 assert(idx < ctx->idx_table_len);
102 return ctx->idx_table[idx];
103 }
104
105 static void *
106 read_object(read_ctx *ctx)
107 {
108 return read_lookup_object(ctx, blob_read_intptr(ctx->blob));
109 }
110
111 static void
112 write_constant(write_ctx *ctx, const nir_constant *c)
113 {
114 blob_write_bytes(ctx->blob, c->values, sizeof(c->values));
115 blob_write_uint32(ctx->blob, c->num_elements);
116 for (unsigned i = 0; i < c->num_elements; i++)
117 write_constant(ctx, c->elements[i]);
118 }
119
120 static nir_constant *
121 read_constant(read_ctx *ctx, nir_variable *nvar)
122 {
123 nir_constant *c = ralloc(nvar, nir_constant);
124
125 blob_copy_bytes(ctx->blob, (uint8_t *)c->values, sizeof(c->values));
126 c->num_elements = blob_read_uint32(ctx->blob);
127 c->elements = ralloc_array(nvar, nir_constant *, c->num_elements);
128 for (unsigned i = 0; i < c->num_elements; i++)
129 c->elements[i] = read_constant(ctx, nvar);
130
131 return c;
132 }
133
134 static void
135 write_variable(write_ctx *ctx, const nir_variable *var)
136 {
137 write_add_object(ctx, var);
138 encode_type_to_blob(ctx->blob, var->type);
139 blob_write_uint32(ctx->blob, !!(var->name));
140 if (var->name)
141 blob_write_string(ctx->blob, var->name);
142 blob_write_bytes(ctx->blob, (uint8_t *) &var->data, sizeof(var->data));
143 blob_write_uint32(ctx->blob, var->num_state_slots);
144 for (unsigned i = 0; i < var->num_state_slots; i++) {
145 for (unsigned j = 0; j < STATE_LENGTH; j++)
146 blob_write_uint32(ctx->blob, var->state_slots[i].tokens[j]);
147 blob_write_uint32(ctx->blob, var->state_slots[i].swizzle);
148 }
149 blob_write_uint32(ctx->blob, !!(var->constant_initializer));
150 if (var->constant_initializer)
151 write_constant(ctx, var->constant_initializer);
152 blob_write_uint32(ctx->blob, !!(var->interface_type));
153 if (var->interface_type)
154 encode_type_to_blob(ctx->blob, var->interface_type);
155 blob_write_uint32(ctx->blob, var->num_members);
156 if (var->num_members > 0) {
157 blob_write_bytes(ctx->blob, (uint8_t *) var->members,
158 var->num_members * sizeof(*var->members));
159 }
160 }
161
162 static nir_variable *
163 read_variable(read_ctx *ctx)
164 {
165 nir_variable *var = rzalloc(ctx->nir, nir_variable);
166 read_add_object(ctx, var);
167
168 var->type = decode_type_from_blob(ctx->blob);
169 bool has_name = blob_read_uint32(ctx->blob);
170 if (has_name) {
171 const char *name = blob_read_string(ctx->blob);
172 var->name = ralloc_strdup(var, name);
173 } else {
174 var->name = NULL;
175 }
176 blob_copy_bytes(ctx->blob, (uint8_t *) &var->data, sizeof(var->data));
177 var->num_state_slots = blob_read_uint32(ctx->blob);
178 if (var->num_state_slots != 0) {
179 var->state_slots = ralloc_array(var, nir_state_slot,
180 var->num_state_slots);
181 for (unsigned i = 0; i < var->num_state_slots; i++) {
182 for (unsigned j = 0; j < STATE_LENGTH; j++)
183 var->state_slots[i].tokens[j] = blob_read_uint32(ctx->blob);
184 var->state_slots[i].swizzle = blob_read_uint32(ctx->blob);
185 }
186 }
187 bool has_const_initializer = blob_read_uint32(ctx->blob);
188 if (has_const_initializer)
189 var->constant_initializer = read_constant(ctx, var);
190 else
191 var->constant_initializer = NULL;
192 bool has_interface_type = blob_read_uint32(ctx->blob);
193 if (has_interface_type)
194 var->interface_type = decode_type_from_blob(ctx->blob);
195 else
196 var->interface_type = NULL;
197 var->num_members = blob_read_uint32(ctx->blob);
198 if (var->num_members > 0) {
199 var->members = ralloc_array(var, struct nir_variable_data,
200 var->num_members);
201 blob_copy_bytes(ctx->blob, (uint8_t *) var->members,
202 var->num_members * sizeof(*var->members));
203 }
204
205 return var;
206 }
207
208 static void
209 write_var_list(write_ctx *ctx, const struct exec_list *src)
210 {
211 blob_write_uint32(ctx->blob, exec_list_length(src));
212 foreach_list_typed(nir_variable, var, node, src) {
213 write_variable(ctx, var);
214 }
215 }
216
217 static void
218 read_var_list(read_ctx *ctx, struct exec_list *dst)
219 {
220 exec_list_make_empty(dst);
221 unsigned num_vars = blob_read_uint32(ctx->blob);
222 for (unsigned i = 0; i < num_vars; i++) {
223 nir_variable *var = read_variable(ctx);
224 exec_list_push_tail(dst, &var->node);
225 }
226 }
227
228 static void
229 write_register(write_ctx *ctx, const nir_register *reg)
230 {
231 write_add_object(ctx, reg);
232 blob_write_uint32(ctx->blob, reg->num_components);
