ee39b333c1a94cc29fc7ea55a966a3bbbdc13f48
[mesa.git] / src / compiler / nir / spirv / spirv_to_nir.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include "vtn_private.h"
29 #include "nir/nir_vla.h"
30 #include "nir/nir_control_flow.h"
31 #include "nir/nir_constant_expressions.h"
32
33 static struct vtn_ssa_value *
34 vtn_undef_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
35 {
36 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
37 val->type = type;
38
39 if (glsl_type_is_vector_or_scalar(type)) {
40 unsigned num_components = glsl_get_vector_elements(val->type);
41 nir_ssa_undef_instr *undef =
42 nir_ssa_undef_instr_create(b->shader, num_components);
43
44 nir_instr_insert_before_cf_list(&b->impl->body, &undef->instr);
45 val->def = &undef->def;
46 } else {
47 unsigned elems = glsl_get_length(val->type);
48 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
49 if (glsl_type_is_matrix(type)) {
50 const struct glsl_type *elem_type =
51 glsl_vector_type(glsl_get_base_type(type),
52 glsl_get_vector_elements(type));
53
54 for (unsigned i = 0; i < elems; i++)
55 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
56 } else if (glsl_type_is_array(type)) {
57 const struct glsl_type *elem_type = glsl_get_array_element(type);
58 for (unsigned i = 0; i < elems; i++)
59 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
60 } else {
61 for (unsigned i = 0; i < elems; i++) {
62 const struct glsl_type *elem_type = glsl_get_struct_field(type, i);
63 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
64 }
65 }
66 }
67
68 return val;
69 }
70
71 static struct vtn_ssa_value *
72 vtn_const_ssa_value(struct vtn_builder *b, nir_constant *constant,
73 const struct glsl_type *type)
74 {
75 struct hash_entry *entry = _mesa_hash_table_search(b->const_table, constant);
76
77 if (entry)
78 return entry->data;
79
80 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
81 val->type = type;
82
83 switch (glsl_get_base_type(type)) {
84 case GLSL_TYPE_INT:
85 case GLSL_TYPE_UINT:
86 case GLSL_TYPE_BOOL:
87 case GLSL_TYPE_FLOAT:
88 case GLSL_TYPE_DOUBLE:
89 if (glsl_type_is_vector_or_scalar(type)) {
90 unsigned num_components = glsl_get_vector_elements(val->type);
91 nir_load_const_instr *load =
92 nir_load_const_instr_create(b->shader, num_components);
93
94 for (unsigned i = 0; i < num_components; i++)
95 load->value.u[i] = constant->value.u[i];
96
97 nir_instr_insert_before_cf_list(&b->impl->body, &load->instr);
98 val->def = &load->def;
99 } else {
100 assert(glsl_type_is_matrix(type));
101 unsigned rows = glsl_get_vector_elements(val->type);
102 unsigned columns = glsl_get_matrix_columns(val->type);
103 val->elems = ralloc_array(b, struct vtn_ssa_value *, columns);
104
105 for (unsigned i = 0; i < columns; i++) {
106 struct vtn_ssa_value *col_val = rzalloc(b, struct vtn_ssa_value);
107 col_val->type = glsl_get_column_type(val->type);
108 nir_load_const_instr *load =
109 nir_load_const_instr_create(b->shader, rows);
110
111 for (unsigned j = 0; j < rows; j++)
112 load->value.u[j] = constant->value.u[rows * i + j];
113
114 nir_instr_insert_before_cf_list(&b->impl->body, &load->instr);
115 col_val->def = &load->def;
116
117 val->elems[i] = col_val;
118 }
119 }
120 break;
121
122 case GLSL_TYPE_ARRAY: {
123 unsigned elems = glsl_get_length(val->type);
124 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
125 const struct glsl_type *elem_type = glsl_get_array_element(val->type);
126 for (unsigned i = 0; i < elems; i++)
127 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
128 elem_type);
129 break;
130 }
131
132 case GLSL_TYPE_STRUCT: {
133 unsigned elems = glsl_get_length(val->type);
134 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
135 for (unsigned i = 0; i < elems; i++) {
136 const struct glsl_type *elem_type =
137 glsl_get_struct_field(val->type, i);
138 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
139 elem_type);
140 }
141 break;
142 }
143
144 default:
145 unreachable("bad constant type");
146 }
147
148 return val;
149 }
150
151 struct vtn_ssa_value *
152 vtn_ssa_value(struct vtn_builder *b, uint32_t value_id)
153 {
154 struct vtn_value *val = vtn_untyped_value(b, value_id);
155 switch (val->value_type) {
156 case vtn_value_type_undef:
157 return vtn_undef_ssa_value(b, val->type->type);
158
159 case vtn_value_type_constant:
160 return vtn_const_ssa_value(b, val->constant, val->const_type);
161
162 case vtn_value_type_ssa:
163 return val->ssa;
164
165 case vtn_value_type_access_chain:
166 /* This is needed for function parameters */
167 return vtn_variable_load(b, val->access_chain);
168
169 default:
170 unreachable("Invalid type for an SSA value");
171 }
172 }
173
174 static char *
175 vtn_string_literal(struct vtn_builder *b, const uint32_t *words,
176 unsigned word_count, unsigned *words_used)
177 {
178 char *dup = ralloc_strndup(b, (char *)words, word_count * sizeof(*words));
179 if (words_used) {
180 /* Ammount of space taken by the string (including the null) */
181 unsigned len = strlen(dup) + 1;
182 *words_used = DIV_ROUND_UP(len, sizeof(*words));
183 }
184 return dup;
185 }
186
187 const uint32_t *
188 vtn_foreach_instruction(struct vtn_builder *b, const uint32_t *start,
189 const uint32_t *end, vtn_instruction_handler handler)
190 {
191 b->file = NULL;
192 b->line = -1;
193 b->col = -1;
194
195 const uint32_t *w = start;
196 while (w < end) {
197 SpvOp opcode = w[0] & SpvOpCodeMask;
198 unsigned count = w[0] >> SpvWordCountShift;
199 assert(count >= 1 && w + count <= end);
200
201 switch (opcode) {
202 case SpvOpNop:
203 break; /* Do nothing */
204
205 case SpvOpLine:
206 b->file = vtn_value(b, w[1], vtn_value_type_string)->str;
207 b->line = w[2];
208 b->col = w[3];
209 break;
210
211 case SpvOpNoLine:
212 b->file = NULL;
213 b->line = -1;
214 b->col = -1;
215 break;
216
217 default:
218 if (!handler(b, opcode, w, count))
219 return w;
220 break;
221 }
222
223 w += count;
224 }
225 assert(w == end);
226 return w;
227 }
228
229 static void
230 vtn_handle_extension(struct vtn_builder *b, SpvOp opcode,
231 const uint32_t *w, unsigned count)
232 {
233 switch (opcode) {
234 case SpvOpExtInstImport: {
235 struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_extension);
236 if (strcmp((const char *)&w[2], "GLSL.std.450") == 0) {
237 val->ext_handler = vtn_handle_glsl450_instruction;
238 } else {
239 assert(!"Unsupported extension");
240 }
241 break;
242 }
243
244 case SpvOpExtInst: {
245 struct vtn_value *val = vtn_value(b, w[3], vtn_value_type_extension);
246 bool handled = val->ext_handler(b, w[4], w, count);
247 (void)handled;
248 assert(handled);
249 break;
250 }
251
252 default:
253 unreachable("Unhandled opcode");
254 }
255 }
256
257 static void
258 _foreach_decoration_helper(struct vtn_builder *b,
259 struct vtn_value *base_value,
260 int parent_member,
261 struct vtn_value *value,
262 vtn_decoration_foreach_cb cb, void *data)
263 {
264 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
265 int member;
266 if (dec->scope == VTN_DEC_DECORATION) {
267 member = parent_member;
268 } else if (dec->scope >= VTN_DEC_STRUCT_MEMBER0) {
269 assert(parent_member == -1);
270 member = dec->scope - VTN_DEC_STRUCT_MEMBER0;
271 } else {
272 /* Not a decoration */
273 continue;
274 }
275
276 if (dec->group) {
277 assert(dec->group->value_type == vtn_value_type_decoration_group);
278 _foreach_decoration_helper(b, base_value, member, dec->group,
279 cb, data);
280 } else {
281 cb(b, base_value, member, dec, data);
282 }
283 }
284 }
285
286 /** Iterates (recursively if needed) over all of the decorations on a value
287 *
288 * This function iterates over all of the decorations applied to a given
289 * value. If it encounters a decoration group, it recurses into the group
290 * and iterates over all of those decorations as well.
291 */
292 void
293 vtn_foreach_decoration(struct vtn_builder *b, struct vtn_value *value,
294 vtn_decoration_foreach_cb cb, void *data)
295 {
296 _foreach_decoration_helper(b, value, -1, value, cb, data);
297 }
298
299 void
300 vtn_foreach_execution_mode(struct vtn_builder *b, struct vtn_value *value,
301 vtn_execution_mode_foreach_cb cb, void *data)
302 {
303 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
304 if (dec->scope != VTN_DEC_EXECUTION_MODE)
305 continue;
306
307 assert(dec->group == NULL);
308 cb(b, value, dec, data);
309 }
310 }
311
312 static void
313 vtn_handle_decoration(struct vtn_builder *b, SpvOp opcode,
314 const uint32_t *w, unsigned count)
315 {
316 const uint32_t *w_end = w + count;
317 const uint32_t target = w[1];
318 w += 2;
319
320 switch (opcode) {
321 case SpvOpDecorationGroup:
322 vtn_push_value(b, target, vtn_value_type_decoration_group);
323 break;
324
325 case SpvOpDecorate:
326 case SpvOpMemberDecorate:
327 case SpvOpExecutionMode: {
328 struct vtn_value *val = &b->values[target];
329
330 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
331 switch (opcode) {
332 case SpvOpDecorate:
333 dec->scope = VTN_DEC_DECORATION;
334 break;
335 case SpvOpMemberDecorate:
336 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(w++);
337 break;
338 case SpvOpExecutionMode:
339 dec->scope = VTN_DEC_EXECUTION_MODE;
340 break;
341 default:
342 unreachable("Invalid decoration opcode");
343 }
344 dec->decoration = *(w++);
345 dec->literals = w;
346
347 /* Link into the list */
348 dec->next = val->decoration;
349 val->decoration = dec;
350 break;
351 }
352
353 case SpvOpGroupMemberDecorate:
354 case SpvOpGroupDecorate: {
355 struct vtn_value *group =
356 vtn_value(b, target, vtn_value_type_decoration_group);
357
358 for (; w < w_end; w++) {
359 struct vtn_value *val = vtn_untyped_value(b, *w);
360 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
361
362 dec->group = group;
363 if (opcode == SpvOpGroupDecorate) {
364 dec->scope = VTN_DEC_DECORATION;
365 } else {
366 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(w++);
367 }
368
369 /* Link into the list */
370 dec->next = val->decoration;
371 val->decoration = dec;
372 }
373 break;
374 }
375
376 default:
377 unreachable("Unhandled opcode");
378 }
379 }
380
381 struct member_decoration_ctx {
382 struct glsl_struct_field *fields;
383 struct vtn_type *type;
384 };
385
386 /* does a shallow copy of a vtn_type */
387
388 static struct vtn_type *
389 vtn_type_copy(struct vtn_builder *b, struct vtn_type *src)
390 {
391 struct vtn_type *dest = ralloc(b, struct vtn_type);
392 dest->type = src->type;
393 dest->is_builtin = src->is_builtin;
394 if (src->is_builtin)
395 dest->builtin = src->builtin;
396
397 if (!glsl_type_is_scalar(src->type)) {
398 switch (glsl_get_base_type(src->type)) {
399 case GLSL_TYPE_INT:
400 case GLSL_TYPE_UINT:
401 case GLSL_TYPE_BOOL:
402 case GLSL_TYPE_FLOAT:
403 case GLSL_TYPE_DOUBLE:
404 case GLSL_TYPE_ARRAY:
405 dest->row_major = src->row_major;
406 dest->stride = src->stride;
407 dest->array_element = src->array_element;
408 break;
409
410 case GLSL_TYPE_STRUCT: {
411 unsigned elems = glsl_get_length(src->type);
412
413 dest->members = ralloc_array(b, struct vtn_type *, elems);
414 memcpy(dest->members, src->members, elems * sizeof(struct vtn_type *));
415
416 dest->offsets = ralloc_array(b, unsigned, elems);
417 memcpy(dest->offsets, src->offsets, elems * sizeof(unsigned));
418 break;
419 }
420
421 default:
422 unreachable("unhandled type");
423 }
424 }
425
426 return dest;
427 }
428
