nir: Drop imov/fmov in favor of one mov instruction
[mesa.git] / src / compiler / nir / nir_split_vars.c
1 /*
2 * Copyright © 2018 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "nir.h"
25 #include "nir_builder.h"
26 #include "nir_deref.h"
27 #include "nir_vla.h"
28
29 #include "util/u_math.h"
30
31
32 struct split_var_state {
33 void *mem_ctx;
34
35 nir_shader *shader;
36 nir_function_impl *impl;
37
38 nir_variable *base_var;
39 };
40
41 struct field {
42 struct field *parent;
43
44 const struct glsl_type *type;
45
46 unsigned num_fields;
47 struct field *fields;
48
49 nir_variable *var;
50 };
51
52 static const struct glsl_type *
53 wrap_type_in_array(const struct glsl_type *type,
54 const struct glsl_type *array_type)
55 {
56 if (!glsl_type_is_array(array_type))
57 return type;
58
59 const struct glsl_type *elem_type =
60 wrap_type_in_array(type, glsl_get_array_element(array_type));
61 assert(glsl_get_explicit_stride(array_type) == 0);
62 return glsl_array_type(elem_type, glsl_get_length(array_type), 0);
63 }
64
65 static int
66 num_array_levels_in_array_of_vector_type(const struct glsl_type *type)
67 {
68 int num_levels = 0;
69 while (true) {
70 if (glsl_type_is_array_or_matrix(type)) {
71 num_levels++;
72 type = glsl_get_array_element(type);
73 } else if (glsl_type_is_vector_or_scalar(type)) {
74 return num_levels;
75 } else {
76 /* Not an array of vectors */
77 return -1;
78 }
79 }
80 }
81
82 static void
83 init_field_for_type(struct field *field, struct field *parent,
84 const struct glsl_type *type,
85 const char *name,
86 struct split_var_state *state)
87 {
88 *field = (struct field) {
89 .parent = parent,
90 .type = type,
91 };
92
93 const struct glsl_type *struct_type = glsl_without_array(type);
94 if (glsl_type_is_struct_or_ifc(struct_type)) {
95 field->num_fields = glsl_get_length(struct_type),
96 field->fields = ralloc_array(state->mem_ctx, struct field,
97 field->num_fields);
98 for (unsigned i = 0; i < field->num_fields; i++) {
99 char *field_name = NULL;
100 if (name) {
101 field_name = ralloc_asprintf(state->mem_ctx, "%s_%s", name,
102 glsl_get_struct_elem_name(struct_type, i));
103 } else {
104 field_name = ralloc_asprintf(state->mem_ctx, "{unnamed %s}_%s",
105 glsl_get_type_name(struct_type),
106 glsl_get_struct_elem_name(struct_type, i));
107 }
108 init_field_for_type(&field->fields[i], field,
109 glsl_get_struct_field(struct_type, i),
110 field_name, state);
111 }
112 } else {
113 const struct glsl_type *var_type = type;
114 for (struct field *f = field->parent; f; f = f->parent)
115 var_type = wrap_type_in_array(var_type, f->type);
116
117 nir_variable_mode mode = state->base_var->data.mode;
118 if (mode == nir_var_function_temp) {
119 field->var = nir_local_variable_create(state->impl, var_type, name);
120 } else {
121 field->var = nir_variable_create(state->shader, mode, var_type, name);
122 }
123 }
124 }
125
126 static bool
127 split_var_list_structs(nir_shader *shader,
128 nir_function_impl *impl,
129 struct exec_list *vars,
130 struct hash_table *var_field_map,
131 void *mem_ctx)
132 {
133 struct split_var_state state = {
134 .mem_ctx = mem_ctx,
135 .shader = shader,
136 .impl = impl,
137 };
138
139 struct exec_list split_vars;
140 exec_list_make_empty(&split_vars);
141
142 /* To avoid list confusion (we'll be adding things as we split variables),
143 * pull all of the variables we plan to split off of the list
144 */
145 nir_foreach_variable_safe(var, vars) {
146 if (!glsl_type_is_struct_or_ifc(glsl_without_array(var->type)))
147 continue;
148
149 exec_node_remove(&var->node);
150 exec_list_push_tail(&split_vars, &var->node);
151 }
152
153 nir_foreach_variable(var, &split_vars) {
154 state.base_var = var;
155
156 struct field *root_field = ralloc(mem_ctx, struct field);
157 init_field_for_type(root_field, NULL, var->type, var->name, &state);
158 _mesa_hash_table_insert(var_field_map, var, root_field);
159 }
160
161 return !exec_list_is_empty(&split_vars);
162 }
163
164 static void
165 split_struct_derefs_impl(nir_function_impl *impl,
166 struct hash_table *var_field_map,
167 nir_variable_mode modes,
168 void *mem_ctx)
169 {
170 nir_builder b;
171 nir_builder_init(&b, impl);
172
173 nir_foreach_block(block, impl) {
174 nir_foreach_instr_safe(instr, block) {
175 if (instr->type != nir_instr_type_deref)
176 continue;
177
178 nir_deref_instr *deref = nir_instr_as_deref(instr);
179 if (!(deref->mode & modes))
180 continue;
181
182 /* Clean up any dead derefs we find lying around. They may refer to
183 * variables we're planning to split.
184 */
185 if (nir_deref_instr_remove_if_unused(deref))
186 continue;
187
188 if (!glsl_type_is_vector_or_scalar(deref->type))
189 continue;
190
191 nir_variable *base_var = nir_deref_instr_get_variable(deref);
192 struct hash_entry *entry =
193 _mesa_hash_table_search(var_field_map, base_var);
194 if (!entry)
195 continue;
196
197 struct field *root_field = entry->data;
198
199 nir_deref_path path;
200 nir_deref_path_init(&path, deref, mem_ctx);
201
202 struct field *tail_field = root_field;
203 for (unsigned i = 0; path.path[i]; i++) {
204 if (path.path[i]->deref_type != nir_deref_type_struct)
205 continue;
206
207 assert(i > 0);
208 assert(glsl_type_is_struct_or_ifc(path.path[i - 1]->type));
209 assert(path.path[i - 1]->type ==
210 glsl_without_array(tail_field->type));
211
212 tail_field = &tail_field->fields[path.path[i]->strct.index];
213 }
214 nir_variable *split_var = tail_field->var;
215
216 nir_deref_instr *new_deref = NULL;
217 for (unsigned i = 0; path.path[i]; i++) {
218 nir_deref_instr *p = path.path[i];
219 b.cursor = nir_after_instr(&p->instr);
220
221 switch (p->deref_type) {
222 case nir_deref_type_var:
223 assert(new_deref == NULL);
224 new_deref = nir_build_deref_var(&b, split_var);
225 break;
226
227 case nir_deref_type_array:
228 case nir_deref_type_array_wildcard:
229 new_deref = nir_build_deref_follower(&b, new_deref, p);
230 break;
231
232 case nir_deref_type_struct:
233 /* Nothing to do; we're splitting structs */
234 break;
235
236 default:
237 unreachable("Invalid deref type in path");
238 }
239 }
240
241 assert(new_deref->type == deref->type);
242 nir_ssa_def_rewrite_uses(&deref->dest.ssa,
243 nir_src_for_ssa(&new_deref->dest.ssa));
244 nir_deref_instr_remove_if_unused(deref);
245 }
246 }
247 }
248
249 /** A pass for splitting structs into multiple variables
250 *
251 * This pass splits arrays of structs into multiple variables, one for each
252 * (possibly nested) structure member. After this pass completes, no
253 * variables of the given mode will contain a struct type.