233 blob_write_uint32(ctx->blob, reg->bit_size);
234 blob_write_uint32(ctx->blob, reg->num_array_elems);
235 blob_write_uint32(ctx->blob, reg->index);
236 blob_write_uint32(ctx->blob, !!(reg->name));
237 if (reg->name)
238 blob_write_string(ctx->blob, reg->name);
239 }
240
241 static nir_register *
242 read_register(read_ctx *ctx)
243 {
244 nir_register *reg = ralloc(ctx->nir, nir_register);
245 read_add_object(ctx, reg);
246 reg->num_components = blob_read_uint32(ctx->blob);
247 reg->bit_size = blob_read_uint32(ctx->blob);
248 reg->num_array_elems = blob_read_uint32(ctx->blob);
249 reg->index = blob_read_uint32(ctx->blob);
250 bool has_name = blob_read_uint32(ctx->blob);
251 if (has_name) {
252 const char *name = blob_read_string(ctx->blob);
253 reg->name = ralloc_strdup(reg, name);
254 } else {
255 reg->name = NULL;
256 }
257
258 list_inithead(&reg->uses);
259 list_inithead(&reg->defs);
260 list_inithead(&reg->if_uses);
261
262 return reg;
263 }
264
265 static void
266 write_reg_list(write_ctx *ctx, const struct exec_list *src)
267 {
268 blob_write_uint32(ctx->blob, exec_list_length(src));
269 foreach_list_typed(nir_register, reg, node, src)
270 write_register(ctx, reg);
271 }
272
273 static void
274 read_reg_list(read_ctx *ctx, struct exec_list *dst)
275 {
276 exec_list_make_empty(dst);
277 unsigned num_regs = blob_read_uint32(ctx->blob);
278 for (unsigned i = 0; i < num_regs; i++) {
279 nir_register *reg = read_register(ctx);
280 exec_list_push_tail(dst, &reg->node);
281 }
282 }
283
284 static void
285 write_src(write_ctx *ctx, const nir_src *src)
286 {
287 /* Since sources are very frequent, we try to save some space when storing
288 * them. In particular, we store whether the source is a register and
289 * whether the register has an indirect index in the low two bits. We can
290 * assume that the high two bits of the index are zero, since otherwise our
291 * address space would've been exhausted allocating the remap table!
292 */
293 if (src->is_ssa) {
294 uintptr_t idx = write_lookup_object(ctx, src->ssa) << 2;
295 idx |= 1;
296 blob_write_intptr(ctx->blob, idx);
297 } else {
298 uintptr_t idx = write_lookup_object(ctx, src->reg.reg) << 2;
299 if (src->reg.indirect)
300 idx |= 2;
301 blob_write_intptr(ctx->blob, idx);
302 blob_write_uint32(ctx->blob, src->reg.base_offset);
303 if (src->reg.indirect) {
304 write_src(ctx, src->reg.indirect);
305 }
306 }
307 }
308
309 static void
310 read_src(read_ctx *ctx, nir_src *src, void *mem_ctx)
311 {
312 uintptr_t val = blob_read_intptr(ctx->blob);
313 uintptr_t idx = val >> 2;
314 src->is_ssa = val & 0x1;
315 if (src->is_ssa) {
316 src->ssa = read_lookup_object(ctx, idx);
317 } else {
318 bool is_indirect = val & 0x2;
319 src->reg.reg = read_lookup_object(ctx, idx);
320 src->reg.base_offset = blob_read_uint32(ctx->blob);
321 if (is_indirect) {
322 src->reg.indirect = ralloc(mem_ctx, nir_src);
323 read_src(ctx, src->reg.indirect, mem_ctx);
324 } else {
325 src->reg.indirect = NULL;
326 }
327 }
328 }
329
330 static void
331 write_dest(write_ctx *ctx, const nir_dest *dst)
332 {
333 uint32_t val = dst->is_ssa;
334 if (dst->is_ssa) {
335 val |= !!(dst->ssa.name) << 1;
336 val |= dst->ssa.num_components << 2;
337 val |= dst->ssa.bit_size << 5;
338 } else {
339 val |= !!(dst->reg.indirect) << 1;
340 }
341 blob_write_uint32(ctx->blob, val);
342 if (dst->is_ssa) {
343 write_add_object(ctx, &dst->ssa);
344 if (dst->ssa.name)
345 blob_write_string(ctx->blob, dst->ssa.name);
346 } else {
347 blob_write_intptr(ctx->blob, write_lookup_object(ctx, dst->reg.reg));
348 blob_write_uint32(ctx->blob, dst->reg.base_offset);
349 if (dst->reg.indirect)
350 write_src(ctx, dst->reg.indirect);
351 }
352 }
353
354 static void
355 read_dest(read_ctx *ctx, nir_dest *dst, nir_instr *instr)
356 {
357 uint32_t val = blob_read_uint32(ctx->blob);
358 bool is_ssa = val & 0x1;
359 if (is_ssa) {
360 bool has_name = val & 0x2;
361 unsigned num_components = (val >> 2) & 0x7;
362 unsigned bit_size = val >> 5;
363 char *name = has_name ? blob_read_string(ctx->blob) : NULL;
364 nir_ssa_dest_init(instr, dst, num_components, bit_size, name);
365 read_add_object(ctx, &dst->ssa);
366 } else {
367 bool is_indirect = val & 0x2;
368 dst->reg.reg = read_object(ctx);
369 dst->reg.base_offset = blob_read_uint32(ctx->blob);
370 if (is_indirect) {
371 dst->reg.indirect = ralloc(instr, nir_src);
372 read_src(ctx, dst->reg.indirect, instr);
373 }
374 }
375 }
376
377 static void