429 static struct vtn_type *
430 mutable_matrix_member(struct vtn_builder *b, struct vtn_type *type, int member)
431 {
432 type->members[member] = vtn_type_copy(b, type->members[member]);
433 type = type->members[member];
434
435 /* We may have an array of matrices.... Oh, joy! */
436 while (glsl_type_is_array(type->type)) {
437 type->array_element = vtn_type_copy(b, type->array_element);
438 type = type->array_element;
439 }
440
441 assert(glsl_type_is_matrix(type->type));
442
443 return type;
444 }
445
446 static void
447 struct_member_decoration_cb(struct vtn_builder *b,
448 struct vtn_value *val, int member,
449 const struct vtn_decoration *dec, void *void_ctx)
450 {
451 struct member_decoration_ctx *ctx = void_ctx;
452
453 if (member < 0)
454 return;
455
456 switch (dec->decoration) {
457 case SpvDecorationRelaxedPrecision:
458 break; /* FIXME: Do nothing with this for now. */
459 case SpvDecorationNoPerspective:
460 ctx->fields[member].interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
461 break;
462 case SpvDecorationFlat:
463 ctx->fields[member].interpolation = INTERP_QUALIFIER_FLAT;
464 break;
465 case SpvDecorationCentroid:
466 ctx->fields[member].centroid = true;
467 break;
468 case SpvDecorationSample:
469 ctx->fields[member].sample = true;
470 break;
471 case SpvDecorationLocation:
472 ctx->fields[member].location = dec->literals[0];
473 break;
474 case SpvDecorationBuiltIn:
475 ctx->type->members[member] = vtn_type_copy(b, ctx->type->members[member]);
476 ctx->type->members[member]->is_builtin = true;
477 ctx->type->members[member]->builtin = dec->literals[0];
478 ctx->type->builtin_block = true;
479 break;
480 case SpvDecorationOffset:
481 ctx->type->offsets[member] = dec->literals[0];
482 break;
483 case SpvDecorationMatrixStride:
484 mutable_matrix_member(b, ctx->type, member)->stride = dec->literals[0];
485 break;
486 case SpvDecorationColMajor:
487 break; /* Nothing to do here. Column-major is the default. */
488 case SpvDecorationRowMajor:
489 mutable_matrix_member(b, ctx->type, member)->row_major = true;
490 break;
491 default:
492 unreachable("Unhandled member decoration");
493 }
494 }
495
496 static void
497 type_decoration_cb(struct vtn_builder *b,
498 struct vtn_value *val, int member,
499 const struct vtn_decoration *dec, void *ctx)
500 {
501 struct vtn_type *type = val->type;
502
503 if (member != -1)
504 return;
505
506 switch (dec->decoration) {
507 case SpvDecorationArrayStride:
508 type->stride = dec->literals[0];
509 break;
510 case SpvDecorationBlock:
511 type->block = true;
512 break;
513 case SpvDecorationBufferBlock:
514 type->buffer_block = true;
515 break;
516 case SpvDecorationGLSLShared:
517 case SpvDecorationGLSLPacked:
518 /* Ignore these, since we get explicit offsets anyways */
519 break;
520
521 case SpvDecorationStream:
522 assert(dec->literals[0] == 0);
523 break;
524
525 default:
526 unreachable("Unhandled type decoration");
527 }
528 }
529
530 static unsigned
531 translate_image_format(SpvImageFormat format)
532 {
533 switch (format) {
534 case SpvImageFormatUnknown: return 0; /* GL_NONE */
535 case SpvImageFormatRgba32f: return 0x8814; /* GL_RGBA32F */
536 case SpvImageFormatRgba16f: return 0x881A; /* GL_RGBA16F */
537 case SpvImageFormatR32f: return 0x822E; /* GL_R32F */
538 case SpvImageFormatRgba8: return 0x8058; /* GL_RGBA8 */
539 case SpvImageFormatRgba8Snorm: return 0x8F97; /* GL_RGBA8_SNORM */
540 case SpvImageFormatRg32f: return 0x8230; /* GL_RG32F */
541 case SpvImageFormatRg16f: return 0x822F; /* GL_RG16F */
542 case SpvImageFormatR11fG11fB10f: return 0x8C3A; /* GL_R11F_G11F_B10F */
543 case SpvImageFormatR16f: return 0x822D; /* GL_R16F */
544 case SpvImageFormatRgba16: return 0x805B; /* GL_RGBA16 */
545 case SpvImageFormatRgb10A2: return 0x8059; /* GL_RGB10_A2 */
546 case SpvImageFormatRg16: return 0x822C; /* GL_RG16 */
547 case SpvImageFormatRg8: return 0x822B; /* GL_RG8 */
548 case SpvImageFormatR16: return 0x822A; /* GL_R16 */
549 case SpvImageFormatR8: return 0x8229; /* GL_R8 */
550 case SpvImageFormatRgba16Snorm: return 0x8F9B; /* GL_RGBA16_SNORM */
551 case SpvImageFormatRg16Snorm: return 0x8F99; /* GL_RG16_SNORM */
552 case SpvImageFormatRg8Snorm: return 0x8F95; /* GL_RG8_SNORM */
553 case SpvImageFormatR16Snorm: return 0x8F98; /* GL_R16_SNORM */
554 case SpvImageFormatR8Snorm: return 0x8F94; /* GL_R8_SNORM */
555 case SpvImageFormatRgba32i: return 0x8D82; /* GL_RGBA32I */
556 case SpvImageFormatRgba16i: return 0x8D88; /* GL_RGBA16I */
557 case SpvImageFormatRgba8i: return 0x8D8E; /* GL_RGBA8I */
558 case SpvImageFormatR32i: return 0x8235; /* GL_R32I */
559 case SpvImageFormatRg32i: return 0x823B; /* GL_RG32I */
560 case SpvImageFormatRg16i: return 0x8239; /* GL_RG16I */
561 case SpvImageFormatRg8i: return 0x8237; /* GL_RG8I */
562 case SpvImageFormatR16i: return 0x8233; /* GL_R16I */
563 case SpvImageFormatR8i: return 0x8231; /* GL_R8I */
564 case SpvImageFormatRgba32ui: return 0x8D70; /* GL_RGBA32UI */
565 case SpvImageFormatRgba16ui: return 0x8D76; /* GL_RGBA16UI */
566 case SpvImageFormatRgba8ui: return 0x8D7C; /* GL_RGBA8UI */
567 case SpvImageFormatR32ui: return 0x8236; /* GL_R32UI */
568 case SpvImageFormatRgb10a2ui: return 0x906F; /* GL_RGB10_A2UI */
569 case SpvImageFormatRg32ui: return 0x823C; /* GL_RG32UI */
570 case SpvImageFormatRg16ui: return 0x823A; /* GL_RG16UI */
571 case SpvImageFormatRg8ui: return 0x8238; /* GL_RG8UI */
572 case SpvImageFormatR16ui: return 0x823A; /* GL_RG16UI */
573 case SpvImageFormatR8ui: return 0x8232; /* GL_R8UI */
574 default:
575 assert(!"Invalid image format");
576 return 0;
577 }
578 }
579
580 static void
581 vtn_handle_type(struct vtn_builder *b, SpvOp opcode,
582 const uint32_t *w, unsigned count)
583 {
584 struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_type);
585
586 val->type = rzalloc(b, struct vtn_type);
587 val->type->is_builtin = false;
588 val->type->val = val;
589
590 switch (opcode) {
591 case SpvOpTypeVoid:
592 val->type->type = glsl_void_type();
593 break;
594 case SpvOpTypeBool:
595 val->type->type = glsl_bool_type();
596 break;
597 case SpvOpTypeInt: {
598 const bool signedness = w[3];
599 val->type->type = (signedness ? glsl_int_type() : glsl_uint_type());
600 break;
601 }
602 case SpvOpTypeFloat:
603 val->type->type = glsl_float_type();
604 break;
605
606 case SpvOpTypeVector: {
607 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
608 unsigned elems = w[3];
609
610 assert(glsl_type_is_scalar(base->type));
611 val->type->type = glsl_vector_type(glsl_get_base_type(base->type), elems);
612
613 /* Vectors implicitly have sizeof(base_type) stride. For now, this
614 * is always 4 bytes. This will have to change if we want to start
615 * supporting doubles or half-floats.
616 */
617 val->type->stride = 4;
618 val->type->array_element = base;
619 break;
620 }
621
622 case SpvOpTypeMatrix: {
623 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
624 unsigned columns = w[3];
625
626 assert(glsl_type_is_vector(base->type));
627 val->type->type = glsl_matrix_type(glsl_get_base_type(base->type),
628 glsl_get_vector_elements(base->type),
629 columns);
630 assert(!glsl_type_is_error(val->type->type));
631 val->type->array_element = base;
632 val->type->row_major = false;
633 val->type->stride = 0;
634 break;
635 }
636
637 case SpvOpTypeRuntimeArray:
638 case SpvOpTypeArray: {
639 struct vtn_type *array_element =
640 vtn_value(b, w[2], vtn_value_type_type)->type;
641
642 unsigned length;
643 if (opcode == SpvOpTypeRuntimeArray) {
644 /* A length of 0 is used to denote unsized arrays */
645 length = 0;
646 } else {
647 length =
648 vtn_value(b, w[3], vtn_value_type_constant)->constant->value.u[0];
649 }
650
651 val->type->type = glsl_array_type(array_element->type, length);
652 val->type->array_element = array_element;
653 val->type->stride = 0;
654 break;
655 }
656
657 case SpvOpTypeStruct: {
658 unsigned num_fields = count - 2;
659 val->type->members = ralloc_array(b, struct vtn_type *, num_fields);
660 val->type->offsets = ralloc_array(b, unsigned, num_fields);
661
662 NIR_VLA(struct glsl_struct_field, fields, count);
663 for (unsigned i = 0; i < num_fields; i++) {
664 val->type->members[i] =
665 vtn_value(b, w[i + 2], vtn_value_type_type)->type;
666 fields[i] = (struct glsl_struct_field) {
667 .type = val->type->members[i]->type,
668 .name = ralloc_asprintf(b, "field%d", i),
669 .location = -1,
670 };
671 }
672
673 struct member_decoration_ctx ctx = {
674 .fields = fields,
675 .type = val->type
676 };
677
678 vtn_foreach_decoration(b, val, struct_member_decoration_cb, &ctx);
679
680 const char *name = val->name ? val->name : "struct";
681
682 val->type->type = glsl_struct_type(fields, num_fields, name);
683 break;
684 }
685
686 case SpvOpTypeFunction: {
687 const struct glsl_type *return_type =
688 vtn_value(b, w[2], vtn_value_type_type)->type->type;
689 NIR_VLA(struct glsl_function_param, params, count - 3);
690 for (unsigned i = 0; i < count - 3; i++) {
691 params[i].type = vtn_value(b, w[i + 3], vtn_value_type_type)->type->type;
692
693 /* FIXME: */
694 params[i].in = true;
695 params[i].out = true;
696 }
697 val->type->type = glsl_function_type(return_type, params, count - 3);
698 break;
699 }
700
701 case SpvOpTypePointer:
702 /* FIXME: For now, we'll just do the really lame thing and return
703 * the same type. The validator should ensure that the proper number
704 * of dereferences happen
705 */
706 val->type = vtn_value(b, w[3], vtn_value_type_type)->type;
707 break;
708
709 case SpvOpTypeImage: {
710 const struct glsl_type *sampled_type =
711 vtn_value(b, w[2], vtn_value_type_type)->type->type;
712
713 assert(glsl_type_is_vector_or_scalar(sampled_type));
714
715 enum glsl_sampler_dim dim;
716 switch ((SpvDim)w[3]) {
717 case SpvDim1D: dim = GLSL_SAMPLER_DIM_1D; break;
718 case SpvDim2D: dim = GLSL_SAMPLER_DIM_2D; break;
719 case SpvDim3D: dim = GLSL_SAMPLER_DIM_3D; break;
720 case SpvDimCube: dim = GLSL_SAMPLER_DIM_CUBE; break;
721 case SpvDimRect: dim = GLSL_SAMPLER_DIM_RECT; break;
722 case SpvDimBuffer: dim = GLSL_SAMPLER_DIM_BUF; break;
723 default:
724 unreachable("Invalid SPIR-V Sampler dimension");
725 }
726
727 bool is_shadow = w[4];
728 bool is_array = w[5];
729 bool multisampled = w[6];
730 unsigned sampled = w[7];
731 SpvImageFormat format = w[8];
732
733 if (count > 9)
734 val->type->access_qualifier = w[9];
735 else
736 val->type->access_qualifier = SpvAccessQualifierReadWrite;
737
738 assert(!multisampled && "FIXME: Handl multi-sampled textures");
739
740 val->type->image_format = translate_image_format(format);
741
742 if (sampled == 1) {
743 val->type->type = glsl_sampler_type(dim, is_shadow, is_array,
744 glsl_get_base_type(sampled_type));
745 } else if (sampled == 2) {
746 assert(format);
747 assert(!is_shadow);
748 val->type->type = glsl_image_type(dim, is_array,
749 glsl_get_base_type(sampled_type));
750 } else {
751 assert(!"We need to know if the image will be sampled");
752 }
753 break;
754 }
755
756 case SpvOpTypeSampledImage:
757 val->type = vtn_value(b, w[2], vtn_value_type_type)->type;
758 break;
759
760 case SpvOpTypeSampler:
761 /* The actual sampler type here doesn't really matter. It gets
762 * thrown away the moment you combine it with an image. What really
763 * matters is that it's a sampler type as opposed to an integer type
764 * so the backend knows what to do.