254 */
255 bool
256 nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes)
257 {
258 void *mem_ctx = ralloc_context(NULL);
259 struct hash_table *var_field_map =
260 _mesa_pointer_hash_table_create(mem_ctx);
261
262 assert((modes & (nir_var_shader_temp | nir_var_function_temp)) == modes);
263
264 bool has_global_splits = false;
265 if (modes & nir_var_shader_temp) {
266 has_global_splits = split_var_list_structs(shader, NULL,
267 &shader->globals,
268 var_field_map, mem_ctx);
269 }
270
271 bool progress = false;
272 nir_foreach_function(function, shader) {
273 if (!function->impl)
274 continue;
275
276 bool has_local_splits = false;
277 if (modes & nir_var_function_temp) {
278 has_local_splits = split_var_list_structs(shader, function->impl,
279 &function->impl->locals,
280 var_field_map, mem_ctx);
281 }
282
283 if (has_global_splits || has_local_splits) {
284 split_struct_derefs_impl(function->impl, var_field_map,
285 modes, mem_ctx);
286
287 nir_metadata_preserve(function->impl, nir_metadata_block_index |
288 nir_metadata_dominance);
289 progress = true;
290 }
291 }
292
293 ralloc_free(mem_ctx);
294
295 return progress;
296 }
297
298 struct array_level_info {
299 unsigned array_len;
300 bool split;
301 };
302
303 struct array_split {
304 /* Only set if this is the tail end of the splitting */
305 nir_variable *var;
306
307 unsigned num_splits;
308 struct array_split *splits;
309 };
310
311 struct array_var_info {
312 nir_variable *base_var;
313
314 const struct glsl_type *split_var_type;
315
316 bool split_var;
317 struct array_split root_split;
318
319 unsigned num_levels;
320 struct array_level_info levels[0];
321 };
322
323 static bool
324 init_var_list_array_infos(struct exec_list *vars,
325 struct hash_table *var_info_map,
326 void *mem_ctx)
327 {
328 bool has_array = false;
329
330 nir_foreach_variable(var, vars) {
331 int num_levels = num_array_levels_in_array_of_vector_type(var->type);
332 if (num_levels <= 0)
333 continue;
334
335 struct array_var_info *info =
336 rzalloc_size(mem_ctx, sizeof(*info) +
337 num_levels * sizeof(info->levels[0]));
338
339 info->base_var = var;
340 info->num_levels = num_levels;
341
342 const struct glsl_type *type = var->type;
343 for (int i = 0; i < num_levels; i++) {
344 info->levels[i].array_len = glsl_get_length(type);
345 type = glsl_get_array_element(type);
346
347 /* All levels start out initially as split */
348 info->levels[i].split = true;
349 }
350
351 _mesa_hash_table_insert(var_info_map, var, info);
352 has_array = true;
353 }
354
355 return has_array;
356 }
357
358 static struct array_var_info *
359 get_array_var_info(nir_variable *var,
360 struct hash_table *var_info_map)
361 {
362 struct hash_entry *entry =
363 _mesa_hash_table_search(var_info_map, var);
364 return entry ? entry->data : NULL;
365 }
366
367 static struct array_var_info *
368 get_array_deref_info(nir_deref_instr *deref,
369 struct hash_table *var_info_map,
370 nir_variable_mode modes)
371 {
372 if (!(deref->mode & modes))
373 return NULL;
374
375 return get_array_var_info(nir_deref_instr_get_variable(deref),
376 var_info_map);
377 }
378
379 static void
380 mark_array_deref_used(nir_deref_instr *deref,
381 struct hash_table *var_info_map,
382 nir_variable_mode modes,
383 void *mem_ctx)
384 {
385 struct array_var_info *info =
386 get_array_deref_info(deref, var_info_map, modes);
387 if (!info)
388 return;
389
390 nir_deref_path path;
391 nir_deref_path_init(&path, deref, mem_ctx);
392
393 /* Walk the path and look for indirects. If we have an array deref with an
394 * indirect, mark the given level as not being split.
395 */
396 for (unsigned i = 0; i < info->num_levels; i++) {
397 nir_deref_instr *p = path.path[i + 1];
398 if (p->deref_type == nir_deref_type_array &&
399 !nir_src_is_const(p->arr.index))
400 info->levels[i].split = false;
401 }
402 }
403
404 static void
405 mark_array_usage_impl(nir_function_impl *impl,
406 struct hash_table *var_info_map,
407 nir_variable_mode modes,
408 void *mem_ctx)
409 {
410 nir_foreach_block(block, impl) {
411 nir_foreach_instr(instr, block) {
412 if (instr->type != nir_instr_type_intrinsic)
413 continue;
414
415 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
416 switch (intrin->intrinsic) {
417 case nir_intrinsic_copy_deref:
418 mark_array_deref_used(nir_src_as_deref(intrin->src[1]),
419 var_info_map, modes, mem_ctx);
420 /* Fall Through */
421
422 case nir_intrinsic_load_deref:
423 case nir_intrinsic_store_deref:
424 mark_array_deref_used(nir_src_as_deref(intrin->src[0]),
425 var_info_map, modes, mem_ctx);
426 break;
427
428 default:
429 break;
430 }
431 }
432 }
433 }
434
435 static void
436 create_split_array_vars(struct array_var_info *var_info,
437 unsigned level,
438 struct array_split *split,
439 const char *name,
440 nir_shader *shader,
441 nir_function_impl *impl,
442 void *mem_ctx)
443 {
444 while (level < var_info->num_levels && !var_info->levels[level].split) {
445 name = ralloc_asprintf(mem_ctx, "%s[*]", name);
446 level++;
447 }
448
449 if (level == var_info->num_levels) {
450 /* We add parens to the variable name so it looks like "(foo[2][*])" so
451 * that further derefs will look like "(foo[2][*])[ssa_6]"
452 */
453 name = ralloc_asprintf(mem_ctx, "(%s)", name);
454
455 nir_variable_mode mode = var_info->base_var->data.mode;
456 if (mode == nir_var_function_temp) {
457 split->var = nir_local_variable_create(impl,
458 var_info->split_var_type, name);
459 } else {
460 split->var = nir_variable_create(shader, mode,
461 var_info->split_var_type, name);
462 }
463 } else {
464 assert(var_info->levels[level].split);
465 split->num_splits = var_info->levels[level].array_len;
466 split->splits = rzalloc_array(mem_ctx, struct array_split,
467 split->num_splits);
468 for (unsigned i = 0; i < split->num_splits; i++) {
469 create_split_array_vars(var_info, level + 1, &split->splits[i],
470 ralloc_asprintf(mem_ctx, "%s[%d]", name, i),
471 shader, impl, mem_ctx);
472 }
473 }
474 }
475
476 static bool
477 split_var_list_arrays(nir_shader *shader,
478 nir_function_impl *impl,
479 struct exec_list *vars,
480 struct hash_table *var_info_map,
481 void *mem_ctx)
482 {
483 struct exec_list split_vars;
484 exec_list_make_empty(&split_vars);
485
486 nir_foreach_variable_safe(var, vars) {
487 struct array_var_info *info = get_array_var_info(var, var_info_map);
488 if (!info)
489 continue;
490
491 bool has_split = false;
492 const struct glsl_type *split_type =
493 glsl_without_array_or_matrix(var->type);
494 for (int i = info->num_levels - 1; i >= 0; i--) {
495 if (info->levels[i].split) {
496 has_split = true;
497 continue;
498 }
499
500 /* If the original type was a matrix type, we'd like to keep that so
501 * we don't convert matrices into arrays.