378 write_alu(write_ctx *ctx, const nir_alu_instr *alu)
379 {
380 blob_write_uint32(ctx->blob, alu->op);
381 uint32_t flags = alu->exact;
382 flags |= alu->dest.saturate << 1;
383 flags |= alu->dest.write_mask << 2;
384 blob_write_uint32(ctx->blob, flags);
385
386 write_dest(ctx, &alu->dest.dest);
387
388 for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
389 write_src(ctx, &alu->src[i].src);
390 flags = alu->src[i].negate;
391 flags |= alu->src[i].abs << 1;
392 for (unsigned j = 0; j < 4; j++)
393 flags |= alu->src[i].swizzle[j] << (2 + 2 * j);
394 blob_write_uint32(ctx->blob, flags);
395 }
396 }
397
398 static nir_alu_instr *
399 read_alu(read_ctx *ctx)
400 {
401 nir_op op = blob_read_uint32(ctx->blob);
402 nir_alu_instr *alu = nir_alu_instr_create(ctx->nir, op);
403
404 uint32_t flags = blob_read_uint32(ctx->blob);
405 alu->exact = flags & 1;
406 alu->dest.saturate = flags & 2;
407 alu->dest.write_mask = flags >> 2;
408
409 read_dest(ctx, &alu->dest.dest, &alu->instr);
410
411 for (unsigned i = 0; i < nir_op_infos[op].num_inputs; i++) {
412 read_src(ctx, &alu->src[i].src, &alu->instr);
413 flags = blob_read_uint32(ctx->blob);
414 alu->src[i].negate = flags & 1;
415 alu->src[i].abs = flags & 2;
416 for (unsigned j = 0; j < 4; j++)
417 alu->src[i].swizzle[j] = (flags >> (2 * j + 2)) & 3;
418 }
419
420 return alu;
421 }
422
423 static void
424 write_deref(write_ctx *ctx, const nir_deref_instr *deref)
425 {
426 blob_write_uint32(ctx->blob, deref->deref_type);
427
428 blob_write_uint32(ctx->blob, deref->mode);
429 encode_type_to_blob(ctx->blob, deref->type);
430
431 write_dest(ctx, &deref->dest);
432
433 if (deref->deref_type == nir_deref_type_var) {
434 write_object(ctx, deref->var);
435 return;
436 }
437
438 write_src(ctx, &deref->parent);
439
440 switch (deref->deref_type) {
441 case nir_deref_type_struct:
442 blob_write_uint32(ctx->blob, deref->strct.index);
443 break;
444
445 case nir_deref_type_array:
446 case nir_deref_type_ptr_as_array:
447 write_src(ctx, &deref->arr.index);
448 break;
449
450 case nir_deref_type_cast:
451 blob_write_uint32(ctx->blob, deref->cast.ptr_stride);
452 break;
453
454 case nir_deref_type_array_wildcard:
455 /* Nothing to do */
456 break;
457
458 default:
459 unreachable("Invalid deref type");
460 }
461 }
462
463 static nir_deref_instr *
464 read_deref(read_ctx *ctx)
465 {
466 nir_deref_type deref_type = blob_read_uint32(ctx->blob);
467 nir_deref_instr *deref = nir_deref_instr_create(ctx->nir, deref_type);
468
469 deref->mode = blob_read_uint32(ctx->blob);
470 deref->type = decode_type_from_blob(ctx->blob);
471
472 read_dest(ctx, &deref->dest, &deref->instr);
473
474 if (deref_type == nir_deref_type_var) {
475 deref->var = read_object(ctx);
476 return deref;
477 }
478
479 read_src(ctx, &deref->parent, &deref->instr);
480
481 switch (deref->deref_type) {
482 case nir_deref_type_struct:
483 deref->strct.index = blob_read_uint32(ctx->blob);
484 break;
485
486 case nir_deref_type_array:
487 case nir_deref_type_ptr_as_array:
488 read_src(ctx, &deref->arr.index, &deref->instr);
489 break;
490
491 case nir_deref_type_cast:
492 deref->cast.ptr_stride = blob_read_uint32(ctx->blob);
493 break;
494
495 case nir_deref_type_array_wildcard:
496 /* Nothing to do */
497 break;
498
499 default:
500 unreachable("Invalid deref type");
501 }
502
503 return deref;
504 }
505
506 static void
507 write_intrinsic(write_ctx *ctx, const nir_intrinsic_instr *intrin)
508 {
509 blob_write_uint32(ctx->blob, intrin->intrinsic);
510
511 unsigned num_srcs = nir_intrinsic_infos[intrin->intrinsic].num_srcs;
512 unsigned num_indices = nir_intrinsic_infos[intrin->intrinsic].num_indices;
513
514 blob_write_uint32(ctx->blob, intrin->num_components);
515
516 if (nir_intrinsic_infos[intrin->intrinsic].has_dest)
517 write_dest(ctx, &intrin->dest);
518
519 for (unsigned i = 0; i < num_srcs; i++)
520 write_src(ctx, &intrin->src[i]);
521
522 for (unsigned i = 0; i < num_indices; i++)
523 blob_write_uint32(ctx->blob, intrin->const_index[i]);
524 }
525
526 static nir_intrinsic_instr *
527 read_intrinsic(read_ctx *ctx)
528 {
529 nir_intrinsic_op op = blob_read_uint32(ctx->blob);
530
531 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(ctx->nir, op);
532
533 unsigned num_srcs = nir_intrinsic_infos[op].num_srcs;
534 unsigned num_indices = nir_intrinsic_infos[op].num_indices;
535
536 intrin->num_components = blob_read_uint32(ctx->blob);
537
538 if (nir_intrinsic_infos[op].has_dest)
