nir: add a bit_size parameter to nir_ssa_dest_init
[mesa.git] / src / compiler / nir / nir_to_ssa.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #include "nir.h"
29 #include <stdlib.h>
30 #include <unistd.h>
31
32 /*
33 * Implements the classic to-SSA algorithm described by Cytron et. al. in
34 * "Efficiently Computing Static Single Assignment Form and the Control
35 * Dependence Graph."
36 */
37
38 /* inserts a phi node of the form reg = phi(reg, reg, reg, ...) */
39
40 static void
41 insert_trivial_phi(nir_register *reg, nir_block *block, void *mem_ctx)
42 {
43 nir_phi_instr *instr = nir_phi_instr_create(mem_ctx);
44
45 instr->dest.reg.reg = reg;
46 struct set_entry *entry;
47 set_foreach(block->predecessors, entry) {
48 nir_block *pred = (nir_block *) entry->key;
49
50 nir_phi_src *src = ralloc(instr, nir_phi_src);
51 src->pred = pred;
52 src->src.is_ssa = false;
53 src->src.reg.base_offset = 0;
54 src->src.reg.indirect = NULL;
55 src->src.reg.reg = reg;
56 exec_list_push_tail(&instr->srcs, &src->node);
57 }
58
59 nir_instr_insert_before_block(block, &instr->instr);
60 }
61
62 static void
63 insert_phi_nodes(nir_function_impl *impl)
64 {
65 void *mem_ctx = ralloc_parent(impl);
66
67 unsigned *work = calloc(impl->num_blocks, sizeof(unsigned));
68 unsigned *has_already = calloc(impl->num_blocks, sizeof(unsigned));
69
70 /*
71 * Since the work flags already prevent us from inserting a node that has
72 * ever been inserted into W, we don't need to use a set to represent W.
73 * Also, since no block can ever be inserted into W more than once, we know
74 * that the maximum size of W is the number of basic blocks in the
75 * function. So all we need to handle W is an array and a pointer to the
76 * next element to be inserted and the next element to be removed.
77 */
78 nir_block **W = malloc(impl->num_blocks * sizeof(nir_block *));
79 unsigned w_start, w_end;
80
81 unsigned iter_count = 0;
82
83 nir_index_blocks(impl);
84
85 foreach_list_typed(nir_register, reg, node, &impl->registers) {
86 if (reg->num_array_elems != 0)
87 continue;
88
89 w_start = w_end = 0;
90 iter_count++;
91
92 nir_foreach_def(reg, dest) {
93 nir_instr *def = dest->reg.parent_instr;
94 if (work[def->block->index] < iter_count)
95 W[w_end++] = def->block;
96 work[def->block->index] = iter_count;
97 }
98
99 while (w_start != w_end) {
100 nir_block *cur = W[w_start++];
101 struct set_entry *entry;
102 set_foreach(cur->dom_frontier, entry) {
103 nir_block *next = (nir_block *) entry->key;
104
105 /*
106 * If there's more than one return statement, then the end block
107 * can be a join point for some definitions. However, there are
108 * no instructions in the end block, so nothing would use those
109 * phi nodes. Of course, we couldn't place those phi nodes
110 * anyways due to the restriction of having no instructions in the
111 * end block...
112 */
113 if (next == impl->end_block)
114 continue;
115
116 if (has_already[next->index] < iter_count) {
117 insert_trivial_phi(reg, next, mem_ctx);
118 has_already[next->index] = iter_count;
119 if (work[next->index] < iter_count) {
120 work[next->index] = iter_count;
121 W[w_end++] = next;
122 }
123 }
124 }
125 }
126 }
127
128 free(work);
129 free(has_already);
130 free(W);
131 }
132
133 typedef struct {
134 nir_ssa_def **stack;
135 int index;
136 unsigned num_defs; /** < used to add indices to debug names */
137 #ifndef NDEBUG
138 unsigned stack_size;
139 #endif
140 } reg_state;
141
142 typedef struct {
143 reg_state *states;
144 void *mem_ctx;
145 nir_instr *parent_instr;
146 nir_if *parent_if;
147 nir_function_impl *impl;
148
149 /* map from SSA value -> original register */
150 struct hash_table *ssa_map;
151 } rewrite_state;
152
153 static nir_ssa_def *get_ssa_src(nir_register *reg, rewrite_state *state)
154 {
155 unsigned index = reg->index;
156
157 if (state->states[index].index == -1) {
158 /*
159 * We're using an undefined register, create a new undefined SSA value
160 * to preserve the information that this source is undefined
161 */
162 nir_ssa_undef_instr *instr =
163 nir_ssa_undef_instr_create(state->mem_ctx, reg->num_components);
164
165 /*
166 * We could just insert the undefined instruction before the instruction
167 * we're rewriting, but we could be rewriting a phi source in which case
168 * we can't do that, so do the next easiest thing - insert it at the
169 * beginning of the program. In the end, it doesn't really matter where
170 * the undefined instructions are because they're going to be ignored
171 * in the backend.