502 */
503 if (i == info->num_levels - 1 &&
504 glsl_type_is_matrix(glsl_without_array(var->type))) {
505 split_type = glsl_matrix_type(glsl_get_base_type(split_type),
506 glsl_get_components(split_type),
507 info->levels[i].array_len);
508 } else {
509 split_type = glsl_array_type(split_type, info->levels[i].array_len, 0);
510 }
511 }
512
513 if (has_split) {
514 info->split_var_type = split_type;
515 /* To avoid list confusion (we'll be adding things as we split
516 * variables), pull all of the variables we plan to split off of the
517 * main variable list.
518 */
519 exec_node_remove(&var->node);
520 exec_list_push_tail(&split_vars, &var->node);
521 } else {
522 assert(split_type == glsl_get_bare_type(var->type));
523 /* If we're not modifying this variable, delete the info so we skip
524 * it faster in later passes.
525 */
526 _mesa_hash_table_remove_key(var_info_map, var);
527 }
528 }
529
530 nir_foreach_variable(var, &split_vars) {
531 struct array_var_info *info = get_array_var_info(var, var_info_map);
532 create_split_array_vars(info, 0, &info->root_split, var->name,
533 shader, impl, mem_ctx);
534 }
535
536 return !exec_list_is_empty(&split_vars);
537 }
538
539 static bool
540 deref_has_split_wildcard(nir_deref_path *path,
541 struct array_var_info *info)
542 {
543 if (info == NULL)
544 return false;
545
546 assert(path->path[0]->var == info->base_var);
547 for (unsigned i = 0; i < info->num_levels; i++) {
548 if (path->path[i + 1]->deref_type == nir_deref_type_array_wildcard &&
549 info->levels[i].split)
550 return true;
551 }
552
553 return false;
554 }
555
556 static bool
557 array_path_is_out_of_bounds(nir_deref_path *path,
558 struct array_var_info *info)
559 {
560 if (info == NULL)
561 return false;
562
563 assert(path->path[0]->var == info->base_var);
564 for (unsigned i = 0; i < info->num_levels; i++) {
565 nir_deref_instr *p = path->path[i + 1];
566 if (p->deref_type == nir_deref_type_array_wildcard)
567 continue;
568
569 if (nir_src_is_const(p->arr.index) &&
570 nir_src_as_uint(p->arr.index) >= info->levels[i].array_len)
571 return true;
572 }
573
574 return false;
575 }
576
577 static void
578 emit_split_copies(nir_builder *b,
579 struct array_var_info *dst_info, nir_deref_path *dst_path,
580 unsigned dst_level, nir_deref_instr *dst,
581 struct array_var_info *src_info, nir_deref_path *src_path,
582 unsigned src_level, nir_deref_instr *src)
583 {
584 nir_deref_instr *dst_p, *src_p;
585
586 while ((dst_p = dst_path->path[dst_level + 1])) {
587 if (dst_p->deref_type == nir_deref_type_array_wildcard)
588 break;
589
590 dst = nir_build_deref_follower(b, dst, dst_p);
591 dst_level++;
592 }
593
594 while ((src_p = src_path->path[src_level + 1])) {
595 if (src_p->deref_type == nir_deref_type_array_wildcard)
596 break;
597
598 src = nir_build_deref_follower(b, src, src_p);
599 src_level++;
600 }
601
602 if (src_p == NULL || dst_p == NULL) {
603 assert(src_p == NULL && dst_p == NULL);
604 nir_copy_deref(b, dst, src);
605 } else {
606 assert(dst_p->deref_type == nir_deref_type_array_wildcard &&
607 src_p->deref_type == nir_deref_type_array_wildcard);
608
609 if ((dst_info && dst_info->levels[dst_level].split) ||
610 (src_info && src_info->levels[src_level].split)) {
611 /* There are no indirects at this level on one of the source or the
612 * destination so we are lowering it.
613 */
614 assert(glsl_get_length(dst_path->path[dst_level]->type) ==
615 glsl_get_length(src_path->path[src_level]->type));
616 unsigned len = glsl_get_length(dst_path->path[dst_level]->type);
617 for (unsigned i = 0; i < len; i++) {
618 emit_split_copies(b, dst_info, dst_path, dst_level + 1,
619 nir_build_deref_array_imm(b, dst, i),
620 src_info, src_path, src_level + 1,
621 nir_build_deref_array_imm(b, src, i));
622 }
623 } else {
624 /* Neither side is being split so we just keep going */
625 emit_split_copies(b, dst_info, dst_path, dst_level + 1,
626 nir_build_deref_array_wildcard(b, dst),
627 src_info, src_path, src_level + 1,
628 nir_build_deref_array_wildcard(b, src));
629 }
630 }
631 }
632
633 static void
634 split_array_copies_impl(nir_function_impl *impl,
635 struct hash_table *var_info_map,
636 nir_variable_mode modes,
637 void *mem_ctx)
638 {
639 nir_builder b;
640 nir_builder_init(&b, impl);
641
642 nir_foreach_block(block, impl) {
643 nir_foreach_instr_safe(instr, block) {
644 if (instr->type != nir_instr_type_intrinsic)
645 continue;
646
647 nir_intrinsic_instr *copy = nir_instr_as_intrinsic(instr);
648 if (copy->intrinsic != nir_intrinsic_copy_deref)
649 continue;
650
651 nir_deref_instr *dst_deref = nir_src_as_deref(copy->src[0]);
652 nir_deref_instr *src_deref = nir_src_as_deref(copy->src[1]);
653
654 struct array_var_info *dst_info =
655 get_array_deref_info(dst_deref, var_info_map, modes);
656 struct array_var_info *src_info =
657 get_array_deref_info(src_deref, var_info_map, modes);
658
659 if (!src_info && !dst_info)
660 continue;
661
662 nir_deref_path dst_path, src_path;
663 nir_deref_path_init(&dst_path, dst_deref, mem_ctx);
664 nir_deref_path_init(&src_path, src_deref, mem_ctx);
665
666 if (!deref_has_split_wildcard(&dst_path, dst_info) &&
667 !deref_has_split_wildcard(&src_path, src_info))
668 continue;
669
670 b.cursor = nir_instr_remove(&copy->instr);
671
672 emit_split_copies(&b, dst_info, &dst_path, 0, dst_path.path[0],
673 src_info, &src_path, 0, src_path.path[0]);
674 }
675 }
676 }
677
678 static void
679 split_array_access_impl(nir_function_impl *impl,
680 struct hash_table *var_info_map,
681 nir_variable_mode modes,
682 void *mem_ctx)
683 {
684 nir_builder b;
685 nir_builder_init(&b, impl);
686
687 nir_foreach_block(block, impl) {
688 nir_foreach_instr_safe(instr, block) {
689 if (instr->type == nir_instr_type_deref) {
690 /* Clean up any dead derefs we find lying around. They may refer
691 * to variables we're planning to split.