539 read_dest(ctx, &intrin->dest, &intrin->instr);
540
541 for (unsigned i = 0; i < num_srcs; i++)
542 read_src(ctx, &intrin->src[i], &intrin->instr);
543
544 for (unsigned i = 0; i < num_indices; i++)
545 intrin->const_index[i] = blob_read_uint32(ctx->blob);
546
547 return intrin;
548 }
549
550 static void
551 write_load_const(write_ctx *ctx, const nir_load_const_instr *lc)
552 {
553 uint32_t val = lc->def.num_components;
554 val |= lc->def.bit_size << 3;
555 blob_write_uint32(ctx->blob, val);
556 blob_write_bytes(ctx->blob, lc->value, sizeof(*lc->value) * lc->def.num_components);
557 write_add_object(ctx, &lc->def);
558 }
559
560 static nir_load_const_instr *
561 read_load_const(read_ctx *ctx)
562 {
563 uint32_t val = blob_read_uint32(ctx->blob);
564
565 nir_load_const_instr *lc =
566 nir_load_const_instr_create(ctx->nir, val & 0x7, val >> 3);
567
568 blob_copy_bytes(ctx->blob, lc->value, sizeof(*lc->value) * lc->def.num_components);
569 read_add_object(ctx, &lc->def);
570 return lc;
571 }
572
573 static void
574 write_ssa_undef(write_ctx *ctx, const nir_ssa_undef_instr *undef)
575 {
576 uint32_t val = undef->def.num_components;
577 val |= undef->def.bit_size << 3;
578 blob_write_uint32(ctx->blob, val);
579 write_add_object(ctx, &undef->def);
580 }
581
582 static nir_ssa_undef_instr *
583 read_ssa_undef(read_ctx *ctx)
584 {
585 uint32_t val = blob_read_uint32(ctx->blob);
586
587 nir_ssa_undef_instr *undef =
588 nir_ssa_undef_instr_create(ctx->nir, val & 0x7, val >> 3);
589
590 read_add_object(ctx, &undef->def);
591 return undef;
592 }
593
594 union packed_tex_data {
595 uint32_t u32;
596 struct {
597 enum glsl_sampler_dim sampler_dim:4;
598 nir_alu_type dest_type:8;
599 unsigned coord_components:3;
600 unsigned is_array:1;
601 unsigned is_shadow:1;
602 unsigned is_new_style_shadow:1;
603 unsigned component:2;
604 unsigned unused:10; /* Mark unused for valgrind. */
605 } u;
606 };
607
608 static void
609 write_tex(write_ctx *ctx, const nir_tex_instr *tex)
610 {
611 blob_write_uint32(ctx->blob, tex->num_srcs);
612 blob_write_uint32(ctx->blob, tex->op);
613 blob_write_uint32(ctx->blob, tex->texture_index);
614 blob_write_uint32(ctx->blob, tex->texture_array_size);
615 blob_write_uint32(ctx->blob, tex->sampler_index);
616 blob_write_bytes(ctx->blob, tex->tg4_offsets, sizeof(tex->tg4_offsets));
617
618 STATIC_ASSERT(sizeof(union packed_tex_data) == sizeof(uint32_t));
619 union packed_tex_data packed = {
620 .u.sampler_dim = tex->sampler_dim,
621 .u.dest_type = tex->dest_type,
622 .u.coord_components = tex->coord_components,
623 .u.is_array = tex->is_array,
624 .u.is_shadow = tex->is_shadow,
625 .u.is_new_style_shadow = tex->is_new_style_shadow,
626 .u.component = tex->component,
627 };
628 blob_write_uint32(ctx->blob, packed.u32);
629
630 write_dest(ctx, &tex->dest);
631 for (unsigned i = 0; i < tex->num_srcs; i++) {
632 blob_write_uint32(ctx->blob, tex->src[i].src_type);
633 write_src(ctx, &tex->src[i].src);
634 }
635 }
636
637 static nir_tex_instr *
638 read_tex(read_ctx *ctx)
639 {
640 unsigned num_srcs = blob_read_uint32(ctx->blob);
641 nir_tex_instr *tex = nir_tex_instr_create(ctx->nir, num_srcs);
642
643 tex->op = blob_read_uint32(ctx->blob);
644 tex->texture_index = blob_read_uint32(ctx->blob);
645 tex->texture_array_size = blob_read_uint32(ctx->blob);
646 tex->sampler_index = blob_read_uint32(ctx->blob);
647 blob_copy_bytes(ctx->blob, tex->tg4_offsets, sizeof(tex->tg4_offsets));
648
649 union packed_tex_data packed;
650 packed.u32 = blob_read_uint32(ctx->blob);
651 tex->sampler_dim = packed.u.sampler_dim;
652 tex->dest_type = packed.u.dest_type;
653 tex->coord_components = packed.u.coord_components;
654 tex->is_array = packed.u.is_array;
655 tex->is_shadow = packed.u.is_shadow;
656 tex->is_new_style_shadow = packed.u.is_new_style_shadow;
657 tex->component = packed.u.component;
658
659 read_dest(ctx, &tex->dest, &tex->instr);
660 for (unsigned i = 0; i < tex->num_srcs; i++) {
661 tex->src[i].src_type = blob_read_uint32(ctx->blob);
662 read_src(ctx, &tex->src[i].src, &tex->instr);
663 }
664
665 return tex;
666 }
667
668 static void
669 write_phi(write_ctx *ctx, const nir_phi_instr *phi)
670 {
671 /* Phi nodes are special, since they may reference SSA definitions and
672 * basic blocks that don't exist yet. We leave two empty uintptr_t's here,
673 * and then store enough information so that a later fixup pass can fill
674 * them in correctly.