765 *
766 * TODO: Eventually we should consider adding a "bare sampler" type
767 * to glsl_types.
768 */
769 val->type->type = glsl_sampler_type(GLSL_SAMPLER_DIM_2D, false, false,
770 GLSL_TYPE_FLOAT);
771 break;
772
773 case SpvOpTypeOpaque:
774 case SpvOpTypeEvent:
775 case SpvOpTypeDeviceEvent:
776 case SpvOpTypeReserveId:
777 case SpvOpTypeQueue:
778 case SpvOpTypePipe:
779 default:
780 unreachable("Unhandled opcode");
781 }
782
783 vtn_foreach_decoration(b, val, type_decoration_cb, NULL);
784 }
785
786 static nir_constant *
787 vtn_null_constant(struct vtn_builder *b, const struct glsl_type *type)
788 {
789 nir_constant *c = rzalloc(b, nir_constant);
790
791 switch (glsl_get_base_type(type)) {
792 case GLSL_TYPE_INT:
793 case GLSL_TYPE_UINT:
794 case GLSL_TYPE_BOOL:
795 case GLSL_TYPE_FLOAT:
796 case GLSL_TYPE_DOUBLE:
797 /* Nothing to do here. It's already initialized to zero */
798 break;
799
800 case GLSL_TYPE_ARRAY:
801 assert(glsl_get_length(type) > 0);
802 c->num_elements = glsl_get_length(type);
803 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
804
805 c->elements[0] = vtn_null_constant(b, glsl_get_array_element(type));
806 for (unsigned i = 1; i < c->num_elements; i++)
807 c->elements[i] = c->elements[0];
808 break;
809
810 case GLSL_TYPE_STRUCT:
811 c->num_elements = glsl_get_length(type);
812 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
813
814 for (unsigned i = 0; i < c->num_elements; i++) {
815 c->elements[i] = vtn_null_constant(b, glsl_get_struct_field(type, i));
816 }
817 break;
818
819 default:
820 unreachable("Invalid type for null constant");
821 }
822
823 return c;
824 }
825
826 static void
827 spec_constant_deocoration_cb(struct vtn_builder *b, struct vtn_value *v,
828 int member, const struct vtn_decoration *dec,
829 void *data)
830 {
831 assert(member == -1);
832 if (dec->decoration != SpvDecorationSpecId)
833 return;
834
835 uint32_t *const_value = data;
836
837 for (unsigned i = 0; i < b->num_specializations; i++) {
838 if (b->specializations[i].id == dec->literals[0]) {
839 *const_value = b->specializations[i].data;
840 return;
841 }
842 }
843 }
844
845 static uint32_t
846 get_specialization(struct vtn_builder *b, struct vtn_value *val,
847 uint32_t const_value)
848 {
849 vtn_foreach_decoration(b, val, spec_constant_deocoration_cb, &const_value);
850 return const_value;
851 }
852
853 static void
854 vtn_handle_constant(struct vtn_builder *b, SpvOp opcode,
855 const uint32_t *w, unsigned count)
856 {
857 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_constant);
858 val->const_type = vtn_value(b, w[1], vtn_value_type_type)->type->type;
859 val->constant = rzalloc(b, nir_constant);
860 switch (opcode) {
861 case SpvOpConstantTrue:
862 assert(val->const_type == glsl_bool_type());
863 val->constant->value.u[0] = NIR_TRUE;
864 break;
865 case SpvOpConstantFalse:
866 assert(val->const_type == glsl_bool_type());
867 val->constant->value.u[0] = NIR_FALSE;
868 break;
869
870 case SpvOpSpecConstantTrue:
871 case SpvOpSpecConstantFalse: {
872 assert(val->const_type == glsl_bool_type());
873 uint32_t int_val =
874 get_specialization(b, val, (opcode == SpvOpSpecConstantTrue));
875 val->constant->value.u[0] = int_val ? NIR_TRUE : NIR_FALSE;
876 break;
877 }
878
879 case SpvOpConstant:
880 assert(glsl_type_is_scalar(val->const_type));
881 val->constant->value.u[0] = w[3];
882 break;
883 case SpvOpSpecConstant:
884 assert(glsl_type_is_scalar(val->const_type));
885 val->constant->value.u[0] = get_specialization(b, val, w[3]);
886 break;
887 case SpvOpSpecConstantComposite:
888 case SpvOpConstantComposite: {
889 unsigned elem_count = count - 3;
890 nir_constant **elems = ralloc_array(b, nir_constant *, elem_count);
891 for (unsigned i = 0; i < elem_count; i++)
892 elems[i] = vtn_value(b, w[i + 3], vtn_value_type_constant)->constant;
893
894 switch (glsl_get_base_type(val->const_type)) {
895 case GLSL_TYPE_UINT:
896 case GLSL_TYPE_INT:
897 case GLSL_TYPE_FLOAT:
898 case GLSL_TYPE_BOOL:
899 if (glsl_type_is_matrix(val->const_type)) {
900 unsigned rows = glsl_get_vector_elements(val->const_type);
901 assert(glsl_get_matrix_columns(val->const_type) == elem_count);
902 for (unsigned i = 0; i < elem_count; i++)
903 for (unsigned j = 0; j < rows; j++)
904 val->constant->value.u[rows * i + j] = elems[i]->value.u[j];
905 } else {
906 assert(glsl_type_is_vector(val->const_type));
907 assert(glsl_get_vector_elements(val->const_type) == elem_count);
908 for (unsigned i = 0; i < elem_count; i++)
909 val->constant->value.u[i] = elems[i]->value.u[0];
910 }
911 ralloc_free(elems);
912 break;
913
914 case GLSL_TYPE_STRUCT:
915 case GLSL_TYPE_ARRAY:
916 ralloc_steal(val->constant, elems);
917 val->constant->num_elements = elem_count;
918 val->constant->elements = elems;
919 break;
920
921 default:
922 unreachable("Unsupported type for constants");
923 }
924 break;
925 }
926
927 case SpvOpSpecConstantOp: {
928 SpvOp opcode = get_specialization(b, val, w[3]);
929 switch (opcode) {
930 case SpvOpVectorShuffle: {
931 struct vtn_value *v0 = vtn_value(b, w[4], vtn_value_type_constant);
932 struct vtn_value *v1 = vtn_value(b, w[5], vtn_value_type_constant);
933 unsigned len0 = glsl_get_vector_elements(v0->const_type);
934 unsigned len1 = glsl_get_vector_elements(v1->const_type);
935
936 uint32_t u[8];
937 for (unsigned i = 0; i < len0; i++)
938 u[i] = v0->constant->value.u[i];
939 for (unsigned i = 0; i < len1; i++)
940 u[len0 + i] = v1->constant->value.u[i];
941
942 for (unsigned i = 0; i < count - 6; i++) {
943 uint32_t comp = w[i + 6];
944 if (comp == (uint32_t)-1) {
945 val->constant->value.u[i] = 0xdeadbeef;
946 } else {
947 val->constant->value.u[i] = u[comp];
948 }
949 }
950 return;
951 }
952
953 case SpvOpCompositeExtract:
954 case SpvOpCompositeInsert: {
955 struct vtn_value *comp;
956 unsigned deref_start;
957 struct nir_constant **c;
958 if (opcode == SpvOpCompositeExtract) {
959 comp = vtn_value(b, w[4], vtn_value_type_constant);
960 deref_start = 5;
961 c = &comp->constant;
962 } else {
963 comp = vtn_value(b, w[5], vtn_value_type_constant);
964 deref_start = 6;
965 val->constant = nir_constant_clone(comp->constant,
966 (nir_variable *)b);
967 c = &val->constant;
968 }
969
970 int elem = -1;
971 const struct glsl_type *type = comp->const_type;
972 for (unsigned i = deref_start; i < count; i++) {
973 switch (glsl_get_base_type(type)) {
974 case GLSL_TYPE_UINT:
975 case GLSL_TYPE_INT:
976 case GLSL_TYPE_FLOAT:
977 case GLSL_TYPE_BOOL:
978 /* If we hit this granularity, we're picking off an element */
979 if (elem < 0)
980 elem = 0;
981
982 if (glsl_type_is_matrix(type)) {
983 elem += w[i] * glsl_get_vector_elements(type);
984 type = glsl_get_column_type(type);
985 } else {
986 assert(glsl_type_is_vector(type));
987 elem += w[i];
988 type = glsl_scalar_type(glsl_get_base_type(type));
989 }
990 continue;
991
992 case GLSL_TYPE_ARRAY:
993 c = &(*c)->elements[w[i]];
994 type = glsl_get_array_element(type);
995 continue;
996
997 case GLSL_TYPE_STRUCT:
998 c = &(*c)->elements[w[i]];
999 type = glsl_get_struct_field(type, w[i]);
1000 continue;
1001
1002 default:
1003 unreachable("Invalid constant type");
1004 }
1005 }
1006
1007 if (opcode == SpvOpCompositeExtract) {
1008 if (elem == -1) {
1009 val->constant = *c;
1010 } else {
1011 unsigned num_components = glsl_get_vector_elements(type);
1012 for (unsigned i = 0; i < num_components; i++)
1013 val->constant->value.u[i] = (*c)->value.u[elem + i];
1014 }
1015 } else {
1016 struct vtn_value *insert =
1017 vtn_value(b, w[4], vtn_value_type_constant);
1018 assert(insert->const_type == type);
1019 if (elem == -1) {
1020 *c = insert->constant;
1021 } else {
1022 unsigned num_components = glsl_get_vector_elements(type);
1023 for (unsigned i = 0; i < num_components; i++)
1024 (*c)->value.u[elem + i] = insert->constant->value.u[i];
1025 }
1026 }
1027 return;
1028 }
1029
1030 default: {
1031 bool swap;
1032 nir_op op = vtn_nir_alu_op_for_spirv_opcode(opcode, &swap);
1033
1034 unsigned num_components = glsl_get_vector_elements(val->const_type);
1035
1036 nir_const_value src[3];
1037 assert(count <= 7);
1038 for (unsigned i = 0; i < count - 4; i++) {
1039 nir_constant *c =
1040 vtn_value(b, w[4 + i], vtn_value_type_constant)->constant;
1041
1042 unsigned j = swap ? 1 - i : i;
1043 for (unsigned k = 0; k < num_components; k++)
1044 src[j].u[k] = c->value.u[k];
1045 }
1046
1047 nir_const_value res = nir_eval_const_opcode(op, num_components, src);
1048
1049 for (unsigned k = 0; k < num_components; k++)
1050 val->constant->value.u[k] = res.u[k];
1051
1052 return;
1053 } /* default */
1054 }
1055 }
1056
1057 case SpvOpConstantNull:
1058 val->constant = vtn_null_constant(b, val->const_type);
1059 break;
1060
1061 case SpvOpConstantSampler:
1062 assert(!"OpConstantSampler requires Kernel Capability");
1063 break;
1064
1065 default:
1066 unreachable("Unhandled opcode");
1067 }
1068 }
1069
1070 static void
1071 vtn_handle_function_call(struct vtn_builder *b, SpvOp opcode,
1072 const uint32_t *w, unsigned count)
1073 {
1074 struct nir_function *callee =
1075 vtn_value(b, w[3], vtn_value_type_function)->func->impl->function;
1076