692 */
693 nir_deref_instr *deref = nir_instr_as_deref(instr);
694 if (deref->mode & modes)
695 nir_deref_instr_remove_if_unused(deref);
696 continue;
697 }
698
699 if (instr->type != nir_instr_type_intrinsic)
700 continue;
701
702 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
703 if (intrin->intrinsic != nir_intrinsic_load_deref &&
704 intrin->intrinsic != nir_intrinsic_store_deref &&
705 intrin->intrinsic != nir_intrinsic_copy_deref)
706 continue;
707
708 const unsigned num_derefs =
709 intrin->intrinsic == nir_intrinsic_copy_deref ? 2 : 1;
710
711 for (unsigned d = 0; d < num_derefs; d++) {
712 nir_deref_instr *deref = nir_src_as_deref(intrin->src[d]);
713
714 struct array_var_info *info =
715 get_array_deref_info(deref, var_info_map, modes);
716 if (!info)
717 continue;
718
719 nir_deref_path path;
720 nir_deref_path_init(&path, deref, mem_ctx);
721
722 b.cursor = nir_before_instr(&intrin->instr);
723
724 if (array_path_is_out_of_bounds(&path, info)) {
725 /* If one of the derefs is out-of-bounds, we just delete the
726 * instruction. If a destination is out of bounds, then it may
727 * have been in-bounds prior to shrinking so we don't want to
728 * accidentally stomp something. However, we've already proven
729 * that it will never be read so it's safe to delete. If a
730 * source is out of bounds then it is loading random garbage.
731 * For loads, we replace their uses with an undef instruction
732 * and for copies we just delete the copy since it was writing
733 * undefined garbage anyway and we may as well leave the random
734 * garbage in the destination alone.
735 */
736 if (intrin->intrinsic == nir_intrinsic_load_deref) {
737 nir_ssa_def *u =
738 nir_ssa_undef(&b, intrin->dest.ssa.num_components,
739 intrin->dest.ssa.bit_size);
740 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
741 nir_src_for_ssa(u));
742 }
743 nir_instr_remove(&intrin->instr);
744 for (unsigned i = 0; i < num_derefs; i++)
745 nir_deref_instr_remove_if_unused(nir_src_as_deref(intrin->src[i]));
746 break;
747 }
748
749 struct array_split *split = &info->root_split;
750 for (unsigned i = 0; i < info->num_levels; i++) {
751 if (info->levels[i].split) {
752 nir_deref_instr *p = path.path[i + 1];
753 unsigned index = nir_src_as_uint(p->arr.index);
754 assert(index < info->levels[i].array_len);
755 split = &split->splits[index];
756 }
757 }
758 assert(!split->splits && split->var);
759
760 nir_deref_instr *new_deref = nir_build_deref_var(&b, split->var);
761 for (unsigned i = 0; i < info->num_levels; i++) {
762 if (!info->levels[i].split) {
763 new_deref = nir_build_deref_follower(&b, new_deref,
764 path.path[i + 1]);
765 }
766 }
767 assert(new_deref->type == deref->type);
768
769 /* Rewrite the deref source to point to the split one */
770 nir_instr_rewrite_src(&intrin->instr, &intrin->src[d],
771 nir_src_for_ssa(&new_deref->dest.ssa));
772 nir_deref_instr_remove_if_unused(deref);
773 }
774 }
775 }
776 }
777
778 /** A pass for splitting arrays of vectors into multiple variables
779 *
780 * This pass looks at arrays (possibly multiple levels) of vectors (not
781 * structures or other types) and tries to split them into piles of variables,
782 * one for each array element. The heuristic used is simple: If a given array
783 * level is never used with an indirect, that array level will get split.
784 *
785 * This pass probably could handles structures easily enough but making a pass
786 * that could see through an array of structures of arrays would be difficult
787 * so it's best to just run nir_split_struct_vars first.