675 */
676 write_dest(ctx, &phi->dest);
677
678 blob_write_uint32(ctx->blob, exec_list_length(&phi->srcs));
679
680 nir_foreach_phi_src(src, phi) {
681 assert(src->src.is_ssa);
682 size_t blob_offset = blob_reserve_intptr(ctx->blob);
683 MAYBE_UNUSED size_t blob_offset2 = blob_reserve_intptr(ctx->blob);
684 assert(blob_offset + sizeof(uintptr_t) == blob_offset2);
685 write_phi_fixup fixup = {
686 .blob_offset = blob_offset,
687 .src = src->src.ssa,
688 .block = src->pred,
689 };
690 util_dynarray_append(&ctx->phi_fixups, write_phi_fixup, fixup);
691 }
692 }
693
694 static void
695 write_fixup_phis(write_ctx *ctx)
696 {
697 util_dynarray_foreach(&ctx->phi_fixups, write_phi_fixup, fixup) {
698 uintptr_t *blob_ptr = (uintptr_t *)(ctx->blob->data + fixup->blob_offset);
699 blob_ptr[0] = write_lookup_object(ctx, fixup->src);
700 blob_ptr[1] = write_lookup_object(ctx, fixup->block);
701 }
702
703 util_dynarray_clear(&ctx->phi_fixups);
704 }
705
706 static nir_phi_instr *
707 read_phi(read_ctx *ctx, nir_block *blk)
708 {
709 nir_phi_instr *phi = nir_phi_instr_create(ctx->nir);
710
711 read_dest(ctx, &phi->dest, &phi->instr);
712
713 unsigned num_srcs = blob_read_uint32(ctx->blob);
714
715 /* For similar reasons as before, we just store the index directly into the
716 * pointer, and let a later pass resolve the phi sources.
717 *
718 * In order to ensure that the copied sources (which are just the indices
719 * from the blob for now) don't get inserted into the old shader's use-def
720 * lists, we have to add the phi instruction *before* we set up its
721 * sources.
722 */
723 nir_instr_insert_after_block(blk, &phi->instr);
724
725 for (unsigned i = 0; i < num_srcs; i++) {
726 nir_phi_src *src = ralloc(phi, nir_phi_src);
727
728 src->src.is_ssa = true;
729 src->src.ssa = (nir_ssa_def *) blob_read_intptr(ctx->blob);
730 src->pred = (nir_block *) blob_read_intptr(ctx->blob);
731
732 /* Since we're not letting nir_insert_instr handle use/def stuff for us,
733 * we have to set the parent_instr manually. It doesn't really matter
734 * when we do it, so we might as well do it here.
735 */
736 src->src.parent_instr = &phi->instr;
737
738 /* Stash it in the list of phi sources. We'll walk this list and fix up
739 * sources at the very end of read_function_impl.
740 */
741 list_add(&src->src.use_link, &ctx->phi_srcs);
742
743 exec_list_push_tail(&phi->srcs, &src->node);
744 }
745
746 return phi;
747 }
748
749 static void
750 read_fixup_phis(read_ctx *ctx)
751 {
752 list_for_each_entry_safe(nir_phi_src, src, &ctx->phi_srcs, src.use_link) {
753 src->pred = read_lookup_object(ctx, (uintptr_t)src->pred);
754 src->src.ssa = read_lookup_object(ctx, (uintptr_t)src->src.ssa);
755
756 /* Remove from this list */
757 list_del(&src->src.use_link);
758
759 list_addtail(&src->src.use_link, &src->src.ssa->uses);
760 }
761 assert(list_empty(&ctx->phi_srcs));
762 }
763
764 static void
765 write_jump(write_ctx *ctx, const nir_jump_instr *jmp)
766 {
767 blob_write_uint32(ctx->blob, jmp->type);
768 }
769
770 static nir_jump_instr *
771 read_jump(read_ctx *ctx)
772 {
773 nir_jump_type type = blob_read_uint32(ctx->blob);
774 nir_jump_instr *jmp = nir_jump_instr_create(ctx->nir, type);
775 return jmp;
776 }
777
778 static void
779 write_call(write_ctx *ctx, const nir_call_instr *call)
780 {
781 blob_write_intptr(ctx->blob, write_lookup_object(ctx, call->callee));
782
783 for (unsigned i = 0; i < call->num_params; i++)
784 write_src(ctx, &call->params[i]);
785 }
786
787 static nir_call_instr *
788 read_call(read_ctx *ctx)
789 {
790 nir_function *callee = read_object(ctx);
791 nir_call_instr *call = nir_call_instr_create(ctx->nir, callee);
792
793 for (unsigned i = 0; i < call->num_params; i++)
794 read_src(ctx, &call->params[i], call);
795
796 return call;
797 }
798
799 static void
800 write_instr(write_ctx *ctx, const nir_instr *instr)
801 {
802 blob_write_uint32(ctx->blob, instr->type);
803 switch (instr->type) {
804 case nir_instr_type_alu:
805 write_alu(ctx, nir_instr_as_alu(instr));
806 break;
807 case nir_instr_type_deref:
808 write_deref(ctx, nir_instr_as_deref(instr));
809 break;