172 */
173 nir_instr_insert_before_cf_list(&state->impl->body, &instr->instr);
174 return &instr->def;
175 }
176
177 return state->states[index].stack[state->states[index].index];
178 }
179
180 static bool
181 rewrite_use(nir_src *src, void *_state)
182 {
183 rewrite_state *state = (rewrite_state *) _state;
184
185 if (src->is_ssa)
186 return true;
187
188 unsigned index = src->reg.reg->index;
189
190 if (state->states[index].stack == NULL)
191 return true;
192
193 nir_ssa_def *def = get_ssa_src(src->reg.reg, state);
194 if (state->parent_instr)
195 nir_instr_rewrite_src(state->parent_instr, src, nir_src_for_ssa(def));
196 else
197 nir_if_rewrite_condition(state->parent_if, nir_src_for_ssa(def));
198
199 return true;
200 }
201
202 static bool
203 rewrite_def_forwards(nir_dest *dest, void *_state)
204 {
205 rewrite_state *state = (rewrite_state *) _state;
206
207 if (dest->is_ssa)
208 return true;
209
210 nir_register *reg = dest->reg.reg;
211 unsigned index = reg->index;
212
213 if (state->states[index].stack == NULL)
214 return true;
215
216 char *name = NULL;
217 if (dest->reg.reg->name)
218 name = ralloc_asprintf(state->mem_ctx, "%s_%u", dest->reg.reg->name,
219 state->states[index].num_defs);
220
221 list_del(&dest->reg.def_link);
222 nir_ssa_dest_init(state->parent_instr, dest, reg->num_components,
223 reg->bit_size, name);
224
225 /* push our SSA destination on the stack */
226 state->states[index].index++;
227 assert(state->states[index].index < state->states[index].stack_size);
228 state->states[index].stack[state->states[index].index] = &dest->ssa;
229 state->states[index].num_defs++;
230
231 _mesa_hash_table_insert(state->ssa_map, &dest->ssa, reg);
232
233 return true;
234 }
235
236 static void
237 rewrite_alu_instr_forward(nir_alu_instr *instr, rewrite_state *state)
238 {
239 state->parent_instr = &instr->instr;
240
241 nir_foreach_src(&instr->instr, rewrite_use, state);
242
243 if (instr->dest.dest.is_ssa)
244 return;
245
246 nir_register *reg = instr->dest.dest.reg.reg;
247 unsigned index = reg->index;
248
249 if (state->states[index].stack == NULL)
250 return;
251
252 unsigned write_mask = instr->dest.write_mask;
253 if (write_mask != (1 << instr->dest.dest.reg.reg->num_components) - 1) {
254 /*
255 * Calculate the number of components the final instruction, which for
256 * per-component things is the number of output components of the
257 * instruction and non-per-component things is the number of enabled
258 * channels in the write mask.
259 */
260 unsigned num_components;
261 if (nir_op_infos[instr->op].output_size == 0) {
262 unsigned temp = (write_mask & 0x5) + ((write_mask >> 1) & 0x5);
263 num_components = (temp & 0x3) + ((temp >> 2) & 0x3);
264 } else {
265 num_components = nir_op_infos[instr->op].output_size;
266 }
267
268 char *name = NULL;
269 if (instr->dest.dest.reg.reg->name)
270 name = ralloc_asprintf(state->mem_ctx, "%s_%u",
271 reg->name, state->states[index].num_defs);
272
273 instr->dest.write_mask = (1 << num_components) - 1;
274 list_del(&instr->dest.dest.reg.def_link);
275 nir_ssa_dest_init(&instr->instr, &instr->dest.dest, num_components,
276 reg->bit_size, name);
277
278 if (nir_op_infos[instr->op].output_size == 0) {
279 /*
280 * When we change the output writemask, we need to change the
281 * swizzles for per-component inputs too
282 */
283 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
284 if (nir_op_infos[instr->op].input_sizes[i] != 0)
285 continue;
286
287 unsigned new_swizzle[4] = {0, 0, 0, 0};
288
289 /*
290 * We keep two indices:
291 * 1. The index of the original (non-SSA) component
292 * 2. The index of the post-SSA, compacted, component
293 *
294 * We need to map the swizzle component at index 1 to the swizzle
295 * component at index 2.