788 */
789 bool
790 nir_split_array_vars(nir_shader *shader, nir_variable_mode modes)
791 {
792 void *mem_ctx = ralloc_context(NULL);
793 struct hash_table *var_info_map = _mesa_pointer_hash_table_create(mem_ctx);
794
795 assert((modes & (nir_var_shader_temp | nir_var_function_temp)) == modes);
796
797 bool has_global_array = false;
798 if (modes & nir_var_shader_temp) {
799 has_global_array = init_var_list_array_infos(&shader->globals,
800 var_info_map, mem_ctx);
801 }
802
803 bool has_any_array = false;
804 nir_foreach_function(function, shader) {
805 if (!function->impl)
806 continue;
807
808 bool has_local_array = false;
809 if (modes & nir_var_function_temp) {
810 has_local_array = init_var_list_array_infos(&function->impl->locals,
811 var_info_map, mem_ctx);
812 }
813
814 if (has_global_array || has_local_array) {
815 has_any_array = true;
816 mark_array_usage_impl(function->impl, var_info_map, modes, mem_ctx);
817 }
818 }
819
820 /* If we failed to find any arrays of arrays, bail early. */
821 if (!has_any_array) {
822 ralloc_free(mem_ctx);
823 return false;
824 }
825
826 bool has_global_splits = false;
827 if (modes & nir_var_shader_temp) {
828 has_global_splits = split_var_list_arrays(shader, NULL,
829 &shader->globals,
830 var_info_map, mem_ctx);
831 }
832
833 bool progress = false;
834 nir_foreach_function(function, shader) {
835 if (!function->impl)
836 continue;
837
838 bool has_local_splits = false;
839 if (modes & nir_var_function_temp) {
840 has_local_splits = split_var_list_arrays(shader, function->impl,
841 &function->impl->locals,
842 var_info_map, mem_ctx);
843 }
844
845 if (has_global_splits || has_local_splits) {
846 split_array_copies_impl(function->impl, var_info_map, modes, mem_ctx);
847 split_array_access_impl(function->impl, var_info_map, modes, mem_ctx);
848
849 nir_metadata_preserve(function->impl, nir_metadata_block_index |
850 nir_metadata_dominance);
851 progress = true;
852 }
853 }
854
855 ralloc_free(mem_ctx);
856
857 return progress;
858 }
859
860 struct array_level_usage {
861 unsigned array_len;
862
863 /* The value UINT_MAX will be used to indicate an indirect */
864 unsigned max_read;
865 unsigned max_written;
866
867 /* True if there is a copy that isn't to/from a shrinkable array */
868 bool has_external_copy;
869 struct set *levels_copied;
870 };
871
872 struct vec_var_usage {
873 /* Convenience set of all components this variable has */
874 nir_component_mask_t all_comps;
875
876 nir_component_mask_t comps_read;
877 nir_component_mask_t comps_written;
878
879 nir_component_mask_t comps_kept;
880
881 /* True if there is a copy that isn't to/from a shrinkable vector */
882 bool has_external_copy;
883 struct set *vars_copied;
884
885 unsigned num_levels;
886 struct array_level_usage levels[0];
887 };
888
889 static struct vec_var_usage *
890 get_vec_var_usage(nir_variable *var,
891 struct hash_table *var_usage_map,
892 bool add_usage_entry, void *mem_ctx)
893 {
894 struct hash_entry *entry = _mesa_hash_table_search(var_usage_map, var);
895 if (entry)
896 return entry->data;
897
898 if (!add_usage_entry)
899 return NULL;
900
901 /* Check to make sure that we are working with an array of vectors. We
902 * don't bother to shrink single vectors because we figure that we can
903 * clean it up better with SSA than by inserting piles of vecN instructions
904 * to compact results.
905 */
906 int num_levels = num_array_levels_in_array_of_vector_type(var->type);
907 if (num_levels < 1)
908 return NULL; /* Not an array of vectors */
909
910 struct vec_var_usage *usage =
911 rzalloc_size(mem_ctx, sizeof(*usage) +
912 num_levels * sizeof(usage->levels[0]));
913
914 usage->num_levels = num_levels;
915 const struct glsl_type *type = var->type;
916 for (unsigned i = 0; i < num_levels; i++) {
917 usage->levels[i].array_len = glsl_get_length(type);
918 type = glsl_get_array_element(type);
919 }
920 assert(glsl_type_is_vector_or_scalar(type));
921
922 usage->all_comps = (1 << glsl_get_components(type)) - 1;
923
924 _mesa_hash_table_insert(var_usage_map, var, usage);
925
926 return usage;
927 }
928
929 static struct vec_var_usage *
930 get_vec_deref_usage(nir_deref_instr *deref,
931 struct hash_table *var_usage_map,
932 nir_variable_mode modes,
933 bool add_usage_entry, void *mem_ctx)
934 {
935 if (!(deref->mode & modes))
936 return NULL;
937
938 return get_vec_var_usage(nir_deref_instr_get_variable(deref),
939 var_usage_map, add_usage_entry, mem_ctx);
940 }
941
942 static void
943 mark_deref_used(nir_deref_instr *deref,
944 nir_component_mask_t comps_read,
945 nir_component_mask_t comps_written,
946 nir_deref_instr *copy_deref,
947 struct hash_table *var_usage_map,
948 nir_variable_mode modes,
949 void *mem_ctx)
950 {
951 if (!(deref->mode & modes))
952 return;
953
954 nir_variable *var = nir_deref_instr_get_variable(deref);
955
956 struct vec_var_usage *usage =
957 get_vec_var_usage(var, var_usage_map, true, mem_ctx);
958 if (!usage)
959 return;
960
961 usage->comps_read |= comps_read & usage->all_comps;
962 usage->comps_written |= comps_written & usage->all_comps;
963
964 struct vec_var_usage *copy_usage = NULL;
965 if (copy_deref) {
966 copy_usage = get_vec_deref_usage(copy_deref, var_usage_map, modes,
967 true, mem_ctx);
968 if (copy_usage) {
969 if (usage->vars_copied == NULL) {
970 usage->vars_copied = _mesa_pointer_set_create(mem_ctx);
971 }
972 _mesa_set_add(usage->vars_copied, copy_usage);
973 } else {
974 usage->has_external_copy = true;
975 }
976 }
977
978 nir_deref_path path;
979 nir_deref_path_init(&path, deref, mem_ctx);
980
981 nir_deref_path copy_path;
982 if (copy_usage)
983 nir_deref_path_init(&copy_path, copy_deref, mem_ctx);
984
985 unsigned copy_i = 0;
986 for (unsigned i = 0; i < usage->num_levels; i++) {
987 struct array_level_usage *level = &usage->levels[i];
988 nir_deref_instr *deref = path.path[i + 1];
989 assert(deref->deref_type == nir_deref_type_array ||
990 deref->deref_type == nir_deref_type_array_wildcard);
991
992 unsigned max_used;
993 if (deref->deref_type == nir_deref_type_array) {
994 max_used = nir_src_is_const(deref->arr.index) ?
995 nir_src_as_uint(deref->arr.index) : UINT_MAX;
996 } else {
997 /* For wildcards, we read or wrote the whole thing. */
998 assert(deref->deref_type == nir_deref_type_array_wildcard);
999 max_used = level->array_len - 1;
1000
1001 if (copy_usage) {
1002 /* Match each wildcard level with the level on copy_usage */
1003 for (; copy_path.path[copy_i + 1]; copy_i++) {
1004 if (copy_path.path[copy_i + 1]->deref_type ==
1005 nir_deref_type_array_wildcard)
1006 break;
1007 }
1008 struct array_level_usage *copy_level =
1009 &copy_usage->levels[copy_i++];
1010
1011 if (level->levels_copied == NULL) {
1012 level->levels_copied = _mesa_pointer_set_create(mem_ctx);
1013 }
1014 _mesa_set_add(level->levels_copied, copy_level);
1015 } else {
1016 /* We have a wildcard and it comes from a variable we aren't
1017 * tracking; flag it and we'll know to not shorten this array.
1018 */
1019 level->has_external_copy = true;
1020 }
1021 }
1022
1023 if (comps_written)
1024 level->max_written = MAX2(level->max_written, max_used);
1025 if (comps_read)
1026 level->max_read = MAX2(level->max_read, max_used);
1027 }
1028 }
1029
1030 static bool
1031 src_is_load_deref(nir_src src, nir_src deref_src)
1032 {
1033 nir_intrinsic_instr *load = nir_src_as_intrinsic(src);
1034 if (load == NULL || load->intrinsic != nir_intrinsic_load_deref)
1035 return false;
1036
1037 assert(load->src[0].is_ssa);
1038
1039 return load->src[0].ssa == deref_src.ssa;
1040 }
1041
1042 /* Returns all non-self-referential components of a store instruction. A
1043 * component is self-referential if it comes from the same component of a load
1044 * instruction on the same deref. If the only data in a particular component
1045 * of a variable came directly from that component then it's undefined. The
1046 * only way to get defined data into a component of a variable is for it to
1047 * get written there by something outside or from a different component.