1077 nir_call_instr *call = nir_call_instr_create(b->nb.shader, callee);
1078 for (unsigned i = 0; i < call->num_params; i++) {
1079 unsigned arg_id = w[4 + i];
1080 struct vtn_value *arg = vtn_untyped_value(b, arg_id);
1081 if (arg->value_type == vtn_value_type_access_chain) {
1082 nir_deref_var *d = vtn_access_chain_to_deref(b, arg->access_chain);
1083 call->params[i] = nir_deref_as_var(nir_copy_deref(call, &d->deref));
1084 } else {
1085 struct vtn_ssa_value *arg_ssa = vtn_ssa_value(b, arg_id);
1086
1087 /* Make a temporary to store the argument in */
1088 nir_variable *tmp =
1089 nir_local_variable_create(b->impl, arg_ssa->type, "arg_tmp");
1090 call->params[i] = nir_deref_var_create(call, tmp);
1091
1092 vtn_local_store(b, arg_ssa, call->params[i]);
1093 }
1094 }
1095
1096 nir_variable *out_tmp = NULL;
1097 if (!glsl_type_is_void(callee->return_type)) {
1098 out_tmp = nir_local_variable_create(b->impl, callee->return_type,
1099 "out_tmp");
1100 call->return_deref = nir_deref_var_create(call, out_tmp);
1101 }
1102
1103 nir_builder_instr_insert(&b->nb, &call->instr);
1104
1105 if (glsl_type_is_void(callee->return_type)) {
1106 vtn_push_value(b, w[2], vtn_value_type_undef);
1107 } else {
1108 struct vtn_value *retval = vtn_push_value(b, w[2], vtn_value_type_ssa);
1109 retval->ssa = vtn_local_load(b, call->return_deref);
1110 }
1111 }
1112
1113 struct vtn_ssa_value *
1114 vtn_create_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
1115 {
1116 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
1117 val->type = type;
1118
1119 if (!glsl_type_is_vector_or_scalar(type)) {
1120 unsigned elems = glsl_get_length(type);
1121 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
1122 for (unsigned i = 0; i < elems; i++) {
1123 const struct glsl_type *child_type;
1124
1125 switch (glsl_get_base_type(type)) {
1126 case GLSL_TYPE_INT:
1127 case GLSL_TYPE_UINT:
1128 case GLSL_TYPE_BOOL:
1129 case GLSL_TYPE_FLOAT:
1130 case GLSL_TYPE_DOUBLE:
1131 child_type = glsl_get_column_type(type);
1132 break;
1133 case GLSL_TYPE_ARRAY:
1134 child_type = glsl_get_array_element(type);
1135 break;
1136 case GLSL_TYPE_STRUCT:
1137 child_type = glsl_get_struct_field(type, i);
1138 break;
1139 default:
1140 unreachable("unkown base type");
1141 }
1142
1143 val->elems[i] = vtn_create_ssa_value(b, child_type);
1144 }
1145 }
1146
1147 return val;
1148 }
1149
1150 static nir_tex_src
1151 vtn_tex_src(struct vtn_builder *b, unsigned index, nir_tex_src_type type)
1152 {
1153 nir_tex_src src;
1154 src.src = nir_src_for_ssa(vtn_ssa_value(b, index)->def);
1155 src.src_type = type;
1156 return src;
1157 }
1158
1159 static void
1160 vtn_handle_texture(struct vtn_builder *b, SpvOp opcode,
1161 const uint32_t *w, unsigned count)
1162 {
1163 if (opcode == SpvOpSampledImage) {
1164 struct vtn_value *val =
1165 vtn_push_value(b, w[2], vtn_value_type_sampled_image);
1166 val->sampled_image = ralloc(b, struct vtn_sampled_image);
1167 val->sampled_image->image =
1168 vtn_value(b, w[3], vtn_value_type_access_chain)->access_chain;
1169 val->sampled_image->sampler =
1170 vtn_value(b, w[4], vtn_value_type_access_chain)->access_chain;
1171 return;
1172 } else if (opcode == SpvOpImage) {
1173 struct vtn_value *val =
1174 vtn_push_value(b, w[2], vtn_value_type_access_chain);
1175 struct vtn_value *src_val = vtn_untyped_value(b, w[3]);
1176 if (src_val->value_type == vtn_value_type_sampled_image) {
1177 val->access_chain = src_val->sampled_image->image;
1178 } else {
1179 assert(src_val->value_type == vtn_value_type_access_chain);
1180 val->access_chain = src_val->access_chain;
1181 }
1182 return;
1183 }
1184
1185 struct vtn_type *ret_type = vtn_value(b, w[1], vtn_value_type_type)->type;
1186 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
1187
1188 struct vtn_sampled_image sampled;
1189 struct vtn_value *sampled_val = vtn_untyped_value(b, w[3]);
1190 if (sampled_val->value_type == vtn_value_type_sampled_image) {
1191 sampled = *sampled_val->sampled_image;
1192 } else {
1193 assert(sampled_val->value_type == vtn_value_type_access_chain);
1194 sampled.image = NULL;
1195 sampled.sampler = sampled_val->access_chain;
1196 }
1197
1198 nir_tex_src srcs[8]; /* 8 should be enough */
1199 nir_tex_src *p = srcs;
1200
1201 unsigned idx = 4;
1202
1203 bool has_coord = false;
1204 switch (opcode) {
1205 case SpvOpImageSampleImplicitLod:
1206 case SpvOpImageSampleExplicitLod:
1207 case SpvOpImageSampleDrefImplicitLod:
1208 case SpvOpImageSampleDrefExplicitLod:
1209 case SpvOpImageSampleProjImplicitLod:
1210 case SpvOpImageSampleProjExplicitLod:
1211 case SpvOpImageSampleProjDrefImplicitLod:
1212 case SpvOpImageSampleProjDrefExplicitLod:
1213 case SpvOpImageFetch:
1214 case SpvOpImageGather:
1215 case SpvOpImageDrefGather:
1216 case SpvOpImageQueryLod: {
1217 /* All these types have the coordinate as their first real argument */
1218 struct vtn_ssa_value *coord = vtn_ssa_value(b, w[idx++]);
1219 has_coord = true;
1220 p->src = nir_src_for_ssa(coord->def);
1221 p->src_type = nir_tex_src_coord;
1222 p++;
1223 break;
1224 }
1225
1226 default:
1227 break;
1228 }
1229
1230 /* These all have an explicit depth value as their next source */
1231 switch (opcode) {
1232 case SpvOpImageSampleDrefImplicitLod:
1233 case SpvOpImageSampleDrefExplicitLod:
1234 case SpvOpImageSampleProjDrefImplicitLod:
1235 case SpvOpImageSampleProjDrefExplicitLod:
1236 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_comparitor);
1237 break;
1238 default:
1239 break;
1240 }
1241
1242 /* For OpImageQuerySizeLod, we always have an LOD */
1243 if (opcode == SpvOpImageQuerySizeLod)
1244 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
1245
1246 /* Figure out the base texture operation */
1247 nir_texop texop;
1248 switch (opcode) {
1249 case SpvOpImageSampleImplicitLod:
1250 case SpvOpImageSampleDrefImplicitLod:
1251 case SpvOpImageSampleProjImplicitLod:
1252 case SpvOpImageSampleProjDrefImplicitLod:
1253 texop = nir_texop_tex;
1254 break;
1255
1256 case SpvOpImageSampleExplicitLod:
1257 case SpvOpImageSampleDrefExplicitLod:
1258 case SpvOpImageSampleProjExplicitLod:
1259 case SpvOpImageSampleProjDrefExplicitLod:
1260 texop = nir_texop_txl;
1261 break;
1262
1263 case SpvOpImageFetch:
1264 texop = nir_texop_txf;
1265 break;
1266
1267 case SpvOpImageGather:
1268 case SpvOpImageDrefGather:
1269 texop = nir_texop_tg4;
1270 break;
1271
1272 case SpvOpImageQuerySizeLod:
1273 case SpvOpImageQuerySize:
1274 texop = nir_texop_txs;
1275 break;
1276
1277 case SpvOpImageQueryLod:
1278 texop = nir_texop_lod;
1279 break;
1280
1281 case SpvOpImageQueryLevels:
1282 texop = nir_texop_query_levels;
1283 break;
1284
1285 case SpvOpImageQuerySamples:
1286 default:
1287 unreachable("Unhandled opcode");
1288 }
1289
1290 /* Now we need to handle some number of optional arguments */
1291 if (idx < count) {
1292 uint32_t operands = w[idx++];
1293
1294 if (operands & SpvImageOperandsBiasMask) {
1295 assert(texop == nir_texop_tex);
1296 texop = nir_texop_txb;
1297 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_bias);
1298 }
1299
1300 if (operands & SpvImageOperandsLodMask) {
1301 assert(texop == nir_texop_txl || texop == nir_texop_txf ||
1302 texop == nir_texop_txs);
1303 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
1304 }
1305
1306 if (operands & SpvImageOperandsGradMask) {
1307 assert(texop == nir_texop_tex);
1308 texop = nir_texop_txd;
1309 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddx);
1310 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddy);
1311 }
1312
1313 if (operands & SpvImageOperandsOffsetMask ||
1314 operands & SpvImageOperandsConstOffsetMask)
1315 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_offset);
1316
1317 if (operands & SpvImageOperandsConstOffsetsMask)
1318 assert(!"Constant offsets to texture gather not yet implemented");
1319
1320 if (operands & SpvImageOperandsSampleMask) {
1321 assert(texop == nir_texop_txf);
1322 texop = nir_texop_txf_ms;
1323 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ms_index);
1324 }
1325 }
1326 /* We should have now consumed exactly all of the arguments */
1327 assert(idx == count);
1328
1329 nir_tex_instr *instr = nir_tex_instr_create(b->shader, p - srcs);
1330 instr->op = texop;
1331
1332 memcpy(instr->src, srcs, instr->num_srcs * sizeof(*instr->src));
1333
1334 const struct glsl_type *image_type;
1335 if (sampled.image) {
1336 image_type = sampled.image->var->var->interface_type;
1337 } else {
1338 image_type = sampled.sampler->var->var->interface_type;
1339 }
1340
1341 instr->sampler_dim = glsl_get_sampler_dim(image_type);
1342 instr->is_array = glsl_sampler_type_is_array(image_type);
1343 instr->is_shadow = glsl_sampler_type_is_shadow(image_type);
1344 instr->is_new_style_shadow = instr->is_shadow;
1345
1346 if (has_coord) {
1347 switch (instr->sampler_dim) {
1348 case GLSL_SAMPLER_DIM_1D:
1349 case GLSL_SAMPLER_DIM_BUF:
1350 instr->coord_components = 1;
1351 break;
1352 case GLSL_SAMPLER_DIM_2D:
1353 case GLSL_SAMPLER_DIM_RECT:
1354 instr->coord_components = 2;
1355 break;
1356 case GLSL_SAMPLER_DIM_3D:
1357 case GLSL_SAMPLER_DIM_CUBE:
1358 case GLSL_SAMPLER_DIM_MS:
1359 instr->coord_components = 3;
1360 break;