810 case nir_instr_type_intrinsic:
811 write_intrinsic(ctx, nir_instr_as_intrinsic(instr));
812 break;
813 case nir_instr_type_load_const:
814 write_load_const(ctx, nir_instr_as_load_const(instr));
815 break;
816 case nir_instr_type_ssa_undef:
817 write_ssa_undef(ctx, nir_instr_as_ssa_undef(instr));
818 break;
819 case nir_instr_type_tex:
820 write_tex(ctx, nir_instr_as_tex(instr));
821 break;
822 case nir_instr_type_phi:
823 write_phi(ctx, nir_instr_as_phi(instr));
824 break;
825 case nir_instr_type_jump:
826 write_jump(ctx, nir_instr_as_jump(instr));
827 break;
828 case nir_instr_type_call:
829 write_call(ctx, nir_instr_as_call(instr));
830 break;
831 case nir_instr_type_parallel_copy:
832 unreachable("Cannot write parallel copies");
833 default:
834 unreachable("bad instr type");
835 }
836 }
837
838 static void
839 read_instr(read_ctx *ctx, nir_block *block)
840 {
841 nir_instr_type type = blob_read_uint32(ctx->blob);
842 nir_instr *instr;
843 switch (type) {
844 case nir_instr_type_alu:
845 instr = &read_alu(ctx)->instr;
846 break;
847 case nir_instr_type_deref:
848 instr = &read_deref(ctx)->instr;
849 break;
850 case nir_instr_type_intrinsic:
851 instr = &read_intrinsic(ctx)->instr;
852 break;
853 case nir_instr_type_load_const:
854 instr = &read_load_const(ctx)->instr;
855 break;
856 case nir_instr_type_ssa_undef:
857 instr = &read_ssa_undef(ctx)->instr;
858 break;
859 case nir_instr_type_tex:
860 instr = &read_tex(ctx)->instr;
861 break;
862 case nir_instr_type_phi:
863 /* Phi instructions are a bit of a special case when reading because we
864 * don't want inserting the instruction to automatically handle use/defs
865 * for us. Instead, we need to wait until all the blocks/instructions
866 * are read so that we can set their sources up.
867 */
868 read_phi(ctx, block);
869 return;
870 case nir_instr_type_jump:
871 instr = &read_jump(ctx)->instr;
872 break;
873 case nir_instr_type_call:
874 instr = &read_call(ctx)->instr;
875 break;
876 case nir_instr_type_parallel_copy:
877 unreachable("Cannot read parallel copies");
878 default:
879 unreachable("bad instr type");
880 }
881
882 nir_instr_insert_after_block(block, instr);
883 }
884
885 static void
886 write_block(write_ctx *ctx, const nir_block *block)
887 {
888 write_add_object(ctx, block);
889 blob_write_uint32(ctx->blob, exec_list_length(&block->instr_list));
890 nir_foreach_instr(instr, block)
891 write_instr(ctx, instr);
892 }
893
894 static void
895 read_block(read_ctx *ctx, struct exec_list *cf_list)
896 {
897 /* Don't actually create a new block. Just use the one from the tail of
898 * the list. NIR guarantees that the tail of the list is a block and that
899 * no two blocks are side-by-side in the IR; It should be empty.
900 */
901 nir_block *block =
902 exec_node_data(nir_block, exec_list_get_tail(cf_list), cf_node.node);
903
904 read_add_object(ctx, block);
905 unsigned num_instrs = blob_read_uint32(ctx->blob);
906 for (unsigned i = 0; i < num_instrs; i++) {
907 read_instr(ctx, block);
908 }
909 }
910
911 static void
912 write_cf_list(write_ctx *ctx, const struct exec_list *cf_list);
913
914 static void
915 read_cf_list(read_ctx *ctx, struct exec_list *cf_list);
916
917 static void
918 write_if(write_ctx *ctx, nir_if *nif)
919 {
920 write_src(ctx, &nif->condition);
921
922 write_cf_list(ctx, &nif->then_list);
923 write_cf_list(ctx, &nif->else_list);
924 }
925
926 static void
927 read_if(read_ctx *ctx, struct exec_list *cf_list)
928 {
929 nir_if *nif = nir_if_create(ctx->nir);
930
931 read_src(ctx, &nif->condition, nif);
932
933 nir_cf_node_insert_end(cf_list, &nif->cf_node);
934
935 read_cf_list(ctx, &nif->then_list);
936 read_cf_list(ctx, &nif->else_list);
937 }
938
939 static void
940 write_loop(write_ctx *ctx, nir_loop *loop)
941 {
942 write_cf_list(ctx, &loop->body);
943 }
944
945 static void
946 read_loop(read_ctx *ctx, struct exec_list *cf_list)
947 {
948 nir_loop *loop = nir_loop_create(ctx->nir);
949
950 nir_cf_node_insert_end(cf_list, &loop->cf_node);
951
952 read_cf_list(ctx, &loop->body);
953 }
954
955 static void
956 write_cf_node(write_ctx *ctx, nir_cf_node *cf)