1048 *
1049 * This is a fairly common pattern in shaders that come from either GLSL IR or
1050 * GLSLang because both glsl_to_nir and GLSLang implement write-masking with
1051 * load-vec-store.
1052 */
1053 static nir_component_mask_t
1054 get_non_self_referential_store_comps(nir_intrinsic_instr *store)
1055 {
1056 nir_component_mask_t comps = nir_intrinsic_write_mask(store);
1057
1058 assert(store->src[1].is_ssa);
1059 nir_instr *src_instr = store->src[1].ssa->parent_instr;
1060 if (src_instr->type != nir_instr_type_alu)
1061 return comps;
1062
1063 nir_alu_instr *src_alu = nir_instr_as_alu(src_instr);
1064
1065 if (src_alu->op == nir_op_mov) {
1066 /* If it's just a swizzle of a load from the same deref, discount any
1067 * channels that don't move in the swizzle.
1068 */
1069 if (src_is_load_deref(src_alu->src[0].src, store->src[0])) {
1070 for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) {
1071 if (src_alu->src[0].swizzle[i] == i)
1072 comps &= ~(1u << i);
1073 }
1074 }
1075 } else if (src_alu->op == nir_op_vec2 ||
1076 src_alu->op == nir_op_vec3 ||
1077 src_alu->op == nir_op_vec4) {
1078 /* If it's a vec, discount any channels that are just loads from the
1079 * same deref put in the same spot.
1080 */
1081 for (unsigned i = 0; i < nir_op_infos[src_alu->op].num_inputs; i++) {
1082 if (src_is_load_deref(src_alu->src[i].src, store->src[0]) &&
1083 src_alu->src[i].swizzle[0] == i)
1084 comps &= ~(1u << i);
1085 }
1086 }
1087
1088 return comps;
1089 }
1090
1091 static void
1092 find_used_components_impl(nir_function_impl *impl,
1093 struct hash_table *var_usage_map,
1094 nir_variable_mode modes,
1095 void *mem_ctx)
1096 {
1097 nir_foreach_block(block, impl) {
1098 nir_foreach_instr(instr, block) {
1099 if (instr->type != nir_instr_type_intrinsic)
1100 continue;
1101
1102 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
1103 switch (intrin->intrinsic) {
1104 case nir_intrinsic_load_deref:
1105 mark_deref_used(nir_src_as_deref(intrin->src[0]),
1106 nir_ssa_def_components_read(&intrin->dest.ssa), 0,
1107 NULL, var_usage_map, modes, mem_ctx);
1108 break;
1109
1110 case nir_intrinsic_store_deref:
1111 mark_deref_used(nir_src_as_deref(intrin->src[0]),
1112 0, get_non_self_referential_store_comps(intrin),
1113 NULL, var_usage_map, modes, mem_ctx);
1114 break;
1115
1116 case nir_intrinsic_copy_deref: {
1117 /* Just mark everything used for copies. */
1118 nir_deref_instr *dst = nir_src_as_deref(intrin->src[0]);
1119 nir_deref_instr *src = nir_src_as_deref(intrin->src[1]);
1120 mark_deref_used(dst, 0, ~0, src, var_usage_map, modes, mem_ctx);
1121 mark_deref_used(src, ~0, 0, dst, var_usage_map, modes, mem_ctx);
1122 break;
1123 }
1124
1125 default:
1126 break;
1127 }
1128 }
1129 }
1130 }
1131
1132 static bool
1133 shrink_vec_var_list(struct exec_list *vars,
1134 struct hash_table *var_usage_map)
1135 {
1136 /* Initialize the components kept field of each variable. This is the
1137 * AND of the components written and components read. If a component is
1138 * written but never read, it's dead. If it is read but never written,
1139 * then all values read are undefined garbage and we may as well not read
1140 * them.
1141 *
1142 * The same logic applies to the array length. We make the array length
1143 * the minimum needed required length between read and write and plan to
1144 * discard any OOB access. The one exception here is indirect writes
1145 * because we don't know where they will land and we can't shrink an array
1146 * with indirect writes because previously in-bounds writes may become
1147 * out-of-bounds and have undefined behavior.
1148 *
1149 * Also, if we have a copy that to/from something we can't shrink, we need
1150 * to leave components and array_len of any wildcards alone.
1151 */
1152 nir_foreach_variable(var, vars) {
1153 struct vec_var_usage *usage =
1154 get_vec_var_usage(var, var_usage_map, false, NULL);
1155 if (!usage)
1156 continue;
1157
1158 assert(usage->comps_kept == 0);
1159 if (usage->has_external_copy)
1160 usage->comps_kept = usage->all_comps;
1161 else
1162 usage->comps_kept = usage->comps_read & usage->comps_written;
1163
1164 for (unsigned i = 0; i < usage->num_levels; i++) {
1165 struct array_level_usage *level = &usage->levels[i];
1166 assert(level->array_len > 0);
1167
1168 if (level->max_written == UINT_MAX || level->has_external_copy)
1169 continue; /* Can't shrink */
1170
1171 unsigned max_used = MIN2(level->max_read, level->max_written);
1172 level->array_len = MIN2(max_used, level->array_len - 1) + 1;
1173 }
1174 }
1175
1176 /* In order for variable copies to work, we have to have the same data type
1177 * on the source and the destination. In order to satisfy this, we run a
1178 * little fixed-point algorithm to transitively ensure that we get enough
1179 * components and array elements for this to hold for all copies.