1361 default:
1362 assert("Invalid sampler type");
1363 }
1364
1365 if (instr->is_array)
1366 instr->coord_components++;
1367 } else {
1368 instr->coord_components = 0;
1369 }
1370
1371 switch (glsl_get_sampler_result_type(image_type)) {
1372 case GLSL_TYPE_FLOAT: instr->dest_type = nir_type_float; break;
1373 case GLSL_TYPE_INT: instr->dest_type = nir_type_int; break;
1374 case GLSL_TYPE_UINT: instr->dest_type = nir_type_uint; break;
1375 case GLSL_TYPE_BOOL: instr->dest_type = nir_type_bool; break;
1376 default:
1377 unreachable("Invalid base type for sampler result");
1378 }
1379
1380 nir_deref_var *sampler = vtn_access_chain_to_deref(b, sampled.sampler);
1381 instr->sampler = nir_deref_as_var(nir_copy_deref(instr, &sampler->deref));
1382 if (sampled.image) {
1383 nir_deref_var *image = vtn_access_chain_to_deref(b, sampled.image);
1384 instr->texture = nir_deref_as_var(nir_copy_deref(instr, &image->deref));
1385 } else {
1386 instr->texture = NULL;
1387 }
1388
1389 nir_ssa_dest_init(&instr->instr, &instr->dest,
1390 nir_tex_instr_dest_size(instr), NULL);
1391
1392 assert(glsl_get_vector_elements(ret_type->type) ==
1393 nir_tex_instr_dest_size(instr));
1394
1395 val->ssa = vtn_create_ssa_value(b, ret_type->type);
1396 val->ssa->def = &instr->dest.ssa;
1397
1398 nir_builder_instr_insert(&b->nb, &instr->instr);
1399 }
1400
1401 static nir_ssa_def *
1402 get_image_coord(struct vtn_builder *b, uint32_t value)
1403 {
1404 struct vtn_ssa_value *coord = vtn_ssa_value(b, value);
1405
1406 /* The image_load_store intrinsics assume a 4-dim coordinate */
1407 unsigned dim = glsl_get_vector_elements(coord->type);
1408 unsigned swizzle[4];
1409 for (unsigned i = 0; i < 4; i++)
1410 swizzle[i] = MIN2(i, dim - 1);
1411
1412 return nir_swizzle(&b->nb, coord->def, swizzle, 4, false);
1413 }
1414
1415 static void
1416 vtn_handle_image(struct vtn_builder *b, SpvOp opcode,
1417 const uint32_t *w, unsigned count)
1418 {
1419 /* Just get this one out of the way */
1420 if (opcode == SpvOpImageTexelPointer) {
1421 struct vtn_value *val =
1422 vtn_push_value(b, w[2], vtn_value_type_image_pointer);
1423 val->image = ralloc(b, struct vtn_image_pointer);
1424
1425 val->image->image =
1426 vtn_value(b, w[3], vtn_value_type_access_chain)->access_chain;
1427 val->image->coord = get_image_coord(b, w[4]);
1428 val->image->sample = vtn_ssa_value(b, w[5])->def;
1429 return;
1430 }
1431
1432 struct vtn_image_pointer image;
1433
1434 switch (opcode) {
1435 case SpvOpAtomicExchange:
1436 case SpvOpAtomicCompareExchange:
1437 case SpvOpAtomicCompareExchangeWeak:
1438 case SpvOpAtomicIIncrement:
1439 case SpvOpAtomicIDecrement:
1440 case SpvOpAtomicIAdd:
1441 case SpvOpAtomicISub:
1442 case SpvOpAtomicSMin:
1443 case SpvOpAtomicUMin:
1444 case SpvOpAtomicSMax:
1445 case SpvOpAtomicUMax:
1446 case SpvOpAtomicAnd:
1447 case SpvOpAtomicOr:
1448 case SpvOpAtomicXor:
1449 image = *vtn_value(b, w[3], vtn_value_type_image_pointer)->image;
1450 break;
1451
1452 case SpvOpImageQuerySize:
1453 image.image =
1454 vtn_value(b, w[3], vtn_value_type_access_chain)->access_chain;
1455 image.coord = NULL;
1456 image.sample = NULL;
1457 break;
1458
1459 case SpvOpImageRead:
1460 image.image =
1461 vtn_value(b, w[3], vtn_value_type_access_chain)->access_chain;
1462 image.coord = get_image_coord(b, w[4]);
1463
1464 if (count > 5 && (w[5] & SpvImageOperandsSampleMask)) {
1465 assert(w[5] == SpvImageOperandsSampleMask);
1466 image.sample = vtn_ssa_value(b, w[6])->def;
1467 } else {
1468 image.sample = nir_ssa_undef(&b->nb, 1);
1469 }
1470 break;
1471
1472 case SpvOpImageWrite:
1473 image.image =
1474 vtn_value(b, w[1], vtn_value_type_access_chain)->access_chain;
1475 image.coord = get_image_coord(b, w[2]);
1476
1477 /* texel = w[3] */
1478
1479 if (count > 4 && (w[4] & SpvImageOperandsSampleMask)) {
1480 assert(w[4] == SpvImageOperandsSampleMask);
1481 image.sample = vtn_ssa_value(b, w[5])->def;
1482 } else {
1483 image.sample = nir_ssa_undef(&b->nb, 1);
1484 }
1485 break;
1486
1487 default:
1488 unreachable("Invalid image opcode");
1489 }
1490
1491 nir_intrinsic_op op;
1492 switch (opcode) {
1493 #define OP(S, N) case SpvOp##S: op = nir_intrinsic_image_##N; break;
1494 OP(ImageQuerySize, size)
1495 OP(ImageRead, load)
1496 OP(ImageWrite, store)
1497 OP(AtomicExchange, atomic_exchange)
1498 OP(AtomicCompareExchange, atomic_comp_swap)
1499 OP(AtomicIIncrement, atomic_add)
1500 OP(AtomicIDecrement, atomic_add)
1501 OP(AtomicIAdd, atomic_add)
1502 OP(AtomicISub, atomic_add)
1503 OP(AtomicSMin, atomic_min)
1504 OP(AtomicUMin, atomic_min)
1505 OP(AtomicSMax, atomic_max)
1506 OP(AtomicUMax, atomic_max)
1507 OP(AtomicAnd, atomic_and)
1508 OP(AtomicOr, atomic_or)
1509 OP(AtomicXor, atomic_xor)
1510 #undef OP
1511 default:
1512 unreachable("Invalid image opcode");
1513 }
1514
1515 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
1516
1517 nir_deref_var *image_deref = vtn_access_chain_to_deref(b, image.image);
1518 intrin->variables[0] =
1519 nir_deref_as_var(nir_copy_deref(&intrin->instr, &image_deref->deref));
1520
1521 /* ImageQuerySize doesn't take any extra parameters */
1522 if (opcode != SpvOpImageQuerySize) {
1523 /* The image coordinate is always 4 components but we may not have that
1524 * many. Swizzle to compensate.
1525 */
1526 unsigned swiz[4];
1527 for (unsigned i = 0; i < 4; i++)
1528 swiz[i] = i < image.coord->num_components ? i : 0;
1529 intrin->src[0] = nir_src_for_ssa(nir_swizzle(&b->nb, image.coord,
1530 swiz, 4, false));
1531 intrin->src[1] = nir_src_for_ssa(image.sample);
1532 }
1533
1534 switch (opcode) {
1535 case SpvOpImageQuerySize:
1536 case SpvOpImageRead:
1537 break;
1538 case SpvOpImageWrite:
1539 intrin->src[2] = nir_src_for_ssa(vtn_ssa_value(b, w[3])->def);
1540 break;
1541 case SpvOpAtomicIIncrement:
1542 intrin->src[2] = nir_src_for_ssa(nir_imm_int(&b->nb, 1));
1543 break;
1544 case SpvOpAtomicIDecrement:
1545 intrin->src[2] = nir_src_for_ssa(nir_imm_int(&b->nb, -1));
1546 break;
1547
1548 case SpvOpAtomicExchange:
1549 case SpvOpAtomicIAdd:
1550 case SpvOpAtomicSMin:
1551 case SpvOpAtomicUMin:
1552 case SpvOpAtomicSMax:
1553 case SpvOpAtomicUMax:
1554 case SpvOpAtomicAnd:
1555 case SpvOpAtomicOr:
1556 case SpvOpAtomicXor:
1557 intrin->src[2] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def);
1558 break;
1559
1560 case SpvOpAtomicCompareExchange:
1561 intrin->src[2] = nir_src_for_ssa(vtn_ssa_value(b, w[7])->def);
1562 intrin->src[3] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def);
1563 break;
1564
1565 case SpvOpAtomicISub:
1566 intrin->src[2] = nir_src_for_ssa(nir_ineg(&b->nb, vtn_ssa_value(b, w[6])->def));
1567 break;
1568
1569 default:
1570 unreachable("Invalid image opcode");
1571 }
1572
1573 if (opcode != SpvOpImageWrite) {
1574 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
1575 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
1576 nir_ssa_dest_init(&intrin->instr, &intrin->dest, 4, NULL);
1577
1578 nir_builder_instr_insert(&b->nb, &intrin->instr);
1579
1580 /* The image intrinsics always return 4 channels but we may not want
1581 * that many. Emit a mov to trim it down.
1582 */
1583 unsigned swiz[4] = {0, 1, 2, 3};
1584 val->ssa = vtn_create_ssa_value(b, type->type);
1585 val->ssa->def = nir_swizzle(&b->nb, &intrin->dest.ssa, swiz,
1586 glsl_get_vector_elements(type->type), false);
1587 } else {
1588 nir_builder_instr_insert(&b->nb, &intrin->instr);
1589 }
1590 }
1591
1592 static nir_intrinsic_op
1593 get_ssbo_nir_atomic_op(SpvOp opcode)
1594 {
1595 switch (opcode) {
1596 #define OP(S, N) case SpvOp##S: return nir_intrinsic_ssbo_##N;
1597 OP(AtomicExchange, atomic_exchange)
1598 OP(AtomicCompareExchange, atomic_comp_swap)
1599 OP(AtomicIIncrement, atomic_add)
1600 OP(AtomicIDecrement, atomic_add)
1601 OP(AtomicIAdd, atomic_add)
1602 OP(AtomicISub, atomic_add)
1603 OP(AtomicSMin, atomic_imin)
1604 OP(AtomicUMin, atomic_umin)
1605 OP(AtomicSMax, atomic_imax)
1606 OP(AtomicUMax, atomic_umax)
1607 OP(AtomicAnd, atomic_and)
1608 OP(AtomicOr, atomic_or)
1609 OP(AtomicXor, atomic_xor)
1610 #undef OP
1611 default:
1612 unreachable("Invalid SSBO atomic");
1613 }
1614 }
1615
1616 static nir_intrinsic_op
1617 get_shared_nir_atomic_op(SpvOp opcode)
1618 {
1619 switch (opcode) {
1620 #define OP(S, N) case SpvOp##S: return nir_intrinsic_var_##N;
1621 OP(AtomicExchange, atomic_exchange)
1622 OP(AtomicCompareExchange, atomic_comp_swap)
1623 OP(AtomicIIncrement, atomic_add)
1624 OP(AtomicIDecrement, atomic_add)
1625 OP(AtomicIAdd, atomic_add)
1626 OP(AtomicISub, atomic_add)
1627 OP(AtomicSMin, atomic_imin)
1628 OP(AtomicUMin, atomic_umin)
1629 OP(AtomicSMax, atomic_imax)
1630 OP(AtomicUMax, atomic_umax)
1631 OP(AtomicAnd, atomic_and)
1632 OP(AtomicOr, atomic_or)
1633 OP(AtomicXor, atomic_xor)
1634 #undef OP
1635 default:
1636 unreachable("Invalid shared atomic");
1637 }
1638 }
1639
1640 static void
1641 fill_common_atomic_sources(struct vtn_builder *b, SpvOp opcode,
1642 const uint32_t *w, nir_src *src)
1643 {
1644 switch (opcode) {
1645 case SpvOpAtomicIIncrement:
1646 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, 1));
1647 break;
1648
1649 case SpvOpAtomicIDecrement:
1650 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, -1));
1651 break;
1652
1653 case SpvOpAtomicISub:
1654 src[0] =
1655 nir_src_for_ssa(nir_ineg(&b->nb, vtn_ssa_value(b, w[6])->def));
1656 break;
1657
1658 case SpvOpAtomicCompareExchange:
1659 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[7])->def);
1660 src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[8])->def);
1661 break;
1662 /* Fall through */
1663
1664 case SpvOpAtomicExchange:
1665 case SpvOpAtomicIAdd:
1666 case SpvOpAtomicSMin:
1667 case SpvOpAtomicUMin:
1668 case SpvOpAtomicSMax:
1669 case SpvOpAtomicUMax:
1670 case SpvOpAtomicAnd:
1671 case SpvOpAtomicOr:
1672 case SpvOpAtomicXor:
1673 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def);
1674 break;
1675
1676 default:
1677 unreachable("Invalid SPIR-V atomic");
1678 }
1679 }
1680
1681 static void
1682 vtn_handle_ssbo_or_shared_atomic(struct vtn_builder *b, SpvOp opcode,
1683 const uint32_t *w, unsigned count)
1684 {
1685 struct vtn_access_chain *chain =
1686 vtn_value(b, w[3], vtn_value_type_access_chain)->access_chain;
1687 nir_intrinsic_instr *atomic;
1688
1689 /*
1690 SpvScope scope = w[4];
1691 SpvMemorySemanticsMask semantics = w[5];
1692 */
1693
1694 if (chain->var->mode == vtn_variable_mode_workgroup) {
1695 nir_deref *deref = &vtn_access_chain_to_deref(b, chain)->deref;
1696 nir_intrinsic_op op = get_shared_nir_atomic_op(opcode);
1697 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
1698 atomic->variables[0] = nir_deref_as_var(nir_copy_deref(atomic, deref));
1699 fill_common_atomic_sources(b, opcode, w, &atomic->src[0]);
1700 } else {
1701 assert(chain->var->mode == vtn_variable_mode_ssbo);
1702 struct vtn_type *type;
1703 nir_ssa_def *offset, *index;
1704 offset = vtn_access_chain_to_offset(b, chain, &index, &type, NULL, false);
1705
1706 nir_intrinsic_op op = get_ssbo_nir_atomic_op(opcode);
1707
1708 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
1709 atomic->src[0] = nir_src_for_ssa(index);
1710 atomic->src[1] = nir_src_for_ssa(offset);
1711 fill_common_atomic_sources(b, opcode, w, &atomic->src[2]);
1712 }
1713
1714 nir_ssa_dest_init(&atomic->instr, &atomic->dest, 1, NULL);
1715
1716 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
1717 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
1718 val->ssa = rzalloc(b, struct vtn_ssa_value);
1719 val->ssa->def = &atomic->dest.ssa;
1720 val->ssa->type = type->type;
1721
1722 nir_builder_instr_insert(&b->nb, &atomic->instr);
1723 }
1724
1725 static nir_alu_instr *
1726 create_vec(nir_shader *shader, unsigned num_components)
1727 {
1728 nir_op op;
1729 switch (num_components) {
1730 case 1: op = nir_op_fmov; break;
1731 case 2: op = nir_op_vec2; break;
1732 case 3: op = nir_op_vec3; break;
1733 case 4: op = nir_op_vec4; break;
1734 default: unreachable("bad vector size");
1735 }
1736
1737 nir_alu_instr *vec = nir_alu_instr_create(shader, op);
1738 nir_ssa_dest_init(&vec->instr, &vec->dest.dest, num_components, NULL);
1739 vec->dest.write_mask = (1 << num_components) - 1;
1740
1741 return vec;
1742 }
1743
1744 struct vtn_ssa_value *
1745 vtn_ssa_transpose(struct vtn_builder *b, struct vtn_ssa_value *src)
1746 {
1747 if (src->transposed)
1748 return src->transposed;
1749
1750 struct vtn_ssa_value *dest =
1751 vtn_create_ssa_value(b, glsl_transposed_type(src->type));
1752
1753 for (unsigned i = 0; i < glsl_get_matrix_columns(dest->type); i++) {
1754 nir_alu_instr *vec = create_vec(b->shader,
1755 glsl_get_matrix_columns(src->type));
1756 if (glsl_type_is_vector_or_scalar(src->type)) {
1757 vec->src[0].src = nir_src_for_ssa(src->def);
1758 vec->src[0].swizzle[0] = i;
1759 } else {
1760 for (unsigned j = 0; j < glsl_get_matrix_columns(src->type); j++) {
1761 vec->src[j].src = nir_src_for_ssa(src->elems[j]->def);
1762 vec->src[j].swizzle[0] = i;
1763 }
1764 }
1765 nir_builder_instr_insert(&b->nb, &vec->instr);
1766 dest->elems[i]->def = &vec->dest.dest.ssa;
1767 }
1768
1769 dest->transposed = src;
1770
1771 return dest;
1772 }
1773
1774 nir_ssa_def *
1775 vtn_vector_extract(struct vtn_builder *b, nir_ssa_def *src, unsigned index)
1776 {
1777 unsigned swiz[4] = { index };
1778 return nir_swizzle(&b->nb, src, swiz, 1, true);
1779 }
1780
1781 nir_ssa_def *
1782 vtn_vector_insert(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *insert,
1783 unsigned index)
1784 {
1785 nir_alu_instr *vec = create_vec(b->shader, src->num_components);
1786
1787 for (unsigned i = 0; i < src->num_components; i++) {
1788 if (i == index) {
1789 vec->src[i].src = nir_src_for_ssa(insert);
1790 } else {
1791 vec->src[i].src = nir_src_for_ssa(src);
1792 vec->src[i].swizzle[0] = i;
1793 }
1794 }
1795
1796 nir_builder_instr_insert(&b->nb, &vec->instr);
1797
1798 return &vec->dest.dest.ssa;
1799 }
1800
1801 nir_ssa_def *
1802 vtn_vector_extract_dynamic(struct vtn_builder *b, nir_ssa_def *src,
1803 nir_ssa_def *index)
1804 {
1805 nir_ssa_def *dest = vtn_vector_extract(b, src, 0);
1806 for (unsigned i = 1; i < src->num_components; i++)
1807 dest = nir_bcsel(&b->nb, nir_ieq(&b->nb, index, nir_imm_int(&b->nb, i)),
1808 vtn_vector_extract(b, src, i), dest);
1809
1810 return dest;
1811 }
1812
1813 nir_ssa_def *
1814 vtn_vector_insert_dynamic(struct vtn_builder *b, nir_ssa_def *src,
1815 nir_ssa_def *insert, nir_ssa_def *index)
1816 {
1817 nir_ssa_def *dest = vtn_vector_insert(b, src, insert, 0);
1818 for (unsigned i = 1; i < src->num_components; i++)
1819 dest = nir_bcsel(&b->nb, nir_ieq(&b->nb, index, nir_imm_int(&b->nb, i)),
1820 vtn_vector_insert(b, src, insert, i), dest);
1821
1822 return dest;
1823 }
1824
1825 static nir_ssa_def *
1826 vtn_vector_shuffle(struct vtn_builder *b, unsigned num_components,
1827 nir_ssa_def *src0, nir_ssa_def *src1,
1828 const uint32_t *indices)
1829 {
1830 nir_alu_instr *vec = create_vec(b->shader, num_components);
1831
1832 nir_ssa_undef_instr *undef = nir_ssa_undef_instr_create(b->shader, 1);
1833 nir_builder_instr_insert(&b->nb, &undef->instr);
1834
1835 for (unsigned i = 0; i < num_components; i++) {
1836 uint32_t index = indices[i];
1837 if (index == 0xffffffff) {
1838 vec->src[i].src = nir_src_for_ssa(&undef->def);
1839 } else if (index < src0->num_components) {
1840 vec->src[i].src = nir_src_for_ssa(src0);
1841 vec->src[i].swizzle[0] = index;
1842 } else {
1843 vec->src[i].src = nir_src_for_ssa(src1);
1844 vec->src[i].swizzle[0] = index - src0->num_components;
1845 }
1846 }
1847
1848 nir_builder_instr_insert(&b->nb, &vec->instr);
1849
1850 return &vec->dest.dest.ssa;
1851 }
1852
1853 /*
1854 * Concatentates a number of vectors/scalars together to produce a vector
1855 */
1856 static nir_ssa_def *
1857 vtn_vector_construct(struct vtn_builder *b, unsigned num_components,
1858 unsigned num_srcs, nir_ssa_def **srcs)
1859 {
1860 nir_alu_instr *vec = create_vec(b->shader, num_components);
1861
1862 unsigned dest_idx = 0;
1863 for (unsigned i = 0; i < num_srcs; i++) {
1864 nir_ssa_def *src = srcs[i];
1865 for (unsigned j = 0; j < src->num_components; j++) {
1866 vec->src[dest_idx].src = nir_src_for_ssa(src);
1867 vec->src[dest_idx].swizzle[0] = j;
1868 dest_idx++;
1869 }
1870 }
1871
1872 nir_builder_instr_insert(&b->nb, &vec->instr);
1873
1874 return &vec->dest.dest.ssa;
1875 }
1876
1877 static struct vtn_ssa_value *
1878 vtn_composite_copy(void *mem_ctx, struct vtn_ssa_value *src)
1879 {
1880 struct vtn_ssa_value *dest = rzalloc(mem_ctx, struct vtn_ssa_value);
1881 dest->type = src->type;
1882
1883 if (glsl_type_is_vector_or_scalar(src->type)) {
1884 dest->def = src->def;
1885 } else {
1886 unsigned elems = glsl_get_length(src->type);
1887
1888 dest->elems = ralloc_array(mem_ctx, struct vtn_ssa_value *, elems);
1889 for (unsigned i = 0; i < elems; i++)
1890 dest->elems[i] = vtn_composite_copy(mem_ctx, src->elems[i]);
1891 }
1892
1893 return dest;
1894 }
1895
1896 static struct vtn_ssa_value *
1897 vtn_composite_insert(struct vtn_builder *b, struct vtn_ssa_value *src,
1898 struct vtn_ssa_value *insert, const uint32_t *indices,
1899 unsigned num_indices)
1900 {
1901 struct vtn_ssa_value *dest = vtn_composite_copy(b, src);
1902
1903 struct vtn_ssa_value *cur = dest;
1904 unsigned i;
1905 for (i = 0; i < num_indices - 1; i++) {
1906 cur = cur->elems[indices[i]];
1907 }
1908
1909 if (glsl_type_is_vector_or_scalar(cur->type)) {
1910 /* According to the SPIR-V spec, OpCompositeInsert may work down to
1911 * the component granularity. In that case, the last index will be
1912 * the index to insert the scalar into the vector.
1913 */
1914
1915 cur->def = vtn_vector_insert(b, cur->def, insert->def, indices[i]);
1916 } else {
1917 cur->elems[indices[i]] = insert;
1918 }
1919
1920 return dest;
1921 }
1922
1923 static struct vtn_ssa_value *
1924 vtn_composite_extract(struct vtn_builder *b, struct vtn_ssa_value *src,
1925 const uint32_t *indices, unsigned num_indices)
1926 {
1927 struct vtn_ssa_value *cur = src;
1928 for (unsigned i = 0; i < num_indices; i++) {
1929 if (glsl_type_is_vector_or_scalar(cur->type)) {
1930 assert(i == num_indices - 1);
1931 /* According to the SPIR-V spec, OpCompositeExtract may work down to
1932 * the component granularity. The last index will be the index of the
1933 * vector to extract.