957 {
958 blob_write_uint32(ctx->blob, cf->type);
959
960 switch (cf->type) {
961 case nir_cf_node_block:
962 write_block(ctx, nir_cf_node_as_block(cf));
963 break;
964 case nir_cf_node_if:
965 write_if(ctx, nir_cf_node_as_if(cf));
966 break;
967 case nir_cf_node_loop:
968 write_loop(ctx, nir_cf_node_as_loop(cf));
969 break;
970 default:
971 unreachable("bad cf type");
972 }
973 }
974
975 static void
976 read_cf_node(read_ctx *ctx, struct exec_list *list)
977 {
978 nir_cf_node_type type = blob_read_uint32(ctx->blob);
979
980 switch (type) {
981 case nir_cf_node_block:
982 read_block(ctx, list);
983 break;
984 case nir_cf_node_if:
985 read_if(ctx, list);
986 break;
987 case nir_cf_node_loop:
988 read_loop(ctx, list);
989 break;
990 default:
991 unreachable("bad cf type");
992 }
993 }
994
995 static void
996 write_cf_list(write_ctx *ctx, const struct exec_list *cf_list)
997 {
998 blob_write_uint32(ctx->blob, exec_list_length(cf_list));
999 foreach_list_typed(nir_cf_node, cf, node, cf_list) {
1000 write_cf_node(ctx, cf);
1001 }
1002 }
1003
1004 static void
1005 read_cf_list(read_ctx *ctx, struct exec_list *cf_list)
1006 {
1007 uint32_t num_cf_nodes = blob_read_uint32(ctx->blob);
1008 for (unsigned i = 0; i < num_cf_nodes; i++)
1009 read_cf_node(ctx, cf_list);
1010 }
1011
1012 static void
1013 write_function_impl(write_ctx *ctx, const nir_function_impl *fi)
1014 {
1015 write_var_list(ctx, &fi->locals);
1016 write_reg_list(ctx, &fi->registers);
1017 blob_write_uint32(ctx->blob, fi->reg_alloc);
1018
1019 write_cf_list(ctx, &fi->body);
1020 write_fixup_phis(ctx);
1021 }
1022
1023 static nir_function_impl *
1024 read_function_impl(read_ctx *ctx, nir_function *fxn)
1025 {
1026 nir_function_impl *fi = nir_function_impl_create_bare(ctx->nir);
1027 fi->function = fxn;
1028
1029 read_var_list(ctx, &fi->locals);
1030 read_reg_list(ctx, &fi->registers);
1031 fi->reg_alloc = blob_read_uint32(ctx->blob);
1032
1033 read_cf_list(ctx, &fi->body);
1034 read_fixup_phis(ctx);
1035
1036 fi->valid_metadata = 0;
1037
1038 return fi;
1039 }
1040
1041 static void
1042 write_function(write_ctx *ctx, const nir_function *fxn)
1043 {
1044 blob_write_uint32(ctx->blob, !!(fxn->name));
1045 if (fxn->name)
1046 blob_write_string(ctx->blob, fxn->name);
1047
1048 write_add_object(ctx, fxn);
1049
1050 blob_write_uint32(ctx->blob, fxn->num_params);
1051 for (unsigned i = 0; i < fxn->num_params; i++) {
1052 uint32_t val =
1053 ((uint32_t)fxn->params[i].num_components) |
1054 ((uint32_t)fxn->params[i].bit_size) << 8;
1055 blob_write_uint32(ctx->blob, val);
1056 }
1057
1058 blob_write_uint32(ctx->blob, fxn->is_entrypoint);
1059
1060 /* At first glance, it looks like we should write the function_impl here.
1061 * However, call instructions need to be able to reference at least the
1062 * function and those will get processed as we write the function_impls.
1063 * We stop here and write function_impls as a second pass.
1064 */
1065 }
1066
1067 static void
1068 read_function(read_ctx *ctx)
1069 {
1070 bool has_name = blob_read_uint32(ctx->blob);
1071 char *name = has_name ? blob_read_string(ctx->blob) : NULL;
1072
1073 nir_function *fxn = nir_function_create(ctx->nir, name);
1074
1075 read_add_object(ctx, fxn);
1076
1077 fxn->num_params = blob_read_uint32(ctx->blob);
1078 fxn->params = ralloc_array(fxn, nir_parameter, fxn->num_params);
1079 for (unsigned i = 0; i < fxn->num_params; i++) {
1080 uint32_t val = blob_read_uint32(ctx->blob);
1081 fxn->params[i].num_components = val & 0xff;
1082 fxn->params[i].bit_size = (val >> 8) & 0xff;
1083 }
1084
1085 fxn->is_entrypoint = blob_read_uint32(ctx->blob);
1086 }
1087
1088 void
1089 nir_serialize(struct blob *blob, const nir_shader *nir)
1090 {
1091 write_ctx ctx;
1092 ctx.remap_table = _mesa_pointer_hash_table_create(NULL);
1093 ctx.next_idx = 0;
1094 ctx.blob = blob;
1095 ctx.nir = nir;
1096 util_dynarray_init(&ctx.phi_fixups, NULL);
1097
1098 size_t idx_size_offset = blob_reserve_intptr(blob);
1099
1100 struct shader_info info = nir->info;
1101 uint32_t strings = 0;
1102 if (info.name)
1103 strings |= 0x1;
1104 if (info.label)
1105 strings |= 0x2;