1180 */
1181 bool fp_progress;
1182 do {
1183 fp_progress = false;
1184 nir_foreach_variable(var, vars) {
1185 struct vec_var_usage *var_usage =
1186 get_vec_var_usage(var, var_usage_map, false, NULL);
1187 if (!var_usage || !var_usage->vars_copied)
1188 continue;
1189
1190 set_foreach(var_usage->vars_copied, copy_entry) {
1191 struct vec_var_usage *copy_usage = (void *)copy_entry->key;
1192 if (copy_usage->comps_kept != var_usage->comps_kept) {
1193 nir_component_mask_t comps_kept =
1194 (var_usage->comps_kept | copy_usage->comps_kept);
1195 var_usage->comps_kept = comps_kept;
1196 copy_usage->comps_kept = comps_kept;
1197 fp_progress = true;
1198 }
1199 }
1200
1201 for (unsigned i = 0; i < var_usage->num_levels; i++) {
1202 struct array_level_usage *var_level = &var_usage->levels[i];
1203 if (!var_level->levels_copied)
1204 continue;
1205
1206 set_foreach(var_level->levels_copied, copy_entry) {
1207 struct array_level_usage *copy_level = (void *)copy_entry->key;
1208 if (var_level->array_len != copy_level->array_len) {
1209 unsigned array_len =
1210 MAX2(var_level->array_len, copy_level->array_len);
1211 var_level->array_len = array_len;
1212 copy_level->array_len = array_len;
1213 fp_progress = true;
1214 }
1215 }
1216 }
1217 }
1218 } while (fp_progress);
1219
1220 bool vars_shrunk = false;
1221 nir_foreach_variable_safe(var, vars) {
1222 struct vec_var_usage *usage =
1223 get_vec_var_usage(var, var_usage_map, false, NULL);
1224 if (!usage)
1225 continue;
1226
1227 bool shrunk = false;
1228 const struct glsl_type *vec_type = var->type;
1229 for (unsigned i = 0; i < usage->num_levels; i++) {
1230 /* If we've reduced the array to zero elements at some level, just
1231 * set comps_kept to 0 and delete the variable.
1232 */
1233 if (usage->levels[i].array_len == 0) {
1234 usage->comps_kept = 0;
1235 break;
1236 }
1237
1238 assert(usage->levels[i].array_len <= glsl_get_length(vec_type));
1239 if (usage->levels[i].array_len < glsl_get_length(vec_type))
1240 shrunk = true;
1241 vec_type = glsl_get_array_element(vec_type);
1242 }
1243 assert(glsl_type_is_vector_or_scalar(vec_type));
1244
1245 assert(usage->comps_kept == (usage->comps_kept & usage->all_comps));
1246 if (usage->comps_kept != usage->all_comps)
1247 shrunk = true;
1248
1249 if (usage->comps_kept == 0) {
1250 /* This variable is dead, remove it */
1251 vars_shrunk = true;
1252 exec_node_remove(&var->node);
1253 continue;
1254 }
1255
1256 if (!shrunk) {
1257 /* This variable doesn't need to be shrunk. Remove it from the
1258 * hash table so later steps will ignore it.
1259 */
1260 _mesa_hash_table_remove_key(var_usage_map, var);
1261 continue;
1262 }
1263
1264 /* Build the new var type */
1265 unsigned new_num_comps = util_bitcount(usage->comps_kept);
1266 const struct glsl_type *new_type =
1267 glsl_vector_type(glsl_get_base_type(vec_type), new_num_comps);
1268 for (int i = usage->num_levels - 1; i >= 0; i--) {
1269 assert(usage->levels[i].array_len > 0);
1270 /* If the original type was a matrix type, we'd like to keep that so
1271 * we don't convert matrices into arrays.
1272 */
1273 if (i == usage->num_levels - 1 &&
1274 glsl_type_is_matrix(glsl_without_array(var->type)) &&
1275 new_num_comps > 1 && usage->levels[i].array_len > 1) {
1276 new_type = glsl_matrix_type(glsl_get_base_type(new_type),
1277 new_num_comps,
1278 usage->levels[i].array_len);
1279 } else {
1280 new_type = glsl_array_type(new_type, usage->levels[i].array_len, 0);
1281 }
1282 }
1283 var->type = new_type;
1284
1285 vars_shrunk = true;
1286 }
1287
1288 return vars_shrunk;
1289 }
1290
1291 static bool
1292 vec_deref_is_oob(nir_deref_instr *deref,
1293 struct vec_var_usage *usage)
1294 {
1295 nir_deref_path path;
1296 nir_deref_path_init(&path, deref, NULL);
1297
1298 bool oob = false;
1299 for (unsigned i = 0; i < usage->num_levels; i++) {
1300 nir_deref_instr *p = path.path[i + 1];
1301 if (p->deref_type == nir_deref_type_array_wildcard)
1302 continue;
1303
1304 if (nir_src_is_const(p->arr.index) &&
1305 nir_src_as_uint(p->arr.index) >= usage->levels[i].array_len) {
1306 oob = true;
1307 break;
1308 }
1309 }
1310
1311 nir_deref_path_finish(&path);
1312
1313 return oob;
1314 }
1315
1316 static bool
1317 vec_deref_is_dead_or_oob(nir_deref_instr *deref,
1318 struct hash_table *var_usage_map,
1319 nir_variable_mode modes)
1320 {
1321 struct vec_var_usage *usage =
1322 get_vec_deref_usage(deref, var_usage_map, modes, false, NULL);
1323 if (!usage)
1324 return false;
1325
1326 return usage->comps_kept == 0 || vec_deref_is_oob(deref, usage);
1327 }
1328
1329 static void
1330 shrink_vec_var_access_impl(nir_function_impl *impl,
1331 struct hash_table *var_usage_map,
1332 nir_variable_mode modes)
1333 {
1334 nir_builder b;
1335 nir_builder_init(&b, impl);
1336
1337 nir_foreach_block(block, impl) {
1338 nir_foreach_instr_safe(instr, block) {
1339 switch (instr->type) {
1340 case nir_instr_type_deref: {
1341 nir_deref_instr *deref = nir_instr_as_deref(instr);
1342 if (!(deref->mode & modes))
1343 break;
1344
1345 /* Clean up any dead derefs we find lying around. They may refer
1346 * to variables we've deleted.
1347 */
1348 if (nir_deref_instr_remove_if_unused(deref))
1349 break;
1350
1351 /* Update the type in the deref to keep the types consistent as
1352 * you walk down the chain. We don't need to check if this is one
1353 * of the derefs we're shrinking because this is a no-op if it
1354 * isn't. The worst that could happen is that we accidentally fix
1355 * an invalid deref.
1356 */
1357 if (deref->deref_type == nir_deref_type_var) {
1358 deref->type = deref->var->type;
1359 } else if (deref->deref_type == nir_deref_type_array ||
1360 deref->deref_type == nir_deref_type_array_wildcard) {
1361 nir_deref_instr *parent = nir_deref_instr_parent(deref);
1362 assert(glsl_type_is_array(parent->type) ||
1363 glsl_type_is_matrix(parent->type));
1364 deref->type = glsl_get_array_element(parent->type);
1365 }
1366 break;
1367 }
1368
1369 case nir_instr_type_intrinsic: {
1370 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
1371
1372 /* If we have a copy whose source or destination has been deleted
1373 * because we determined the variable was dead, then we just
1374 * delete the copy instruction. If the source variable was dead
1375 * then it was writing undefined garbage anyway and if it's the
1376 * destination variable that's dead then the write isn't needed.