1934 */
1935
1936 struct vtn_ssa_value *ret = rzalloc(b, struct vtn_ssa_value);
1937 ret->type = glsl_scalar_type(glsl_get_base_type(cur->type));
1938 ret->def = vtn_vector_extract(b, cur->def, indices[i]);
1939 return ret;
1940 } else {
1941 cur = cur->elems[indices[i]];
1942 }
1943 }
1944
1945 return cur;
1946 }
1947
1948 static void
1949 vtn_handle_composite(struct vtn_builder *b, SpvOp opcode,
1950 const uint32_t *w, unsigned count)
1951 {
1952 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
1953 const struct glsl_type *type =
1954 vtn_value(b, w[1], vtn_value_type_type)->type->type;
1955 val->ssa = vtn_create_ssa_value(b, type);
1956
1957 switch (opcode) {
1958 case SpvOpVectorExtractDynamic:
1959 val->ssa->def = vtn_vector_extract_dynamic(b, vtn_ssa_value(b, w[3])->def,
1960 vtn_ssa_value(b, w[4])->def);
1961 break;
1962
1963 case SpvOpVectorInsertDynamic:
1964 val->ssa->def = vtn_vector_insert_dynamic(b, vtn_ssa_value(b, w[3])->def,
1965 vtn_ssa_value(b, w[4])->def,
1966 vtn_ssa_value(b, w[5])->def);
1967 break;
1968
1969 case SpvOpVectorShuffle:
1970 val->ssa->def = vtn_vector_shuffle(b, glsl_get_vector_elements(type),
1971 vtn_ssa_value(b, w[3])->def,
1972 vtn_ssa_value(b, w[4])->def,
1973 w + 5);
1974 break;
1975
1976 case SpvOpCompositeConstruct: {
1977 unsigned elems = count - 3;
1978 if (glsl_type_is_vector_or_scalar(type)) {
1979 nir_ssa_def *srcs[4];
1980 for (unsigned i = 0; i < elems; i++)
1981 srcs[i] = vtn_ssa_value(b, w[3 + i])->def;
1982 val->ssa->def =
1983 vtn_vector_construct(b, glsl_get_vector_elements(type),
1984 elems, srcs);
1985 } else {
1986 val->ssa->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
1987 for (unsigned i = 0; i < elems; i++)
1988 val->ssa->elems[i] = vtn_ssa_value(b, w[3 + i]);
1989 }
1990 break;
1991 }
1992 case SpvOpCompositeExtract:
1993 val->ssa = vtn_composite_extract(b, vtn_ssa_value(b, w[3]),
1994 w + 4, count - 4);
1995 break;
1996
1997 case SpvOpCompositeInsert:
1998 val->ssa = vtn_composite_insert(b, vtn_ssa_value(b, w[4]),
1999 vtn_ssa_value(b, w[3]),
2000 w + 5, count - 5);
2001 break;
2002
2003 case SpvOpCopyObject:
2004 val->ssa = vtn_composite_copy(b, vtn_ssa_value(b, w[3]));
2005 break;
2006
2007 default:
2008 unreachable("unknown composite operation");
2009 }
2010 }
2011
2012 static void
2013 vtn_handle_barrier(struct vtn_builder *b, SpvOp opcode,
2014 const uint32_t *w, unsigned count)
2015 {
2016 nir_intrinsic_op intrinsic_op;
2017 switch (opcode) {
2018 case SpvOpEmitVertex:
2019 case SpvOpEmitStreamVertex:
2020 intrinsic_op = nir_intrinsic_emit_vertex;
2021 break;
2022 case SpvOpEndPrimitive:
2023 case SpvOpEndStreamPrimitive:
2024 intrinsic_op = nir_intrinsic_end_primitive;
2025 break;
2026 case SpvOpMemoryBarrier:
2027 intrinsic_op = nir_intrinsic_memory_barrier;
2028 break;
2029 case SpvOpControlBarrier:
2030 intrinsic_op = nir_intrinsic_barrier;
2031 break;
2032 default:
2033 unreachable("unknown barrier instruction");
2034 }
2035
2036 nir_intrinsic_instr *intrin =
2037 nir_intrinsic_instr_create(b->shader, intrinsic_op);
2038
2039 if (opcode == SpvOpEmitStreamVertex || opcode == SpvOpEndStreamPrimitive)
2040 intrin->const_index[0] = w[1];
2041
2042 nir_builder_instr_insert(&b->nb, &intrin->instr);
2043 }
2044
2045 static unsigned
2046 gl_primitive_from_spv_execution_mode(SpvExecutionMode mode)
2047 {
2048 switch (mode) {
2049 case SpvExecutionModeInputPoints:
2050 case SpvExecutionModeOutputPoints:
2051 return 0; /* GL_POINTS */
2052 case SpvExecutionModeInputLines:
2053 return 1; /* GL_LINES */
2054 case SpvExecutionModeInputLinesAdjacency:
2055 return 0x000A; /* GL_LINE_STRIP_ADJACENCY_ARB */
2056 case SpvExecutionModeTriangles:
2057 return 4; /* GL_TRIANGLES */
2058 case SpvExecutionModeInputTrianglesAdjacency:
2059 return 0x000C; /* GL_TRIANGLES_ADJACENCY_ARB */
2060 case SpvExecutionModeQuads:
2061 return 7; /* GL_QUADS */
2062 case SpvExecutionModeIsolines:
2063 return 0x8E7A; /* GL_ISOLINES */
2064 case SpvExecutionModeOutputLineStrip:
2065 return 3; /* GL_LINE_STRIP */
2066 case SpvExecutionModeOutputTriangleStrip:
2067 return 5; /* GL_TRIANGLE_STRIP */
2068 default:
2069 assert(!"Invalid primitive type");
2070 return 4;
2071 }
2072 }
2073
2074 static unsigned
2075 vertices_in_from_spv_execution_mode(SpvExecutionMode mode)
2076 {
2077 switch (mode) {
2078 case SpvExecutionModeInputPoints:
2079 return 1;
2080 case SpvExecutionModeInputLines:
2081 return 2;
2082 case SpvExecutionModeInputLinesAdjacency:
2083 return 4;
2084 case SpvExecutionModeTriangles:
2085 return 3;
2086 case SpvExecutionModeInputTrianglesAdjacency:
2087 return 6;
2088 default:
2089 assert(!"Invalid GS input mode");
2090 return 0;
2091 }
2092 }
2093
2094 static gl_shader_stage
2095 stage_for_execution_model(SpvExecutionModel model)
2096 {
2097 switch (model) {
2098 case SpvExecutionModelVertex:
2099 return MESA_SHADER_VERTEX;
2100 case SpvExecutionModelTessellationControl:
2101 return MESA_SHADER_TESS_CTRL;
2102 case SpvExecutionModelTessellationEvaluation:
2103 return MESA_SHADER_TESS_EVAL;
2104 case SpvExecutionModelGeometry:
2105 return MESA_SHADER_GEOMETRY;
2106 case SpvExecutionModelFragment:
2107 return MESA_SHADER_FRAGMENT;
2108 case SpvExecutionModelGLCompute:
2109 return MESA_SHADER_COMPUTE;
2110 default:
2111 unreachable("Unsupported execution model");
2112 }
2113 }
2114
2115 static bool
2116 vtn_handle_preamble_instruction(struct vtn_builder *b, SpvOp opcode,
2117 const uint32_t *w, unsigned count)
2118 {
2119 switch (opcode) {
2120 case SpvOpSource:
2121 case SpvOpSourceExtension:
2122 case SpvOpSourceContinued:
2123 case SpvOpExtension:
2124 /* Unhandled, but these are for debug so that's ok. */
2125 break;
2126
2127 case SpvOpCapability:
2128 switch ((SpvCapability)w[1]) {
2129 case SpvCapabilityMatrix:
2130 case SpvCapabilityShader:
2131 case SpvCapabilityGeometry:
2132 break;
2133 default:
2134 assert(!"Unsupported capability");
2135 }
2136 break;
2137
2138 case SpvOpExtInstImport:
2139 vtn_handle_extension(b, opcode, w, count);
2140 break;
2141
2142 case SpvOpMemoryModel:
2143 assert(w[1] == SpvAddressingModelLogical);
2144 assert(w[2] == SpvMemoryModelGLSL450);
2145 break;
2146
2147 case SpvOpEntryPoint: {
2148 struct vtn_value *entry_point = &b->values[w[2]];
2149 /* Let this be a name label regardless */
2150 unsigned name_words;
2151 entry_point->name = vtn_string_literal(b, &w[3], count - 3, &name_words);
2152
2153 if (strcmp(entry_point->name, b->entry_point_name) != 0 ||
2154 stage_for_execution_model(w[1]) != b->entry_point_stage)
2155 break;
2156
2157 assert(b->entry_point == NULL);
2158 b->entry_point = entry_point;
2159 break;
2160 }
2161
2162 case SpvOpString:
2163 vtn_push_value(b, w[1], vtn_value_type_string)->str =
2164 vtn_string_literal(b, &w[2], count - 2, NULL);
2165 break;
2166
2167 case SpvOpName:
2168 b->values[w[1]].name = vtn_string_literal(b, &w[2], count - 2, NULL);
2169 break;
2170
2171 case SpvOpMemberName:
2172 /* TODO */
2173 break;
2174
2175 case SpvOpExecutionMode:
2176 case SpvOpDecorationGroup:
2177 case SpvOpDecorate:
2178 case SpvOpMemberDecorate:
2179 case SpvOpGroupDecorate:
2180 case SpvOpGroupMemberDecorate:
2181 vtn_handle_decoration(b, opcode, w, count);
2182 break;
2183
2184 default:
2185 return false; /* End of preamble */
2186 }
2187
2188 return true;
2189 }
2190
2191 static void
2192 vtn_handle_execution_mode(struct vtn_builder *b, struct vtn_value *entry_point,
2193 const struct vtn_decoration *mode, void *data)
2194 {
2195 assert(b->entry_point == entry_point);
2196
2197 switch(mode->exec_mode) {
2198 case SpvExecutionModeOriginUpperLeft:
2199 case SpvExecutionModeOriginLowerLeft:
2200 b->origin_upper_left =
2201 (mode->exec_mode == SpvExecutionModeOriginUpperLeft);
2202 break;
2203
2204 case SpvExecutionModeEarlyFragmentTests:
2205 assert(b->shader->stage == MESA_SHADER_FRAGMENT);
2206 b->shader->info.fs.early_fragment_tests = true;
2207 break;
2208
2209 case SpvExecutionModeInvocations:
2210 assert(b->shader->stage == MESA_SHADER_GEOMETRY);
2211 b->shader->info.gs.invocations = MAX2(1, mode->literals[0]);
2212 break;
2213
2214 case SpvExecutionModeDepthReplacing:
2215 assert(b->shader->stage == MESA_SHADER_FRAGMENT);
2216 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_ANY;
2217 break;
2218 case SpvExecutionModeDepthGreater:
2219 assert(b->shader->stage == MESA_SHADER_FRAGMENT);
2220 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_GREATER;
2221 break;
2222 case SpvExecutionModeDepthLess:
2223 assert(b->shader->stage == MESA_SHADER_FRAGMENT);
2224 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_LESS;
2225 break;
2226 case SpvExecutionModeDepthUnchanged:
2227 assert(b->shader->stage == MESA_SHADER_FRAGMENT);
2228 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_UNCHANGED;
2229 break;
2230
2231 case SpvExecutionModeLocalSize:
2232 assert(b->shader->stage == MESA_SHADER_COMPUTE);
2233 b->shader->info.cs.local_size[0] = mode->literals[0];
2234 b->shader->info.cs.local_size[1] = mode->literals[1];
2235 b->shader->info.cs.local_size[2] = mode->literals[2];
2236 break;
2237 case SpvExecutionModeLocalSizeHint:
2238 break; /* Nothing do do with this */
2239
2240 case SpvExecutionModeOutputVertices:
2241 assert(b->shader->stage == MESA_SHADER_GEOMETRY);
2242 b->shader->info.gs.vertices_out = mode->literals[0];
2243 break;
2244
2245 case SpvExecutionModeInputPoints:
2246 case SpvExecutionModeInputLines:
2247 case SpvExecutionModeInputLinesAdjacency:
2248 case SpvExecutionModeTriangles:
2249 case SpvExecutionModeInputTrianglesAdjacency:
2250 case SpvExecutionModeQuads:
2251 case SpvExecutionModeIsolines:
2252 if (b->shader->stage == MESA_SHADER_GEOMETRY) {
2253 b->shader->info.gs.vertices_in =
2254 vertices_in_from_spv_execution_mode(mode->exec_mode);
2255 } else {
2256 assert(!"Tesselation shaders not yet supported");
2257 }
2258 break;
2259
2260 case SpvExecutionModeOutputPoints:
2261 case SpvExecutionModeOutputLineStrip:
2262 case SpvExecutionModeOutputTriangleStrip:
2263 assert(b->shader->stage == MESA_SHADER_GEOMETRY);
2264 b->shader->info.gs.output_primitive =
2265 gl_primitive_from_spv_execution_mode(mode->exec_mode);
2266 break;
2267
2268 case SpvExecutionModeSpacingEqual:
2269 case SpvExecutionModeSpacingFractionalEven:
2270 case SpvExecutionModeSpacingFractionalOdd:
2271 case SpvExecutionModeVertexOrderCw:
2272 case SpvExecutionModeVertexOrderCcw:
2273 case SpvExecutionModePointMode:
2274 assert(!"TODO: Add tessellation metadata");
2275 break;
2276
2277 case SpvExecutionModePixelCenterInteger:
2278 case SpvExecutionModeXfb:
2279 assert(!"Unhandled execution mode");