296 */
297
298 unsigned ssa_index = 0;
299 for (unsigned index = 0; index < 4; index++) {
300 if (!((write_mask >> index) & 1))
301 continue;
302
303 new_swizzle[ssa_index] = instr->src[i].swizzle[index];
304 ssa_index++;
305 }
306
307 for (unsigned j = 0; j < 4; j++)
308 instr->src[i].swizzle[j] = new_swizzle[j];
309 }
310 }
311
312 nir_op op;
313 switch (reg->num_components) {
314 case 2: op = nir_op_vec2; break;
315 case 3: op = nir_op_vec3; break;
316 case 4: op = nir_op_vec4; break;
317 default: unreachable("not reached");
318 }
319
320 nir_alu_instr *vec = nir_alu_instr_create(state->mem_ctx, op);
321
322 vec->dest.dest.reg.reg = reg;
323 vec->dest.write_mask = (1 << reg->num_components) - 1;
324
325 nir_ssa_def *old_src = get_ssa_src(reg, state);
326 nir_ssa_def *new_src = &instr->dest.dest.ssa;
327
328 unsigned ssa_index = 0;
329 for (unsigned i = 0; i < reg->num_components; i++) {
330 vec->src[i].src.is_ssa = true;
331 if ((write_mask >> i) & 1) {
332 vec->src[i].src.ssa = new_src;
333 if (nir_op_infos[instr->op].output_size == 0)
334 vec->src[i].swizzle[0] = ssa_index;
335 else
336 vec->src[i].swizzle[0] = i;
337 ssa_index++;
338 } else {
339 vec->src[i].src.ssa = old_src;
340 vec->src[i].swizzle[0] = i;
341 }
342 }
343
344 nir_instr_insert_after(&instr->instr, &vec->instr);
345
346 state->parent_instr = &vec->instr;
347 rewrite_def_forwards(&vec->dest.dest, state);
348 } else {
349 rewrite_def_forwards(&instr->dest.dest, state);
350 }
351 }
352
353 static void
354 rewrite_phi_instr(nir_phi_instr *instr, rewrite_state *state)
355 {
356 state->parent_instr = &instr->instr;
357 rewrite_def_forwards(&instr->dest, state);
358 }
359
360 static void
361 rewrite_instr_forward(nir_instr *instr, rewrite_state *state)
362 {
363 if (instr->type == nir_instr_type_alu) {
364 rewrite_alu_instr_forward(nir_instr_as_alu(instr), state);
365 return;
366 }
367
368 if (instr->type == nir_instr_type_phi) {
369 rewrite_phi_instr(nir_instr_as_phi(instr), state);
370 return;
371 }
372
373 state->parent_instr = instr;
374
375 nir_foreach_src(instr, rewrite_use, state);
376 nir_foreach_dest(instr, rewrite_def_forwards, state);
377 }
378
379 static void
380 rewrite_phi_sources(nir_block *block, nir_block *pred, rewrite_state *state)
381 {
382 nir_foreach_instr(block, instr) {
383 if (instr->type != nir_instr_type_phi)
384 break;
385
386 nir_phi_instr *phi_instr = nir_instr_as_phi(instr);
387
388 state->parent_instr = instr;
389
390 nir_foreach_phi_src(phi_instr, src) {
391 if (src->pred == pred) {
392 rewrite_use(&src->src, state);
393 break;
394 }
395 }
396 }
397 }
398
399 static bool
400 rewrite_def_backwards(nir_dest *dest, void *_state)
401 {
402 rewrite_state *state = (rewrite_state *) _state;
403
404 if (!dest->is_ssa)
405 return true;
406
407 struct hash_entry *entry =
408 _mesa_hash_table_search(state->ssa_map, &dest->ssa);
409
410 if (!entry)
411 return true;
412
413 nir_register *reg = (nir_register *) entry->data;
414 unsigned index = reg->index;
415
416 state->states[index].index--;
417 assert(state->states[index].index >= -1);
418
419 return true;
420 }
421
422 static void
423 rewrite_instr_backwards(nir_instr *instr, rewrite_state *state)
424 {
425 nir_foreach_dest(instr, rewrite_def_backwards, state);
426 }
427
428 static void
429 rewrite_block(nir_block *block, rewrite_state *state)
430 {
431 /* This will skip over any instructions after the current one, which is
432 * what we want because those instructions (vector gather, conditional
433 * select) will already be in SSA form.