1377 */
1378 if (intrin->intrinsic == nir_intrinsic_copy_deref) {
1379 nir_deref_instr *dst = nir_src_as_deref(intrin->src[0]);
1380 nir_deref_instr *src = nir_src_as_deref(intrin->src[1]);
1381 if (vec_deref_is_dead_or_oob(dst, var_usage_map, modes) ||
1382 vec_deref_is_dead_or_oob(src, var_usage_map, modes)) {
1383 nir_instr_remove(&intrin->instr);
1384 nir_deref_instr_remove_if_unused(dst);
1385 nir_deref_instr_remove_if_unused(src);
1386 }
1387 continue;
1388 }
1389
1390 if (intrin->intrinsic != nir_intrinsic_load_deref &&
1391 intrin->intrinsic != nir_intrinsic_store_deref)
1392 continue;
1393
1394 nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
1395 if (!(deref->mode & modes))
1396 continue;
1397
1398 struct vec_var_usage *usage =
1399 get_vec_deref_usage(deref, var_usage_map, modes, false, NULL);
1400 if (!usage)
1401 continue;
1402
1403 if (usage->comps_kept == 0 || vec_deref_is_oob(deref, usage)) {
1404 if (intrin->intrinsic == nir_intrinsic_load_deref) {
1405 nir_ssa_def *u =
1406 nir_ssa_undef(&b, intrin->dest.ssa.num_components,
1407 intrin->dest.ssa.bit_size);
1408 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
1409 nir_src_for_ssa(u));
1410 }
1411 nir_instr_remove(&intrin->instr);
1412 nir_deref_instr_remove_if_unused(deref);
1413 continue;
1414 }
1415
1416 /* If we're not dropping any components, there's no need to
1417 * compact vectors.
1418 */
1419 if (usage->comps_kept == usage->all_comps)
1420 continue;
1421
1422 if (intrin->intrinsic == nir_intrinsic_load_deref) {
1423 b.cursor = nir_after_instr(&intrin->instr);
1424
1425 nir_ssa_def *undef =
1426 nir_ssa_undef(&b, 1, intrin->dest.ssa.bit_size);
1427 nir_ssa_def *vec_srcs[NIR_MAX_VEC_COMPONENTS];
1428 unsigned c = 0;
1429 for (unsigned i = 0; i < intrin->num_components; i++) {
1430 if (usage->comps_kept & (1u << i))
1431 vec_srcs[i] = nir_channel(&b, &intrin->dest.ssa, c++);
1432 else
1433 vec_srcs[i] = undef;
1434 }
1435 nir_ssa_def *vec = nir_vec(&b, vec_srcs, intrin->num_components);
1436
1437 nir_ssa_def_rewrite_uses_after(&intrin->dest.ssa,
1438 nir_src_for_ssa(vec),
1439 vec->parent_instr);
1440
1441 /* The SSA def is now only used by the swizzle. It's safe to
1442 * shrink the number of components.
1443 */
1444 assert(list_length(&intrin->dest.ssa.uses) == c);
1445 intrin->num_components = c;
1446 intrin->dest.ssa.num_components = c;
1447 } else {
1448 nir_component_mask_t write_mask =
1449 nir_intrinsic_write_mask(intrin);
1450
1451 unsigned swizzle[NIR_MAX_VEC_COMPONENTS];
1452 nir_component_mask_t new_write_mask = 0;
1453 unsigned c = 0;
1454 for (unsigned i = 0; i < intrin->num_components; i++) {
1455 if (usage->comps_kept & (1u << i)) {
1456 swizzle[c] = i;
1457 if (write_mask & (1u << i))
1458 new_write_mask |= 1u << c;
1459 c++;
1460 }
1461 }
1462
1463 b.cursor = nir_before_instr(&intrin->instr);
1464
1465 nir_ssa_def *swizzled =
1466 nir_swizzle(&b, intrin->src[1].ssa, swizzle, c);
1467
1468 /* Rewrite to use the compacted source */
1469 nir_instr_rewrite_src(&intrin->instr, &intrin->src[1],
1470 nir_src_for_ssa(swizzled));
1471 nir_intrinsic_set_write_mask(intrin, new_write_mask);
1472 intrin->num_components = c;
1473 }
1474 break;
1475 }
1476
1477 default:
1478 break;
1479 }
1480 }
1481 }
1482 }
1483
1484 static bool
1485 function_impl_has_vars_with_modes(nir_function_impl *impl,
1486 nir_variable_mode modes)
1487 {
1488 nir_shader *shader = impl->function->shader;
1489
1490 if ((modes & nir_var_shader_temp) && !exec_list_is_empty(&shader->globals))
1491 return true;
1492
1493 if ((modes & nir_var_function_temp) && !exec_list_is_empty(&impl->locals))
1494 return true;
1495
1496 return false;
1497 }
1498
1499 /** Attempt to shrink arrays of vectors
1500 *
1501 * This pass looks at variables which contain a vector or an array (possibly
1502 * multiple dimensions) of vectors and attempts to lower to a smaller vector
1503 * or array. If the pass can prove that a component of a vector (or array of
1504 * vectors) is never really used, then that component will be removed.
1505 * Similarly, the pass attempts to shorten arrays based on what elements it
1506 * can prove are never read or never contain valid data.
1507 */
1508 bool
1509 nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes)
1510 {
1511 assert((modes & (nir_var_shader_temp | nir_var_function_temp)) == modes);
1512
1513 void *mem_ctx = ralloc_context(NULL);
1514
1515 struct hash_table *var_usage_map =
1516 _mesa_pointer_hash_table_create(mem_ctx);
1517
1518 bool has_vars_to_shrink = false;
1519 nir_foreach_function(function, shader) {
1520 if (!function->impl)
1521 continue;
1522
1523 /* Don't even bother crawling the IR if we don't have any variables.
1524 * Given that this pass deletes any unused variables, it's likely that
1525 * we will be in this scenario eventually.
1526 */
1527 if (function_impl_has_vars_with_modes(function->impl, modes)) {
1528 has_vars_to_shrink = true;
1529 find_used_components_impl(function->impl, var_usage_map,
1530 modes, mem_ctx);
1531 }
1532 }
1533 if (!has_vars_to_shrink) {
1534 ralloc_free(mem_ctx);
1535 return false;
1536 }
1537
1538 bool globals_shrunk = false;
1539 if (modes & nir_var_shader_temp)
1540 globals_shrunk = shrink_vec_var_list(&shader->globals, var_usage_map);
1541
1542 bool progress = false;
1543 nir_foreach_function(function, shader) {
1544 if (!function->impl)
1545 continue;
1546
1547 bool locals_shrunk = false;
1548 if (modes & nir_var_function_temp) {
1549 locals_shrunk = shrink_vec_var_list(&function->impl->locals,
1550 var_usage_map);
1551 }
1552
1553 if (globals_shrunk || locals_shrunk) {
1554 shrink_vec_var_access_impl(function->impl, var_usage_map, modes);
1555
1556 nir_metadata_preserve(function->impl, nir_metadata_block_index |
1557 nir_metadata_dominance);
1558 progress = true;
1559 }
1560 }
1561
1562 ralloc_free(mem_ctx);
1563
1564 return progress;
1565 }