2280 break;
2281
2282 case SpvExecutionModeVecTypeHint:
2283 case SpvExecutionModeContractionOff:
2284 break; /* OpenCL */
2285 }
2286 }
2287
2288 static bool
2289 vtn_handle_variable_or_type_instruction(struct vtn_builder *b, SpvOp opcode,
2290 const uint32_t *w, unsigned count)
2291 {
2292 switch (opcode) {
2293 case SpvOpSource:
2294 case SpvOpSourceContinued:
2295 case SpvOpSourceExtension:
2296 case SpvOpExtension:
2297 case SpvOpCapability:
2298 case SpvOpExtInstImport:
2299 case SpvOpMemoryModel:
2300 case SpvOpEntryPoint:
2301 case SpvOpExecutionMode:
2302 case SpvOpString:
2303 case SpvOpName:
2304 case SpvOpMemberName:
2305 case SpvOpDecorationGroup:
2306 case SpvOpDecorate:
2307 case SpvOpMemberDecorate:
2308 case SpvOpGroupDecorate:
2309 case SpvOpGroupMemberDecorate:
2310 assert(!"Invalid opcode types and variables section");
2311 break;
2312
2313 case SpvOpTypeVoid:
2314 case SpvOpTypeBool:
2315 case SpvOpTypeInt:
2316 case SpvOpTypeFloat:
2317 case SpvOpTypeVector:
2318 case SpvOpTypeMatrix:
2319 case SpvOpTypeImage:
2320 case SpvOpTypeSampler:
2321 case SpvOpTypeSampledImage:
2322 case SpvOpTypeArray:
2323 case SpvOpTypeRuntimeArray:
2324 case SpvOpTypeStruct:
2325 case SpvOpTypeOpaque:
2326 case SpvOpTypePointer:
2327 case SpvOpTypeFunction:
2328 case SpvOpTypeEvent:
2329 case SpvOpTypeDeviceEvent:
2330 case SpvOpTypeReserveId:
2331 case SpvOpTypeQueue:
2332 case SpvOpTypePipe:
2333 vtn_handle_type(b, opcode, w, count);
2334 break;
2335
2336 case SpvOpConstantTrue:
2337 case SpvOpConstantFalse:
2338 case SpvOpConstant:
2339 case SpvOpConstantComposite:
2340 case SpvOpConstantSampler:
2341 case SpvOpConstantNull:
2342 case SpvOpSpecConstantTrue:
2343 case SpvOpSpecConstantFalse:
2344 case SpvOpSpecConstant:
2345 case SpvOpSpecConstantComposite:
2346 case SpvOpSpecConstantOp:
2347 vtn_handle_constant(b, opcode, w, count);
2348 break;
2349
2350 case SpvOpVariable:
2351 vtn_handle_variables(b, opcode, w, count);
2352 break;
2353
2354 default:
2355 return false; /* End of preamble */
2356 }
2357
2358 return true;
2359 }
2360
2361 static bool
2362 vtn_handle_body_instruction(struct vtn_builder *b, SpvOp opcode,
2363 const uint32_t *w, unsigned count)
2364 {
2365 switch (opcode) {
2366 case SpvOpLabel:
2367 break;
2368
2369 case SpvOpLoopMerge:
2370 case SpvOpSelectionMerge:
2371 /* This is handled by cfg pre-pass and walk_blocks */
2372 break;
2373
2374 case SpvOpUndef: {
2375 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_undef);
2376 val->type = vtn_value(b, w[1], vtn_value_type_type)->type;
2377 break;
2378 }
2379
2380 case SpvOpExtInst:
2381 vtn_handle_extension(b, opcode, w, count);
2382 break;
2383
2384 case SpvOpVariable:
2385 case SpvOpLoad:
2386 case SpvOpStore:
2387 case SpvOpCopyMemory:
2388 case SpvOpCopyMemorySized:
2389 case SpvOpAccessChain:
2390 case SpvOpInBoundsAccessChain:
2391 case SpvOpArrayLength:
2392 vtn_handle_variables(b, opcode, w, count);
2393 break;
2394
2395 case SpvOpFunctionCall:
2396 vtn_handle_function_call(b, opcode, w, count);
2397 break;
2398
2399 case SpvOpSampledImage:
2400 case SpvOpImage:
2401 case SpvOpImageSampleImplicitLod:
2402 case SpvOpImageSampleExplicitLod:
2403 case SpvOpImageSampleDrefImplicitLod:
2404 case SpvOpImageSampleDrefExplicitLod:
2405 case SpvOpImageSampleProjImplicitLod:
2406 case SpvOpImageSampleProjExplicitLod:
2407 case SpvOpImageSampleProjDrefImplicitLod:
2408 case SpvOpImageSampleProjDrefExplicitLod:
2409 case SpvOpImageFetch:
2410 case SpvOpImageGather:
2411 case SpvOpImageDrefGather:
2412 case SpvOpImageQuerySizeLod:
2413 case SpvOpImageQueryLod:
2414 case SpvOpImageQueryLevels:
2415 case SpvOpImageQuerySamples:
2416 vtn_handle_texture(b, opcode, w, count);
2417 break;
2418
2419 case SpvOpImageRead:
2420 case SpvOpImageWrite:
2421 case SpvOpImageTexelPointer:
2422 vtn_handle_image(b, opcode, w, count);
2423 break;
2424
2425 case SpvOpImageQuerySize: {
2426 struct vtn_access_chain *image =
2427 vtn_value(b, w[3], vtn_value_type_access_chain)->access_chain;
2428 if (glsl_type_is_image(image->var->var->interface_type)) {
2429 vtn_handle_image(b, opcode, w, count);
2430 } else {
2431 vtn_handle_texture(b, opcode, w, count);
2432 }
2433 break;
2434 }
2435
2436 case SpvOpAtomicExchange:
2437 case SpvOpAtomicCompareExchange:
2438 case SpvOpAtomicCompareExchangeWeak:
2439 case SpvOpAtomicIIncrement:
2440 case SpvOpAtomicIDecrement:
2441 case SpvOpAtomicIAdd:
2442 case SpvOpAtomicISub:
2443 case SpvOpAtomicSMin:
2444 case SpvOpAtomicUMin:
2445 case SpvOpAtomicSMax:
2446 case SpvOpAtomicUMax:
2447 case SpvOpAtomicAnd:
2448 case SpvOpAtomicOr:
2449 case SpvOpAtomicXor: {
2450 struct vtn_value *pointer = vtn_untyped_value(b, w[3]);
2451 if (pointer->value_type == vtn_value_type_image_pointer) {
2452 vtn_handle_image(b, opcode, w, count);
2453 } else {
2454 assert(pointer->value_type == vtn_value_type_access_chain);
2455 vtn_handle_ssbo_or_shared_atomic(b, opcode, w, count);
2456 }
2457 break;
2458 }
2459
2460 case SpvOpSNegate:
2461 case SpvOpFNegate:
2462 case SpvOpNot:
2463 case SpvOpAny:
2464 case SpvOpAll:
2465 case SpvOpConvertFToU:
2466 case SpvOpConvertFToS:
2467 case SpvOpConvertSToF:
2468 case SpvOpConvertUToF:
2469 case SpvOpUConvert:
2470 case SpvOpSConvert:
2471 case SpvOpFConvert:
2472 case SpvOpQuantizeToF16:
2473 case SpvOpConvertPtrToU:
2474 case SpvOpConvertUToPtr:
2475 case SpvOpPtrCastToGeneric:
2476 case SpvOpGenericCastToPtr:
2477 case SpvOpBitcast:
2478 case SpvOpIsNan:
2479 case SpvOpIsInf:
2480 case SpvOpIsFinite:
2481 case SpvOpIsNormal:
2482 case SpvOpSignBitSet:
2483 case SpvOpLessOrGreater:
2484 case SpvOpOrdered:
2485 case SpvOpUnordered:
2486 case SpvOpIAdd:
2487 case SpvOpFAdd:
2488 case SpvOpISub:
2489 case SpvOpFSub:
2490 case SpvOpIMul:
2491 case SpvOpFMul:
2492 case SpvOpUDiv:
2493 case SpvOpSDiv:
2494 case SpvOpFDiv:
2495 case SpvOpUMod:
2496 case SpvOpSRem:
2497 case SpvOpSMod:
2498 case SpvOpFRem:
2499 case SpvOpFMod:
2500 case SpvOpVectorTimesScalar:
2501 case SpvOpDot:
2502 case SpvOpIAddCarry:
2503 case SpvOpISubBorrow:
2504 case SpvOpUMulExtended:
2505 case SpvOpSMulExtended:
2506 case SpvOpShiftRightLogical:
2507 case SpvOpShiftRightArithmetic:
2508 case SpvOpShiftLeftLogical:
2509 case SpvOpLogicalEqual:
2510 case SpvOpLogicalNotEqual:
2511 case SpvOpLogicalOr:
2512 case SpvOpLogicalAnd:
2513 case SpvOpLogicalNot:
2514 case SpvOpBitwiseOr:
2515 case SpvOpBitwiseXor:
2516 case SpvOpBitwiseAnd:
2517 case SpvOpSelect:
2518 case SpvOpIEqual:
2519 case SpvOpFOrdEqual:
2520 case SpvOpFUnordEqual:
2521 case SpvOpINotEqual:
2522 case SpvOpFOrdNotEqual:
2523 case SpvOpFUnordNotEqual:
2524 case SpvOpULessThan:
2525 case SpvOpSLessThan:
2526 case SpvOpFOrdLessThan:
2527 case SpvOpFUnordLessThan:
2528 case SpvOpUGreaterThan:
2529 case SpvOpSGreaterThan:
2530 case SpvOpFOrdGreaterThan:
2531 case SpvOpFUnordGreaterThan:
2532 case SpvOpULessThanEqual:
2533 case SpvOpSLessThanEqual:
2534 case SpvOpFOrdLessThanEqual:
2535 case SpvOpFUnordLessThanEqual:
2536 case SpvOpUGreaterThanEqual:
2537 case SpvOpSGreaterThanEqual:
2538 case SpvOpFOrdGreaterThanEqual:
2539 case SpvOpFUnordGreaterThanEqual:
2540 case SpvOpDPdx:
2541 case SpvOpDPdy:
2542 case SpvOpFwidth:
2543 case SpvOpDPdxFine:
2544 case SpvOpDPdyFine:
2545 case SpvOpFwidthFine:
2546 case SpvOpDPdxCoarse:
2547 case SpvOpDPdyCoarse:
2548 case SpvOpFwidthCoarse:
2549 case SpvOpBitFieldInsert:
2550 case SpvOpBitFieldSExtract:
2551 case SpvOpBitFieldUExtract:
2552 case SpvOpBitReverse:
2553 case SpvOpBitCount:
2554 case SpvOpTranspose:
2555 case SpvOpOuterProduct:
2556 case SpvOpMatrixTimesScalar:
2557 case SpvOpVectorTimesMatrix:
2558 case SpvOpMatrixTimesVector:
2559 case SpvOpMatrixTimesMatrix:
2560 vtn_handle_alu(b, opcode, w, count);
2561 break;
2562
2563 case SpvOpVectorExtractDynamic:
2564 case SpvOpVectorInsertDynamic:
2565 case SpvOpVectorShuffle:
2566 case SpvOpCompositeConstruct:
2567 case SpvOpCompositeExtract:
2568 case SpvOpCompositeInsert:
2569 case SpvOpCopyObject:
2570 vtn_handle_composite(b, opcode, w, count);
2571 break;
2572
2573 case SpvOpEmitVertex:
2574 case SpvOpEndPrimitive:
2575 case SpvOpEmitStreamVertex:
2576 case SpvOpEndStreamPrimitive:
2577 case SpvOpControlBarrier:
2578 case SpvOpMemoryBarrier:
2579 vtn_handle_barrier(b, opcode, w, count);
2580 break;
2581
2582 default:
2583 unreachable("Unhandled opcode");
2584 }
2585
2586 return true;
2587 }
2588
2589 nir_function *
2590 spirv_to_nir(const uint32_t *words, size_t word_count,
2591 struct nir_spirv_specialization *spec, unsigned num_spec,
2592 gl_shader_stage stage, const char *entry_point_name,
2593 const nir_shader_compiler_options *options)
2594 {
2595 const uint32_t *word_end = words + word_count;
2596
2597 /* Handle the SPIR-V header (first 4 dwords) */
2598 assert(word_count > 5);
2599
2600 assert(words[0] == SpvMagicNumber);
2601 assert(words[1] >= 0x10000);
2602 /* words[2] == generator magic */
2603 unsigned value_id_bound = words[3];
2604 assert(words[4] == 0);
2605
2606 words+= 5;
2607
2608 /* Initialize the stn_builder object */
2609 struct vtn_builder *b = rzalloc(NULL, struct vtn_builder);
2610 b->value_id_bound = value_id_bound;
2611 b->values = rzalloc_array(b, struct vtn_value, value_id_bound);
2612 exec_list_make_empty(&b->functions);
2613 b->entry_point_stage = stage;
2614 b->entry_point_name = entry_point_name;
2615
2616 /* Handle all the preamble instructions */
2617 words = vtn_foreach_instruction(b, words, word_end,
2618 vtn_handle_preamble_instruction);
2619
2620 if (b->entry_point == NULL) {
2621 assert(!"Entry point not found");
2622 ralloc_free(b);
2623 return NULL;
2624 }
2625
2626 b->shader = nir_shader_create(NULL, stage, options);
2627
2628 /* Parse execution modes */
2629 vtn_foreach_execution_mode(b, b->entry_point,
2630 vtn_handle_execution_mode, NULL);
2631
2632 b->specializations = spec;
2633 b->num_specializations = num_spec;
2634
2635 /* Handle all variable, type, and constant instructions */
2636 words = vtn_foreach_instruction(b, words, word_end,
2637 vtn_handle_variable_or_type_instruction);
2638
2639 vtn_build_cfg(b, words, word_end);
2640
2641 foreach_list_typed(struct vtn_function, func, node, &b->functions) {
2642 b->impl = func->impl;
2643 b->const_table = _mesa_hash_table_create(b, _mesa_hash_pointer,
2644 _mesa_key_pointer_equal);
2645
2646 vtn_function_emit(b, func, vtn_handle_body_instruction);
2647 }
2648
2649 assert(b->entry_point->value_type == vtn_value_type_function);
2650 nir_function *entry_point = b->entry_point->func->impl->function;
2651 assert(entry_point);
2652
2653 ralloc_free(b);
2654
2655 return entry_point;
2656 }