434 */
435 nir_foreach_instr_safe(block, instr) {
436 rewrite_instr_forward(instr, state);
437 }
438
439 if (block != state->impl->end_block &&
440 !nir_cf_node_is_last(&block->cf_node) &&
441 nir_cf_node_next(&block->cf_node)->type == nir_cf_node_if) {
442 nir_if *if_stmt = nir_cf_node_as_if(nir_cf_node_next(&block->cf_node));
443 state->parent_instr = NULL;
444 state->parent_if = if_stmt;
445 rewrite_use(&if_stmt->condition, state);
446 }
447
448 if (block->successors[0])
449 rewrite_phi_sources(block->successors[0], block, state);
450 if (block->successors[1])
451 rewrite_phi_sources(block->successors[1], block, state);
452
453 for (unsigned i = 0; i < block->num_dom_children; i++)
454 rewrite_block(block->dom_children[i], state);
455
456 nir_foreach_instr_reverse(block, instr) {
457 rewrite_instr_backwards(instr, state);
458 }
459 }
460
461 static void
462 remove_unused_regs(nir_function_impl *impl, rewrite_state *state)
463 {
464 foreach_list_typed_safe(nir_register, reg, node, &impl->registers) {
465 if (state->states[reg->index].stack != NULL)
466 exec_node_remove(&reg->node);
467 }
468 }
469
470 static void
471 init_rewrite_state(nir_function_impl *impl, rewrite_state *state)
472 {
473 state->impl = impl;
474 state->mem_ctx = ralloc_parent(impl);
475 state->ssa_map = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
476 _mesa_key_pointer_equal);
477 state->states = ralloc_array(NULL, reg_state, impl->reg_alloc);
478
479 foreach_list_typed(nir_register, reg, node, &impl->registers) {
480 assert(reg->index < impl->reg_alloc);
481 if (reg->num_array_elems > 0) {
482 state->states[reg->index].stack = NULL;
483 } else {
484 /*
485 * Calculate a conservative estimate of the stack size based on the
486 * number of definitions there are. Note that this function *must* be
487 * called after phi nodes are inserted so we can count phi node
488 * definitions too.
489 */
490 unsigned stack_size = list_length(&reg->defs);
491
492 state->states[reg->index].stack = ralloc_array(state->states,
493 nir_ssa_def *,
494 stack_size);
495 #ifndef NDEBUG
496 state->states[reg->index].stack_size = stack_size;
497 #endif
498 state->states[reg->index].index = -1;
499 state->states[reg->index].num_defs = 0;
500 }
501 }
502 }
503
504 static void
505 destroy_rewrite_state(rewrite_state *state)
506 {
507 _mesa_hash_table_destroy(state->ssa_map, NULL);
508 ralloc_free(state->states);
509 }
510
511 void
512 nir_convert_to_ssa_impl(nir_function_impl *impl)
513 {
514 nir_metadata_require(impl, nir_metadata_dominance);
515
516 insert_phi_nodes(impl);
517
518 rewrite_state state;
519 init_rewrite_state(impl, &state);
520
521 rewrite_block(nir_start_block(impl), &state);
522
523 remove_unused_regs(impl, &state);
524
525 nir_metadata_preserve(impl, nir_metadata_block_index |
526 nir_metadata_dominance);
527
528 destroy_rewrite_state(&state);
529 }
530
531 void
532 nir_convert_to_ssa(nir_shader *shader)
533 {
534 nir_foreach_function(shader, function) {
535 if (function->impl)
536 nir_convert_to_ssa_impl(function->impl);
537 }
538 }