1106 blob_write_uint32(blob, strings);
1107 if (info.name)
1108 blob_write_string(blob, info.name);
1109 if (info.label)
1110 blob_write_string(blob, info.label);
1111 info.name = info.label = NULL;
1112 blob_write_bytes(blob, (uint8_t *) &info, sizeof(info));
1113
1114 write_var_list(&ctx, &nir->uniforms);
1115 write_var_list(&ctx, &nir->inputs);
1116 write_var_list(&ctx, &nir->outputs);
1117 write_var_list(&ctx, &nir->shared);
1118 write_var_list(&ctx, &nir->globals);
1119 write_var_list(&ctx, &nir->system_values);
1120
1121 blob_write_uint32(blob, nir->num_inputs);
1122 blob_write_uint32(blob, nir->num_uniforms);
1123 blob_write_uint32(blob, nir->num_outputs);
1124 blob_write_uint32(blob, nir->num_shared);
1125 blob_write_uint32(blob, nir->scratch_size);
1126
1127 blob_write_uint32(blob, exec_list_length(&nir->functions));
1128 nir_foreach_function(fxn, nir) {
1129 write_function(&ctx, fxn);
1130 }
1131
1132 nir_foreach_function(fxn, nir) {
1133 write_function_impl(&ctx, fxn->impl);
1134 }
1135
1136 blob_write_uint32(blob, nir->constant_data_size);
1137 if (nir->constant_data_size > 0)
1138 blob_write_bytes(blob, nir->constant_data, nir->constant_data_size);
1139
1140 *(uintptr_t *)(blob->data + idx_size_offset) = ctx.next_idx;
1141
1142 _mesa_hash_table_destroy(ctx.remap_table, NULL);
1143 util_dynarray_fini(&ctx.phi_fixups);
1144 }
1145
1146 nir_shader *
1147 nir_deserialize(void *mem_ctx,
1148 const struct nir_shader_compiler_options *options,
1149 struct blob_reader *blob)
1150 {
1151 read_ctx ctx;
1152 ctx.blob = blob;
1153 list_inithead(&ctx.phi_srcs);
1154 ctx.idx_table_len = blob_read_intptr(blob);
1155 ctx.idx_table = calloc(ctx.idx_table_len, sizeof(uintptr_t));
1156 ctx.next_idx = 0;
1157
1158 uint32_t strings = blob_read_uint32(blob);
1159 char *name = (strings & 0x1) ? blob_read_string(blob) : NULL;
1160 char *label = (strings & 0x2) ? blob_read_string(blob) : NULL;
1161
1162 struct shader_info info;
1163 blob_copy_bytes(blob, (uint8_t *) &info, sizeof(info));
1164
1165 ctx.nir = nir_shader_create(mem_ctx, info.stage, options, NULL);
1166
1167 info.name = name ? ralloc_strdup(ctx.nir, name) : NULL;
1168 info.label = label ? ralloc_strdup(ctx.nir, label) : NULL;
1169
1170 ctx.nir->info = info;
1171
1172 read_var_list(&ctx, &ctx.nir->uniforms);
1173 read_var_list(&ctx, &ctx.nir->inputs);
1174 read_var_list(&ctx, &ctx.nir->outputs);
1175 read_var_list(&ctx, &ctx.nir->shared);
1176 read_var_list(&ctx, &ctx.nir->globals);
1177 read_var_list(&ctx, &ctx.nir->system_values);
1178
1179 ctx.nir->num_inputs = blob_read_uint32(blob);
1180 ctx.nir->num_uniforms = blob_read_uint32(blob);
1181 ctx.nir->num_outputs = blob_read_uint32(blob);
1182 ctx.nir->num_shared = blob_read_uint32(blob);
1183 ctx.nir->scratch_size = blob_read_uint32(blob);
1184
1185 unsigned num_functions = blob_read_uint32(blob);
1186 for (unsigned i = 0; i < num_functions; i++)
1187 read_function(&ctx);
1188
1189 nir_foreach_function(fxn, ctx.nir)
1190 fxn->impl = read_function_impl(&ctx, fxn);
1191
1192 ctx.nir->constant_data_size = blob_read_uint32(blob);
1193 if (ctx.nir->constant_data_size > 0) {
1194 ctx.nir->constant_data =
1195 ralloc_size(ctx.nir, ctx.nir->constant_data_size);
1196 blob_copy_bytes(blob, ctx.nir->constant_data,
1197 ctx.nir->constant_data_size);
1198 }
1199
1200 free(ctx.idx_table);
1201
1202 return ctx.nir;
1203 }
1204
1205 void
1206 nir_shader_serialize_deserialize(nir_shader *shader)
1207 {
1208 const struct nir_shader_compiler_options *options = shader->options;
1209
1210 struct blob writer;
1211 blob_init(&writer);
1212 nir_serialize(&writer, shader);
1213
1214 /* Delete all of dest's ralloc children but leave dest alone */
1215 void *dead_ctx = ralloc_context(NULL);
1216 ralloc_adopt(dead_ctx, shader);
1217 ralloc_free(dead_ctx);
1218
1219 dead_ctx = ralloc_context(NULL);
1220
1221 struct blob_reader reader;
1222 blob_reader_init(&reader, writer.data, writer.size);
1223 nir_shader *copy = nir_deserialize(dead_ctx, options, &reader);
1224
1225 blob_finish(&writer);
1226
1227 nir_shader_replace(shader, copy);
1228 ralloc_free(dead_ctx);
1229 }